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ENERGY RELEASE RATE FOR NON SMOOTH CRACKS IN PLANAR

ELASTICITY

JEAN-FRANÇOIS BABADJIAN, ANTONIN CHAMBOLLE, AND ANTOINE LEMENANT

Abstract. This paper is devoted to the characterization of the energy release rate of a crack
which is merely closed, connected, and with density 1/2 at the tip. First, the blow-up limit of the
displacement is analyzed, and the convergence to the corresponding positively 1/2-homogenous
function in the cracked plane is established. Then, the energy release rate is obtained as the
derivative of the elastic energy with respect to an infinitesimal additional crack increment.
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1. Introduction

Griffith theory [18] is a model explaining the quasi-static crack growth in elastic bodies under the
assumption that the crack set is preassigned. In a two-dimensional setting, let us denote by Ω ⊂ R2

the reference configuration of a linearly elastic body allowing for cracks inside Γ̂. To fix the ideas,
provided the evolution is sufficiently smooth, that Γ̂ is a simple curve, and that the evolution is
growing only in one direction, then the crack is completely characterized by the position of its tip,

and thus by its arc length. Denoting by Γ(ℓ) the crack of length ℓ inside Γ̂, the elastic energy

Date: June 26, 2014.

1



2 J.-F. BABADJIAN, A. CHAMBOLLE, AND A. LEMENANT

associated to a given kinematically admissible displacement u : Ω \ Γ(ℓ) → R2 satisfying u = ψ(t)
on ∂Ω \ Γ(ℓ), is given by

E(t;u, ℓ) :=
1

2

ˆ

Ω\Γ(ℓ)

Ce(u) : e(u) dx,

where C is the fourth order Hooke’s tensor, and ψ(t) : ∂Ω → R2 is a prescribed boundary datum
depending on time, which is the driving mechanism of the process. If the evolution is slow enough,
it is reasonable to neglect inertia and viscous effects so that the quasi-static assumption becomes
relevant: at each time t, the body is in elastic equilibrium. It enables one to define the potential
energy as

P(t, ℓ) := E(t;u(t, ℓ), ℓ) = minE(t; ·, ℓ),
where the minimum is computed over all kinematically admissible displacements at time t. There-
fore, given a cracking state, the quasi-static assumption permits to find the displacement. In order
to get the crack itself (or equivalently its length), Griffith introduced a criterion whose fundamen-
tal ingredient is the energy release rate. It is defined as the variation of potential energy along
an infinitesimal crack increment, or in other words, the quantity of released potential energy with
respect to a small crack increment. More precisely, it is given by

G(t, ℓ) := −∂P
∂ℓ

(t, ℓ)

provided the previous expression makes sense. From a thermodynamical point of view, the energy
release rate is nothing but the thermodynamic force associated to the crack length (the natural
internal variable modeling the dissipative effect of fracture). Griffith criterion is summarized into
the three following items: for each t > 0

(i) G(t, ℓ(t)) ≤ Gc, where Gc > 0 is a characteristic material constant referred to as the
toughness of the body;

(ii) ℓ̇(t) ≥ 0;

(iii) (G(t, ℓ(t)) −Gc)ℓ̇(t) = 0.

Item (i) is a threshold criterion which stipulates that the energy release rate cannot exceed the
critical value Gc. Item (ii) is an irreversibility criterion which ensures that the crack can only grow.
The third and last item is a compatibility condition between (i) and (ii): it states that a crack will
grow if and only if the energy release rate constraint is saturated.

In [17] (see also [3]), it has been observed that Griffith is nothing but the necessary first order
optimality condition of a variational model. More precisely, if for every t > 0, (u(t), ℓ(t)) satisfies:

(i) Unilateral minimality: for any ℓ̂ ≥ ℓ(t), and any v : Ω \ Γ(ℓ̂) → R2 satisfying v = ψ(t) on

∂Ω \ Γ(ℓ̂), then

E(t) :=
1

2

ˆ

Ω\Γ(ℓ(t))

Ce(u(t)) : e(u(t)) dx+Gc ℓ(t) ≤
1

2

ˆ

Ω\Γ(ℓ̂)

Ce(v) : e(v) dx+Gc ℓ̂;

(ii) Irreversibility: ℓ̇(t) ≥ 0;
(iii) Energy balance:

Ė(t) =

ˆ

∂Ω\Γ(ℓ(t))

(Ce(u(t))ν) · ψ̇(t) dH1,

then (u(t), ℓ(t)) is a solution of Griffith’ model. In the previous expression, H1 denotes the 1-
dimensional Hausdorff measure. The energy balance is nothing but a reformulation of the second
law of thermodynamics which asserts the non-negativity of the mechanical dissipation. It states
that the temporal variation of the total energy (the sum of the elastic and surface energies) is
compensated by the power of external forces, which in our case reduces to the stress (Ce(u(t))ν
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acting on ∂Ω \ Γ(ℓ(t)) and generated by the boundary displacement ψ(t). This new formulation
relies on the constrained minimization of the total energy of Mumford-Shah type

E(u,Γ) :=
1

2

ˆ

Ω\Γ

Ce(u) : e(u) dx+GcH1(Γ)

which put in competition a bulk (elastic) energy and a surface (Griffith) energy. One of the main
interests is that it makes it possible to get rid of the assumption of the a priori knowledge of
the crack path. Following [17], a quasi-static evolution is defined as a mapping t 7→ (u(t),Γ(t))
satisfying

(i) Unilateral minimality: for any Ω ⊃ Γ̂ ⊃ Γ(t), and any v : Ω \ Γ̂ → R
2 satisfying v = ψ(t)

on ∂Ω \ Γ̂, then

E(u(t),Γ(t)) ≤ E(v, Γ̂);

(ii) Irreversibility: Γ(s) ⊂ Γ(t) for every s ≤ t;
(iii) Energy balance:

E(u(t),Γ(t)) = E(u(0),Γ(0)) +

ˆ t

0

ˆ

Ω\Γ(s)

Ce(u(s)) : e(ψ̇(s)) dx ds.

An existence result for this model has been given in [5] (see also [13, 16, 12] in other contexts)
for cracks belonging to the class of compact and connected subsets of Ω. The main reason of
this assumption was to ensure the lower semicontinuity of the Mumford-Shah type functional
(u,Γ) 7→ E(u,Γ) with respect to a reasonable notion of convergence. The lower semicontinuity of
the surface energy with respect to the Hausdorff convergence of cracks is a consequence of Go lab’s
Theorem (see [15]), while the continuity of the bulk energy is a consequence of continuity results
of the Neumann problem with respect to the Hausdorff convergence of the boundary (see [4, 6])
together with a density result [5]. In any cases, all these results only hold in dimension 2 and in
the class of compact and connected sets.

If one is interested into fine qualitative results such as crack initiation (see [8]) of kinking (see
[7]) it becomes necessary to understand the nature of the singularity at the crack tip. Therefore
one should be able to make rigorous a suitable notion energy release rate. The first proof of the
differentiable character of the potential energy with respect to the crack length has been given in
[14] (see also [22, 28, 27]). The generalized variational setting described above, a mathematical
justification of the notions of energy release rate for any incremental crack attached to a given
initial crack has been in [7] in the case where the crack is straight in a small neighborhood of its
tip. In the footstep of that work, we attempt here weaken the regularity assumption on the initial
crack, which is merely closed, connected, with density 1/2 at the origin (that imply to blow up as
a segment at the origin, up to rotations).

1.1. Main Results. Our main results are contained in Theorem 6.4 and Theorem 7.1 respectively
in Section 6 and Section 7.

1.1.1. First Result. The first main result Theorem 6.4 is a purely P.D.E. result. We analyze the
blow-up limit of the optimal displacement at the tip of the given initial crack. We prove that for
some suitable subsequence, the blow-up limit converges to the classical crack-tip function in the
complement of a half-line, i.e. of the form

κ1φ1 + κ2φ2, (1.1)

for some constants κ1 and κ2 ∈ R, while φ1 and φ2 are positively 1/2-homogenous functions which
are explicitly given by (6.15) and (6.16) below.

This part can be seen as a partial generalization in planar elasticity of what was previously done
in the anti-plane case [9]. Mathematically speaking, the corresponding function to be studied is
now a vectorial function satisfying a Lamé type system, instead of being simply a scalar valued
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harmonic function. One of the key obstacle in the vectorial case is that no monotonicity property
is known for such a problem, which leads to a slightly weaker result than in the scalar case:
the convergence of the blow-up sequence only holds up to subsequences, and nothing is known
for the whole sequence. Consequently, the constants κ1 and κ2 in (1.1) a priori depend on this
particular subsequence. As a matter of fact, this prevents us to define properly the stress intensity
factor analogously to what was proposed in [9]. On the other hand, we believe that the techniques
employed in the proof and the results on their own are already interesting. In addition, the absence
of monotonicity is not the only difference with the scalar case, which led us to find a new proof
relying on a duality approach via the so-called Airy function in order to bypass some technical
problems.

Another substantial difference with the scalar case appears while studying homogeneous so-
lutions of the planar Lamé system in the complement of a half-line, which is crucial in the un-
derstanding of blow-up solutions at the crack tip. For harmonic functions it is rather easy to
decompose any solutions as a sum of spherical-harmonics directly by writing the operator in polar
coordinates, and identify the degree of homogeneity of each term with the corresponding eigenvalue
of the Dirichlet-Laplace-Beltrami operator on the circle minus a point. For the Lamé system, or
alternatively for the biharmonic equation, a similar naive approach cannot work. The appropriate
eigenvalue problem on the circle have a more complicate nature, and analogous results rely on an
abstract theory developed first by Kondrat’ev which rests on pencil operators, weighted Sobolev
spaces, the Fredholm alternative, and calculus of residues. We used this technology in the proof of
Proposition 6.3 for which we could not find a more elementary argument.

1.1.2. Second result. The second main result Theorem 7.1 concerns the energy release rate of an
incremental crack Γ, which is roughly speaking the derivative of the elastic energy with respect to
the crack increment (see (7.1) for the precise definition). We prove that the value of this limit is
realized as an explicit minimization problem in the cracked-plane R2 \

(

(−∞, 0] × {0}
)

. One can
find a similar statement in [7, Theorem 3.1], but with the additional assumption that the initial
crack is a line segment close to the origin. We remove here this hypothesis, establishing the same
result for any initial crack which is closed, connected and admits a line segment as blow-up limit
at the origin. The starting point for this generalization is the knowledge of the blow-up limit at
the origin for displacement associated to a general initial crack, namely our first result Theorem
6.4. Since this result holds only up to subsequences, the same restriction appears in the statement
of Theorem 6.4 as well.

Therewith, it should be mentioned that Theorem 7.1 is new even for the scalar case, for which
the conclusion is even more accurate. Indeed in this case, the monotonicity formula of [9] ensures
that the convergence holds for the whole sequence and not only for a subsequence.

The paper is organized as follows: after introducing the main notation in section 2, we describe
precisely the mechanical model in section 3. Section 4 is devoted to establish technical results
related to the existence of the harmonic conjugate and the Airy function associated to the dis-
placement in a neighborhood of the crack tip. In section 5, we prove lower and upper bounds of the
energy release rate. The blow-up analysis of the displacement around the crack tip is the object of
section 6. Section 7 is devoted to give a formula for the energy release rate as a global minimization
problem. Finally, we state in an appendix a Poincaré inequality in a cracked annulus, and shortly
review Kondrat’ev theory of elliptic regularity vs singularity inside corner domains.

2. Mathematical preliminaries

2.1. General notation. The Lebesgue measure in Rn is denoted by Ln, and the k-dimensional
Hausdorff measure by Hk. If E is a measurable set, we will sometimes write |E| instead of Ln(E).
If a and b ∈ Rn, we write a · b =

∑n
i=1 aibi for the Euclidean scalar product, and we denote the
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norm by |a| =
√
a · a. The open ball of center x and radius ̺ is denoted by B̺(x). If x = 0, we

simply write B̺ instead of B̺(0).

We write Mn×n for the set of real n×n matrices, and Mn×n
sym for that of all real symmetric n×n

matrices. Given a matrix A ∈ Mn×n, we let |A| :=
√

tr(AAT ) (AT is the transpose of A, and trA
is its trace) which defines the usual Euclidean norm over Mn×n. We recall that for any two vectors
a and b ∈ Rn, a⊗ b ∈ Mn×n stands for the tensor product, i.e., (a⊗ b)ij = aibj for all 1 ≤ i, j ≤ n,
and a⊙ b := 1

2 (a⊗ b+ b⊗ a) ∈ M
n×n
sym denotes the symmetric tensor product.

Given an open subset U of Rn, we denote by M(U) the space of all real valued Radon measures
with finite total variation. We use standard notation for Lebesgues spaces Lp(U) and Sobolev
spaces W k,p(U) or Hk(U) := W k,2(U). If Γ is a closed subset of U , we denote by Hk

0,Γ(U) the

closure of C∞
c (U \ Γ) in Hk(U). In particular, if Γ = ∂U , then Hk

0,∂U (U) = Hk
0 (U).

2.2. Capacities. In the sequel, we will use the notion of capacity for which we refer to [1, 21]. We
just recall the definition and several facts. The (k, 2)-capacity of a compact set K ⊂ Rn is defined
by

Capk,2(K) := inf
{

‖ϕ‖Hk(Rn) : ϕ ∈ C∞
c (Rn), ϕ ≥ 1 on K

}

.

This definition is then extended to open sets A ⊂ Rn by

Capk,2(A) := sup
{

Capk,2(K) : K ⊂ A, K compact
}

,

and to arbitrary sets E ⊂ Rn by

Capk,2(E) := inf
{

Capk,2(A) : E ⊂ A, A open
}

.

One of the interests of capacity is that it enables one to give an accurate sense to the pointwise
value of Sobolev functions. More precisely, if u ∈ Hk(Rn) then u is (k, 2)-quasicontinuous which
means that for each ε > 0, there exists an open set Aε ⊂ Rn such that Capk,2(Rn \ Aε) < ε
and u is continuous in Aε (see [1, Section 6.1]). In addition, if U is an open subset of Rn, then
u ∈ Hk

0 (U) if and only if for all multi-index α ∈ Nn with length |α| ≤ k, ∂αu has a (k − |α|, 2)-
quasicontinuous representative that vanishes Capk−|α|,2-quasi everywhere on ∂U , i.e. outside a set

of zero Capk−|α|,2-capacity (see [1, Theorem 9.1.3]). In the sequel, we will only be interested to
the cases k = 1 or k = 2 in dimension n = 2.

2.3. Kondrat’ev spaces. Following [25, Section 6.1], if C is an open cone of Rn with vertex at
the origin, we define for any β ∈ R and ℓ ≥ 0 the weighted Sobolev space V ℓ

β (C) by the closure of

C∞
c (C \ {0}) with respect to the norm

‖u‖V ℓ
β
(C) :=

(

ˆ

C

∑

|α|≤ℓ

|x|2(β−ℓ+|α|)|∂αu(x)|2dx
)

1
2

.

It will also be useful to introduce the spaces V ℓ
β (C) for ℓ < 0, which is defined as the dual space of

V −ℓ
−β (C), endowed with the usual dual norm.

Observe that when ℓ ≥ 0 then u ∈ V ℓ
β (C) if and only if the function x 7→ |x|β−ℓ+|α|∂αu(x) ∈

L2(C) for all |α| ≤ ℓ. If one is interested in homogeneous functions, it turns out that the parameter
β plays a different role regarding to the integrability at the origin or at infinity. To fix the ideas,
one can check that in dimension 2, a function of the form x 7→ |x|γf(x/|x|) around the origin and
with compact support belongs to V ℓ

β (C) for every β < 1−γ. On the other hand, a function having

this behavior at infinity and vanishing around the origin will belong to a space V ℓ
β (C) for every

β > 1 − γ. For instance if γ = 3/2, then the corresponding space of critical exponent would be
that with β = −1/2.
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2.4. Fonctions with Lebesgue deformation. Given a vector field (distribution) u : U → Rn,
the symmetrized gradient of u is denoted by

e(u) :=
∇u+ ∇uT

2
.

In linearized elasticity, u stands for the displacement, while e(u) is the elastic strain. The elastic
energy of a body is given by a quadratic form of e(u) so that it is natural to consider displacements
such that e(u) ∈ L2(U ;Mn×n

sym ). If U has Lipschitz boundary, it is well known that u actually

belongs to H1(U ;Rn) as a consequence of Korn’s inequality (see e.g. [10, 30]). However, when U
is not smooth, we can only assert that u ∈ L2

loc(U ;Rn). This motivates the following definition of
the space of Lebesgue deformations:

LD(U) := {u ∈ L2
loc(U ;Rn) : e(u) ∈ L2(U ;Mn×n

sym )}.
If U is connected and u is a distribution with e(u) = 0, then necessarily it is a rigid movement, i.e.
u(x) = Ax + b for all x ∈ U , for some skew-symetric matrix A ∈ Mn×n and some vector b ∈ Rn.
If, in addition, ∂U is locally contained inside a finite union of Lipschitz graphs, the following
Poincaré-Korn inequality holds: there exists a constant cU > 0 and a rigid movement rU such that

‖u− rU‖L2(U) ≤ cU‖e(u)‖L2(U), for all u ∈ LD(U). (2.1)

According to [2, Theorem 5.2, Example 5.3], it is possible to make rU more explicit in the following
way: consider a measurable subset E of U with |E| > 0, then one can take

rU (x) :=
1

|E|

ˆ

E

u(y) dy +

Å
1

|E|

ˆ

E

∇u(y) −∇u(y)T

2
dy

ãÅ
x− 1

|E|

ˆ

E

y dy

ã
,

provided the constant cU in (2.1) also depends on E.

2.5. Hausdorff convergence of compact sets. Let K1 and K2 be compact subsets of a common
compact set K ⊂ Rn. The Hausdorff distance between K1 and K2 is given by

dH(K1,K2) := max

®
sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

´
.

We say that a sequence (Kn) of compact subsets of K converges in the Hausdorff distance to the
compact set K∞ if dH(Kn,K∞) → 0. The Hausdorff convergence of compact sets turns out to
be equivalent to the convergence in the sense of Kuratowski. Indeed Kn → K∞ in the Hausdorff
metric if and only if both following properties hold:

a) any x ∈ K∞ is the limit of a sequence (xn) with xn ∈ Kn;
b) if ∀n, xn ∈ Kn, any limit point of (xn) belongs to K∞.

Finally let us recall Blaschke’s selection principle which asserts that from any sequence (Kn) of
compact subsets of K, one can extract a subsequence converging in the Hausdorff distance.

3. Description of the model

Reference configuration. We consider a homogeneous isotropic linearly elastic body occupying
Ω in its reference configuration, a bounded and connected open subset of R2 with Lipschitz bound-
ary. We suppose that the stress σ ∈ M2×2

sym is related to the strain e ∈ M2×2
sym thanks to Hooke’s

law
σ = Ce = λ(tre)I + 2µe,

where λ > 0 and µ > 0 are the Lamé coefficients, and I is the identity matrix. This expression
can be inverted into

e = C
−1σ =

1 + ν

E
σ − ν

E
(trσ)I, (3.1)

where E := µ(3λ+2µ)
λ+µ is the Young modulus and ν := λ

2(λ+µ) is the Poisson coefficient.
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External loads. We suppose that the body is only subjected to a soft device loading, that is, to
a prescribed displacement ψ ∈ H1/2(∂Ω;R2) acting on the entire boundary.

Admissible cracks. We further assume that the body can undergo cracks which belong to the
admissible class

K(Ω) := {Γ ⊂ Ω compact, connected, 0 ∈ Γ and H1(Γ) <∞}.

Admissible displacements. For a given crack Γ ∈ K(Ω), we define the space of admissible
displacement by

LD(Ω \ Γ) := {u ∈ L2
loc(Ω \ Γ;R2) : e(u) ∈ L2(Ω \ Γ;M2×2

sym)}.

If B is a ball with B ∩Γ = ∅, then Ω∩B has Lipschitz boundary so that Korn’s inequality ensures
that u ∈ H1(Ω ∩ B;R2). As a consequence, the trace of u is well defined on ∂Ω ∩ B. Since this
property holds for any ball as above, then the trace of u is well defined on ∂Ω \ Γ.

Initial data. We consider an initial crack Γ0 ∈ K(Ω) satisfying furthermore

lim
̺→0

H1(Γ0 ∩B̺)

2̺
=

1

2
, (3.2)

and an associated displacement u0 ∈ LD(Ω \ Γ0) given as a solution of the minimization problem

min

®
1

2

ˆ

Ω\Γ0

Ce(v) : e(v) dx : v ∈ LD(Ω \ Γ0), v = ψ on ∂Ω \ Γ0

´
. (3.3)

Note that u0 is unique up to an additive rigid movement in each connected component of Ω \ Γ0

disjoint from ∂Ω \ Γ0. However, the stress, which is given by Hooke’s law

σ0 := Ce(u0) ∈ L2(Ω \ Γ0;M2×2
sym) (3.4)

is unique and it satisfies the variational formulation
ˆ

Ω\Γ0

σ0 : e(v) dx = 0 (3.5)

for any v ∈ LD(Ω\Γ0) such that v = 0 on ∂Ω\Γ0. Note that standard results on elliptic regularity
(see e.g. [10, Theorem 6.3.6]) ensure that u0 ∈ C∞(Ω \ Γ0;R2).

Energy release rate. To define the energy release rate, let us consider a crack increment Γ0 ∪Γ,
where Γ ∈ K(Ω) and an associated displacement uΓ ∈ LD(Ω \ (Γ0 ∪ Γ)) solving

min

®
1

2

ˆ

Ω\(Γ0∪Γ)

Ce(v) : e(v) dx : v ∈ LD(Ω \ (Γ0 ∪ Γ)), v = ψ on ∂Ω \ (Γ0 ∪ Γ)

´
.

We denote by

G(Γ) :=
1

2

ˆ

Ω

[

Ce(uΓ) : e(uΓ) − Ce(u0) : e(u0)
]

dx ≤ 0, (3.6)

and

Gε :=
1

ε
inf

{

G(Γ) : Γ ∈ K(Ω), H1(Γ) ≤ ε
}

. (3.7)
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4. Construction of dual functions

The goal of this section is to construct the harmonic conjugate and the Airy function associated
to the displacement u0 in a neighborhood of the crack tip which is assumed to be the origin.
Their construction rests on an abstract functional analysis result (Lemma 4.1 below) which puts
in duality gradients and functions with vanishing divergence outside an (non-smooth) crack.

Let B = BR0 and B′ = BR′

0
be open balls centered at the origin with radii R0 < R′

0, such that

B′ ⊂ Ω and ∂B′ ∩ Γ0 6= ∅. By assumption, since Γ0 ∈ K(Ω) satisfies (3.2), this property certainly
holds true provided R′

0 is small enough. Note in particular that the connectedness of Γ0 ensures
that ∂B ∩ Γ0 6= ∅ as well.

The following result is a generalization of [5, Lemma 1].

Lemma 4.1. Consider the following subspaces of L2(B;R2):

X := {σ ∈ C∞(B;R2) : supp(σ) ∩ Γ0 = ∅, divσ = 0 in B},
Y := {∇v : v ∈ H1(B \ Γ0), v = 0 on ∂B \ Γ0}.

Then X⊥ = Y .

Proof. Let σ ∈ X and v ∈ H1(B \ Γ0) be such that v = 0 on ∂B \ Γ0. Consider an open set
U0 ⊂ B with Lipschitz boundary such that Γ0 ⊂ U0 and U0 ∩ supp(σ) = ∅. In particular, B \ U0

has Lipschitz boundary as well, and thanks to the integration by parts formula in H1(B \ U0) we
infer that
ˆ

B\Γ0

σ · ∇v dx =

ˆ

B\U0

σ · ∇v dx

= −
ˆ

B\U0

(divσ)v dx+

ˆ

∂B\U0

(σν)v dH1 +

ˆ

B∩∂U0

(σν)v dH1 = 0.

Indeed, the first integral vanishes since divσ = 0 in B. In addition, both boundary integrals vanish
as well since v = 0 on ∂B \ Γ0, and U0 ∩ supp(σ) = ∅. Consequently, X ⊂ Y ⊥, and thus X ⊂ Y ⊥.

We next establish the converse inclusion. Let Ψ ∈ X⊥, then in particular, for any σ1 ∈ C∞
c (B \

Γ0;R2) with divσ1 = 0 in B \ Γ0 (which implies that σ1 ∈ X),
ˆ

B\Γ0

Ψ · σ1 dx = 0.

According to De Rham’s Theorem (see [31, page 20]), we get the existence of some v ∈ L2
loc(B \Γ0)

such that Ψ = ∇v a.e. in B\Γ0. Now if U is a smooth open set such that U∩Γ0 = ∅ and U∩∂B 6= ∅,
then the open set U ∩B is Lipschitzian. Thus, for any σ2 ∈ C∞

c (U ∩ B) with divσ2 = 0 in U ∩B
(which implies that σ2 ∈ X if it is extended by zero on B \ U),

ˆ

B∩U

Ψ · σ2 dx = 0.

Applying once more De Rham’s Theorem (see [31, page 19]), one can find some vU ∈ L2(B ∩ U)
such that Ψ = ∇vU a.e. in B ∩U . Therefore v = vU + cU a.e. in B ∩U for some constant cU ∈ R,
and thus v ∈ L2(B ∩ U). Since v ∈ H1(B ∩ U), thanks to the integration by parts formula in
H1(B ∩ U), we get that for any σ ∈ C∞

c (U ;R2) with divσ = 0 in U (which also belongs to X if it
is extended by zero on B \ U),

ˆ

U∩∂B

v (σν) dH1 =

ˆ

∂(B∩U)

v (σν) dH1 =

ˆ

B∩U

σ · ∇v dx+

ˆ

B∩U

v divσ dx = 0.
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By density (see e.g. [31, Theorem 1.4]), we get that for any σ ∈ L2(U ;R2) with divσ = 0 in
H−1(U) and σν = 0 in H−1/2(∂U), then

〈σν, v〉[H1/2(U∩∂B)]′,H1/2(U∩∂B) = 0.

Finally, according to Lemma A.1 below, we deduce that for any g ∈ L2(U ∩ ∂B),
ˆ

U∩∂B

gv dH1 = 0

which shows that v = 0 on U ∩ ∂B. Considering now the truncated function vk := (−k ∨ v) ∧ k,
where k ∈ N, we get that vk ∈ H1(B \Γ0), vk = 0 on ∂B \Γ0, and thus ∇vk ∈ Y . Moreover, since
∇vk → ∇v = Ψ strongly in L2(B;R2) as k → ∞ we get that X⊥ ⊂ Y and that Y ⊥ = (Y )⊥ ⊂
(X⊥)⊥ = X. �

4.1. The harmonic conjugate. We are now in position to construct the harmonic conjugate v0
associated to u0 in B. By construction, the displacement u0 satisfies a Neumann condition on the
crack Γ0, while its associated stress σ0 has zero divergence outside the crack, both in a weak sense.
The harmonic conjugate v0 is, roughly speaking, a dual function of u0 in the sense that it satisfies
a homogeneous Dirichlet boundary condition on the crack Γ0, and its rotated gradient coincides
with the stress σ0. The harmonic conjugate will be of use in the proof of Proposition 5.1 in order
to prove a lower bound on the energy release rate. It will also appear in the construction of the
Airy function.

Proposition 4.2. There exists a function v0 ∈ H1
0,Γ0

(B;R2) ∩ C∞(B \ Γ0;R2) such that

∇v0 = σ⊥
0 :=

Å−(σ0)12 (σ0)11
−(σ0)22 (σ0)12

ã
in B \ Γ0. (4.1)

Proof. According to the variational formulation (3.5), for any v ∈ H1(B \ Γ0;R2) with v = 0 on
∂B \ Γ0, we have

ˆ

B

σ0 : ∇v dx = 0.

Consequently, both lines of σ0, denoted by

σ(1) :=

Å
(σ0)11
(σ0)12

ã
, σ(2) :=

Å
(σ0)12
(σ0)22

ã
,

belong to Y ⊥. Therefore, Lemma 4.1 ensures the existence of a sequence (σ
(1)
n ) ⊂ X such that

σ
(1)
n → σ(1) in L2(B;R2). Since divσ

(1)
n = 0 in B and supp(σ

(1)
n ) ∩ Γ0 = ∅, it follows that

(σ(1)
n )⊥ :=

Ç
−(σ

(1)
n )2

(σ
(1)
n )1

å
= ∇p(2)n

for some p
(2)
n ∈ C∞(B) with supp(p

(2)
n )∩ Γ0 = ∅. Consequently, by the Poincaré inequality, we get

that p
(2)
n → p(2) in H1(B) for some p(2) ∈ H1

0,Γ0
(B) satisfying ∇p(2) = (σ(1))⊥. We prove similarly

the existence of p(1) ∈ H1
0,Γ0

(B) satisfying ∇p(1) = −(σ(2))⊥. We then define

v0 :=

Å
p(2)

−p(1)
ã
∈ H1

0,Γ0
(B;R2)

which satisfies (4.1). Finally, since σ0 ∈ C∞(B \ Γ0;M2×2
sym), then v0 ∈ C∞(B \ Γ0;R2). �
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4.2. The Airy function. We next construct the Airy function w0 associated to the displacement
u0 in B following an approach similar to [5]. This new function has the property to be a biharmonic
function vanishing on the crack. Therefore, the original elasticity problem (3.3) can be recast into
a suitable biharmonic equation whose associated natural energy (the L2 norm of the hessian)
coincides with the original elastic energy. The Airy function will be useful in section 6 in order
to get an a priori bound on the rescaled elastic energy around the crack tip, as well as in our
convergence result for the blow-up displacement.

Proposition 4.3. There exists a function w0 ∈ H2
0,Γ0

(B) such that

∆2w0 = 0 in D′(B \ Γ0) (4.2)

and

D2w0 =

Å
(σ0)22 −(σ0)12
−(σ0)12 (σ0)11

ã
. (4.3)

Proof. We reproduce the construction initiated in the proof of Proposition 4.2 with the larger ball
B′ instead of B. It ensures the existence of p(1) and p(2) ∈ H1

0,Γ0
(B′) such that

∇p(1) =

Å
(σ0)22
−(σ0)12

ã
, ∇p(2) =

Å−(σ0)12
(σ0)11

ã
.

By definition, there exists sequences (p
(1)
n ) and (p

(2)
n ) ⊂ C∞(B′) vanishing in a neighborhood of

Γ0 in B′, and such that p
(1)
n → p(1) and p

(2)
n → p(2) in H1(B′). For any v ∈ H1(B′ \Γ0) with v = 0

on ∂B′ \ Γ0, we infer thanks to the integration by parts formula that
ˆ

B′

Å−p(2)
p(1)

ã
· ∇v dx =

ˆ

B′

(−p(2)∂1v + p(1)∂2v) dx = lim
n→∞

ˆ

B′

(−p(2)n ∂1v + p(1)n ∂2v) dx

= lim
n→∞

ˆ

B′

(−∂1p(2)n + ∂2p
(1)
n )v dx =

ˆ

B′

(−∂1p(2) + ∂2p
(1))v dx = 0.

Therefore, it follows that Å−p(2)
p(1)

ã
∈ Y ⊥ = X

according again to Lemma 4.1. Arguing as in the proof of Proposition 4.2, we deduce the existence
of some w0 ∈ H1

0,Γ0
(B′) such that

∇w0 =

Å
p(1)

p(2)

ã
.

By construction, the Airy function w0 satisfies (4.3). Consequently, w0 ∈ H1
0,Γ0

(B′)∩H2(B′) with

∇w0 ∈ H1
0,Γ0

(B′;R2).

Let us show that w0 ∈ H2
0,Γ0

(B). This property rests on a capacity argument similar to that used

in [5, Theorem 1]. We first observe that since w0 ∈ H2(B′), it is therefore (Hölder) continuous by
the Sobolev imbedding, so that it makes sense to consider its pointwise values. Let us consider a cut-
off function η ∈ C∞

c (B′; [0, 1]) satisfying η = 1 on B. Denoting z0 := ηw0, then z0 ∈ H1
0 (B′\Γ0) and

∇z0 ∈ H1
0 (B′ \ Γ0;R2). As a consequence of [21, Theorem 3.3.42], the function ∇z0 has a Cap1,2-

quasicontinuous representative, denoted by fi∇z0, satisfying fi∇z0 = 0 Cap1,2-q.e. on ∂(B′ \Γ0). We
next show that the function z0 has a Cap2,2-quasicontinuous representative vanishing Cap2,2-q.e.
on ∂(B′ \Γ0). Note that since the empty set is the only set of zero Cap2,2-capacity, it is equivalent

to show that z0 = 0 everywhere on ∂(B′ \ Γ0). As before, since z0 ∈ H1
0 (B′ \ Γ0), we deduce that

z0 has a Cap1,2-quasicontinuous representative, denoted by ‹z0, satisfying ‹z0 = 0 Cap1,2-q.e. on
∂(B′\Γ0). Therefore, defining K := {x ∈ ∂(B′\Γ0) : z0(x) = 0}, then K is a compact set satisfying
Cap1,2(∂(B′ \ Γ0) \K) = 0. Let γ be a connected component of ∂(B′ \ Γ0) \K. Since a compact
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and connected set of positive diameter has a positive Cap1,2-capacity (see [21, Corollary 3.3.25],
we deduce that diam(γ) = diam(γ̄) = 0 so that γ is (at most) a singleton. Moreover, K being
compact, its complementary ∂(B′ \Γ0) \K is open in the relative topology of ∂(B′ \Γ0), and thus
γ is (at most) an isolated point. Finally since ∂(B′ \ Γ0) is connected, it turns out that γ = ∅ and
thus z0 = 0 on ∂(B′ \Γ0). As a consequence of [1, Theorem 9.1.3], we get that z0 ∈ H2

0 (B′ \Γ0), or
in other words, that there exists a sequence (zn) ⊂ C∞

c (B′ \Γ0) such that zn → ηz0 in H2(B′ \Γ0).
Note in particular that zn ∈ C∞(B) and that zn vanishes in a neighborhood of Γ0 in B. Therefore,
since z0 = w0 and ∇z0 = ∇w0 in B, we deduce that w0 ∈ H2

0,Γ0
(B).

We next show that w0 is a biharmonic function. Indeed, according to (4.3), one has

∆2w0 = ∆((σ0)11 + (σ0)22) in D′(B \ Γ0).

Denoting by e0 := e(u0) the elastic strain, and using the compatibility condition

2∂212(e0)12 = ∂211(e0)22 + ∂222(e0)11 in D′(B \ Γ0)

together with Hooke’s law (3.1),

(e0)11 =
(σ0)11
E

− ν

E
(σ0)22,

(e0)22 =
(σ0)22
E

− ν

E
(σ0)11,

(e0)12 =
1 + ν

E
(σ0)12,

we infer that

∆2w0 = (1 + ν)[∂211(σ0)11 + ∂222(σ0)22 + 2∂212(σ0)12] in D′(B \ Γ0).

Finally, according to the variational formulation (3.5), we have

divσ0 = 0 in D′(B \ Γ0)

from which (4.2) follows. �

Remark 4.4. The biharmonicity (4.2) of the Airy function w0 is equivalent to the following local
minimality property

ˆ

B

|D2w0|2 dx ≤
ˆ

B

|D2z|2 dx,

for all z ∈ w0 +H2
0 (B).

Remark 4.5. According to the results of [24], we get the following estimate of the energy of w0

around the origin: for every 2̺ < R ≤ R0,
ˆ

B̺

|D2w0|2 dx ≤ C0̺

R

ˆ

BR

|D2w0|2 dx,

for some universal constant C0 > 0 independent of R and ̺. Indeed, it suffices to apply [24,
Theorem 2] in the open set B \ Γ0 with (in their notation) ω = 2π and δ = 1/2. This is possible
since, Γ0 being connected, then for all ̺ < R we have ∂B̺ ∩ Γ0 6= ∅, H1(∂B̺ \ Γ0) ≤ 2π̺ and
∂(B \ Γ0) ∩ ∂(BR \ Γ0) = Γ0 ∩BR ⊂ Γ0 ∩B.

Thanks to the reformulation of the elasticity problem as a biharmonic equation, and according
to Remark 4.5 concerning the behavior of the energy of a biharmonic function in fractured domains,
we get the following result about the elastic energy concentration around the crack tip. We observe
that in [9] a stronger result has been obtained in the scalar (anti-plane) case where a monotonicity
formula has been established.



12 J.-F. BABADJIAN, A. CHAMBOLLE, AND A. LEMENANT

Proposition 4.6. Let σ0 be the stress defined in (3.4) and R0 > 0 be such that BR0 ⊂ Ω and

∂BR0 ∩ Γ 6= ∅. Then there exists a universal constant C0 > 0 such that for all ρ, R > 0 satisfying

2̺ < R ≤ R0,
ˆ

B̺

|σ0|2 dx ≤ C0̺

R

ˆ

BR

|σ0|2 dx.

Proof. The result is an immediate consequence of (4.3) together with Remark 4.5. �

5. Bounds on the energy release rate

The goal of this section is to establish bounds on the energy release rate. This is the first
step toward a more precise analysis and a characterization of the energy release rate as a limiting
minimization problem (see section 7). As in [7, Lemma 2.4], the proof of the upper bound relies
on the construction of an explicit competitor for the minimization problem (3.7) defining Gε. The
lower bound rests in turn into a dual formulation (in term in the stress) of the minimization problem
(3.6), and into the construction, for each crack increment, of an admissible stress competitor for
this new dual variational problem. The construction we use is based on the harmonic conjugate
v0 associated to the displacement obtained in Proposition 4.2.

Proposition 5.1. There exist two constants 0 < G∗ ≤ G∗ <∞ such that

−G∗ ≤ lim inf
ε→0

Gε ≤ lim sup
ε→0

Gε ≤ −G∗.

Proof. Upper bound. Since 0 ∈ Ω, one can choose ε > 0 small enough so that Bε/(2π+1) ⊂ Ω.
Let

Γ := ∂Bε/(2π+1) ∪ {(t, 0) : 0 ≤ t ≤ ε/(2π + 1)}.
This set clearly belongs to K(Ω) and H1(Γ) = ε. Defining v := u0χΩ\Bε/(2π+1)

, we infer that

v ∈ LD(Ω \ (Γ0 ∪ Γ)) with v = u0 = ψ on ∂Ω \ (Γ0 ∪ Γ). Consequently,

G(Γ) ≤ 1

2

ˆ

Ω

[

Ce(v) : e(v) dx − Ce(u0) : e(u0)
]

dx = −1

2

ˆ

Bε/(2π+1)

Ce(u0) : e(u0) dx.

We then apply Proposition 4.6 which shows that

lim sup
ε→0

Gε ≤ −G∗,

for some G∗ > 0.

Lower bound. Let ε > 0 be small enough so that 2ε ≤ R0, B2ε ⊂ Ω and 2ε 6∈ N , where N is
the exceptional set given by Lemma A.2 below. According to [8, p. 330], for any Γ ∈ K(Ω) with
H1(Γ) ≤ ε, one has

1

2

ˆ

Ω

[

Ce(uΓ) : e(uΓ) − Ce(u0) : e(u0)
]

dx ≥ −1

2

ˆ

Ω

(τ − σ0) : C−1(τ − σ0) dx (5.1)

for every statically admissible stresses τ ∈ L2(Ω;M2×2) satisfying
ˆ

Ω

τ : e(v) dx = 0 for any v ∈ LD(Ω \ (Γ0 ∪ Γ)) with v = 0 on ∂Ω \ (Γ0 ∪ Γ). (5.2)

We now construct a convenient competitor τ for (5.2). Since Γ is connected, 0 ∈ Γ and H1(Γ) ≤ ε
it follows that Γ ⊂ Bε. Let η ∈ C∞

c (Ω; [0, 1]) be a cut-off function satisfying










η = 1 in B5ε/4,

η = 0 in Ω \B7ε/4,

‖∇η‖∞ ≤ 3/ε.
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We define τ ∈ L2(Ω;M2×2) by

τ =











0 in Bε,

∇⊥((1 − η)v0) in B2ε \Bε,

σ0 in Ω \B2ε,

(5.3)

where v0 is the harmonic conjugate of u0 in the ball B = BR0 . Let us check that τ satisfies (5.2).
By the density result [5, Theorem 1], it is enough to consider test functions v ∈ H1(Ω\(Γ0∪Γ);R2)
with v = 0 on ∂Ω \ (Γ0 ∪ Γ). Then

ˆ

Ω

τ : e(v) dx =

ˆ

B2ε\Bε

∇⊥((1 − η)v0) : e(v) dx+

ˆ

Ω\B2ε

σ0 : e(v) dx. (5.4)

Since Γ ⊂ Bε, then actually v = 0 on ∂Ω \ Γ0, and the second integral writes
ˆ

Ω\B2ε

σ0 : e(v) dx = −
ˆ

∂B2ε\Γ0

(σ0ν) · v dH1 (5.5)

thanks to the integration by parts formula given by Lemma A.2 below. To treat the first integral,
we recall that there exists a sequence (vn) ⊂ C∞(B2ε;R

2) with vn = 0 in a neighborhood of Γ0

and such that vn → v0 in H1(B2ε;R
2). Hence, using an integration by parts, we infer that

ˆ

B2ε\Bε

∇⊥((1 − η)v0) : e(v) dx = lim
n→∞

ˆ

B2ε\Bε

∇⊥((1 − η)vn) : e(v) dx

= lim
n→∞

[

−
ˆ

B2ε\Bε

(

div∇⊥((1 − η)vn)
)

· v dx

+

ˆ

∂B2ε

(

∇⊥((1 − η)vn)ν
)

· v dH1 −
ˆ

∂Bε

(

∇⊥((1 − η)vn)ν
)

· v dH1

]

.

But since div(∇⊥((1 − η)vn)) = 0 in B2ε, η = 1 in a neighborhood of ∂Bε and η = 0 in a
neighborhood of ∂B2ε, we deduce that

ˆ

B2ε\Bε

∇⊥((1 − η)v0) : e(v) dx = lim
n→∞

ˆ

∂B2ε

(∇⊥vnν) · v dH1.

Denoting σn = ∇⊥vn ∈ C∞(B2ε;M
2×2), then divσn = 0 in B2ε and σn → ∇⊥v0 = σ0 in

L2(B2ε;M
2×2) so that σnν → σ0ν in H−1/2(∂B2ε;R

2). We therefore deduce that
ˆ

B2ε\Bε

∇⊥((1 − η)v0) : e(v) dx =

ˆ

B2ε\Γ0

(σ0ν) · v dH1. (5.6)

Gathering (5.4), (5.5) and (5.6), we finally conclude that the admissibility condition (5.2) holds.
Taking τ defined by (5.3) as competitor in (5.1) and recalling that σ0 = ∇⊥v0, we infer that

1

2

ˆ

Ω

(

Ce(uΓ) : e(uΓ) − Ce(u0) : e(u0)
)

dx ≥ −c
Ç
ˆ

B2ε

|σ0|2 dx+
1

ε2

ˆ

B2ε\Bε

|v0|2 dx
å
, (5.7)

for some constant c > 0 only depending on the Lamé constants λ and µ. Let (vn) ⊂ C∞(B;R2) be
such that vn → v0 in H1(B;R2) and vn = 0 in a neighborhood of Γ0. For each n ∈ N, the coarea
formula says that

ˆ

B2ε\Bε

|vn|2 dx =

ˆ 2ε

ε

ˆ

∂Br

|vn|2 dH1 dr.
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But since vn = 0 on Γ0 and Γ0 is connected, for each r ∈ [ε, 2ε], there exists ξr ∈ ∂Br ∩ Γ0 (also
depending on n). Hence, for all ξ ∈ ∂Br,

vn(ξ) =

ˆ

(̄ξr,ξ)

∂τvn dH1,

where (̇ξr , ξ) stands for the smaller arc of circle in ∂Br joining ξr and ξ, and ∂τvn is the tangential
derivative of vn on ∂Br. Thus, according to the Cauchy-Schwarz inequality, for all ξ ∈ ∂Br,

|vn(ξ)|2 ≤ πr

ˆ

∂Br

|∂τvn|2 dH1,

and it results, after integration with respect to ξ and r that
ˆ

B2ε\Bε

|vn|2 dx ≤ 2π2

ˆ 2ε

ε

r2
ˆ

∂Br

|∂τvn|2 dH1 dr ≤ 8π2ε2
ˆ

B2ε\Bε

|∇vn|2 dx.

Passing to the limit as n→ ∞ yields
ˆ

B2ε\Bε

|v0|2 dx ≤ 8π2ε2
ˆ

B2ε\Bε

|∇v0|2 dx,

and remembering that |∇v0| = |∇⊥v0| = |σ0|, we finally obtain
ˆ

B2ε\Bε

|v0|2 dx ≤ 8π2ε2
ˆ

B2ε\Bε

|σ0|2 dx.

Inserting this result into (5.7), it follows that

1

2

ˆ

Ω

[

Ce(uΓ) : e(uΓ) − Ce(u0) : e(u0)
]

dx ≥ −c
ˆ

B2ε

|σ0|2 dx

for some constant c > 0 only depending on λ and µ. Minimizing the left hand side of the previous
inequality with respect to all Γ ∈ K(Ω) with H1(Γ) ≤ ε yields

Gε ≥ − c
ε

ˆ

B2ε

|σ0|2 dx.

Then Proposition 4.6 shows that
lim inf
ε→0

Gε ≥ −G∗

for some G∗ > 0. �

6. Blow-up limit of the pre-existing crack

In this section we investigate the nature of the singularity of the displacement u0 and the stress
σ0 at the origin, which is the tip of the crack Γ0 having density 1/2 at that point. We will prove,
that along suitable subsequences of radius εk → 0 of balls, the rescaled crack converges in the
Hausdorff sense to a half-line (modulo a rotation), and the rescaled displacement converges in a
certain sense to the usual crack-tip function in the complement of a half-line. Once again, the
analysis strongly relies on the Airy function introduced in Proposition 4.3. Contrary to [9] where
the scalar anti-plane was treated, we do not have any monotonicity formula on the energy (neither
for the elastic problem nor for the biharmonic one) which prevents one to ensure the existence of
the limit of the rescaled energy, and thus the uniqueness of the limit. Therefore, in contrast with
[9], our result strongly depends upon the sequence (εn).

Let R0 > 0 be such that BR0 ⊂ Ω, and 0 < ε ≤ R0/2. According to Proposition 1 and Remark
2 in [9], there exists a sequence of rotations Rε such that the rescaled crack

Σε := ε−1Rε(Γ0 ∩Bε) (6.1)

locally converges to the half line Σ0 := (−∞, 0] × {0} with respect to the Hausdorff distance.
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In this section we are interested in the asymptotic behavior of the rescaled displacement uε ∈
LD(BR0/ε) defined by

uε(y) := ε−1/2u0(R−1
ε (εy)) for every y ∈ BR0/ε. (6.2)

To this aim, it will again be convenient to work on the Airy function. Let us consider the Airy
function w0 ∈ H2

0,Γ0
(BR0) associated to u0 in BR0 given by Proposition 4.3 satisfying (4.2) and

(4.3). The rescaled Airy function wε ∈ H2
0,Σε

(BR0/ε) is defined by

wε(y) := ε−3/2w0(R−1
ε (εy)) for every y ∈ BR0/ε. (6.3)

6.1. Blow-up analysis of the Airy function. We first show that the Airy function blows-up
into a biharmonic function outside the half line limit crack, satisfying a homogeneous Dirichlet
condition on the crack, and that its energy computed on a ball behaves like the radius.

Proposition 6.1. For every sequence (εn) ց 0+, there exist a subsequence (εk) ≡ (εnk
) ց 0+

and wΣ0 ∈ H2
loc(R

2) such that

wεk → wΣ0 strongly in H2
loc(R

2).

In addition, wΣ0 is a solution of the following biharmonic problem with homogeneous Dirichlet

boundary condition on the crack:
®

∆2wΣ0 = 0 in D′(R2 \ Σ0),

wΣ0 ∈ H2
0,Σ0

(BR) for any R > 0,
(6.4)

and it satisfies the following energy bound

sup
R>0

1

R

ˆ

BR

|D2wΣ0 |2 dx <∞. (6.5)

Proof. The proof is divided into several steps. We first derive weak compactness on the rescaled
Airy function, according the energy bound of the original Airy function. We then derive a Dirichlet
condition on the crack for the weak limit and its gradient. Using a cut-off function argument, we
establish that the weak convergence is actually strong, which enables one to show that the limit
Airy function is a biharmonic function outside the crack. In the sequel R > 0 is fixed, and ε > 0
is small enough such that 2R < R0/ε.
Weak compactness. According to [24, Theorem 2], we have

ˆ

B2R

|D2wε(y)|2 dy = ε

ˆ

B2R

|D2w0(R−1
ε (εy))|2 dy =

1

ε

ˆ

B2Rε

|D2w0(x)|2 dx ≤ C0R, (6.6)

where C0 > 0 is independent of ε and R. Since wε ∈ H2
0,Σε

(B2R), Poincaré inequality implies that

the sequence (wε)ε>0 is uniformly bounded in H2(B2R). A standard diagonalisation argument
shows that for each sequence (εn) ց 0+, it is possible to extract a subsequence (εk) ≡ (εnk

) ց 0+

and find wΣ0 ∈ H2
loc(R

2) such that wεk ⇀ wΣ0 weakly in H2
loc(R

2). In particular, passing to
the lim inf in (6.6) yields (6.5). In addition, we can assume that, for the same subsequence,
wεk → wΣ0 strongly in H1

loc(R
2) ∩ L∞

loc(R
2), and that |D2wεk |2L2 ⇀ µ weakly* in Mloc(R

2) for
some nonnegative measure µ ∈ Mloc(R

2).

Condition on the crack. Let us show that wΣ0 ∈ H2
0,Σ0

(Br) for any r < 2R. Consider a cut-off

function η ∈ C∞
c (B2R; [0, 1]) such that η = 1 on Br, and let z := ηwΣ0 ∈ H2

0 (B2R). Note that since
wεk → wΣ0 uniformly on B2R and Σεk → Σ0 in the sense of Hausdorff in B2R, then wΣ0 = 0 on
Σ0, and thus z = 0 on ∂(B2R \ Σ0). On the other hand, since ∇(ηwεk ) ∈ H1

0 (B2R \ Σεk ;R2) and
∇(ηwεk ) ⇀ ∇z weakly in H1(B2R;R2), it follows from [29] that ∇z ∈ H1

0 (B2R\Σ0;R
2). Therefore,

∇z has a Cap1,2-quasicontinuous representative, denoted by ›∇z, such that ›∇z = 0 Cap1,2-q.e. on
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∂(B2R \ Σ0). As a consequence of [1, Theorem 9.1.3] (see also [21, Theorem 3.8.3]), we get that
z ∈ H2

0 (B2R \ Σ0), and thus that wΣ0 ∈ H2
0,Σ0

(Br).

Strong convergence. Our aim now is to prove that wεk → wΣ0 strongly in H2
loc(R

2). By the
lower semicontinuity of the norm with respect to weak convergence, we already have for any r < 2R

ˆ

Br

|D2wΣ0 |2 dx ≤ lim inf
k→∞

ˆ

Br

|D2wεk |2 dx, (6.7)

so that it is enough to prove the converse inequality with a lim sup. To this aim we will use the
minimality property of wεk , and suitably modify wΣ0 into an admissible competitor.

Let us select a radius r ∈ (R, 2R) such that µ(∂Br) = 0. Since wΣ0 ∈ H2
0,Σ0

(Br), for every

n ∈ N, there exists a function hn ∈ C∞(Br) such that supp(hn)∩Σ0 = ∅ and hn → wΣ0 in H2(Br)
as n→ ∞. Note that, by Hausdorff convergence, one also has that supp(hn) ∩ Σεk = ∅ for k ≥ kn
large enough, for some integer kn ∈ N.

Let us consider a cut-off function ηδ ∈ C∞
c (Br; [0, 1]) satisfying

ηδ = 1 on Br−δ , |∇ηδ| ≤
C

δ
, |D2ηδ| ≤

C

δ2
. (6.8)

We finally define

zδ,n,k := ηδhn + (1 − ηδ)wεk = wεk + ηδ(hn − wεk).

Observe that zδ,n,k ∈ H2
0,Σεk

(Br) provided that k ≥ kn is large enough. Consequently, since

zδ,n,k ∈ wεk +H2
0 (Br), we infer thanks to (4.2) and Remark 4.4 that

ˆ

Br

|D2wεk |2 dx ≤
ˆ

Br

|D2zδ,n,k|2 dx,

or still
ˆ

Br

|D2wεk |2 dx ≤
ˆ

Br

|ηδD2hn + (1 − ηδ)D2wεk |2 dx

+

ˆ

Br

|(hn − wεk)D2ηδ + 2∇ηδ ⊗ (∇hn −∇wεk)|2 dx

+ 2

ˆ

Br

[

ηδD
2hn + (1 − ηδ)D2wεk

]

:
[

(hn − wεk)D2ηδ + 2∇ηδ ⊗ (∇hn −∇wεk )
]

dx.

By convexity, we get that
ˆ

Br

|ηδD2hn + (1 − ηδ)D
2wεk |2 dx ≤

ˆ

Br

ηδ|D2hn|2 dx +

ˆ

Br

(1 − ηδ)|D2wεk |2 dx,

and thanks to (6.8)
ˆ

Br

ηδ|D2wεk |2 dx ≤
ˆ

Br

ηδ|D2hn|2 dx

+ C

ˆ

Br\Br−δ

Å
1

δ4
|hn − wεk |2 +

1

δ2
|∇hn −∇wεk |2

ã
dx

+ 2

ˆ

Br\Br−δ

[

ηδD
2hn + (1 − ηδ)D2wεk

]

:
[

(hn − wεk)D2ηδ + 2∇ηδ ⊗ (∇hn −∇wεk )
]

dx.

Letting first k → ∞ and then n → ∞, using that wεk → wΣ0 in H1(Br) and that hn → wΣ0 in
H2(Br), we obtain

lim sup
k→∞

ˆ

Br

ηδ|D2wεk |2 dx ≤
ˆ

Br

|D2wΣ0 |2 dx.
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On the other hand

lim
k→∞

ˆ

Br

(1 − ηδ)|D2wεk |2 dx =

ˆ

Br

(1 − ηδ)dµ ≤ µ(Br \Br−δ).

Therefore we can write that

lim sup
k→∞

ˆ

Br

|D2wεk |2 ≤ lim sup
k→∞

ˆ

Br

ηδ|D2wεk |2 dx+ lim sup
k→∞

ˆ

Br

(1 − ηδ)|D2wεk |2 dx

≤
ˆ

Br

|D2wΣ0 |2 dx + µ(Br \Br−δ). (6.9)

Finally, letting δ → 0 in (6.9) and using the fact that µ(∂Br) = 0, we get the desired bound

lim sup
k→∞

ˆ

Br

|D2wεk |2 ≤
ˆ

Br

|D2wΣ0 |2 dx,

which ensures together with (6.7) that wεk converges strongly to wΣ0 in H2(Br).

Biharmonicity. In order to show that wΣ0 solves a biharmonic Dirichlet problem outside the
crack Σ0 is is enough to check that it satisfies the minimality property

ˆ

BR

|D2wΣ0 |2 dx ≤
ˆ

BR

|D2w|2 dx

for all w ∈ wΣ0 +H2
0 (BR\Σ0). Let z ∈ H2

0 (BR\Σ0), by density, there exists a sequence of functions
(zn) ⊂ C∞

c (BR \ Σ0) such that zn → z strongly in H2(BR \ Σ0). Since zn = 0 in a neighborhood
of Σ0, it follows by Hausdorff convergence that zn = 0 in a neighborhood of Σεk for k ≥ kn large
enough, for some integer kn ∈ N. Therefore, for any k ≥ kn, wεk + zn ∈ wεk + H2

0,Σεk
(BR) is an

admissible competitor for the minimality property satisfied by the Airy function (see Remark 4.4),
and

ˆ

BR

|D2wεk |2 dx ≤
ˆ

BR

|D2wεk +D2zn|2 dx.

Letting first k → ∞ and then n→ ∞, and using the strong convergence of (wεk) established before
yields

ˆ

BR

|D2wΣ0 |2 dx ≤
ˆ

BR

|D2wΣ0 +D2z|2 dx.

The proof of the Proposition is now complete. �

Remark 6.2. By elliptic regularity, it follows that wΣ0 is smooth outside the origin up to both
sides of Σ0. In particular, for every 0 < r < R <∞ and for every k ∈ N, wΣ0 ∈ Hk((BR \Br)\Σ0)
and is a solution for the problem (6.4) in a stronger sense.

It turns out that wΣ0 can be made explicit by showing that it is a positively 3/2-homogeneous
function. The proof of this result follows an argument given by Monique Dauge, relying on the
theory introduced by Kondrat’ev in [23], that is briefly recalled in Appendix B.

Proposition 6.3. The function wΣ0 is positively 3/2-homogeneous. More precisely, in polar co-

ordinates, we have for all (r, θ) ∈ (0,+∞) × (0, 2π),

wΣ0(r cos θ, r sin θ) = r3/2 [c1ψ1(θ) + c2ψ2(θ)] ,

where c1 and c2 ∈ R are constants, while ψ1 and ψ2 are given by

ψ1(θ) :=

ï
3

2
cos

Å
θ

2

ã
− 1

2
cos

Å
3θ

2

ãò
, (6.10)

ψ2(θ) :=

ï
3

2
sin

Å
θ

2

ã
+

1

2
sin

Å
3θ

2

ãò
. (6.11)
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Proof. Let wΣ0 be the biharmonic function in R2 \ Σ0 with homogeneous Dirichlet boundary
conditions given by Proposition 6.1, and let χ ∈ C∞

c (R2; [0, 1]) be a cut-off function satisfying
χ = 1 in B1 and χ = 0 in R2 \B2. We decompose wΣ0 as follows:

wΣ0 = w0 + w∞

where w0 := χwΣ0 and w∞ := (1 − χ)wΣ0 . Of course both w0 and w∞ still satisfy homogenous
boundary Dirichlet conditions on Σ0, and one can check that

∆2w0 = f0 and ∆2w∞ = f∞ in R
2 \ Σ0,

for some f0 and f∞ supported in the annulus B2 \ B1. In addition, according to Remark 6.2,
it follows that both f0 and f∞ ∈ Hk(R2 \ Σ0) for every k ∈ N, and consequently f0 and f∞ ∈
V ℓ
β (R2 \ Σ0) for all ℓ ∈ Z and all β ∈ R (we recall Section 2.3 for the definition of V ℓ

β ). We next
intend to apply Theorem B.2 to w0 and w∞ separately.

Step 1: Analysis of w0. Since w0 ∈ H2
0 (R2 \ Σ0), we get that w0 ∈ V 2

0 (R2 \ Σ0). To
establish this property, it suffices to check that the functions x 7→ |x|−1∂αw0(x) (with |α| = 1) and
x 7→ |x|−2w0(x) belong to L2(R2 \ Σ0). Indeed,

ˆ

R2\Σ0

|x|−2|∂αw0|2 dx =
∑

j∈Z

ˆ

(B2j+1\B2j )\Σ0

|x|−2|∂αw0|2 dx

≤
∑

j∈Z

2−2j

ˆ

(B2j+1\B2j )\Σ0

|∇w0|2 dx.

Since all weak derivatives ∂αw0 for |α| = 1 belong to H1
0,Σ0

((B2j+1 \B2j)\Σ0), Poincaré inequality
yields

ˆ

(B2j+1\B2j )\Σ0

|∇w0|2 dx ≤ C022j
ˆ

(B2j+1\B2j )\Σ0

|D2w0|2 dx,

for some constant C0 > 0 independent of j, and thus
ˆ

R2\Σ0

|x|−2|∂αw0|2 dx ≤ C0

∑

j∈Z

ˆ

(B2j+1\B2j )\Σ0

|D2w0|2 dx = C0

ˆ

R2\Σ0

|D2w0|2 dx <∞. (6.12)

Similarly, we have
ˆ

R2\Σ0

|x|−4|w0|2 dx =
∑

j∈Z

ˆ

(B2j+1\B2j )\Σ0

|x|−4|w0|2 dx

≤
∑

j∈Z

2−4j

ˆ

(B2j+1\B2j )\Σ0

|w0|2 dx.

Applying again Poincaré inequality to the function w0 ∈ H1
0,Σ0

((B2j+1 \B2j ) \ Σ0), we obtain
ˆ

(B2j+1\B2j )\Σ0

|w0|2 dx ≤ C022j
ˆ

(B2j+1\B2j )\Σ0

|∇w0|2 dx,

and thus, according to (6.12),
ˆ

R2\Σ0

|x|−4|w0|2 dx ≤ C0

∑

j∈Z

2−2j

ˆ

(B2j+1\B2j )\Σ0

|∇w0|2 dx ≤ 4C0

ˆ

R2\Σ0

|x|−2|∇w0|2 dx <∞.

Since in particular f0 ∈ V −2
β (R2 \ Σ0) ∩ V −2

0 (R2 \ Σ0) for any β < 0, applying Theorem B.2

yields that for any β ∈ R− \ S, there exists z0 ∈ V 2
β (R2 \ Σ0) such that

w0 = z0 +
∑

λ∈S∩(1,1−β)

rλϕλ(θ).
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Step 2: Analysis of w∞. We first observe that the growth condition (6.5) satisfied by wΣ0

shows that

sup
R>0

1

R

ˆ

BR

|D2w∞|2 dx <∞

since w∞ is supported in R2\B1. Let us check that this growth condition implies w∞ ∈ V 2
β (R2\Σ0)

with β < −1/2. Indeed, for |α| = 2,
ˆ

R2\Σ0

|x|2β |∂αw∞|2dx =

ˆ

R2\(Σ0∪B1)

|x|2β |∂αw∞|2dx

≤
∑

j≥0

ˆ

B2j+1\B2j

|x|2β |D2w∞|2dx

≤
∑

j≥0

22βj
ˆ

B2j+1\B2j

|D2w∞|2dx

≤
∑

j≥0

C22βj2j+1 < +∞

provided that β < −1/2. We next show that the functions x 7→ |x|β−1∇w∞(x) and x 7→
|x|β−2w∞(x) belong to L2(R2 \ Σ0) arguing exactly as in Step 1. It again relies on a dyadic
partition of R2 \B1 together with the following Poincaré inequalities in each annuli B2j+1 \B2j

ˆ

(B2j+1\B2j )\Σ0

|w∞|2dx ≤ C022j
ˆ

(B2j+1\B2j )\Σ0

|∇w∞|2dx,

and
ˆ

(B2j+1\B2j )\Σ0

|∇w∞|2dx ≤ C022j
ˆ

(B2j+1\B2j )Σ0

|D2w∞|2dx,

which hold since both w∞ and ∇w∞ vanish on Σ0 allowing us to apply Poincaré inequality to
them. Therefore it leads to w∞ ∈ V 2

β0
(R2 \ Σ0) for β0 = −1/2 − ε, where ε > 0 is small.

Conclusion. We finally gather all the results established so far by taking the same β0 for
the above functions w0 and w∞. Observing that S ∩ (1, 1 − β0) = {3/2}, we get that, in polar
coordinates,

w(r cos θ, r sin θ) = r3/2ϕ3/2(θ) + z(r cos θ, r sin θ) for a.e. (r, θ) ∈ (0,+∞) × (0, 2π),

for some z ∈ V 2
−1/2−ε(R

2 \ Σ0). We finally complete the proof of the proposition by establishing

that z = 0. To this aim, we recall that the function (r, θ) 7→ r3/2φ3/2(θ) is biharmonic on R2 \ Σ0,
and that it vanishes together with its gradient on the crack Σ0. In other words it is a solution of
(P1) with f = 0. We deduce that z ∈ V 2

−1/2−ε(R
2 \ Σ0) must be a solution of (P1) with f = 0 as

well. But since −1/2 − ε 6∈ S, Theorem B.1 (with β = 3/2 and ℓ = 2) ensures that z = 0. �

6.2. Blow-up analysis of the displacement. We are now in position to study the blow-up of
the displacement. We show that, up to a subsequence and rigid movement, it converges to the
usual positively 1/2-homogeneous function satisfying the Lamé system outside a half-line.

Theorem 6.4. For every sequence (εn) ց 0+, there exist a subsequence (εk) ≡ (εnk
) ց 0+, a

sequence (mk) of rigid movements and a function uΣ0 ∈ LDloc(R
2 \ Σ0) such that the blow-up

sequence of displacements satisfies
®
uεk −mk → uΣ0 strongly in L2

loc(R
2;R2),

e(uεk)χR2\Σεk
→ e(uΣ0) strongly in L2

loc(R
2;M2×2

sym).
(6.13)
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In addition, the function uΣ0 is positively 1/2-homogeneous and it is given in polar coordinates by

uΣ0(r cos θ, r sin θ) =
√
r[κ1φ1(θ) + κ2φ2(θ)] for all (r, θ) ∈ (0,+∞) × (0, 2π), (6.14)

where κ1 and κ2 ∈ R are constants, while φ1 and φ2 are defined by

φ1(θ) :=

Ç
λ+µ
2 cos

(

3θ
2

)

+ λ−3µ
2 cos

(

θ
2

)

λ+µ
2 sin

(

3θ
2

)

+ 5λ+9µ
2 sin

(

θ
2

)

å
, (6.15)

and

φ2(θ) :=

Ç
−λ+µ

2 sin
(

3θ
2

)

− 3λ+7µ
2 sin

(

θ
2

)

λ+µ
2 cos

(

3θ
2

)

+ λ+5µ
2 cos

(

θ
2

)

å
. (6.16)

Proof. A scalar version of that theorem is contained in [9, Theorem 1.1], but the proof does not
extend directly to the vectorial case. This is why we present here an alternative argument based
on the Airy function.

Let (εk) be the subsequence given by Proposition 6.1. As in the proof of that result, R > 1 is
fixed, and k ∈ N is large enough such that 2R < R0/εk.

Compactness. Let us denote by C := B1/4(1/2, 0) the ball of center (1/2, 0) and radius 1/4.
We consider the following sequence of rigid displacements

ūk(x) :=
1

|C|

ˆ

C

uεk(y) dy +

Å
1

|C|

ˆ

C

∇uεk(y) −∇uεk(y)T

2
dy

ãÅ
x− 1

|C|

ˆ

C

y dy

ã
.

Thanks to (4.3), (6.2) and (6.3), the stress is given by

Ce(uεk) =

Å
D22wεk −D12wεk

−D12wεk D11wεk

ã
. (6.17)

Therefore, according to (6.6), we deduce that the sequence (e(uεk))k∈N is uniformly bounded in
L2(BR;M2×2

sym). Consequently, up to a subsequence (not relabeled), there exists e ∈ L2
loc(R

2;M2×2
sym)

such that e(uεk) ⇀ e weakly in L2
loc(R

2;M2×2
sym). In addition, the strong H2

loc(R
2)-convergence

of the Airy function established in Theorem 6.1 together with (4.3), (6.2) and (6.3) shows that
actually e(uεk) → e strongly in L2

loc(R
2;M2×2

sym).
We next show that e is the symmetrized gradient of some displacement. To this aim, we consider,

for any 0 < δ < 1/10, the Lipschitz domain

Uδ := {x ∈ BR : dist(x,Σ0) > δ}.
Note that for such δ, C ⊂⊂ Uδ, while Σεk ∩Uδ = ∅ for k large enough (depending on δ). By virtue
of the Poincaré-Korn inequality [2, Theorem 5.2 and Example 5.3] we get that

‖uεk − ūk‖H1(Uδ) ≤ cδ‖e(uεk)‖L2(Uδ), (6.18)

for some constant cδ > 0 depending on δ. Thanks to a diagonalisation argument, we obtain for a
subsequence (not relabeled) a function ûΣ0 ∈ LDloc(R

2 \ Σ0) such that uεk − ūk → ûΣ0 strongly
in H1(Uδ;R

2), for any 0 < δ < 1/10. Necessarily we must have that e = e(ûΣ0) and
®
uεk − ūk → ûΣ0 strongly in L2

loc(R
2;R2),

e(uεk)χR2\Σεk
→ e(ûΣ0) strongly in L2

loc(R
2;M2×2

sym).

Minimality. We next show that ûΣ0 satisfies the minimality property
ˆ

BR

Ce(ûΣ0) : e(ûΣ0) dx ≤
ˆ

BR

Ce(ûΣ0 + v) : e(ûΣ0 + v) dx

for all v ∈ LD(BR \ Σ0) such that v = 0 on ∂BR \ Σ0. According to [5, Theorem 1], it is enough
to consider competitors v ∈ H1(BR \ Σ0;R2) with v = 0 on ∂BR \ Σ0. Moreover, since {0} has
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zero Cap1,2-capacity, we can also assume without loss of generality that v = 0 in a neighborhood
of the origin.

Denoting by C±
k the connected component of (BR \ Σεk) ∩ {x1 ≤ 0} which contains the point

(−1/2,±1/2), we define vk as follows:

• vk(x1, x2) = v(x1, x2) if (x1, x2) ∈ [BR ∩ {x1 > 0}] ∪ [C+
k ∩ {x2 ≥ 0}] ∪ [C−

k ∩ {x2 ≤ 0}];

• vk(x1, x2) = v(x1,−x2) if (x1, x2) ∈ [C+
k ∩ {x2 < 0}] ∪ [C−

k ∩ {x2 > 0}];
• vk(x1, x2) = 0 elsewhere.

Then, one can check that vk ∈ H1(BR \ Σεk ;R2) and vk = 0 on ∂BR \ Σεk . Moreover, vk → v
strongly in L2(BR;R2) and (∇vk)χBR\Σεk

→ ∇v strongly in L2(BR;M2×2
sym). Therefore, thanks to

the minimality property (3.3) satisfied by u0, we infer that
ˆ

BR

Ce(uεk) : e(uεk) dx ≤
ˆ

BR

Ce(uεk + vk) : e(uεk + vk) dx,

so that passing to the limit as k → ∞, and invoking the strong convergences (6.13) yields the
desired minimality property.

Explicit expression of the displacement. According to Theorem I and Remark 1.2 in [20],
(see also Remark 2.1. in [7]), there exist constants κ1 and κ2 ∈ R, and a function g ∈ H2

loc(R
2)

such that

ûΣ0(r cos θ, r sin θ) =
√
r[κ1φ1(θ) + κ2φ2(θ)] + g(r cos θ, r sin θ) for a.e. (r, θ) ∈ (0,+∞) × (0, 2π).

The previous expression of the displacement shows that

Ce(ûΣ0) = Φ + Ce(g), (6.19)

where Φ is a positively −1/2-homogeneous function. On the other hand, passing to the limit in
(6.17) as k → ∞ and using Proposition 6.1 yields

Ce(ûΣ0) =

Å
D22wΣ0 −D12wΣ0

−D12wΣ0 D11wΣ0

ã
. (6.20)

According to Proposition 6.3 the right hand side of the previous equality is positively −1/2-
homogeneous as well. Therefore gathering (6.19) and (6.20) ensures that e(g) = 0 which shows
that g = m is a rigid movement. We finally define the rigid displacement mk := ūk + m which
fullfills the conclusions of the proposition. �

7. Energy release rate

Following the approach of [7], our aim is to give a definition of energy release rate by studying the
convergence of the blow-up functional 1

εG(εΓ). The following statement is the same as [7, Theorem
3.1.], but with the substantial difference that now Γ0 is not assumed to be a straight line segment
near the origin, but only blowing-up to such a segment for the Hausdorff distance.

Theorem 7.1. Let (Γε)ε>0 be a sequence of crack increment in K(Ω) be such that supε H1(Γε) <
∞, and Γε → Γ in the sense of Hausdorff in Ω. Let us consider the rescaled crack Σε and

displacement uε defined, respectively by (6.1) and (6.2). Then for every sequence (εn) ց 0+, there
exist a subsequence (εk) ≡ (εnk

) ց 0+ and a rotation R ∈ SO(2) such that

lim
k→∞

1

εk
G(εkΓεk) = F(Γ) (7.1)
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where F is defined by

F(Γ) := min
w∈LD(R2\(Σ0∪R(Γ)))

{1

2

ˆ

R2

Ce(w) : e(w) dx +

ˆ

BR

Ce(uΣ0) : e(w) dx

−
ˆ

∂BR

Ce(uΣ0) : (w ⊙ ν)dH1
}

, (7.2)

where R > 0 is any radius such that Γ ⊂ BR.

Remark 7.2. The proof of Theorem 7.1 follows the scheme of [7, Theorem 3.1], but some technical
issues arise at two main points: 1) the explicit expression for the blow-up at the origin does not
come directly from the literature but now follows from our first main result Theorem 6.4, and 2) the
construction of a recovery sequence of functions in the moving domains that converges in a strong
sense to prove the minimality of the limit is more involved, since now after rescaling everything in
B1 our sequence of domains also moves on ∂B1.

Remark 7.3. In the scalar case (antiplane) the limit does actually not depend on the subsequence
due to the existence of blow-up limit for the whole sequence [9].

Proof of Theorem 7.1. Let (εn) ց 0+ and (εk) ≡ (εnk
) ⊂ (εn) be the subsequence given by

Theorem 6.4. Let us consider the rotation Rε be introduced at the beginning of section 6. It is
not restrictive to assume that Rεk converges to some limit rotation R. In particular Rεk(Γεk)
converges to R(Γ) in the sense of Hausdorff.
Rescaling. We denote by uk a solution of the minimization problem

min

ß
1

2

ˆ

Ω

Ce(v) : e(v) dx : v ∈ LD(Ω \ (Γ0 ∪ εkΓεk)) and v = ψ on ∂Ω \ (Γ0 ∪ εkΓεk)

™
. (7.3)

Recalling (3.6) and (3.7), we can write

Gεk =
1

εk
G(εkΓεk) =

1

2εk

ˆ

Ω

[

Ce(uk) : e(uk) − Ce(u0) : e(u0)
]

dx,

and setting ŵk := uk − u0, we obtain that

1

εk
G(εkΓεk) =

1

2εk

ˆ

Ω

Ce(ŵk) : e(ŵk) dx+
1

εk

ˆ

Ω

Ce(ŵk) : e(u0) dx.

Since ŵk = 0 on ∂Ω \ (Γ0 ∪ εkΓεk), the variational formulation of (7.3) ensures that

ˆ

Ω

Ce(uk) : e(ŵk) dx = 0,

and it follows, writing u0 = uk − ŵk,

1

εk
G(εkΓεk) = − 1

2εk

ˆ

Ω

Ce(ŵk) : e(ŵk) dx. (7.4)

On the other hand, from (7.3) it is easy to see that 1
εk
G(εkΓεk) is also resulting from a minimization

problem with homogeneous boundary condition. Indeed, for any ŵ ∈ LD(Ω \ (Γ0 ∪ εkΓεk)) with
ŵ = 0 on ∂Ω \ (Γ0 ∪ εkΓεk), denoting v = u0 + ŵ, we obtain that

1

2

ˆ

Ω

Ce(v) : e(v) dx =
1

2

ˆ

Ω

Ce(u0) : e(u0) dx+
1

2

ˆ

Ω

Ce(ŵ) : e(ŵ) dx+

ˆ

Ω

Ce(u0) : e(ŵ) dx,
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which implies

1

εk
G(εkΓεk) =

1

εk
min

{1

2

ˆ

Ω

Ce(ŵ) : e(ŵ) dx+

ˆ

Ω

Ce(u0) : e(ŵ) dx :

ŵ ∈ LD(Ω \ (Γ0 ∪ εkΓεk)) and ŵ = 0 on ∂Ω \ (Γ0 ∪ εkΓεk)
}

(7.5)

=
1

2εk

ˆ

Ω

Ce(ŵk) : e(ŵk) dx+
1

εk

ˆ

Ω

Ce(u0) : e(ŵk) dx.

According to the assumptions done on Γε, there exists R > 0 such that if ε is small enough,
then Γε ⊂ BR ⊂ Ω, and H1(εΓε) ≤ Cε for some constant C > 0 independent of ε. In addition,
thanks to the lower bound in Proposition 5.1, we get again for ε small enough,

−1

ε
G(εΓε) ≤ C,

which implies from (7.4)

1

εk

ˆ

Ω

Ce(ŵk) : e(ŵk) dx ≤ C. (7.6)

We now proceed to the following change of variable:

Ωk := ε−1
k Rεk (Ω), Σεk := ε−1

k Rεk (Γ0),

and for y ∈ Ωk,

wk(y) := ε
−1/2
k ŵk(R−1

εk (εky)), uεk(y) := ε
−1/2
k u0(R−1

εk (εky)).

We easily deduce from (7.6) that
ˆ

Ωk

Ce(wk) : e(wk) dx ≤ C. (7.7)

We can also recast the minimisation problem in (7.5) in terms of wk, which now writes as

1

εk
G(εkΓεk) = min

{1

2

ˆ

Ωk

Ce(w) : e(w) dx +

ˆ

Ωk

Ce(uεk) : e(w) dx :

w ∈ LD(Ωk \ (Σεk ∪Rεk(Γεk))) and w = 0 on ∂Ωk \ (Σεk ∪Rεk(Γεk))
}

=
1

2

ˆ

Ωk

Ce(wk) : e(wk) dx+

ˆ

Ωk

Ce(uεk) : e(wk) dx (7.8)

where we used (7.4) in the last equality.

Compactness. We now extend wk by 0 outside Ωk in such a way that wk ∈ LD(R2 \ (Σεk ∪
Rεk(Γεk))). Defining

ek :=

ß
e(wk) in Ωk

0 otherwise,

and using (7.7) together with the coercivity of C, we infer that the sequence (ek)k∈N is uniformy
bounded in L2(R2;M2×2

sym). Consequently, up to a new subsequence (not relabeled), we can assume

that ek ⇀ e weakly in L2(R2;M2×2
sym) for some function e ∈ L2(R2;M2×2

sym).

Let us recall that Σε → Σ0 := (−∞, 0] × {0} locally in the sense of Hausdorff in R2, and that

Γε → Γ in the sense of Hausdorff in Ω. Let us denote by B̂ := B1/2((R + 1, 0)) the ball of R2

centered at the point (R+ 1, 0) and of radius 1/2. Since Γ ⊂ BR and thus R(Γ) ⊂ BR, we deduce

that (Σ0 ∪ R(Γ)) ∩ B̂ = ∅. Therefore, for k large enough, B̂ ⊂ Ωk \ (Σεk ∪ Rεk (Γεk)). Let us



24 J.-F. BABADJIAN, A. CHAMBOLLE, AND A. LEMENANT

consider a bounded and smooth open set U ⊂ R2 \ (Σ0 ∪R(Γ)) containing B̂. Then for all k large
enough, we have U ⊂ Ωk \ (Σεk ∪Rεk(Γεk)), and we denote by rk the rigid movement defined by

rk(x) :=
1

|B̂|

ˆ

B̂

wk(y) dy +

Ç
1

|B̂|

ˆ

B̂

∇wk(y) −∇wk(y)T

2
dy

åÇ
x− 1

|B̂|

ˆ

B̂

y dy

å
.

By Korn’s inequality, we obtain that

‖wk − rk‖H1(U) ≤ CU ,

for some constant CU > 0 depending on U but independent of k. This implies that, up to
a subsequence, wk − rk ⇀ w weakly in H1(U ;R2) for some w ∈ H1(U ;R2). By exhausting
R2 \ (Σ0 ∪R(Γ)) with countably many open sets, extracting successively many subsequences and
using a diagonal argument, we obtain that w ∈ H1

loc(R
2 \ (Σ0 ∪R(Γ));R2) and

wk − rk ⇀ w weakly in H1
loc(R

2 \ (Σ0 ∪R(Γ));R2).

Moreover by uniqueness of the limit we infer that e(w) = e a.e. in R
2 \ (Σ0 ∪R(Γ)), therefore that

e(w) ∈ L2(R2;M2×2
sym) and w ∈ LD(R2 \ (Σ0 ∪R(Γ))).

Lower bound inequality. Let ζ ∈ W 1,∞(R2; [0, 1]) be a cut-off function such that ζ = 1 on BR

and ζ = 0 on R2 \BR′ for some given R′ > R. Recalling (7.8) we can write

1

εk
G(εkΓεk) =

1

2

ˆ

Ωk

Ce(wk) : e(wk) dx

+

ˆ

BR′

ζ Ce(uεk) : e(wk) dx+

ˆ

Ωk\BR

(1 − ζ)Ce(uεk) : e(wk) dx

=
1

2

ˆ

Ωk

Ce(wk − rk) : e(wk − rk) dx

+

ˆ

BR′

ζ Ce(uεk) : e(wk − rk) dx +

ˆ

Ωk\BR

(1 − ζ)Ce(uεk) : e(wk − rk) dx.

Let R′′ < R be such that Γ ⊂ BR′′ and εkR
′′ 6∈ N , where N is the L1-negligible set given by

Lemma A.2. According to that result, we infer that
ˆ

Ωk\BR′′

Ce(uεk) : e
(

(1 − ζ)(wk − rk)
)

dx = −
ˆ

∂BR′′\Σεk

(1 − ζ)(Ce(uεkν) · (wk − rk) dH1 = 0,

and thus
ˆ

Ωk\BR′′

(1 − ζ)Ce(uεk) : e(wk − rk) dx =

ˆ

Ωk\BR′′

(∇ζ ⊙ (wk − rk)) : Ce(uεk) dx.

Letting R′′ ր R leads to

1

εk
G(εkΓεk) =

1

2

ˆ

Ωk

Ce(wk − rk) : e(wk − rk) dx

+

ˆ

BR′

ζ Ce(uεk) : e(wk − rk) dx +

ˆ

Ωk\BR

(∇ζ ⊙ (wk − rk)) : Ce(uεk) dx.

Recalling from Theorem 6.4 that uεk → uΣ0 strongly in L2
loc(R

2;R2), and e(uεk) → e(uΣ0) strongly
in L2

loc(R
2;M2×2

sym), while wk − rk → w strongly in L2
loc(R

2;R2), and e(wk − rk) ⇀ e(w) weakly in
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L2(R2;M2×2
sym), we infer that

lim inf
j→∞

1

εk
G(εkΓεk) ≥ 1

2

ˆ

R2

Ce(w) : e(w) dx

+

ˆ

BR′

ζ Ce(uΣ0) : e(w) dx +

ˆ

Ωk\BR

(∇ζ ⊙ w) : Ce(uΣ0) dx. (7.9)

We now let ζ be the Lipschitz and radial function defined by

ζ(x) =











1 if x ∈ BR,
|x| −R

R′ −R
if x ∈ BR′ \BR,

0 if x ∈ R2 \BR′ .

(7.10)

Letting R′ → R in the right-hand side of (7.9) we finally get that, for L1-a.e. R > 0,

lim inf
j→∞

1

εk
G(εkΓεk) ≥ 1

2

ˆ

R2

Ce(w) : e(w) dx +

ˆ

BR

Ce(uΣ0) : e(w) dx +

ˆ

∂BR

w · (Ce(uΣ0ν)) dH1.

Reduction to competitors in H1(R2 \ (Σ0∪R(Γ));R2) with compact support. In order to
show that w is a minimizer of the limit problem (7.2), we start by establishing that, without loss
of generality, competitors in (7.2) can be taken in H1(R2 \ (Σ0∪R(Γ));R2) with compact support.
First we reduce to the case where the competitor belong to LD(R2 \ (Σ0 ∪ R(Γ))) have compact
support. To this purpose, let us show that any z ∈ LD(R2 \ (Σ0 ∪ R(Γ))) can be approximated
strongly in LD(R2 \ (Σ0 ∪ R(Γ))) by functions with compact support. To this aim we consider
ϕ ∈ C∞

c (B2; [0, 1]) satisfying ϕ = 1 on B1, and define

ϕR(x) := ϕ
( x

R

)

.

We assume that R is large enough so that Γ ⊂ BR. Then we set zR := (z−mR)ϕR where mR is a
suitable rigid movement associated to the Poincaré-Korn inequality in the domain B2R \ (BR∪Σ0)
(which is diffeomorphic to the Lipschitz set (0, 2πR) × (0, R)), namely

ˆ

B2R\(BR∪Σ0)

|z −mR|2 dx ≤ CR2

ˆ

B2R\(BR∪Σ0)

|e(z)|2 dx (7.11)

Moreover a immediate computation yields

e(zR) = ϕRe(z) +
1

R
∇ϕ

( ·
R

)

⊙ (z −mR).

The first term converges strongly to e(z) in L2(R2;M2×2
sym), while the second term converges to 0

strongly in L2(R2;M2×2
sym) due to (7.11). As a consequence zR → z strongly in LD(R2\(Σ0∪R(Γ))).

Next, we reduce to the case where z lies in the Sobolev space H1(R2 \ (Σ0 ∪ R(Γ));R2). Let
D and D′ be bounded open sets such that Supp(z) ⊂ D′ ⊂⊂ D. According to the density result
[5, Theorem 1], we get the existence of a sequence (zn) ⊂ H1(D \ (Σ0 ∪ R(Γ));R2) such that
zn → z strongly in L2(D;R2) and e(zn) → e(z) both strongly in L2(D;M2×2

sym). This implies

in particular that zn → 0 in L2(D \ D′;R2). Let ϕ ∈ C∞
c (D; [0, 1]), ϕ = 1 on D′, and set

ẑn = ϕzn ∈ H1(R2\(Σ0∪R(Γ))) with Supp(ẑn) ⊂ D, and satisfying ẑn → z strongly in L2(R2;R2),
and e(ẑn) → e(z) strongly in L2(R2;M2×2

sym).

Upper bound and minimality. We now assume that z ∈ H1(R2\(Σ0∪R(Γ));R2) with compact
support, contained in some bounded open set D. Clearly the number of connected components of
∂D ∪ ((Σεk ∪Rεk(Γεk)) ∩D) is bounded. Hence by [4] or [6] we get the existence of zk ∈ H1(D \
(Σεk ∪Rεk (Γεk));R2) such that zk → z strongly in L2(D;R2) and (∇zk)χD\(Σεk

∪Rεk
(Γεk

)) → ∇z
strongly in L2(D;M2×2

sym). Multiplying by the same cut-off function ϕ as in the previous step,
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we can also assume that zk = 0 in a neighborhood of ∂D. In this way we have obtained zk ∈
H1(R2 \ (Σεk ∪Rεk(Γεk));R2) satisfying

Supp(zk) ⊂ D ⊂ Ωk (for k large enough),

zk → z strongly in L2(R2;R2),

(∇zk)χR2\(Σεk
∪Rεk

(Γεk
)) → ∇z strongly in L2(R2;M2×2

sym).

According to the minimality property of wk (see (7.8)), we have

1

2

ˆ

Ωk

Ce(wk) : e(wk) dx +

ˆ

Ωk

Ce(uεk) : e(wk) dx

≤ 1

2

ˆ

Ωk

Ce(zk) : e(zk) dx +

ˆ

Ωk

Ce(uεk) : e(zk) dx. (7.12)

Let ζ be the cut-off function defined in (7.10), then performing an integration by parts exactly as
we did in step 3 (with zk instead of wk − rk) we arrive at the following

1

εk
G(εkΓεk) =

1

2

ˆ

Ωk

Ce(wk) : e(wk) dx +

ˆ

Ωk

ζCe(uεk) : e(wk) dx+

ˆ

Ωk

[∇ζ ⊙ wk] : Ce(uεk) dx

≤ 1

2

ˆ

Ωk

Ce(zk) : e(zk) dx +

ˆ

Ωk

ζCe(uεk) : e(zk) dx+

ˆ

Ωk

[∇ζ ⊙ zk] : Ce(uεk) dx.

The convergences established so far for the sequences (zk) and (uεk) enable one to pass to the limit
in the previous expression, first as k → ∞ and then R′ → R. We finally get that

lim sup
j→∞

1

εk
G(εkΓεk)

≤ 1

2

ˆ

R2

Ce(z) : e(z) dx+

ˆ

BR

Ce(uΣ0) : e(z) dx+

ˆ

∂BR

z · (Ce(uΣ0)ν) dH1 (7.13)

for almost every R > 0. By the density result established in step 4, inequality (7.13) holds for any
z ∈ LD(R2 \ (Σ0 ∪R(Γ))). Taking z = w, and gathering with (7.9) yields

lim
j→∞

1

εk
G(εkΓεk) =

1

2

ˆ

R2

Ce(w) : e(w) dx +

ˆ

BR

Ce(uΣ0) : e(w) dx +

ˆ

∂BR

w · (Ce(uΣ0)ν) dH1,

and using again (7.13), we deduce that w is a solution of the minimization problem (7.2) for a.e.
R > 0 with Γ ⊂ BR. Finally, an integration by parts ensures that the value of F(Γ) is independent
of R > 0 and a fortiori holds for every R > 0. �

Appendix A. Technical lemmas

The object of this appendix is to prove several technical results used throughout this work. Let us
recall few notations: Γ0 ∈ K(Ω) is the original crack, and B is an open ball centered at the origin
such that B ⊂ Ω and ∂B ∩ Γ0 6= ∅. In addition, U is a smooth open set such that U ∩ Γ0 = ∅ and
U ∩ ∂B 6= ∅.

In the proof of Lemma 4.1, we used the following auxiliary result.

Lemma A.1. For any g ∈ L2(U ∩ ∂B), there exists a function σ ∈ L2(U ;R2) with divσ = 0 in

H−1(U), σν = 0 in H−1/2(∂U) and σν = g in L2(U ∩ ∂B).

Proof. For any u ∈ H1
0 (U), let

T1(u) :=

ˆ

U∩∂B

gu dH1.
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The mapping T1 : H1
0 (U) → R is clearly linear, and it is in addition continuous since by the trace

theorem,

|T1(u)| ≤ ‖u‖L2(U∩∂B)‖g‖L2(U∩∂B) ≤ C‖u‖H1(U).

Therefore, T1 ∈ H−1(U), and thus, there exists σ1 ∈ L2(U ;R2) such that

T1(u) =

ˆ

U

σ1 · ∇u dx for any u ∈ H1
0 (U).

Taking in particular u ∈ H1
0 (U ∩ B) ⊂ Ker(T1), we deduce by definition of weak derivatives that

divσ1 = 0 in H−1(B ∩ U), and, using the integration by parts formula in H1(U ∩B), that
ˆ

U∩∂B

gu dH1 = T1(u) = 〈σ1ν, u〉H−1/2(∂(U∩B)),H1/2(∂(U∩B)).

This shows that σ1ν = g in L2(U ∩ ∂B) (where ν is the outer normal to ∂B), and σ1ν = 0 in
[H1/2(B ∩ ∂U)]′.

Arguing similarly on U \B, we get that divσ1 = 0 in H−1(B \U), σ1ν = g in L2(U ∩∂B) (where
now ν is the inner normal to ∂B) and σ1ν = 0 in [H1/2(∂U \B)]′. Let us define σ ∈ L2(B;R2) by
σ = σ1 in U ∩B and σ = −σ1 in U \B. Clearly, σν = 0 in H−1/2(∂U), and since the normal trace
of σ do not jump across ∂B ∩ U , we infer that divσ = 0 in H−1(U) and σν = g in L2(∂B ∩ U)
(where ν is the outer normal to ∂B). �

In the proof of Proposition 5.1 and Theorem 7.1, we used the following generalized integration
by parts formula (see Lemmas 3.1 and 3.2 in [9] for a similar result in the scalar case).

Lemma A.2. Let Γ ∈ K(Ω). There exists a set N ⊂ R+ of zero Lebesgue measure with the

following property: for all v ∈ H1(Ω \ (Γ0 ∪ Γ);R2) such that v = 0 on ∂Ω \ Γ0, and for all r 6∈ N
with Γ ⊂ Br ⊂⊂ Ω, one has

ˆ

(Ω\Γ0)\Br

σ0 : e(v) dx = −
ˆ

∂Br\Γ0

(σ0ν) · v dH1.

Proof. Let r′ < r be such that Γ ⊂ Br′ ⊂⊂ Br ⊂⊂ Ω, and consider the cut-off function η ∈
W 1,∞(Ω : [0, 1]) given by

η(x) :=











1 on Ω \Br,
0 on Br′ ,

|x| − r′

r − r′
on Br \Br′ .

We set w := ηv so that w ∈ H1(Ω \ Γ0;R2) and w = 0 on ∂Ω \ Γ0. Since w = v outside Br, we
infer that
ˆ

(Ω\Γ0)\Br

σ0 : e(v) dx =

ˆ

(Ω\Γ0)\Br

σ0 : e(w) dx =

ˆ

Ω\Γ0

σ0 : e(w) dx −
ˆ

Br\Γ0

σ0 : e(w) dx.

According to the variational formulation (3.5), we have
ˆ

Ω\Γ0

σ0 : e(w) dx = 0.

On the other hand, since e(w) = ηe(v) + ∇η ⊙ v and ∇η(x) = 1
r−r′

x
|x|χBr\Br′

, we deduce that
ˆ

(Ω\Γ0)\Br

σ0 : e(v) dx =

ˆ

Br\Γ0

ησ0 : e(v) dx − 1

r − r′

ˆ

(Br\Br′ )\Γ0

σ0 :

Å
x

|x| ⊙ v

ã
dx.

Letting r′ → r, we get that
ˆ

Br\Γ0

ησ0 : e(v) dx→
ˆ

Br\Γ0

σ0 : e(v) dx,
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while Lebesgue’s differentiation theorem applied to the integrable function ρ 7→
´

∂Bρ\Γ0
(σ0ν)·v dH1

yields
1

r − r′

ˆ

(Br\Br′ )\Γ0

σ0 :

Å
x

|x| ⊙ v

ã
dx→

ˆ

∂Br\Γ0

(σ0ν) · v dH1,

for all r 6∈ Nv, where Nv ⊂ R+ is a measurable set of zero Lebesgue measure. The fact that the
exceptional set can be chosen independently of the test function v results from the separability of
the space {v ∈ H1(Ω \ (Γ0 ∪ Γ);R2) : v = 0 on ∂Ω \ Γ0}. �

Appendix B. A short review of Kondrat’ev theory

We follow the notations and statements of the book [25, Section 6.1] that we briefly recall here
in the case of the bilaplacian in the cracked plane R2 \ Σ0. Let us consider weak solutions of the
problem

(P1)

ß
∆2w = f in R2 \ Σ0,
w = 0 and ∂w

∂ν = 0 on Σ0,

in weighted Sobolev spaces of type V ℓ
β (R2 \Σ0) (see the definition in Section 2.3) which is the core

of Kondrat’ev’s Theory. It is easily seen that ∆2 (associated with homogenous Dirichlet conditions)

maps w ∈ V ℓ
β (R2\Σ0) to f ∈ V ℓ−4

β (R2\Σ0). For ℓ ≥ 4 this fact is quite obvious from the definition,

and for ℓ < 4, it follows from a standard extension argument (see [25, Theorem 6.1.2]). Kondrat’ev
theory ensures that this operator is actually of Fredhlom type, and that it defines an isomorphism
provided β ∈ R \ S and ℓ ∈ Z, where S is an exceptional countable set. In our special case it
turns out to be contained in the set of half integers 1

2Z, as for most elliptic operators (see [11]).
Indeed, this set appears as the spectrum of the Mellin transform of the operator written in polar
coordinates, with corresponding boundary conditions. In the language of [25] this will be called
the Pencil operator, denoted by A(λ) and studied in [25, Chapter 5] (and defined pp. 197 in [25] in
the case that we are interested in). The exact computations in the special case of the bilaplacian
are quite standard, and can be found for instance in [26, Chapter 7.1] (see also [19, Section 7.2.1],
but with different notations and conventions leading to slightly different characteristic equations).
Let us recall here those computations, still using the language of [25].

First we recall that the Mellin transform of a function g ∈ C∞
c (R+) is given by

û(λ) =

ˆ +∞

0

r−λ−1g(r)dr, for all λ ∈ C. (B.1)

Another way to understand this transformation is by taking the Laplace transform of the function
t 7→ g(et). Relevant properties are recalled in [25, Lemma 6.1.3], and one of the most important is
probably

‘r∂rg = λĝ. (B.2)

Now let us look for the pencil operator. Since it is obtained via the Mellin transform of ∆2 (up to
a factor r4), we need to write it in polar coordinates (r, θ) which gives

∆2 = ∂4r +
2∂3r
r

− ∂2r
r2

+
∂r
r3

+
∂4θ
r4

+
4∂2θ
r4

− 2∂2θ∂r
r3

+
2∂2θ∂

2
r

r2
.

We then identify the terms of the form (r∂r)k, and for this purpose we shall use the following
elementary formulas

(r∂r)2 = r∂r + r2∂2r

(r∂r)3 = r∂r + 3r2∂2r + r3∂3r

(r∂r)4 = r∂r + 7r2∂2r + 6r3∂3r + r4∂4r
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which imply

∆2 = r−4
(

[(r∂r)4 − 4(r∂r)3 + 4(r∂r)2] + [2(r∂r)2 − 4r∂r + 4]∂2θ + ∂4θ
)

=: r−4L(∂θ, r∂r)

The pencil operator A(λ) is then obtained by taking the Mellin transform (B.1) in the r variable
of the operator L(∂θ , r∂r) defined above. Using (B.2) we therefore obtain

A(λ) = (λ4 − 4λ3 + 4λ2) + (2λ2 − 4λ+ 4)∂2θ + ∂4θ

= (∂2θ + (λ− 2)2)(∂2θ + λ2), (B.3)

and the boundary conditions in the variable θ are still zero (i.e. acting on functions ϕ with the
boundary conditions ϕ(0) = ϕ(2π) = ϕ′(0) = ϕ′(2π) = 0). The set S is then the spectrum of A(λ),
and according to the terminology of Operator Pencils this means the set of λ for which the operator
is non invertible [25, Chapter 5]. By [26, Chapter 7.1] (see in particular the last paragraph before
Section 7.2 for the special case α = 2π), this set is real and

S =

ß
1 ± k

2
; k ∈ N \ {0}

™
.

All of them, except λ = 0 and λ = 2, have geometric and algebraic multiplicities equal to 2. The
associated eigenfunctions are given by explicit functions that one can find in [26, formulas (7.1.14)
and (7.1.15)]. We shall only give the ones corresponding to λ = 3/2, which are the functions
defined in (6.10) and (6.11).

According to all the above facts, a direct application of [25, Theorem 6.1.3] yields

Theorem B.1. If β ∈ R and ℓ ∈ Z are such that

−β + ℓ− 1 6∈ S,

then for every f ∈ V ℓ−4
β (R2 \ Σ0), there exists a unique solution w ∈ V ℓ

β (R2 \ Σ0) of (P1).

In addition, a direct application of [25, Theorem 6.1.5] implies that

Theorem B.2. Let β2 < β1 be two real numbers, ℓ ∈ Z, and assume that

−βi + ℓ− 1 6∈ S, for all i ∈ {1, 2}.

If w ∈ V ℓ
β1

(R2 \Σ0) is a solution of (P1) with f ∈ V ℓ−4
β1

(R2 \Σ0)∩V ℓ−4
β2

(R2 \Σ0), then there exists

z ∈ V ℓ
β2

(R2 \ Σ0) such that

w − z =
∑

λ∈S∩(1−β1,1−β2)

rλϕλ(θ),

where the ϕλ are linear combinations of eigenfunctions of A(λ). In particular ϕ3/2 = c1ψ1 + c2ψ2

where ψ1 and ψ2 are defined in (6.10) and (6.11).

Aknowledgements. The authors wish to thank Svitlana Mayboroda for useful discussions about
the subject of this paper, and for having pointed out reference [24]. They are also grateful to
Monique Dauge for having sent them a copy of the paper [23], and for the argument leading to
the proof of Proposition 6.3. J.-F. Babadjian has been supported by the Agence Nationale de

la Recherche under Grant No. ANR 10-JCJC 0106. A. Chambolle and A. Lemenant has been
partially supported by the Agence Nationale de la Recherche under Grant No. ANR-12-BS01-
0014-01 GEOMETRYA.



30 J.-F. BABADJIAN, A. CHAMBOLLE, AND A. LEMENANT

References

[1] D. R. Adams, L. I. Hedberg: Function spaces and potential theory, Springer-Verlag, Berlin (1996).
[2] G. Alessandrini, A. Morassi, E. Rosset: The linear constraints in Poincaré and Korn type inequalities,
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Trudy Moskov. Mat. Obšč., 16:209–292, 1967.
[24] V. A. Kondrat’ev, I. Kopachek, D. M. Lekveishvili, O. A. Olĕınik: Sharp estimates in Hölder spaces and
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