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Abstract. We propose a new approach to perform semi-supervised train-
ing of Semantic Role Labeling models with very few amount of initial
labeled data. The proposed approach combines in a novel way supervised
and unsupervised training, by forcing the supervised classifier to over-
generate potential semantic candidates, and then letting unsupervised
inference choose the best ones. Hence, the supervised classifier can be
trained on a very small corpus and with coarse-grain features, because
its precision does not need to be high: its role is mainly to constrain
Bayesian inference to explore only a limited part of the full search space.
This approach is evaluated on French and English. In both cases, it
achieves very good performance and outperforms a strong supervised
baseline when only a small number of annotated sentences is available
and even without using any previously trained syntactic parser.

1 Introduction

1.1 Data scarcity in semantic role labeling

Semantic Role Labeling (SRL) is a major task in Natural Language Processing
which provides a shallow semantic parsing of a text. Its primary goal is to identify
and label the semantic relations that hold between predicates (typically verbs),
and their associated arguments [1]. The analysis of semantic relations and pred-
icate argument structures has many potential applications in Natural Language
Processing (NLP). In particular, applications such as natural language under-
standing, machine translation, information extraction and question answering
are shown to benefit from semantically annotated text. The extensive research
carried out in this area resulted in a variety of annotated resources, which, in
time, opened up new possibilities for supervised SRL systems. Although such
systems show very good performance, they require large amounts of annotated
data to be successful. This annotated data is not always available, very expensive
to create and often language and domain specific [2].

To bypass these shortcomings, different solutions have been proposed. Un-
supervised and semi-supervised learning techniques are two possible options to
address the data scarcity problem. Unsupervised learning attempts to induce
the annotations from large amounts of unlabeled data, while semi-supervised
models are trained on both a limited quantity of labeled examples and a larger



unlabeled corpus. A first claass of semi-supervised systems for SRL exploit a
bootstrapping approach, such as self-training and co-training [3, 4]. An alter-
native solution to combine labeled and unlabeled data is “semi-unsupervised”
systems, which start from some unsupervised model and train a small number of
this model’s parameters on the limited labeled corpus available [5]. One example
of the application of these semi-unsupervised approaches on the semantic role
labeling task is described in [6].

1.2 Proposed semi-supervised approach

Our proposed approach to semantic role labeling is inspired by the work of [6].
However, one of the main differences is that, while they essentially use the la-
beled data to build an informed prior distribution over the unsupervised model
parameters, we rather use the labeled data to train a supervised classifier which
role is to generate a set of potential arcs, and then introduce these labels as
virtual evidence [7] to constrain unsupervised Bayesian inference. The proposed
system can thus either be viewed as a semi-supervised approach, where the out-
put of the initial bootstrapped supervised system is filtered by the unsupervised
model, or as a semi-unsupervised approach, where inference in the unsupervised
model is constrained and guided by the supervised solutions. It is, to the best
of our knowledge, the first SRL system that does not explicitly root itself in one
or the other paradigm.

Another advantage of the proposed approach is that it produces labeled se-
mantic roles and can thus be evaluated with supervised SRL metrics. Moreover,
the proposed model automatically detects all candidate argument chunks and
predicates and we do not make any assumption about predicate argument struc-
tures. Instead, we let the model infer a semantic structure by detecting not only
the semantic role associated with each argument but also the predicate it shall be
linked to. As shown in Section 3, the proposed approach shows competitive per-
formance even under the assumption of no pre-existing syntactic parser. Hence,
as opposed to many previous works that rely on either gold syntactic trees or
trees obtained with supervised parsers trained on a large training corpus, we
rather train our parser on the same small training corpus than for SRL. To
summarize, the only inputs needed in the proposed approach are part-of-speech
tags, and a very small initial corpus labeled with syntax and semantic arcs.

2 Task definition

Semantic role labeling is the task of automatically finding the semantic roles
for each predicate in a sentence. That is, finding out which constituents in a
sentence are semantic arguments for a given predicate and then determining the
appropriate role for each of these arguments. Different definitions for “seman-
tic role” have been proposed. In this work, we use the definition provided by
PropBank [8], since it is commonly used in the NLP community and there are
available versions of this resource in the target languages. The semantic roles in



PropBank are defined with respect to individual verb senses or predicates. Thus,
each predicate has a number of roles. In general, roles A0 and A1 attempt to
capture Proto-Agent and Proto-Patient roles [9], and thus are more valid across
verbs and verb instances than A2-A5 roles.

In this work, we focus on both determining which constituents in a sentence
are semantic arguments for each predicate, and labeling these arguments with
semantic roles. For this, we decompose the overall process into two main steps:

1. Candidate arcs generation: this process generates a set of possible candidate
semantic arcs (see Section 3);

2. Bayesian inference: this process selects the most likely semantic arcs from
the set of candidates (see Section 4).

Figure 1 illustrates the results produced by the proposed approach on an ex-
ample sentence. The inferred dependency arcs and semantic relations are shown
respectively above and below the sentence.

Jackets may be sold next .
NNS MD VB VBN RB .

SBJ
VC VC TMP

P

A1

AM-MOD

AM-TMP

Fig. 1. Example of inferred sentence.

3 Candidate arcs generation

The first stage is summarized in Figure 2, with the following notation:

– L is the small initial manually labeled corpus used to train our supervised
classifiers. It is typically composed of 50 sentences that are automatically
tagged with an existing POS-tagger, and manually annotated with labeled
dependencies and semantic relations.

– U is a large unlabeled corpus, only automatically annotated with POS tags.
– T is the test or gold manually annotated corpus. It is only used to evalute

the performances.

This first stage only exploits an initial set of 50 manually labeled sentences to
train both the MATE syntactic parser [10], and a Maximum Entropy semantic
model Ms with L-BFGS optimization1. Both these supervised models are used
to produce a set of candidate semantic arcs on the unlabeled corpus.

1 We use the Stanford Classifier: http://nlp.stanford.edu/software/classifier.shtml



These candidate semantic arcs are then used in the next stage to constrain
Bayesian inference to only use plausible semantic arcs, hence greatly reducing
the size of the search space on the unlabeled corpus. It is thus very important to
maximize the recall of Ms so that the set of candidate semantic arcs comprises
most if not all gold arcs. In other words, Ms must miss as few semantic arcs as
possible, which imply to maximize its recall while its precision shall be kept at
a reasonable level but is not as important there.

Corpora used:

L
50 sentences
hand-labeled

U
10,000 sent
no labels

T
Test corpora

gold

Md

train

MATE

parser

L′

U ′

with deps
T ′

with deps

reparse

syntax

Ms

train

MaxEnt

SRL
U ′′

with SRL
candidates

T ′′

with SRL
candidates

detect possible semantic arcs

Fig. 2. Procedure to generate candidate semantic arcs, before inference

3.1 Supervised semantic model

Following common practice, all non-auxiliary verbs are selected as predicates2.
Then the supervised Maximum Entropy semantic model Ms is trained on the
small manually labeled corpus L’ as detailed in Figure 3. For this training, we
first run an optional pre-processing step, which consists of a very simple rule
based chunker that uses word forms and POS tags to segment noun and preposi-
tional phrases, and thus reduce the number of possible arguments. The Maximum
Entropy semantic model’s features Φ(a, p) computed for each predicate-argument
pair are shown in Table 1.

2 In this work we do not disambiguate between predicate senses.



Table 1. Features used in Ms for each argument-predicate pair (a, p)

- Letter 4-gram, prefix and suffix 4-grams and lengths of a, p, (a, p),
argument context bigram (at−1, at+1) and syntactic dependents of a

- POS tags of a and p

- Distance from a to p: −4 and less, −3, · · ·, +3, +4 and more
- indicator that a is the syntactic head of a NP or PP
- Dependency type from a

- Boolean true iff a and p are directly linked syntactically

1: for every predicate p (p is any non auxiliary verb as given by the POS tags) do
2: for every argument a (a is the estimated syntactic head of any NP or PP) do
3: Compute features Φ(a, p)
4: if arc (a, p) ∈ L′ then

5: Set class c = label of (a, p) ∈ L′

6: else

7: Set class c = NOARC

8: end if

9: Add the observation (Φ(a, p), c) to the training set Tr

10: end for

11: end for

12: Train the maximum entropy model on Tr

Fig. 3. Train MaxEnt semantic model

Once the semantic model is trained on the labeled corpus L’, it is applied on
the unlabeled U ’ and test T ’ corpus as detailed in Figure 4.

4 Bayesian Model

The candidate semantic arcs proposed by the semantic modelMs are used as con-
straints during inference on U ′′∪T ′′ of the posterior of the Bayesian model. This
Bayesian model is designed to encode standard linguistic features very similar to
the ones used in most other unsupervised SRL models. The factors representing
these features are described next and include lexical roles preferences p(w|a),
arguments position p(pos|a) and syntactic roles preferences p(d|a), which give
the following joint on U ′′ ∪ T ′′:

P (W,A,POS,D) =
∏

u∈U ′′∪T ′′

∏

wt∈Au

P (wt|at)P (post|at)P (dt|at)

where u is one sentence of the corpus, Au is the observed set of argument candi-
dates proposed by Ms for sentence u, dt is the observed estimated dependency
type from wt, and (at, post) are latent and chosen during inference from the set
of candidate semantic arcs proposed by Ms for wt. Exactly one semantic arc is
chosen for each wt during inference.



1: for every predicate p (p is any non auxiliary verb as given by the POS tags) do
2: for every argument a (a is the estimated syntactic head of any NP or PP) do
3: Compute features Φ(a, p)
4: Use Ms to compute P (c|Φ(a, p)), where c spans all arc labels
5: for every arc label c do

6: if P (c|Φ(a, p)) > P (NOARC|Φ(a, p)) then
7: Add the arc (a, p, c) to the set of candidate arcs
8: end if

9: end for

10: end for

11: end for

Fig. 4. Compute candidate semantic arcs

4.1 Lexical roles preferences

P (w|a) follows a Multinomial distribution smoothed with a symmetric Dirichlet
with constant concentration hyper-parameter α = 0.001. The same smoothing is
applied to the two other factors described next. The α parameter has not been
tuned at all but has been set beforehand to 0.001 in order to favor peaky distri-
butions. w is the observed lexical form of the head of the candidate argument
chunk, which is given by Md (see Figure 2). This factor shall encode the fact that
some words are more likely to play a given role than others. A typical example
in French are personal pronouns “je, tu, il” (I, you, he), which are more likely to
be A0, while “lui, leur” (him, them) are more likely to be A2. Another example
is the preposition “de” (of), which is more likely to be AM than A0.

4.2 Argument position

P (pos|a), where pos is the position of the argument relative to its predicate,
follows a similar Multinomial distribution than the previous factor. The position
variable can take two values: left or right. This factor shall encode the fact that,
in French and English, the relative position of the role is relevant. Hence, the
active case as well as the declarative forms of sentences are largely dominant in
the corpus, and thus the A0 role is more likely to occur before the verb.

4.3 Syntactic preferences

P (d|a), where d is the dependency label that governs the argument, also follows
a smoothed Multinomial distribution. This factor shall encode part of the well-
known correlation between syntactic dependencies, such as subject, and semantic
roles, such as A0.

4.4 Inference

Inference is realized with the Metropolis-Hastings algorithm. The chosen pro-
posal distribution proposes, for one random sentence u and argument wt ∈ Au,



to replace its current semantic arc (at, post) with a new one amongst the set of
candidate arcs proposed by Ms for wt, eventually attaching to a new predicate
and/or with another label. Note that this proposal is based on the assumption
that every argument is linked to exactly one predicate. This strong assumption
is reasonable on the target French SRL corpus, in which less than 8% of the
arguments are linked to more than one predicate.

For each of these possible moves, the proposal is non-uniform, in order to
speed up convergence. We rather set the proposal distribution so that 80% of
the time, the move that leads to the largest posterior is chosen, and we distribute
the remaining 20% probability mass uniformly over the other possible moves. It
is easy to check that the Bayesian model is identifiable with discrete and finite
variables and that the detailed balance condition is verified. These conditions
guarantee that inference converges towards a stationary posterior distribution.
Before inference, the semantic arcs are initialized by choosing for each argument
wt, the semantic arc with the maximum score given by Ms.

5 Experimental validation

The proposed semi-supervised SRL approach is evaluated on French and En-
glish. In both cases we compare our approach with the MATE state-of-the-art
supervised semantic parser [11] (called MATEsrl). For this comparison, both
the MATEsrl system and the proposed approach are trained on the same 50
sentences. Furthermore, as explained in Section 3, instead of using gold syntactic
dependencies, for all three corpora we use the dependencies obtained with the
MATE syntactic parser (MATEdep), which is also trained only on the 50 sen-
tences of the labeled corpus. The objective of this comparison is to prove that
the proposed weakly-supervised approach outperforms a supervised approach
when only a few number of annotated examples are available. The choice of
this supervised MATEsrl system is motivated by its very good performances
in general, and on the French corpus in particular. Indeed, we have also evalu-
ated the performances of the MATEsrl system when trained on the full French
corpus with 10-fold cross-validation, which then gives a labeled F1 of 98.7% and
an unlabeled F1 of 98.8%. Note that cross-validation has only been used in this
specific experiment, and not in any of the others, because in the other experi-
ments, we only use 50 sentences for training and may thus use a large test set
of 500 sentences.

In English, the proposed system has further been compared with the state-
of-the-art semi-supervised SRL system presented in [12]. However, for this com-
parison we used slightly different settings, adapted to those described in [12].
For all the experiments, the scores are computed as in the CoNLL09 evaluation
campaign, except for the labeled scores that assume that the gold labels of the
predicates are known, because our system does not do sense detection. To sim-
plify notations, we omit next the ′ and ′′ when referring to the corpora derived
from L, T and U .



5.1 Evaluations on French

Data. The data used in this evaluation is the French CLASSIK corpus [13].
The “gold” section of this corpus has been manually labeled and contains 1000
sentences in total. L is composed of the 50 first sentences, and T is composed
of the 500 last sentences. We can thus make the size of L vary from 50 to 500
sentences when drawing Figure 5. U is composed of 10,000 sentences taken from
the non-manually annotated part of the French CLASSIK corpus.

Comparison with MATE. In this experiment, the MATEsrl parser is trained on
the same 50 sentences from L than our proposed system. The results obtained
by both the MATEsrl system and the proposed approach are shown, respec-
tively, in the first and last rows of Table 2. Note that, although the MATEsrl

performances are very high when trained on the full corpus, they drop down dra-
matically when trained on only 50 sentences. In this case, the proposed approach
largely outperforms the supervised system.

The second and third rows in Table 2 show the performances obtained when
using only the first stage of our system, that is the output of the Maximum
Entropy classifier, without doing Bayesian inference. The first “all links” model
simply includes all of the semantic arcs produced by our supervised classifier.
On the average, this classifier produces about 5 candidate semantic arcs per
argument. Obviously, the F-measure is quite low here, because this classifier has
been designed to produce many more arcs than necessary, so that the subsequent
inference step only selects a few of them. But the recall is more interesting than
the F1 in this experiment, because it shows the best performance that can be
reached with this first stage of classifiers.

The second “Optimum links” shows the best possible results that can be
reached with the set of candidate links proposed by the classifier, given our
restriction that every argument can be linked to at most one predicate. So in
this line, we select for every argument the single arc that matches a corresponding
arc in the gold semantic structure, or a random arc if none of the candidates is
correct. This line gives the real upper bound of performances that can be reached
by our system, given our restrictions and the current setup of the deterministic
and supervised parts of the model, i.e., at the exclusion of the unsupervised
model. This oracle does not consider the labels of the arcs. Note that its recall
is slightly lower than the “All links” recall, because of the few arguments that
are linked to several predicates. Its precision is also lower than 100% because of
the false alarms from both predicate and argument detection.

Comparing the last two lines of Table 2, we can note that the proposed
system only adds about 15% of errors more than the oracle system, in terms of
F1, precision and recall. This suggests that the inference stage is doing correctly
its job and that further improvements can be obtained mainly by working on
the deterministic part and restrictions of our system.



Table 2. SRL experimental validation on French in terms of labeled and unlabeled
F1-measure, Precision and Recall

System F1 lab. Prec. lab. Rec. lab. F1 unlab. Prec. unlab. Rec. unlab.

MATE 36.4 40.8 32.9 58.7 65.8 53.0

All links 31.4 20.6 66.0 33.3 21.8 70.0

Optimum links 76.7 86.2 69.1

Inference 54.8 62.7 48.7 73.5 84.1 65.3

5.2 Impact of quantity of labeled data

Figure 5 shows the evolution of the unlabeled F1 in function of the number of
manually annotated sentences both for the supervised MATEsrl system and for
the proposed weakly supervised system. As expected, the proposed system gives
much better performances than the MATE system with a small amount of man-
ually labeled data, but still remains better for up to 450 sentences, although the
difference between both systems decreases when more labeled data is included.
This suggests that the proposed model may still be improved by better tuning
the complexity and number of features used to train our first stage classifier,
depending on the size of the available corpus.

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0  50  100  150  200  250  300  350  400  450  500

weaksup
mate

Fig. 5. Unlabeled F1 as a function of the number of manually annotated sentences



5.3 Evaluations on English

Two evaluation experiments are realized in English: first, we compare our ap-
proach with the supervisedMATEsrl system, in a similar way as done in French.
Second, we compare our system with the semi-supervised SRL presented in [12].

Data. The data used for the evaluations on English is the standard CoNLL 2008
shared task [14] version of Penn Treebank WSJ and PropBank. As done in [12],
T corresponds to the test portion of the CoNLL 2008 corpus. L is composed
of the first 50 (Table 3) or 400 (Table 4) sentences extracted from the training
corpus of CoNLL 2008, while U is composed of the next 10,000 sentences.

Comparison with MATE. Both systems are trained on only 50 sentences. The re-
sults obtained by both the MATEsrl semantic parser and the proposed system
are shown in Table 3. Like in French, the proposed approach largely outper-
forms the state-of-the-art supervised semantic parser when only a few number
of annotated examples are available.

Table 3. SRL experimental validation on English in terms of labeled and unlabeled
F1-measure, Precision and Recall

System F1 lab. Prec. lab. Rec. lab. F1 unlab. Prec. unlab. Rec. unlab.

MATE 26.0 31.7 22.1 53.9 65.5 45.8

Inference 47.5 54.7 42.0 67.2 77.4 59.4

Comparison with semi-supervised. We compare next our approach with the semi-
supervised SRL system presented in [12], which also produces labeled semantic
arcs. In [12] the authors present a Latent Words Language Model, which learns
word similarities from unlabeled text and use them in different semi-supervised
SRL systems as additional features or to automatically expand a small training
set. They experiment with different sizes of the training corpus and show that for
a small training corpus they outperform a state-of-the-art supervised baseline.
We mimic their experimental setup by increasing the size of our training corpus
from 50 to 400 sentences, which represents about 1% of the training corpus.
The first two lines in Table 4 show the results presented in [12] when training
on 5% of the training set. The first line is their baseline, a supervised SRL
system, while the second line shows the results of the same supervised system,
but using extra features given by the latent words language model. These features
correspond to the estimated distribution of the latent words for every word for
both the training and test set. The last two lines in the table show, respectively,
the results achieved by our baseline, the MATEsrl parser, and our proposed
system when training only on 1% of the training set. We can observe that with
only 1% of the training data (i.e., about 400 sentences), the proposed system



Table 4. Comparison with MATEsrl and [12] for two training corpus sizes.

System Training F1 lab.

Supervised Baseline [12] 5% 40.49

LWFeatures [12] 5% 60.3

MATE SRL supervised 1% 54.4

Inference 1% 60.6

matches the performances of the semi-supervised approach trained on 5% of the
training corpus (i.e. with about 1900 sentences).

6 Additional Related Works

A variety of algorithms have been proposed for semi-supervised learning3. And
there are many more examples of applications of these semi-supervised ap-
proaches to SRL other than the ones described in the introduction and evaluation
sections. For instance, [3] and [4] tested self-training and co-training on SRL; [17]
used a graph-alignment method to SRL; and, more recently, [18] used a graph-
based label propagation semi-supervised approach to improve the coverage of
a frame-semantic parsing model and reported significant improvements over a
state-of-the-art baseline, both in frame identification accuracy and full frame-
semantic parsing F1. Finally, another interesting approach, also related with our
work, is “prototype-based” learning [19, 20]. In this approach, prior knowledge
is specified declaratively, by providing “prototypes” (e.g., a list of representative
words) for each label. Then they use distributional similarity between the words
in the corpus and the prototypes as features in a generative model. Similarly, our
proposed framework might support the inclusion of “prototypes” in the form of
rules that generate candidate semantic arcs, as a replacement or in addition to
the supervised Maximum Entropy model used in this work.

7 Conclusions and future work

We present in this work a new approach to SRL that is able to work competi-
tively even when only a small amount of labeled data is available. The proposed
approach exploits both supervised and unsupervised methods, without privileg-
ing one or the other by design. It is based on the combination of a supervised
semantic role labeler that generates many more potential candidate arcs than
traditional supervised systems, with a Bayesian unsupervised model that max-
imizes the joint posterior of several linguistic factors that are commonly used
in the unsupervised SRL field. This combination is realized thanks to “virtual
evidence” that acts as new types of constraints for Bayesian inference.

3 We refer the reader to [15] or [16] for an overview on semi-supervised methods.



Because the proposed approach relies on a supervised SRL classifier, it pro-
duces labeled semantic roles and it does infer a semantic structure by detecting
to which predicate each argument should be linked. This semi-supervised direc-
tion is very promising, specially for those domains and languages for which little
or no annotated data is available.

We successfully evaluated the proposed model on two languages, French and
English, showing, in both cases, consistent performances improvement over a
state-of-the-art supervised SRL system on small amounts of labeled data. Fur-
thermore, we showed for English that its accuracy reaches a level comparable to
that of a state-of-the-art semi-supervised SRL systems even when the amount
of labeled data is smaller.

The system could be improved in many ways, and in particular the proposed
unsupervised model. We could, for instance, include some penalization term for
sampling the same role for several arguments of a verb instance (at least for core
roles).
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