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Astract

In this paper we consider generalized eigenvalue problems for a family of operators
with a quadratic dependence on a complex parameter. Our model is L(\) = —A +
(P(z) = \)? in L*(R?) where P is a positive elliptic polynomial in R? of degree m > 2.
It is known that for d even, or d = 1, or d = 3 and m > 6, there exist A € C and
uw € L*(RY), u # 0, such that L(A\)u = 0. In this paper, we give a method to prove
existence of non trivial solutions for the equation L(A)u = 0, valid in every dimension
d > 1. This is a partial answer to a conjecture in [12].

key words: semiclassical analysis, nonlinear eigenvalue problems, nonselfadjoint
operators, trace formula.

Résumé

Dans ce travail nous considérons un probleme aux valeurs propres généralisé pour une
famille d’opérateurs dépendant quadratiquement d’un parametre complexe. Le modele
étudié concerne la famille L(\) = —A + (P(z) — A\)? dans L?(R?) ot P un polynéme
elliptique dans R? de degré m > 2. Si d est paire ousid =1 oud = 3 et m > 6, on sait
alors qu’il existe A € C et u € L*(R?), u # 0, tels que L(A)u = 0. L’objet principal
de cet article est de donner une méthode pour démontrer I’existence de solutions non
triviales pour l’équation L(A)u = 0 pour toute dimension d > 1. On répond ainsi
partiellement & une conjecture formulée dans [12].

1 Introduction
Let us introduce the following family of differential operators,

Lp(N) = — O + (P(z) = V) (L1)

where A, is the Laplace operator in R%, X is a complex parameter, P is a
polynomial of degree m > 2 such that the leading homogeneous part P,, of P
satisfies Py, (x) > 0 for every x € R¥\{0} (in other words we say that P is a
positive-elliptic polynomial).

*corresponding author



Such family of operators plays an important role when studying analytic smooth-
ness of solutions of differential operators with multiple characteristics. In 1978,
B. Helffer [11], motivated by G. Métivier’ work [16], has considered the following
hypoelliptic differential operator

D =D2, + (¢3D,, — D))",

where D, =i~} % and conjectured that it is not hypoanalytic in a neighborhood
of 0 in R? (that means there exists u non analytic in a neighborhood of 0 such
that Du is analytic in a neighborhood of 0). He showed that if there exists
X € C such that L(\) := D? + (2 — \)? has a non trivial solution in S(R) then
D is not hypoanalytic (for other examples see [12] and references there).

Quadratic families of operators with a complex parameter \ also appear in
the theory of damped oscillations for dissipative problems in mechanics [9, 14].
The mathematical model is a second order differential equation :

Au" + Bu' + Cu =0, (1.2)

where the unknown function u is defined on R with values in some Hilbert space

d
Hand o/ = 22 Equation (1.2) is a model in mechanics for small oscillations of

dt

a continuum system in the presence of an impedence force [14].
Now looking for stationary solutions of (1.2), that means u(t) = uge
the following equation

M we have

(MA+AB+C)ug =0 (1.3)

So equation (1.3) is a non linear eigenvalue problem in the parameter A € C.
Existence of non null solutions for (1.3) is a non trivial problem. For B # 0
this problem is equivalent to a true non-selfajoint linear eigenvalue problem and
non trivial stationary solutions for (1.3) does not always exist. Nevertheless, If
suitable conditions on A, B, C are satisfied, several authors, [14, 13, 9, 15] have
proved that a total set of generalized eigenfunctions for (1.3) exist in the Hilbert
space H.

Concerning our model, we have Lp(\) = —A + P?(x) — 2AP(z) + A%. In
R? the strength of the coefficient of A is of the same order as the operator
(= + P)Y/? | s0 it seems difficult to use perturbation arguments.

The question we want to adress here is the following :

For any elliptic polynomial P of degree m > 2, does there exist A € C
and u in the Schwartz space S(R?), u # 0, such that Lp(\)u = 0?

For d = 1, this was proved by Pham-Robert [17] for m even. M. Christ
have generalized this result for every m > 2 [6]. In [4] the authors have proven
existence of non trivial solutions for Lp when 1 < d < 3, assuming that m is
large enough for d = 3. Later, Helffer-Robert-Wang proved in [12] the following
result.

Theorem 1.1 Assume that d is even and that P is a positive-elliptic polyno-
mial of degree m > 2.
Then there exist A € C and u € S(RY), u # 0, such that Lp(\)u = 0.




The proof given in [12] shows that there exist an infinite number of such eigen-
values [20] located in the half-plane {A € C, RX > 0}. But it is not known if
the generalized eigenfunctions span all the Hilbert space L?(R%), excepted for
d=1117].
For d odd , d > 3, m > 2, the problem of existence of non zero solutions for Lp
is still open and it was conjectured in [12] that such solutions exist whatever
the dimension d.
In this paper we prove that this is true for every elliptic polynomial if d = 3 and
for large classes of elliptic polynomials for d = 5,7. We also discuss a numerical
approach to prove that some coefficient in a semi-classical trace formula is not
zero. For d > 9 we conjecture that this coefficient is not zero hence there exists
an infinite number of nonlinear eigenvalues.

This work was supported by the program ANR 08-BLAN-00228, NONAa,
Research French Ministry.

2 Nonlinear eigenvalue problems

In this section we recall some known properties concerning nonlinear eigenvalue
problems. For more details we refer to [10, 15, 20].

Let us consider the quadratic family of operators L(\) = Lo + AL; + A? where
Lo, Ly are operators in an Hilbert space H. Lg is assumed to be self-adjoint,
positive, with a domain D(Lg) and L; is v/Lo-bounded. Moreover L61/2 is in
a Schatten class CP(H) for some real p > 0.

The following results are well known.

Theorem 2.1 L()) is a family of closed operators in H.

A\ — L=Y(\) is meromorphic in the complex plane.

The poles \; of L=Y(X\), with multiplicity m()\;), coincide with the eigenvalues
with the same multiplicities, of the matriz operator Ay in the Hilbert space
H x D(Ltl)/Q), with domain D(AL) = D(Lg) X D(Lé/z) where

Ap = ( _OLO _HLl > (2.4)

Let us denote Sp[L] the eigenvalues of Ay (which coincide with the poles of
171(2).

Remark 2.2 [t may happens that Sp[L] is empty. The following one dimen-
sional example is interesting and was discussed in [17, 5, 6].

d2

) + (2™ = \)? + g™ L (2.5)

Lm,g(A) =
For every m > 2, m even, Ly, o has infinity many eigenvalues but L, ,, has no
eigenvalue. The last statement is a consequence of the factorization
d d

LyymA) = (2™ = A+ %)(mm —A - %)



So, we can compute all solutions for the equation Ly, m(AN)u =0 and see that a
non-null solution u is never bounded on R.

But if m is odd, Ly, m(A)u =0, has infinity many eigenvalues on the imaginary
azis [6].

On the other side there exist sufficient general conditions to have Sp[L] #
[10, 15]. Unfortunately these conditions are not fulfilled for our example L(\) =
—Ng + (P(x) — N)? when d > 2.

The following formula appears for the first time in [2] and will be very useful
for our purpose.

Theorem 2.3 For k large enough (k € N, k > p) and for z € C\Sp[L], we

have . i
Tr(AL —2) F ! = %Tr[w(L(z)*lL’(z))], (2.6)

where each above operators are trace class.
Using Lidskii’ Theorem [10] and (2.6), we get

- k
Y o mWA—2) R = k—!lTr[j? (L(2)7'L/(2))]. (2.7)

AESp[L]

where m(\) is the multiplicity of the eigenvalue .

As it was nicely remarked in the paper [4], a sufficient condition for Sp[L] #
is that the r.h.s in (2.7) is not zero. To check this property a natural method is
to introduce parameters and use semiclassical analysis.

In [12] the authors also use Lidskii’ theorem and semi-classical analysis on the
matrix system Ay. Here we consider more directly the scalar family of operators
L(z) where computations are easier even if the dependence in z is nonlinear.

3  Semiclassical parametrix

For simplicity we assume here that P is homogeneous of degree m > 2 and

P(z) > 0 for z € R, 2 # 0. By the scaling transformation z = 7/™y with
A

ho=7-(m+tD/m and z = = we can see that L()) is unitary equivalent to the
T

semiclassical Hamiltonian 72L(z) where
L(z) = =g + (P(z) — 2)°. (3.8)

L(z) is the h-Weyl operator with the symbol L(z, z,¢) = €2 + (P(z) — z)°. For
semiclassical analysis tools and h-Weyl quantization we refer to [19]. Here we use
the notation H for the h-Weyl quantization of the symbol H or for convenience,
H= Opy (H). Let us recall the following definition. For a temperate symbol,
possibly fi-dependent, H(x, ¢, i), we have

10(a) = g [ [ nEE e mo) dyde . (39)



vV e S(R™).
Using some semiclassical operator calculus, we can construct a good parametrix
for L(z)~! for 2 € A where A is the sector

A={z€C, |z| >rg, 7/2+ 3 <arg(z) <3m/2—0}; r0>0,d>0.

Theorem 3.1 There exists a semiclassical symbol K™ (2), z € A, 0 < h < 1,
such that

KM (z0,6) = 3 WKy (2:2,6),
7>0
Lz = Opy(Kn(2). (310)

Moreover the asymptotic expansion has the following meaning: for every N > 1
we have

L(z).0pp | 3 W¥EKs(2) | =1+ B2NT20p8 (RN (2))
0<j<N

where the symbol Rg’}\),(z) satisfies the following estimates :
for every o, 8 € N we have

2m m
0:3; (Riy(52,9))| < O, )u(zﬁ)as7§)§mz|+u|(j’2€) i, €) 2N 1112,
(3.11)

where C(N, o, B) is uniform in z € A and where p(x,€) = (14 |z|>™ +|¢|?)1/2™,

Sketch of proof. The method to get such result is standard and was used
many times to construct parametrix of elliptic pseudo-differential operators [21].
Usually the z-dependence is linear but here it is quadratic. Moreover here
we need accurate estimates for the remainder term in the product of pseudo-
differential operators depending on parameters. The necessary estimates for
Rg;\), (z;x, &) are established using the technics coming from the papers [7, 3].
An other difficulty here is that we shall need to compute the symbols Ky; for j
large enough. This computations are not easy, so we have to be explicite as far
as possible.

Using the product formula for A-pseudodifferential operators, we get at the
initial step:

1 1
Ko(z;2,6) = — 3.12
o508 = T ) T e+ (Pla) = 2 (312)
and the induction formula
Koj=—-Ko| Y > T(on B)020YL(2)00 05 Ko (3.13)

0<0<j—1 || +]B|=2(—¢)



where I'(a, 8) = 22’5%?)‘2"6' Let us compute Ky and Ky .
_ La(2) L3( )
%= Do TTey
Ly(2) = (P(z)—2)AP(x) + |VP(x),
Ly(z) = =2[(P(z)—2)D*P(x)¢- &+ (VP(x)-£)? + (P(z) — 2)*|VP(z)]?],

where D?P(z) is the Hessian matrix of P in variable z.
Now using (3.13) we have

Ky — —KO{Z|ﬁ|:4f(0,ﬁ)8fL(z)8?Ko + 3 e T, 002 L(2) 02 K 5

Y 10, 8)92 L( )ang)}. (3.14)
FE

By induction on j, we easily get that

Kosrg— Y, Gl 20 (3.15)

j+1<k<3j (Z z g)kﬂ 7

2I(z, P — 2,€) is a polynomial in ((P — 2), &), with a total degree < k —2, with
coefficients depending on derivatives of P( ). 4
The following lemma will be useful later. Let us denote val[Qi] ], the valuation of

Qij as a polynomial in P— z,£. Let us recall the definition of valuation. Denote
by Z the ideal with generators &, - ,&q, P — 2, in the ring C*®(Rs x R,). If
Q € C*(Re x Ry), val[Q)] is the biggest integer p such that @ € ZP.

Lemma 3.2 We have
val[Qy] > 2(k — 1 — 2j), for 2j+2 <k <3j, and j > 1.

Proof. This is easily proved by induction on j, using (3.15) and the following
formula. Let @) and L be smooth functions in R™, a multiindex o € N, then

we have
aa—"/Q(a’hL)Ml . (a’YéL)M
<Lk+1) ZC (15, Y) TR (3.16)

where in the sum we have the conditions, v; € N*, pu; € N, v < o, iy +- - - e = p,

palyal 4 -+ pelyel = -
Let us recall that v < a means that v; < o for every 1 <j <d. O

Remark 3.3 The parametriz computed above is enough to get qualitative infor-
mations. Quantitative informations are much more difficult to get except for the
first orders gj =0,1). When j is larger it is not so easy to compute explicitely
the terms Q;’ (z, P — z,§).



Remark 3.4 [t is not difficult to extend the above results when the elliptic
polynomial P(x) has lower terms: P = Py, + Py_1 + --- P1 + Py where P; is
homogeous with degree j and Py, (x) > 0 for x € RN\{0}. Then we have

P(rt/my) = 7P (y)

with ¢ = 7Y™ = B/ and PE)(y) = Po(y) + ePpm_1(y) + - + ™ Py(y).
So P is a uniform elliptic family of polynomials and we can easily see that
the constructions in (8.11) are uniform in the small parameter e.

4 A trace formula

Recall that Sp[L] denote the generalized eigenvalues of the quadratic family
L(z), my is the multiplicity of the eigenvalue A. Let f an holomorphic function
in A such that

[f(2)| <CA+|2))7H, VzeA. (4.17)

For our applications we shall choose f(z) = (z + A)™*, for a suitable parameter
A € C. Let be I' a complex contour in A defined as follows.

I = {ret™ 7 >rg}U{ree, 6y <6 <2r—6},

where o > 0 and § < 6 < 7.
Proposition 4.1 Assume that p > w, Then f(AL) is a trace class oper-
ator and we have

Tr (f(AL) = Y. m\f(\) = Tr [75 L(z)7'L'(2)f(2)d2],  (4.18)

AeSp[L]

where §. F(2)dz = 5 [ F(2)dz (contour integral in the complex plane).

2
Proof. This a direct consequence of the Cauchy integral formula and Theorem
2.6. O

Theorem 4.2 For f as above, for every d > 1 we have in the semiclassic regime
R\, 0, modulo O(h+°),

ST omF) = > ol (fpP e (4.19)

AESPIL] §>0

If d is odd,
cpH =0 (4.20)

and for d even,

e (p =20-1"2em = [ [ 1@ +ahdzan. @)



For the other terms (j > 1) we have the following qualitative information

=% / Ay () O (P(z))d (4.22)

0<k<n;

where Agj i.(x) are polynomials in O) P(x), |v| < 2j and n; depends on j.
Moreover if d is odd, then we have

C5(f) =0 for d>4j+1| (4.23)

Proof. The asymptotic expansion (4.19) is a direct consequence of (3.11) and
of usual properties of trace operation for Weyl quantization.

Let us compute C’éd) (f). We have the integral formula:

== 2(P(z) — 2) 2)dzdédx
]g €2 1 (P(a) — 22 (P)dzdéda,

where dz = (27)~4dz. By the residue theorem we get

(d) ; . .
//RR ) +il€]) + f(P(x) —il¢])]déd

For a > 0 we have

/ /RR ) +alel)dédr = o™ / /R P+ lededs.

So by analytic extension and evalution at a = i we get formula (4.20) and (4.21).
In particular we see that for d even, there exists f satisfying (4.17) such that

C(f) # 0.
For j > 1, using (3.15), we have

25 T Tr)— 2 ~
//j{ Z 2(P(z) — 2)Q; (@, Plz) ’E)f(z)dzdfdx. (4.24)

. k+1
J+1<k<3; L(z2,¢)

Let us now prove that C;?)(f) =0,for4j+1<d.
To do that it is convenient to introduce the following integral, for v > 0,v > 0,

T f(u,v) = f/} v +((";_ZZ))V2),€+1 F(2)dz. (4.25)

We have easily

_1\k gk
Jep flu,v) = ( kll) a(,;{l;)}cuf(u,v). (4.26)

And using the residue theorem, we get

iu—lu(u—l)/Z

J07Vf(u,7}) = 9

(O e+ iva) + fo—iva).  (427)



From (4.26) and (4.27) we can compute Ji , f(u, v).

To prove that C’é;l)(f) =0 for d > 45 + 1, we shall prove that each term in the
sum (4.24) vanishes, after integration in z and &.
Suppose first that j +1 < k < 2j + 1. We have

(x, P(x) — 2,6) = ZRM x) — 2)7EN.

Hence

/ % O (@ P(@) = 2,8) 11

(252, §)FH1

is a sum of integrals like
P(z) - 2)”
Ik y dz.
Hw.6) = § g ()
By integration by parts in z we have

v

L (f) = g i () = S - (4.28)

So, we can assume that v = 0. But we have

1\ Y4
0.6 = S gt P

So we have I§(g)(z,¢) = O(|¢[>7?%) near ¢ = 0. Now we remark that for
¢ <2 +1andd > 4j+1 we have £ < % + 1, hence £ — I{(g)(x,€) is
integrable and, using the analytic dilation argument already used for 7 = 0, we
get I§(g)(x, &) = 0, hence

/7{ )Qy (w, P(x %) =8 {dde = 0.

(252, §)FH1

Now, assume that 2j + 2 < k < 3j. Using Lemma 3.2, we have

ij(x, P(z) — 2,§) = Z R, ,(x)(P(x) — 2)"¢".

vy >2(2k—1-27)

As above, we integrate by parts in z to have the possibility to put v at 0 and
then we use &7 to decrease the or(zier of the singularity in & as far as possible
(integrability near £ = 0) of fr LQT’j:ldz. We conclude by the analytic dilation
argument. O
So we have proven the last statement of Theorem 4.2.

We conjecture that the next following terms are not 0; more precisely we claim:
Conjecture: For every j € N, j > 1, there exists f satisfying (4.17) such that
we have we have

O V() #£0, and OV (f) £0 (4.29)
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In the following sections we shall check this conjecture for d = 1,3 and we
shall compute analytic formula for C’f)( f) and C’f)( f). Unfortunately, these
analytic expressions have many terms and it is not obvious that Cid)( f) #0 for
d = 5,7, for every elliptic polynomial P. We shall see that this is true for convex
polynomials for d = 7 and satisfying a technical condition if d = 5. Moreover
we get, using numerical computations for particular non-convex polynomials P,

that C3¥(f) # 0.

As we shall see in the next section, the property C’z(?) (f) # 0 gives easily a lower
bounds on the density of eigenvalues.

Remark 4.3 Following Remark 3.4 we can extend our results to polyhomoge-
neous polynomials P = Py, + P,,,_1 + --- P1 + Py. To follow the dependence in
the coefficients, we note Co;(f, P) the coefficient Ca;(f) with polynomial P.

In particular we have C’é?)(f, PE)Y =0, ford > 4j + 1 and for every € small
enough. We have used the notations of Remark 3.4.

Assume now that d = 4jo — 3 or d = 4jg — 1, jo > 1. Then using a Taylor
expansion in e, computed for e = /™D we get

C2j (fv P(ﬁl/(7’L+l>)) = Z ’Ykhk/(m-i_l)? (4'30)

k>0

in particular if yo = C’é?g(f, P,,) # 0 then from Remark 3.4 we get that C’é?g (f,P) #
0. So it is enough to prove the conjecture for homogeneous polynomials P.

5 Estimate the density of eigenvalues

First of all let us remark that the nonlinear spectrum Sp[L] of L is included in
the two quarters {z € C, R(z) >0, £3(z) > 0}.
On one side, it is easy to see that if A € R and L(A)u = 0 then u = 0. On the
other side, if R(A) < 0 and L(A\)u = 0, computing F((L(N)u,u)) we conclude
that u = 0.

Let us denote by Ni(R) = #{z € Sp[L]; |z| < R} and N(R) = Nu—1(R).

Proposition 5.1 For every real w, pr > d(m + 1)/m, there exists Cj, > 0 such
that
Ni(R) < CRLR*h™¢, YR > 1, Vh €]0,1]. (5.31)

If Cé;l)(f) # 0 with d > 2j, then for every r > 0, € > 0 there exists c., > 0
such that
Np(rh™¢) > c..h7°, Vh€]0,1], (5.32)

where § = d — 2j. Moreover if j = 0 (d even) then the estimates is valid with
e =0. So that, in even dimension, for every R >0, Ni(R) behaves like h=?.

Proof. The proof of (5.31) is a direct consequence of Weyl-Ky-Fan inequality
[20].
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We first remark that for every € > 0 there exists R. > 0 such that if
—m/2—e<argz<w/2+¢e, |ul>R.

then we have
[t + 22 > (1 —e)t? + |z).

Let us choose f(A\) = (A + ¢)™# with k large enough (¢ > d(m + 1)/m) and
t > 0. We apply (4.19) to get the following inequalities

Cih? < | > (t+2)7" < > ft+z<C Y (t+z)™*
z€SplL] z€Sp[L] zeSplL]
But for every pu, p1, large enough, such that p — py is large enough, we have
PR E R e S (R )
zeSplL] 2€8p[L)

[z|>R

We choose now R = rh™° to get

Narh =) = 37 (1 [u) ™ = e b~
[u|<R

O
The above results concern the semi-classical regime. Now we give estimates
for h =1 and high energy regime

Corollary 5.2 For R /' 400 we have
N(R) = O(RAm+1)/m),

If Cé?)(f) # 0 with d —2j > 0, then for every e > 0 there exits c. > 0 such that
. RO D/m—e < N(R)

If 7 =0, the estimate is true with ¢ = 0 and ¢y > 0.

6 1-d and 3-d cases

In this section we prove the following result.

Theorem 6.1 For d = 1,3, there exists f satisfying (4.17) such that for every
m > 2, we have Céd)(f) # 0. More precisely, we have

3N = 35 [ IOP@P@pa (63
(3) 1 / 2
N = gz | £ P@)IVP@)Ps (634

We can choose f(A) = (A+t)™* with u > d(m+1)/m and t > 0.
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Proof. We compute with the explicit form we got before for K5. We have, for
d=1,3,

Ogd(f, J)) = _27€(P - Z)Hgdz,

where Hy = Kodé. But we have
]Rd

Hy= (P z)d‘5AP(b3 - 2b4,1) +(P - z)d_6|VP|2<b3 by — 2b471),

hence
O(f) = 5= (3ba1 — 3hso + 2bs) /R fO(P@)P/(2)%dz.  (635)
sV (f) = —% /]R FO(P(2) P (2)%dx (6.36)
& (f) = (2 57 (4011 — 201 — 205) / FP@)VP@) e (6.37)
and
() =35z | £ (P@)IVPE@)s (6.39)
O

We have seen that for d odd, d > 5, C(d)(f) = 0. So we have to compute
C\D(f) for d = 5,7.

7 5-d and 7-d cases

We have to compute in more details the term Ky from (3.14). Recall that we

have
(d) z Ky(zx d z dZdNLC. 7.39
/]Rdz (Rd 4( §) g)f() ( 3)

We have to compute the following three integrals, depending on z € R? and
z € C.

O . 1 3 1 Al —

1 = 100 [ e <|£|2 TP - z>2) 4161 = 4
1 =t [ e R =2 (40
19 = T(0:5) /R Rries (Pl(z)_z)Qaszdf; 8 =2. (7.41)

(7.42)
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Using the new variable 1 such that £ = (P — 2)n (plus an analytic extension),
we get

w___af) _ 1 1 B( 1 )
Iy = (P(z) — 2)8—4 a(B) = 1631 /Rd g |n|287, T e dn.  (7.43)

a(B) # 0 only when 8 = (61, -- ,fq) is such that §; =4 and 8y = 0 for k # j
orBj=0pk=2,jF#kand By =0if L #j, L #k.
In the first case a(3) = a1 and in the second case a(3) = as where

1 [ (dn? — (A +]n*)?

- d 7.44
T N R IR (7.44)

2,2
mns
ay = ——=——dn. 7.45

/Rd (1+[n[*)° (7:45)

It is convenient to introduce the following notations.

dn nkdn nikn3tdn
b:/ = b-,kz/ _man b-M:/ IR S (746
0 S TP T e TR 2= fou oy e (740

where j, k,¢ € N are such that the integrals are finite. Of course these integrals
can be computed with the Euler beta and gamma special functions (see appendix
for more explicit expressions).

So we have a; = %bg,g - %bg)’l + %b;} and ag = b671,1.

Using integration by parts, in « or in &, we get the following formulas

Gl = |, Ca(f;z)da (7.47)
where
Cu(f;x) = Can(fs ) + Cap(fix) + Cas(fsx) (7.48)
and
Culfin) = 24(P-2) 3 (2P~ 271) fa)i (7.49)
r |Bl=4
Cia(f;z) = 2 T(,0 (L) Kdg ) f(2)l250)
3 v f ([ etz (7 ) Ko
Coalfiz) = 2 7? (P — )08 L() I f (2)dz. (7.51)

Now we have to compute each term. These computations are not difficult but
they are very technical, so we do not give here all the details. They are performed
in [1]. We use the notations :

0 9? 0?
9. = —, ==, 9 (7.52)
J 8%. J 3%J g,k 35] .
1 1 1
= —bgo— =b —b 7.53
ay 6627 3 5,1 1 964 ( )

az = be11 (7.54)
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For we get
Ca(f;x) = Ao(2) f(P(x)) + Ar () f'(P(2)) + Az (2) 1" (P () +A3(w)f(3)(1(37($))),
.55
where
Ag(z) = 264P -5 ZaQak (7.56)
i<k
M) = —% S @) 4 1 S0P (7.57)
J j#k
71'3 7T2
T 4P~ 3k 2 PIEEP)
Ag(z) = 7v 2AP + TS Z(@Q )(9,P)? (7.58)
o5 S @PIOPY + o S OPIPIOP),
3 3
As(z) = —%W |t~ %2(8 P)* %g:k(ajP)Q(akP)Q. (7.59)
For we get
Ca(fs @) = Ao(x)f(P(2)) + Arf'(P(x)), (7.60)
where
- 3
Al = 135 LEPIOP + 555 S0 PIORP)’
3
+ﬁ ;(aikp)(ajp)(akp), (7.61)
- 73
Ai(z) = —%IV |* - ﬁo Z(a Pyt — 510 jz#;(ajp)?(akp)? (7.62)
We should like to use these formulas with
F) =+ with p>d(m+1)/m,t>0, (7.63)

to prove that C’id)(f) = Jou Ca(fi2)dz # 0 (d =5,7).
With f like in (7.63) we can see easily that C’id)(f) # 0 for the following
polynomials

O P(x Zajj,a]>01<j<dd—57
1<5<d
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@ P(z) = Z QT Tk, is a positive-definite quadratic form, d = 5,7
1<4,k<d

@ d =7 and P is convex.

@ d =5, P is convex and satisfies the inequalities

Yoo aRp < 2 ) 0P (7.64)
1<j<k<5 1<5<5

Z(aj%kp)Q < 1r Y (afp)Q (7.65)

7k 1<j<5

For elliptic and non-convex polynomials, we can check that Cid) (f)#0,d=5,7,
for many examples with numerical computations, supporting our conjecture that

for every elliptic polynomial P, C’id)(f) # 0, if d = 5, 7(see Appendix).
For d = 9,11, it seems difficult to compute Céd)( f) by hand. We need help
from symbolic and numerical computations to check our conjecture.

A Appendix

A.1 Formulas for b,
We assume d > 3 and 25 — ¢ > 1. We have
Hoo rd 1_qg+1 q+1
————dr = -B(*——,j — —— A.
/0 Ay =380 —5) (4.66)

where

So computing in polar coordinates,

/275 _
bi(d) = W

Now, by elementary computations we get easily

bald) = 3(by1(d) ~by(d) (A67)
bj2(d) = B(5/2,j— w)bj(d -1 (A.68)
bjii(d) = éB(S,j - #)b‘j(d —-2). (A.69)

A.2 Numerical computations for C,(f)

The following computations have been performed by Guy Moebs, Research En-
gineer, Laboratoire Jean-Leray, CNRS-University of Nantes.
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The method used to compute multi-dimensional integrals is Monte-Carlo,
with a cut-off of the domain to reduce it in a bounded domain fitting with the
behaviour of the polynomial P. P is choosen non-convex, because for this case
we have no mathematical proof that Cy(f) # 0.

In each example, 100 simulations are computed with at least 10° events. f is
choosen like in (7.63) with t = 1 and g > 0 large enough.

d
Example 1 d = 5, P(z) = fo + azi?x9?
j=1

(07

Ca(f)

7

10
100
1000

235 115

1428
1515
9 237

d

Example 2 d =7, P(z) = fol + oz 2x9? + Bas’r,?

Jj=1

g

Ca())

ENEEN BENEEN{ R

7

10
100
1000

409
423

1 806
39 646

10
10
10

10
100
1000

434
1705
36 724

100
100

100
1000

1755
19 587

1000

1000

18 270

d

Example 3 d =5, P(z) = ijﬁ + oz lx0 + Baslr,t

=1

(a, B)

Cu(f)

(100, 10)

11 732
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