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ENERGY RELEASE RATE FOR NON SMOOTH CRACKS IN PLANAR ELASTICITY

This paper is devoted to the characterization of the energy release rate of a crack which is merely closed, connected, and with density 1/2 at the tip. First, the blow-up limit of the displacement is analyzed, and the convergence to the corresponding positively 1/2-homogenous function in the cracked plane is established. Then, the energy release rate is obtained as the derivative of the elastic energy with respect to an infinitesimal additional crack increment.

Introduction

Griffith theory [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] is a model explaining the quasi-static crack growth in elastic bodies under the assumption that the crack set is preassigned. In a two-dimensional setting, let us denote by Ω ⊂ R 2 the reference configuration of a linearly elastic body allowing for cracks inside Γ. To fix the ideas, provided the evolution is sufficiently smooth, that Γ is a simple curve, and that the evolution is growing only in one direction, then the crack is completely characterized by the position of its tip, and thus by its arc length. Denoting by Γ(ℓ) the crack of length ℓ inside Γ, the elastic energy associated to a given kinematically admissible displacement u : Ω \ Γ(ℓ) → R 2 satisfying u = ψ(t) on ∂Ω \ Γ(ℓ), is given by E(t; u, ℓ) := 1 2 ˆΩ\Γ(ℓ) Ce(u) : e(u) dx,

where C is the fourth order Hooke's tensor, and ψ(t) : ∂Ω → R 2 is a prescribed boundary datum depending on time, which is the driving mechanism of the process. If the evolution is slow enough, it is reasonable to neglect inertia and viscous effects so that the quasi-static assumption becomes relevant: at each time t, the body is in elastic equilibrium. It enables one to define the potential energy as P(t, ℓ) := E(t; u(t, ℓ), ℓ) = min E(t; •, ℓ),

where the minimum is computed over all kinematically admissible displacements at time t. Therefore, given a cracking state, the quasi-static assumption permits to find the displacement. In order to get the crack itself (or equivalently its length), Griffith introduced a criterion whose fundamental ingredient is the energy release rate. It is defined as the variation of potential energy along an infinitesimal crack increment, or in other words, the quantity of released potential energy with respect to a small crack increment. More precisely, it is given by

G(t, ℓ) := - ∂P ∂ℓ (t, ℓ)
provided the previous expression makes sense. From a thermodynamical point of view, the energy release rate is nothing but the thermodynamic force associated to the crack length (the natural internal variable modeling the dissipative effect of fracture). Griffith criterion is summarized into the three following items: for each t > 0 (i) G(t, ℓ(t)) ≤ G c , where G c > 0 is a characteristic material constant referred to as the toughness of the body; (ii) l(t) ≥ 0; (iii) (G(t, ℓ(t)) -G c ) l(t) = 0. Item (i) is a threshold criterion which stipulates that the energy release rate cannot exceed the critical value G c . Item (ii) is an irreversibility criterion which ensures that the crack can only grow. The third and last item is a compatibility condition between (i) and (ii): it states that a crack will grow if and only if the energy release rate constraint is saturated.

In [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] (see also [START_REF] Bourdin | The variational approach to fracture[END_REF]), it has been observed that Griffith is nothing but the necessary first order optimality condition of a variational model. More precisely, if for every t > 0, (u(t), ℓ(t)) satisfies:

(i) Unilateral minimality: for any l ≥ ℓ(t), and any v : Ω \ Γ( l) → R 2 satisfying v = ψ(t) on ∂Ω \ Γ( l), then E(t) := 1 2 ˆΩ\Γ(ℓ(t)) Ce(u(t)) : e(u(t)) dx + G c ℓ(t) ≤ 1 2 ˆΩ\Γ( l) Ce(v) : e(v) dx + G c l;

(ii) Irreversibility: l(t) ≥ 0;

(iii) Energy balance:

Ė(t) = ˆ∂Ω\Γ(ℓ(t)) (Ce(u(t))ν) • ψ(t) dH 1 ,
then (u(t), ℓ(t)) is a solution of Griffith' model. In the previous expression, H 1 denotes the 1dimensional Hausdorff measure. The energy balance is nothing but a reformulation of the second law of thermodynamics which asserts the non-negativity of the mechanical dissipation. It states that the temporal variation of the total energy (the sum of the elastic and surface energies) is compensated by the power of external forces, which in our case reduces to the stress (Ce(u(t))ν acting on ∂Ω \ Γ(ℓ(t)) and generated by the boundary displacement ψ(t). This new formulation relies on the constrained minimization of the total energy of Mumford-Shah type

E(u, Γ) := 1 2 ˆΩ\Γ Ce(u) : e(u) dx + G c H 1 (Γ)
which put in competition a bulk (elastic) energy and a surface (Griffith) energy. One of the main interests is that it makes it possible to get rid of the assumption of the a priori knowledge of the crack path. Following [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF], a quasi-static evolution is defined as a mapping t → (u(t), Γ(t)) satisfying (i) Unilateral minimality: for any Ω ⊃ Γ ⊃ Γ(t), and any v : Ω \ Γ → R 2 satisfying v = ψ(t) on ∂Ω \ Γ, then E(u(t), Γ(t)) ≤ E(v, Γ); (ii) Irreversibility: Γ(s) ⊂ Γ(t) for every s ≤ t; (iii) Energy balance: E(u(t), Γ(t)) = E(u(0), Γ(0)) + ˆt 0 ˆΩ\Γ(s) Ce(u(s)) : e( ψ(s)) dx ds.

An existence result for this model has been given in [START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF] (see also [START_REF] Maso | A model for the quasi-static growth of brittle fracture: existence and approximation results[END_REF][START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF][START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF] in other contexts) for cracks belonging to the class of compact and connected subsets of Ω. The main reason of this assumption was to ensure the lower semicontinuity of the Mumford-Shah type functional (u, Γ) → E(u, Γ) with respect to a reasonable notion of convergence. The lower semicontinuity of the surface energy with respect to the Hausdorff convergence of cracks is a consequence of Go lab's Theorem (see [START_REF] Falconer | The geometry of fractal sets[END_REF]), while the continuity of the bulk energy is a consequence of continuity results of the Neumann problem with respect to the Hausdorff convergence of the boundary (see [START_REF] Bucur | A duality approach for the boundary variation of Neumann problems[END_REF][START_REF] Chambolle | Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets[END_REF]) together with a density result [START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF]. In any cases, all these results only hold in dimension 2 and in the class of compact and connected sets.

If one is interested into fine qualitative results such as crack initiation (see [START_REF] Chambolle | Ponsiglione: Crack initiation in brittle materials[END_REF]) of kinking (see [START_REF] Chambolle | Revisiting energy release rate in brittle fracture[END_REF]) it becomes necessary to understand the nature of the singularity at the crack tip. Therefore one should be able to make rigorous a suitable notion energy release rate. The first proof of the differentiable character of the potential energy with respect to the crack length has been given in [START_REF] Destuynder | Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile[END_REF] (see also [START_REF] Knees | Energy release rate for cracks of finite-strain elasticity[END_REF][START_REF] Negri | Quasi-static crack propagation by Griffith's criterion[END_REF][START_REF] Lazzaroni | Energy release rate and stress intensity factor in antiplane elasticity[END_REF]). The generalized variational setting described above, a mathematical justification of the notions of energy release rate for any incremental crack attached to a given initial crack has been in [START_REF] Chambolle | Revisiting energy release rate in brittle fracture[END_REF] in the case where the crack is straight in a small neighborhood of its tip. In the footstep of that work, we attempt here weaken the regularity assumption on the initial crack, which is merely closed, connected, with density 1/2 at the origin (that imply to blow up as a segment at the origin, up to rotations).

1.1. Main Results. Our main results are contained in Theorem 6.4 and Theorem 7.1 respectively in Section 6 and Section 7.

1.1.1. First Result. The first main result Theorem 6.4 is a purely P.D.E. result. We analyze the blow-up limit of the optimal displacement at the tip of the given initial crack. We prove that for some suitable subsequence, the blow-up limit converges to the classical crack-tip function in the complement of a half-line, i.e. of the form

κ 1 φ 1 + κ 2 φ 2 , (1.1) 
for some constants κ 1 and κ 2 ∈ R, while φ 1 and φ 2 are positively 1/2-homogenous functions which are explicitly given by (6.15) and (6.16) below. This part can be seen as a partial generalization in planar elasticity of what was previously done in the anti-plane case [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF]. Mathematically speaking, the corresponding function to be studied is now a vectorial function satisfying a Lamé type system, instead of being simply a scalar valued harmonic function. One of the key obstacle in the vectorial case is that no monotonicity property is known for such a problem, which leads to a slightly weaker result than in the scalar case: the convergence of the blow-up sequence only holds up to subsequences, and nothing is known for the whole sequence. Consequently, the constants κ 1 and κ 2 in (1.1) a priori depend on this particular subsequence. As a matter of fact, this prevents us to define properly the stress intensity factor analogously to what was proposed in [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF]. On the other hand, we believe that the techniques employed in the proof and the results on their own are already interesting. In addition, the absence of monotonicity is not the only difference with the scalar case, which led us to find a new proof relying on a duality approach via the so-called Airy function in order to bypass some technical problems.

Another substantial difference with the scalar case appears while studying homogeneous solutions of the planar Lamé system in the complement of a half-line, which is crucial in the understanding of blow-up solutions at the crack tip. For harmonic functions it is rather easy to decompose any solutions as a sum of spherical-harmonics directly by writing the operator in polar coordinates, and identify the degree of homogeneity of each term with the corresponding eigenvalue of the Dirichlet-Laplace-Beltrami operator on the circle minus a point. For the Lamé system, or alternatively for the biharmonic equation, a similar naive approach cannot work. The appropriate eigenvalue problem on the circle have a more complicate nature, and analogous results rely on an abstract theory developed first by Kondrat'ev which rests on pencil operators, weighted Sobolev spaces, the Fredholm alternative, and calculus of residues. We used this technology in the proof of Proposition 6.3 for which we could not find a more elementary argument.

1.1.2. Second result. The second main result Theorem 7.1 concerns the energy release rate of an incremental crack Γ, which is roughly speaking the derivative of the elastic energy with respect to the crack increment (see (7.1) for the precise definition). We prove that the value of this limit is realized as an explicit minimization problem in the cracked-plane R 2 \ (-∞, 0] × {0} . One can find a similar statement in [7, Theorem 3.1], but with the additional assumption that the initial crack is a line segment close to the origin. We remove here this hypothesis, establishing the same result for any initial crack which is closed, connected and admits a line segment as blow-up limit at the origin. The starting point for this generalization is the knowledge of the blow-up limit at the origin for displacement associated to a general initial crack, namely our first result Theorem 6.4. Since this result holds only up to subsequences, the same restriction appears in the statement of Theorem 6.4 as well.

Therewith, it should be mentioned that Theorem 7.1 is new even for the scalar case, for which the conclusion is even more accurate. Indeed in this case, the monotonicity formula of [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF] ensures that the convergence holds for the whole sequence and not only for a subsequence.

The paper is organized as follows: after introducing the main notation in section 2, we describe precisely the mechanical model in section 3. Section 4 is devoted to establish technical results related to the existence of the harmonic conjugate and the Airy function associated to the displacement in a neighborhood of the crack tip. In section 5, we prove lower and upper bounds of the energy release rate. The blow-up analysis of the displacement around the crack tip is the object of section 6. Section 7 is devoted to give a formula for the energy release rate as a global minimization problem. Finally, we state in an appendix a Poincaré inequality in a cracked annulus, and shortly review Kondrat'ev theory of elliptic regularity vs singularity inside corner domains. We write M n×n for the set of real n × n matrices, and M n×n sym for that of all real symmetric n × n matrices. Given a matrix A ∈ M n×n , we let |A| := tr(AA T ) (A T is the transpose of A, and trA is its trace) which defines the usual Euclidean norm over M n×n . We recall that for any two vectors a and b ∈ R n , a ⊗ b ∈ M n×n stands for the tensor product, i.e., (a ⊗ b) ij = a i b j for all 1 ≤ i, j ≤ n, and a ⊙ b := 1 2 (a ⊗ b + b ⊗ a) ∈ M n×n sym denotes the symmetric tensor product. Given an open subset U of R n , we denote by M(U ) the space of all real valued Radon measures with finite total variation. We use standard notation for Lebesgues spaces L p (U ) and Sobolev spaces W k,p (U ) or

Mathematical preliminaries

H k (U ) := W k,2 (U ). If Γ is a closed subset of U , we denote by H k 0,Γ (U ) the closure of C ∞ c (U \ Γ) in H k (U ). In particular, if Γ = ∂U , then H k 0,∂U (U ) = H k 0 (U ).
2.2. Capacities. In the sequel, we will use the notion of capacity for which we refer to [START_REF] Adams | Function spaces and potential theory[END_REF][START_REF] Henrot | Variation et optimisation de formes. Une analyse géométrique[END_REF]. We just recall the definition and several facts. The (k, 2)-capacity of a compact set

K ⊂ R n is defined by Cap k,2 (K) := inf ϕ H k (R n ) : ϕ ∈ C ∞ c (R n ), ϕ ≥ 1 on K . This definition is then extended to open sets A ⊂ R n by Cap k,2 (A) := sup Cap k,2 (K) : K ⊂ A, K compact ,
and to arbitrary sets

E ⊂ R n by Cap k,2 (E) := inf Cap k,2 (A) : E ⊂ A, A open .
One of the interests of capacity is that it enables one to give an accurate sense to the pointwise value of Sobolev functions. More precisely, if u ∈ H k (R n ) then u is (k, 2)-quasicontinuous which means that for each ε > 0, there exists an open set [START_REF] Adams | Function spaces and potential theory[END_REF]Theorem 9.1.3]). In the sequel, we will only be interested to the cases k = 1 or k = 2 in dimension n = 2. 

A ε ⊂ R n such that Cap k,2 (R n \ A ε ) < ε and u is continuous in A ε (see [1, Section 6.1]). In addition, if U is an open subset of R n , then u ∈ H k 0 (U ) if
u V ℓ β (C) := ˆC |α|≤ℓ |x| 2(β-ℓ+|α|) |∂ α u(x)| 2 dx 1 2 .
It will also be useful to introduce the spaces V ℓ β (C) for ℓ < 0, which is defined as the dual space of V -ℓ -β (C), endowed with the usual dual norm.

Observe that when ℓ ≥ 0 then u ∈ V ℓ β (C) if and only if the function x → |x| β-ℓ+|α| ∂ α u(x) ∈ L 2 (C) for all |α| ≤ ℓ. If one is interested in homogeneous functions, it turns out that the parameter β plays a different role regarding to the integrability at the origin or at infinity. To fix the ideas, one can check that in dimension 2, a function of the form x → |x| γ f (x/|x|) around the origin and with compact support belongs to V ℓ β (C) for every β < 1γ. On the other hand, a function having this behavior at infinity and vanishing around the origin will belong to a space V ℓ β (C) for every β > 1γ. For instance if γ = 3/2, then the corresponding space of critical exponent would be that with β = -1/2.

2.4.

Fonctions with Lebesgue deformation. Given a vector field (distribution) u : U → R n , the symmetrized gradient of u is denoted by e(u) := ∇u + ∇u T 2 .

In linearized elasticity, u stands for the displacement, while e(u) is the elastic strain. The elastic energy of a body is given by a quadratic form of e(u) so that it is natural to consider displacements such that e(u) ∈ L 2 (U ; M n×n sym ). If U has Lipschitz boundary, it is well known that u actually belongs to H 1 (U ; R n ) as a consequence of Korn's inequality (see e.g. [START_REF] Ciarlet | Mathematical elasticity, Vol I: Three dimensional elasticity[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF]). However, when U is not smooth, we can only assert that u ∈ L 2 loc (U ; R n ). This motivates the following definition of the space of Lebesgue deformations:

LD(U ) := {u ∈ L 2 loc (U ; R n ) : e(u) ∈ L 2 (U ; M n×n sym )}. If U is connected
and u is a distribution with e(u) = 0, then necessarily it is a rigid movement, i.e. u(x) = Ax + b for all x ∈ U , for some skew-symetric matrix A ∈ M n×n and some vector b ∈ R n . If, in addition, ∂U is locally contained inside a finite union of Lipschitz graphs, the following Poincaré-Korn inequality holds: there exists a constant c U > 0 and a rigid movement r U such that 

u -r U L 2 (U) ≤ c U e(u) L 2 (U) , for all u ∈ LD(U ). ( 2 
d H (K 1 , K 2 ) := max ® sup x∈K1 dist(x, K 2 ), sup y∈K2 dist(y, K 1 )
´.

We say that a sequence (K n ) of compact subsets of K converges in the Hausdorff distance to the compact set

K ∞ if d H (K n , K ∞ ) → 0.
The Hausdorff convergence of compact sets turns out to be equivalent to the convergence in the sense of Kuratowski. Indeed K n → K ∞ in the Hausdorff metric if and only if both following properties hold: a) any x ∈ K ∞ is the limit of a sequence (x n ) with x n ∈ K n ; b) if ∀n, x n ∈ K n , any limit point of (x n ) belongs to K ∞ . Finally let us recall Blaschke's selection principle which asserts that from any sequence (K n ) of compact subsets of K, one can extract a subsequence converging in the Hausdorff distance.

Description of the model

Reference configuration. We consider a homogeneous isotropic linearly elastic body occupying Ω in its reference configuration, a bounded and connected open subset of R 2 with Lipschitz boundary. We suppose that the stress σ ∈ M 2×2 sym is related to the strain e ∈ M 2×2 sym thanks to Hooke's law σ = Ce = λ(tre)I + 2µe, where λ > 0 and µ > 0 are the Lamé coefficients, and I is the identity matrix. This expression can be inverted into

e = C -1 σ = 1 + ν E σ - ν E (trσ)I, (3.1) 
where E := µ(3λ+2µ) λ+µ is the Young modulus and ν := λ 2(λ+µ) is the Poisson coefficient.

External loads. We suppose that the body is only subjected to a soft device loading, that is, to a prescribed displacement ψ ∈ H 1/2 (∂Ω; R 2 ) acting on the entire boundary.

Admissible cracks. We further assume that the body can undergo cracks which belong to the admissible class

K(Ω) := {Γ ⊂ Ω compact, connected, 0 ∈ Γ and H 1 (Γ) < ∞}.
Admissible displacements. For a given crack Γ ∈ K(Ω), we define the space of admissible displacement by

LD(Ω \ Γ) := {u ∈ L 2 loc (Ω \ Γ; R 2 ) : e(u) ∈ L 2 (Ω \ Γ; M 2×2 sym )}.
If B is a ball with B ∩ Γ = ∅, then Ω ∩ B has Lipschitz boundary so that Korn's inequality ensures that u ∈ H 1 (Ω ∩ B; R 2 ). As a consequence, the trace of u is well defined on ∂Ω ∩ B. Since this property holds for any ball as above, then the trace of u is well defined on ∂Ω \ Γ.

Initial data. We consider an initial crack Γ 0 ∈ K(Ω) satisfying furthermore lim ̺→0 H 1 (Γ 0 ∩ B ̺ ) 2̺ = 1 2 , (3.2) 
and an associated displacement u 0 ∈ LD(Ω \ Γ 0 ) given as a solution of the minimization problem min

® 1 2 ˆΩ\Γ0 Ce(v) : e(v) dx : v ∈ LD(Ω \ Γ 0 ), v = ψ on ∂Ω \ Γ 0 ´. (3.3) 
Note that u 0 is unique up to an additive rigid movement in each connected component of Ω \ Γ 0 disjoint from ∂Ω \ Γ 0 . However, the stress, which is given by Hooke's law

σ 0 := Ce(u 0 ) ∈ L 2 (Ω \ Γ 0 ; M 2×2 sym ) (3.4)
is unique and it satisfies the variational formulation

ˆΩ\Γ0 σ 0 : e(v) dx = 0 (3.5)
for any v ∈ LD(Ω \ Γ 0 ) such that v = 0 on ∂Ω \ Γ 0 . Note that standard results on elliptic regularity (see e.g. [10, Theorem 6.

3.6]) ensure that u 0 ∈ C ∞ (Ω \ Γ 0 ; R 2 ).
Energy release rate. To define the energy release rate, let us consider a crack increment Γ 0 ∪ Γ, where Γ ∈ K(Ω) and an associated displacement

u Γ ∈ LD(Ω \ (Γ 0 ∪ Γ)) solving min ® 1 2 ˆΩ\(Γ0∪Γ) Ce(v) : e(v) dx : v ∈ LD(Ω \ (Γ 0 ∪ Γ)), v = ψ on ∂Ω \ (Γ 0 ∪ Γ)
´.

We denote by

G(Γ) := 1 2 ˆΩ Ce(u Γ ) : e(u Γ ) -Ce(u 0 ) : e(u 0 ) dx ≤ 0, (3.6) 
and

G ε := 1 ε inf G(Γ) : Γ ∈ K(Ω), H 1 (Γ) ≤ ε . (3.7)

Construction of dual functions

The goal of this section is to construct the harmonic conjugate and the Airy function associated to the displacement u 0 in a neighborhood of the crack tip which is assumed to be the origin.

Their construction rests on an abstract functional analysis result (Lemma 4.1 below) which puts in duality gradients and functions with vanishing divergence outside an (non-smooth) crack.

Let B = B R0 and B ′ = B R ′ 0 be open balls centered at the origin with radii R 0 < R ′ 0 , such that B ′ ⊂ Ω and ∂B ′ ∩ Γ 0 = ∅. By assumption, since Γ 0 ∈ K(Ω) satisfies (3.2), this property certainly holds true provided R ′ 0 is small enough. Note in particular that the connectedness of Γ 0 ensures that ∂B ∩ Γ 0 = ∅ as well.

The following result is a generalization of [5, Lemma 1].

Lemma 4.1. Consider the following subspaces of L 2 (B; R 2 ):

X := {σ ∈ C ∞ (B; R 2 ) : supp(σ) ∩ Γ 0 = ∅, divσ = 0 in B}, Y := {∇v : v ∈ H 1 (B \ Γ 0 ), v = 0 on ∂B \ Γ 0 }. Then X ⊥ = Y . Proof. Let σ ∈ X and v ∈ H 1 (B \ Γ 0 ) be such that v = 0 on ∂B \ Γ 0 . Consider an open set U 0 ⊂ B with Lipschitz boundary such that Γ 0 ⊂ U 0 and U 0 ∩ supp(σ) = ∅.
In particular, B \ U 0 has Lipschitz boundary as well, and thanks to the integration by parts formula in

H 1 (B \ U 0 ) we infer that ˆB\Γ0 σ • ∇v dx = ˆB\U0 σ • ∇v dx = - ˆB\U0 (divσ)v dx + ˆ∂B\U0 (σν)v dH 1 + ˆB∩∂U0 (σν)v dH 1 = 0.
Indeed, the first integral vanishes since divσ = 0 in B. In addition, both boundary integrals vanish as well since v = 0 on ∂B \ Γ 0 , and U 0 ∩ supp(σ) = ∅. Consequently, X ⊂ Y ⊥ , and thus X ⊂ Y ⊥ . We next establish the converse inclusion. Let Ψ ∈ X ⊥ , then in particular, for any

σ 1 ∈ C ∞ c (B \ Γ 0 ; R 2 ) with divσ 1 = 0 in B \ Γ 0 (which implies that σ 1 ∈ X), ˆB\Γ0 Ψ • σ 1 dx = 0.
According to De Rham's Theorem (see [31, page 20]), we get the existence of some

v ∈ L 2 loc (B \ Γ 0 ) such that Ψ = ∇v a.e. in B\Γ 0 . Now if U is a smooth open set such that U ∩Γ 0 = ∅ and U ∩∂B = ∅, then the open set U ∩ B is Lipschitzian. Thus, for any σ 2 ∈ C ∞ c (U ∩ B) with divσ 2 = 0 in U ∩ B (which implies that σ 2 ∈ X if it is extended by zero on B \ U ), ˆB∩U Ψ • σ 2 dx = 0.
Applying once more De Rham's Theorem (see [31, page 19]), one can find some

v U ∈ L 2 (B ∩ U ) such that Ψ = ∇v U a.e. in B ∩ U . Therefore v = v U + c U a.e. in B ∩ U for some constant c U ∈ R, and thus v ∈ L 2 (B ∩ U ). Since v ∈ H 1 (B ∩ U )
, thanks to the integration by parts formula in

H 1 (B ∩ U ), we get that for any σ ∈ C ∞ c (U ; R 2 ) with divσ = 0 in U (which also belongs to X if it is extended by zero on B \ U ), ˆU∩∂B v (σν) dH 1 = ˆ∂(B∩U) v (σν) dH 1 = ˆB∩U σ • ∇v dx + ˆB∩U v divσ dx = 0.
By density (see e.g. [31, Theorem 1.4]), we get that for any σ ∈ L 2 (U ; R 2 ) with divσ = 0 in H -1 (U ) and σν = 0 in H -1/2 (∂U ), then

σν, v [H 1/2 (U∩∂B)] ′ ,H 1/2 (U∩∂B) = 0.
Finally, according to Lemma A.1 below, we deduce that for any g ∈ L 2 (U ∩ ∂B),

ˆU∩∂B gv dH 1 = 0 which shows that v = 0 on U ∩ ∂B. Considering now the truncated function v k := (-k ∨ v) ∧ k, where k ∈ N, we get that v k ∈ H 1 (B \ Γ 0 ), v k = 0 on ∂B \ Γ 0 , and thus ∇v k ∈ Y . Moreover, since ∇v k → ∇v = Ψ strongly in L 2 (B; R 2 ) as k → ∞ we get that X ⊥ ⊂ Y and that Y ⊥ = (Y ) ⊥ ⊂ (X ⊥ ) ⊥ = X.
4.1. The harmonic conjugate. We are now in position to construct the harmonic conjugate v 0 associated to u 0 in B. By construction, the displacement u 0 satisfies a Neumann condition on the crack Γ 0 , while its associated stress σ 0 has zero divergence outside the crack, both in a weak sense. The harmonic conjugate v 0 is, roughly speaking, a dual function of u 0 in the sense that it satisfies a homogeneous Dirichlet boundary condition on the crack Γ 0 , and its rotated gradient coincides with the stress σ 0 . The harmonic conjugate will be of use in the proof of Proposition 5.1 in order to prove a lower bound on the energy release rate. It will also appear in the construction of the Airy function.

Proposition 4.2. There exists a function

v 0 ∈ H 1 0,Γ0 (B; R 2 ) ∩ C ∞ (B \ Γ 0 ; R 2 ) such that ∇v 0 = σ ⊥ 0 := Å -(σ 0 ) 12 (σ 0 ) 11 -(σ 0 ) 22 (σ 0 ) 12 ã in B \ Γ 0 . (4.1) 
Proof. According to the variational formulation (3.5), for

any v ∈ H 1 (B \ Γ 0 ; R 2 ) with v = 0 on ∂B \ Γ 0 , we have ˆB σ 0 : ∇v dx = 0.
Consequently, both lines of σ 0 , denoted by

σ (1) := Å (σ 0 ) 11 (σ 0 ) 12 ã , σ (2) := Å (σ 0 ) 12 (σ 0 ) 22 ã ,
belong to Y ⊥ . Therefore, Lemma 4.1 ensures the existence of a sequence (σ

(1) n ) ⊂ X such that σ (1) n → σ (1) in L 2 (B; R 2 ). Since divσ (1) n = 0 in B and supp(σ (1) n ) ∩ Γ 0 = ∅, it follows that (σ (1) n ) ⊥ := Ç -(σ (1) n ) 2 (σ (1) n ) 1 å = ∇p (2) n for some p (2) n ∈ C ∞ (B) with supp(p (2) n ) ∩ Γ 0 = ∅. Consequently, by the Poincaré inequality, we get that p (2) n → p (2) in H 1 (B) for some p (2) ∈ H 1 0,Γ0 (B) satisfying ∇p (2) = (σ (1)
) ⊥ . We prove similarly the existence of p (1) ∈ H 1 0,Γ0 (B) satisfying ∇p (1) = -(σ (2) ) ⊥ . We then define

v 0 := Å p (2)
-p (1) ã

∈ H 1 0,Γ0 (B; R 2 ) which satisfies (4.1). Finally, since σ 0 ∈ C ∞ (B \ Γ 0 ; M 2×2 sym ), then v 0 ∈ C ∞ (B \ Γ 0 ; R 2 ).
4.2. The Airy function. We next construct the Airy function w 0 associated to the displacement u 0 in B following an approach similar to [START_REF] Chambolle | A density result in two-dimensional linearized elasticity, and applications[END_REF]. This new function has the property to be a biharmonic function vanishing on the crack. Therefore, the original elasticity problem (3.3) can be recast into a suitable biharmonic equation whose associated natural energy (the L 2 norm of the hessian) coincides with the original elastic energy. The Airy function will be useful in section 6 in order to get an a priori bound on the rescaled elastic energy around the crack tip, as well as in our convergence result for the blow-up displacement.

Proposition 4.3. There exists a function

w 0 ∈ H 2 0,Γ0 (B) such that ∆ 2 w 0 = 0 in D ′ (B \ Γ 0 ) (4.2)
and

D 2 w 0 = Å (σ 0 ) 22 -(σ 0 ) 12 -(σ 0 ) 12 (σ 0 ) 11 ã . (4.3)
Proof. We reproduce the construction initiated in the proof of Proposition 4.2 with the larger ball B ′ instead of B. It ensures the existence of p (1) and p (2) ∈ H 1 0,Γ0 (B ′ ) such that

∇p (1) = Å (σ 0 ) 22 -(σ 0 ) 12 ã , ∇p (2) = Å -(σ 0 ) 12 (σ 0 ) 11 ã .
By definition, there exists sequences (p

n ) and (p

(2) n ) ⊂ C ∞ (B ′
) vanishing in a neighborhood of Γ 0 in B ′ , and such that p

(1)
n → p (1) and p

(2)

n → p (2) in H 1 (B ′ ). For any v ∈ H 1 (B ′ \ Γ 0 ) with v = 0 on ∂B ′ \ Γ 0 ,
we infer thanks to the integration by parts formula that

ˆB′ Å -p (2)
p (1) ã

• ∇v dx = ˆB′ (-p (2) ∂ 1 v + p (1) ∂ 2 v) dx = lim n→∞ ˆB′ (-p (2) n ∂ 1 v + p (1) n ∂ 2 v) dx = lim n→∞ ˆB′ (-∂ 1 p (2) n + ∂ 2 p (1) n )v dx = ˆB′ (-∂ 1 p (2) + ∂ 2 p (1) )v dx = 0.
Therefore, it follows that Å -p (2) p (1) ã ∈ Y ⊥ = X according again to Lemma 4.1. Arguing as in the proof of Proposition 4.2, we deduce the existence of some

w 0 ∈ H 1 0,Γ0 (B ′ ) such that ∇w 0 = Å p (1) p (2) ã .
By construction, the Airy function w 0 satisfies (4.3). Consequently,

w 0 ∈ H 1 0,Γ0 (B ′ ) ∩ H 2 (B ′ ) with ∇w 0 ∈ H 1 0,Γ0 (B ′ ; R 2 ). Let us show that w 0 ∈ H 2 0,Γ0 ( 
B). This property rests on a capacity argument similar to that used in [5, Theorem 1]. We first observe that since w 0 ∈ H 2 (B ′ ), it is therefore (Hölder) continuous by the Sobolev imbedding, so that it makes sense to consider its pointwise values. Let us consider a cut-

off function η ∈ C ∞ c (B ′ ; [0, 1]) satisfying η = 1 on B. Denoting z 0 := ηw 0 , then z 0 ∈ H 1 0 (B ′ \Γ 0 ) and ∇z 0 ∈ H 1 0 (B ′ \ Γ 0 ; R 2 ).
As a consequence of [21, Theorem 3.3.42], the function ∇z 0 has a Cap 1,2quasicontinuous representative, denoted by fi ∇z 0 , satisfying fi ∇z 0 = 0 Cap 1,2 -q.e. on ∂(B ′ \ Γ 0 ). We next show that the function z 0 has a Cap 2,2 -quasicontinuous representative vanishing Cap 2,2 -q.e. on ∂(B ′ \ Γ 0 ). Note that since the empty set is the only set of zero Cap 2,2 -capacity, it is equivalent to show that z 0 = 0 everywhere on ∂(B ′ \ Γ 0 ). As before, since z 0 ∈ H 1 0 (B ′ \ Γ 0 ), we deduce that z 0 has a Cap 1,2 -quasicontinuous representative, denoted by ‹ z 0 , satisfying ‹ z 0 = 0 Cap 1,2 -q.e. on ∂(B ′ \Γ 0 ). Therefore, defining

K := {x ∈ ∂(B ′ \Γ 0 ) : z 0 (x) = 0}, then K is a compact set satisfying Cap 1,2 (∂(B ′ \ Γ 0 ) \ K) = 0. Let γ be a connected component of ∂(B ′ \ Γ 0 ) \ K. Since a compact
and connected set of positive diameter has a positive Cap 1,2 -capacity (see [START_REF] Henrot | Variation et optimisation de formes. Une analyse géométrique[END_REF]Corollary 3.3.25], we deduce that diam(γ) = diam(γ) = 0 so that γ is (at most) a singleton. Moreover, K being compact, its complementary ∂(B ′ \ Γ 0 ) \ K is open in the relative topology of ∂(B ′ \ Γ 0 ), and thus γ is (at most) an isolated point. Finally since ∂(B ′ \ Γ 0 ) is connected, it turns out that γ = ∅ and thus z 0 = 0 on ∂(B ′ \ Γ 0 ). As a consequence of [1, Theorem 9.1.3], we get that z 0 ∈ H 2 0 (B ′ \ Γ 0 ), or in other words, that there exists a sequence (

z n ) ⊂ C ∞ c (B ′ \ Γ 0 ) such that z n → ηz 0 in H 2 (B ′ \ Γ 0 )
. Note in particular that z n ∈ C ∞ (B) and that z n vanishes in a neighborhood of Γ 0 in B. Therefore, since z 0 = w 0 and ∇z 0 = ∇w 0 in B, we deduce that w 0 ∈ H 2 0,Γ0 (B). We next show that w 0 is a biharmonic function. Indeed, according to (4.3), one has

∆ 2 w 0 = ∆((σ 0 ) 11 + (σ 0 ) 22 ) in D ′ (B \ Γ 0 ).
Denoting by e 0 := e(u 0 ) the elastic strain, and using the compatibility condition 2∂ 2 12 (e 0

) 12 = ∂ 2 11 (e 0 ) 22 + ∂ 2 22 (e 0 ) 11 in D ′ (B \ Γ 0 ) together with Hooke's law (3.1), (e 0 ) 11 = (σ 0 ) 11 E - ν E (σ 0 ) 22 , (e 0 ) 22 = (σ 0 ) 22 E - ν E (σ 0 ) 11 , (e 0 ) 12 = 1 + ν E (σ 0 ) 12 ,
we infer that for all z ∈ w 0 + H 2 0 (B). Remark 4.5. According to the results of [START_REF] Kondrat'ev | Sharp estimates in Hölder spaces and the exact Saint-Venant principle for solutions of the biharmonic equation[END_REF], we get the following estimate of the energy of w 0 around the origin: for every 2̺ < R ≤ R 0 ,

∆ 2 w 0 = (1 + ν)[∂ 2 11 (σ 0 ) 11 + ∂ 2 22 (σ 0 ) 22 + 2∂ 2 12 (σ 0 ) 12 ] in D ′ (B \ Γ 0 ).
ˆB̺ |D 2 w 0 | 2 dx ≤ C 0 ̺ R ˆBR |D 2 w 0 | 2 dx,
for some universal constant C 0 > 0 independent of R and ̺. Indeed, it suffices to apply [24, Theorem 2] in the open set B \ Γ 0 with (in their notation) ω = 2π and δ = 1/2. This is possible since, Γ 0 being connected, then for all ̺ < R we have

∂B ̺ ∩ Γ 0 = ∅, H 1 (∂B ̺ \ Γ 0 ) ≤ 2π̺ and ∂(B \ Γ 0 ) ∩ ∂(B R \ Γ 0 ) = Γ 0 ∩ B R ⊂ Γ 0 ∩ B.
Thanks to the reformulation of the elasticity problem as a biharmonic equation, and according to Remark 4.5 concerning the behavior of the energy of a biharmonic function in fractured domains, we get the following result about the elastic energy concentration around the crack tip. We observe that in [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF] a stronger result has been obtained in the scalar (anti-plane) case where a monotonicity formula has been established. Proposition 4.6. Let σ 0 be the stress defined in (3.4) and R 0 > 0 be such that B R0 ⊂ Ω and ∂B R0 ∩ Γ = ∅. Then there exists a universal constant C 0 > 0 such that for all ρ, R > 0 satisfying

2̺ < R ≤ R 0 , ˆB̺ |σ 0 | 2 dx ≤ C 0 ̺ R ˆBR |σ 0 | 2 dx.
Proof. The result is an immediate consequence of (4.3) together with Remark 4.5.

Bounds on the energy release rate

The goal of this section is to establish bounds on the energy release rate. This is the first step toward a more precise analysis and a characterization of the energy release rate as a limiting minimization problem (see section 7). As in [7, Lemma 2.4], the proof of the upper bound relies on the construction of an explicit competitor for the minimization problem (3.7) defining G ε . The lower bound rests in turn into a dual formulation (in term in the stress) of the minimization problem (3.6), and into the construction, for each crack increment, of an admissible stress competitor for this new dual variational problem. The construction we use is based on the harmonic conjugate v 0 associated to the displacement obtained in Proposition 4.2.

Proposition 5.1. There exist two constants

0 < G * ≤ G * < ∞ such that -G * ≤ lim inf ε→0 G ε ≤ lim sup ε→0 G ε ≤ -G * .
Proof. Upper bound. Since 0 ∈ Ω, one can choose ε > 0 small enough so that

B ε/(2π+1) ⊂ Ω. Let Γ := ∂B ε/(2π+1) ∪ {(t, 0) : 0 ≤ t ≤ ε/(2π + 1)}.
This set clearly belongs to K(Ω) and

H 1 (Γ) = ε. Defining v := u 0 χ Ω\B ε/(2π+1) , we infer that v ∈ LD(Ω \ (Γ 0 ∪ Γ)) with v = u 0 = ψ on ∂Ω \ (Γ 0 ∪ Γ). Consequently, G(Γ) ≤ 1 2 ˆΩ Ce(v) : e(v) dx -Ce(u 0 ) : e(u 0 ) dx = - 1 2 ˆBε/(2π+1)
Ce(u 0 ) : e(u 0 ) dx.

We then apply Proposition 4.6 which shows that lim sup

ε→0 G ε ≤ -G * ,
for some G * > 0.

Lower bound. Let ε > 0 be small enough so that 2ε ≤ R 0 , B 2ε ⊂ Ω and 2ε ∈ N , where N is the exceptional set given by Lemma A.2 below. According to [8, p. 330], for any Γ ∈ K(Ω) with

H 1 (Γ) ≤ ε, one has 1 2 ˆΩ Ce(u Γ ) : e(u Γ ) -Ce(u 0 ) : e(u 0 ) dx ≥ - 1 2 ˆΩ(τ -σ 0 ) : C -1 (τ -σ 0 ) dx (5.1)
for every statically admissible stresses τ ∈ L 2 (Ω; M 2×2 ) satisfying

ˆΩ τ : e(v) dx = 0 for any v ∈ LD(Ω \ (Γ 0 ∪ Γ)) with v = 0 on ∂Ω \ (Γ 0 ∪ Γ). (5.2)
We now construct a convenient competitor τ for (5.2). Since Γ is connected, 0 ∈ Γ and

H 1 (Γ) ≤ ε it follows that Γ ⊂ B ε . Let η ∈ C ∞ c (Ω; [0, 1]) be a cut-off function satisfying      η = 1 in B 5ε/4 , η = 0 in Ω \ B 7ε/4 , ∇η ∞ ≤ 3/ε. We define τ ∈ L 2 (Ω; M 2×2 ) by τ =      0 in B ε , ∇ ⊥ ((1 -η)v 0 ) in B 2ε \ B ε , σ 0 in Ω \ B 2ε , (5.3) 
where v 0 is the harmonic conjugate of u 0 in the ball B = B R0 . Let us check that τ satisfies (5.2). By the density result [5, Theorem 1], it is enough to consider test functions v ∈ H 1 (Ω\(Γ 0 ∪Γ); R 2 ) with v = 0 on ∂Ω \ (Γ 0 ∪ Γ). Then

ˆΩ τ : e(v) dx = ˆB2ε\Bε ∇ ⊥ ((1 -η)v 0 ) : e(v) dx + ˆΩ\B2ε σ 0 : e(v) dx. (5.4) 
Since Γ ⊂ B ε , then actually v = 0 on ∂Ω \ Γ 0 , and the second integral writes

ˆΩ\B2ε σ 0 : e(v) dx = - ˆ∂B2ε\Γ0 (σ 0 ν) • v dH 1 (5.5)
thanks to the integration by parts formula given by Lemma A.2 below. To treat the first integral, we recall that there exists a sequence

(v n ) ⊂ C ∞ (B 2ε ; R 2 ) with v n = 0 in a neighborhood of Γ 0 and such that v n → v 0 in H 1 (B 2ε ; R 2 ).
Hence, using an integration by parts, we infer that

ˆB2ε\Bε ∇ ⊥ ((1 -η)v 0 ) : e(v) dx = lim n→∞ ˆB2ε\Bε ∇ ⊥ ((1 -η)v n ) : e(v) dx = lim n→∞ - ˆB2ε\Bε div∇ ⊥ ((1 -η)v n ) • v dx + ˆ∂B2ε ∇ ⊥ ((1 -η)v n )ν • v dH 1 - ˆ∂Bε ∇ ⊥ ((1 -η)v n )ν • v dH 1 .
But since div(∇ ⊥ ((1η)v n )) = 0 in B 2ε , η = 1 in a neighborhood of ∂B ε and η = 0 in a neighborhood of ∂B 2ε , we deduce that

ˆB2ε\Bε ∇ ⊥ ((1 -η)v 0 ) : e(v) dx = lim n→∞ ˆ∂B2ε (∇ ⊥ v n ν) • v dH 1 .
Denoting

σ n = ∇ ⊥ v n ∈ C ∞ (B 2ε ; M 2×2 ), then divσ n = 0 in B 2ε and σ n → ∇ ⊥ v 0 = σ 0 in L 2 (B 2ε ; M 2×2 ) so that σ n ν → σ 0 ν in H -1/2 (∂B 2ε ; R 2 ). We therefore deduce that ˆB2ε\Bε ∇ ⊥ ((1 -η)v 0 ) : e(v) dx = ˆB2ε\Γ0 (σ 0 ν) • v dH 1 . (5.6) 
Gathering (5.4), (5.5) and (5.6), we finally conclude that the admissibility condition (5.2) holds. Taking τ defined by (5.3) as competitor in (5.1) and recalling that σ 0 = ∇ ⊥ v 0 , we infer that

1 2 ˆΩ Ce(u Γ ) : e(u Γ ) -Ce(u 0 ) : e(u 0 ) dx ≥ -c Ç ˆB2ε |σ 0 | 2 dx + 1 ε 2 ˆB2ε\Bε |v 0 | 2 dx å , (5.7) 
for some constant c > 0 only depending on the Lamé constants λ and µ.

Let (v n ) ⊂ C ∞ (B; R 2 ) be such that v n → v 0 in H 1 (B; R 2
) and v n = 0 in a neighborhood of Γ 0 . For each n ∈ N, the coarea formula says that

ˆB2ε\Bε |v n | 2 dx = ˆ2ε ε ˆ∂Br |v n | 2 dH 1 dr.
But since v n = 0 on Γ 0 and Γ 0 is connected, for each r ∈ [ε, 2ε], there exists ξ r ∈ ∂B r ∩ Γ 0 (also depending on n). Hence, for all ξ ∈ ∂B r ,

v n (ξ) = ˆ(ξr,ξ) ∂ τ v n dH 1 ,
where (ξ r , ξ) stands for the smaller arc of circle in ∂B r joining ξ r and ξ, and ∂ τ v n is the tangential derivative of v n on ∂B r . Thus, according to the Cauchy-Schwarz inequality, for all ξ ∈ ∂B r ,

|v n (ξ)| 2 ≤ πr ˆ∂Br |∂ τ v n | 2 dH 1 ,
and it results, after integration with respect to ξ and r that

ˆB2ε\Bε |v n | 2 dx ≤ 2π 2 ˆ2ε ε r 2 ˆ∂Br |∂ τ v n | 2 dH 1 dr ≤ 8π 2 ε 2 ˆB2ε\Bε |∇v n | 2 dx.
Passing to the limit as n → ∞ yields

ˆB2ε\Bε |v 0 | 2 dx ≤ 8π 2 ε 2 ˆB2ε\Bε |∇v 0 | 2 dx,
and remembering that

|∇v 0 | = |∇ ⊥ v 0 | = |σ 0 |, we finally obtain ˆB2ε\Bε |v 0 | 2 dx ≤ 8π 2 ε 2 ˆB2ε\Bε |σ 0 | 2 dx.
Inserting this result into (5.7), it follows that 1 2

ˆΩ Ce(u Γ ) : e(u Γ ) -Ce(u 0 ) : e(u 0 ) dx ≥ -c ˆB2ε |σ 0 | 2 dx
for some constant c > 0 only depending on λ and µ. Minimizing the left hand side of the previous inequality with respect to all Γ ∈ K(Ω) with H 1 (Γ) ≤ ε yields

G ε ≥ - c ε ˆB2ε |σ 0 | 2 dx.
Then Proposition 4.6 shows that lim inf

ε→0 G ε ≥ -G *
for some G * > 0.

Blow-up limit of the pre-existing crack

In this section we investigate the nature of the singularity of the displacement u 0 and the stress σ 0 at the origin, which is the tip of the crack Γ 0 having density 1/2 at that point. We will prove, that along suitable subsequences of radius ε k → 0 of balls, the rescaled crack converges in the Hausdorff sense to a half-line (modulo a rotation), and the rescaled displacement converges in a certain sense to the usual crack-tip function in the complement of a half-line. Once again, the analysis strongly relies on the Airy function introduced in Proposition 4.3. Contrary to [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF] where the scalar anti-plane was treated, we do not have any monotonicity formula on the energy (neither for the elastic problem nor for the biharmonic one) which prevents one to ensure the existence of the limit of the rescaled energy, and thus the uniqueness of the limit. Therefore, in contrast with [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF], our result strongly depends upon the sequence (ε n ).

Let R 0 > 0 be such that B R0 ⊂ Ω, and 0 < ε ≤ R 0 /2. According to Proposition 1 and Remark 2 in [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF], there exists a sequence of rotations R ε such that the rescaled crack

Σ ε := ε -1 R ε (Γ 0 ∩ B ε ) (6.1)
locally converges to the half line Σ 0 := (-∞, 0] × {0} with respect to the Hausdorff distance.

In this section we are interested in the asymptotic behavior of the rescaled displacement u ε ∈ LD(B R0/ε ) defined by

u ε (y) := ε -1/2 u 0 (R -1 ε (εy)) for every y ∈ B R0/ε . (6.2)
To this aim, it will again be convenient to work on the Airy function. Let us consider the Airy function w 0 ∈ H 2 0,Γ0 (B R0 ) associated to u 0 in B R0 given by Proposition 4.3 satisfying (4.2) and (4.3). The rescaled Airy function w ε ∈ H 2 0,Σε (B R0/ε ) is defined by w ε (y) := ε -3/2 w 0 (R -1 ε (εy)) for every y ∈ B R0/ε . (6.3) 6.1. Blow-up analysis of the Airy function. We first show that the Airy function blows-up into a biharmonic function outside the half line limit crack, satisfying a homogeneous Dirichlet condition on the crack, and that its energy computed on a ball behaves like the radius.

Proposition 6.1. For every sequence (ε n ) ց 0 + , there exist a subsequence

(ε k ) ≡ (ε n k ) ց 0 + and w Σ0 ∈ H 2 loc (R 2 ) such that w ε k → w Σ0 strongly in H 2 loc (R 2
). In addition, w Σ0 is a solution of the following biharmonic problem with homogeneous Dirichlet boundary condition on the crack:

® ∆ 2 w Σ0 = 0 in D ′ (R 2 \ Σ 0 ), w Σ0 ∈ H 2 0,Σ0 (B R ) for any R > 0, (6.4) 
and it satisfies the following energy bound

sup R>0 1 R ˆBR |D 2 w Σ0 | 2 dx < ∞. (6.5) 
Proof. The proof is divided into several steps. We first derive weak compactness on the rescaled Airy function, according the energy bound of the original Airy function. We then derive a Dirichlet condition on the crack for the weak limit and its gradient. Using a cut-off function argument, we establish that the weak convergence is actually strong, which enables one to show that the limit Airy function is a biharmonic function outside the crack. In the sequel R > 0 is fixed, and ε > 0 is small enough such that 2R < R 0 /ε. Weak compactness. According to [24, Theorem 2], we have

ˆB2R |D 2 w ε (y)| 2 dy = ε ˆB2R |D 2 w 0 (R -1 ε (εy))| 2 dy = 1 ε ˆB2Rε |D 2 w 0 (x)| 2 dx ≤ C 0 R, (6.6) 
where C 0 > 0 is independent of ε and R. Since w ε ∈ H 2 0,Σε (B 2R ), Poincaré inequality implies that the sequence (w ε ) ε>0 is uniformly bounded in H 2 (B 2R ). A standard diagonalisation argument shows that for each sequence (ε n ) ց 0 + , it is possible to extract a subsequence (ε k ) ≡ (ε n k ) ց 0 + and find w Σ0 ∈ H 2 loc (R 2 ) such that w ε k ⇀ w Σ0 weakly in H 2 loc (R 2 ). In particular, passing to the lim inf in (6.6) yields (6.5). In addition, we can assume that, for the same subsequence,

w ε k → w Σ0 strongly in H 1 loc (R 2 ) ∩ L ∞ loc (R 2 ), and that |D 2 w ε k | 2 L 2 ⇀ µ weakly* in M loc (R 2 ) for some nonnegative measure µ ∈ M loc (R 2 ).
Condition on the crack. Let us show that w Σ0 ∈ H 2 0,Σ0 (B r ) for any r < 2R. Consider a cut-off function η ∈ C ∞ c (B 2R ; [0, 1]) such that η = 1 on B r , and let z := ηw Σ0 ∈ H 2 0 (B 2R ). Note that since w ε k → w Σ0 uniformly on B 2R and Σ ε k → Σ 0 in the sense of Hausdorff in B 2R , then w Σ0 = 0 on Σ 0 , and thus z = 0 on ∂(B 2R \ Σ 0 ). On the other hand, since ∇(ηw

ε k ) ∈ H 1 0 (B 2R \ Σ ε k ; R 2 ) and ∇(ηw ε k ) ⇀ ∇z weakly in H 1 (B 2R ; R 2 ), it follows from [29] that ∇z ∈ H 1 0 (B 2R \Σ 0 ; R 2 ).
Therefore, ∇z has a Cap 1,2 -quasicontinuous representative, denoted by › ∇z, such that › ∇z = 0 Cap 1,2 -q.e. on ∂(B 2R \ Σ 0 ). As a consequence of [1, Theorem 9.1.3] (see also [START_REF] Henrot | Variation et optimisation de formes. Une analyse géométrique[END_REF]Theorem 3.8.3]), we get that z ∈ H 2 0 (B 2R \ Σ 0 ), and thus that w Σ0 ∈ H 2 0,Σ0 (B r ). Strong convergence. Our aim now is to prove that w ε k → w Σ0 strongly in H 2 loc (R 2 ). By the lower semicontinuity of the norm with respect to weak convergence, we already have for any r < 2R

ˆBr |D 2 w Σ0 | 2 dx ≤ lim inf k→∞ ˆBr |D 2 w ε k | 2 dx, (6.7) 
so that it is enough to prove the converse inequality with a lim sup. To this aim we will use the minimality property of w ε k , and suitably modify w Σ0 into an admissible competitor.

Let us select a radius r ∈ (R, 2R) such that µ(∂B r ) = 0. Since w Σ0 ∈ H 2 0,Σ0 (B r ), for every n ∈ N, there exists a function

h n ∈ C ∞ (B r ) such that supp(h n ) ∩ Σ 0 = ∅ and h n → w Σ0 in H 2 (B r )
as n → ∞. Note that, by Hausdorff convergence, one also has that supp

(h n ) ∩ Σ ε k = ∅ for k ≥ k n large enough, for some integer k n ∈ N.
Let us consider a cut-off function

η δ ∈ C ∞ c (B r ; [0, 1]) satisfying η δ = 1 on B r-δ , |∇η δ | ≤ C δ , |D 2 η δ | ≤ C δ 2 . (6.8)
We finally define

z δ,n,k := η δ h n + (1 -η δ )w ε k = w ε k + η δ (h n -w ε k ). Observe that z δ,n,k ∈ H 2 0,Σε k (B r ) provided that k ≥ k n is large enough. Consequently, since z δ,n,k ∈ w ε k + H 2 0 (B r
), we infer thanks to (4.2) and Remark 4.

4 that ˆBr |D 2 w ε k | 2 dx ≤ ˆBr |D 2 z δ,n,k | 2 dx, or still ˆBr |D 2 w ε k | 2 dx ≤ ˆBr |η δ D 2 h n + (1 -η δ )D 2 w ε k | 2 dx + ˆBr |(h n -w ε k )D 2 η δ + 2∇η δ ⊗ (∇h n -∇w ε k )| 2 dx + 2 ˆBr η δ D 2 h n + (1 -η δ )D 2 w ε k : (h n -w ε k )D 2 η δ + 2∇η δ ⊗ (∇h n -∇w ε k ) dx.
By convexity, we get that

ˆBr |η δ D 2 h n + (1 -η δ )D 2 w ε k | 2 dx ≤ ˆBr η δ |D 2 h n | 2 dx + ˆBr (1 -η δ )|D 2 w ε k | 2 dx,
and thanks to (6.8)

ˆBr η δ |D 2 w ε k | 2 dx ≤ ˆBr η δ |D 2 h n | 2 dx + C ˆBr\Br-δ Å 1 δ 4 |h n -w ε k | 2 + 1 δ 2 |∇h n -∇w ε k | 2 ã dx + 2 ˆBr\Br-δ η δ D 2 h n + (1 -η δ )D 2 w ε k : (h n -w ε k )D 2 η δ + 2∇η δ ⊗ (∇h n -∇w ε k ) dx.
Letting first k → ∞ and then n → ∞, using that w

ε k → w Σ0 in H 1 (B r ) and that h n → w Σ0 in H 2 (B r ), we obtain lim sup k→∞ ˆBr η δ |D 2 w ε k | 2 dx ≤ ˆBr |D 2 w Σ0 | 2 dx.
On the other hand

lim k→∞ ˆBr (1 -η δ )|D 2 w ε k | 2 dx = ˆBr (1 -η δ )dµ ≤ µ(B r \ B r-δ ).
Therefore we can write that lim sup k→∞ ˆBr

|D 2 w ε k | 2 ≤ lim sup k→∞ ˆBr η δ |D 2 w ε k | 2 dx + lim sup k→∞ ˆBr (1 -η δ )|D 2 w ε k | 2 dx ≤ ˆBr |D 2 w Σ0 | 2 dx + µ(B r \ B r-δ ). (6.9)
Finally, letting δ → 0 in (6.9) and using the fact that µ(∂B r ) = 0, we get the desired bound lim sup k→∞ ˆBr

|D 2 w ε k | 2 ≤ ˆBr |D 2 w Σ0 | 2 dx,
which ensures together with (6.7) that w ε k converges strongly to w Σ0 in H 2 (B r ).

Biharmonicity. In order to show that w Σ0 solves a biharmonic Dirichlet problem outside the crack Σ 0 is is enough to check that it satisfies the minimality property

ˆBR |D 2 w Σ0 | 2 dx ≤ ˆBR |D 2 w| 2 dx for all w ∈ w Σ0 +H 2 0 (B R \Σ 0 ). Let z ∈ H 2 0 (B R \Σ 0 )
, by density, there exists a sequence of functions

(z n ) ⊂ C ∞ c (B R \ Σ 0 ) such that z n → z strongly in H 2 (B R \ Σ 0 ). Since z n = 0 in a neighborhood of Σ 0 , it follows by Hausdorff convergence that z n = 0 in a neighborhood of Σ ε k for k ≥ k n large enough, for some integer k n ∈ N. Therefore, for any k ≥ k n , w ε k + z n ∈ w ε k + H 2 0,Σε k (B R
) is an admissible competitor for the minimality property satisfied by the Airy function (see Remark 4.4), and

ˆBR |D 2 w ε k | 2 dx ≤ ˆBR |D 2 w ε k + D 2 z n | 2 dx.
Letting first k → ∞ and then n → ∞, and using the strong convergence of (w ε k ) established before yields

ˆBR |D 2 w Σ0 | 2 dx ≤ ˆBR |D 2 w Σ0 + D 2 z| 2 dx.
The proof of the Proposition is now complete.

Remark 6.2. By elliptic regularity, it follows that w Σ0 is smooth outside the origin up to both sides of Σ 0 . In particular, for every 0 < r < R < ∞ and for every k ∈ N,

w Σ0 ∈ H k ((B R \ B r ) \ Σ 0 )
and is a solution for the problem (6.4) in a stronger sense.

It turns out that w Σ0 can be made explicit by showing that it is a positively 3/2-homogeneous function. The proof of this result follows an argument given by Monique Dauge, relying on the theory introduced by Kondrat'ev in [START_REF] Kondrat'ev | Boundary value problems for elliptic equations in domains with conical or angular points[END_REF], that is briefly recalled in Appendix B. Proposition 6.3. The function w Σ0 is positively 3/2-homogeneous. More precisely, in polar coordinates, we have for all (r, θ) ∈ (0, +∞) × (0, 2π),

w Σ0 (r cos θ, r sin θ) = r 3/2 [c 1 ψ 1 (θ) + c 2 ψ 2 (θ)] ,
where c 1 and c 2 ∈ R are constants, while ψ 1 and ψ 2 are given by .11) Proof. Let w Σ0 be the biharmonic function in R 2 \ Σ 0 with homogeneous Dirichlet boundary conditions given by Proposition 6.1, and let χ ∈ C ∞ c (R 2 ; [0, 1]) be a cut-off function satisfying χ = 1 in B 1 and χ = 0 in R 2 \ B 2 . We decompose w Σ0 as follows:

ψ 1 (θ) := ï 3 2 cos Å θ 2 ã - 1 2 cos Å 3θ 2 ãò , (6.10) ψ 2 (θ) := ï 3 2 sin Å θ 2 ã + 1 2 sin Å 3θ 2 ãò . ( 6 
w Σ0 = w 0 + w ∞
where w 0 := χw Σ0 and w ∞ := (1χ)w Σ0 . Of course both w 0 and w ∞ still satisfy homogenous boundary Dirichlet conditions on Σ 0 , and one can check that

∆ 2 w 0 = f 0 and ∆ 2 w ∞ = f ∞ in R 2 \ Σ 0 ,
for some f 0 and f ∞ supported in the annulus B 2 \ B 1 . In addition, according to Remark 6.2, it follows that both f 0 and f ∞ ∈ H k (R 2 \ Σ 0 ) for every k ∈ N, and consequently f 0 and f ∞ ∈ V ℓ β (R 2 \ Σ 0 ) for all ℓ ∈ Z and all β ∈ R (we recall Section 2.3 for the definition of V ℓ β ). We next intend to apply Theorem B.2 to w 0 and w ∞ separately.

Step 1: Analysis of w 0 .

Since

w 0 ∈ H 2 0 (R 2 \ Σ 0 ), we get that w 0 ∈ V 2 0 (R 2 \ Σ 0 ).
To establish this property, it suffices to check that the functions x → |x| -1 ∂ α w 0 (x) (with |α| = 1) and

x → |x| -2 w 0 (x) belong to L 2 (R 2 \ Σ 0 ). Indeed, ˆR2 \Σ0 |x| -2 |∂ α w 0 | 2 dx = j∈Z ˆ(B 2 j+1 \B 2 j )\Σ0 |x| -2 |∂ α w 0 | 2 dx ≤ j∈Z 2 -2j ˆ(B 2 j+1 \B 2 j )\Σ0 |∇w 0 | 2 dx.
Since all weak derivatives ∂ α w 0 for |α| = 1 belong to

H 1 0,Σ0 ((B 2 j+1 \ B 2 j ) \ Σ 0 ), Poincaré inequality yields ˆ(B 2 j+1 \B 2 j )\Σ0 |∇w 0 | 2 dx ≤ C 0 2 2j ˆ(B 2 j+1 \B 2 j )\Σ0 |D 2 w 0 | 2 dx,
for some constant C 0 > 0 independent of j, and thus

ˆR2 \Σ0 |x| -2 |∂ α w 0 | 2 dx ≤ C 0 j∈Z ˆ(B 2 j+1 \B 2 j )\Σ0 |D 2 w 0 | 2 dx = C 0 ˆR2 \Σ0 |D 2 w 0 | 2 dx < ∞. (6.12)
Similarly, we have

ˆR2 \Σ0 |x| -4 |w 0 | 2 dx = j∈Z ˆ(B 2 j+1 \B 2 j )\Σ0 |x| -4 |w 0 | 2 dx ≤ j∈Z 2 -4j ˆ(B 2 j+1 \B 2 j )\Σ0 |w 0 | 2 dx.
Applying again Poincaré inequality to the function

w 0 ∈ H 1 0,Σ0 ((B 2 j+1 \ B 2 j ) \ Σ 0 ), we obtain ˆ(B 2 j+1 \B 2 j )\Σ0 |w 0 | 2 dx ≤ C 0 2 2j ˆ(B 2 j+1 \B 2 j )\Σ0 |∇w 0 | 2 dx,
and thus, according to (6.12),

ˆR2 \Σ0 |x| -4 |w 0 | 2 dx ≤ C 0 j∈Z 2 -2j ˆ(B 2 j+1 \B 2 j )\Σ0 |∇w 0 | 2 dx ≤ 4C 0 ˆR2 \Σ0 |x| -2 |∇w 0 | 2 dx < ∞. Since in particular f 0 ∈ V -2 β (R 2 \ Σ 0 ) ∩ V -2 0 (R 2 \ Σ 0 ) for any β < 0, applying Theorem B.2 yields that for any β ∈ R -\ S, there exists z 0 ∈ V 2 β (R 2 \ Σ 0 ) such that w 0 = z 0 + λ∈S∩(1,1-β) r λ ϕ λ (θ).
Step 2: Analysis of w ∞ . We first observe that the growth condition (6.5) satisfied by w Σ0 shows that sup 

R>0 1 R ˆBR |D 2 w ∞ | 2 dx < ∞ since w ∞ is supported in R 2 \B 1 . Let us check that this growth condition implies w ∞ ∈ V 2 β (R 2 \Σ 0 ) with β < -1/2. Indeed, for |α| = 2, ˆR2 \Σ0 |x| 2β |∂ α w ∞ | 2 dx = ˆR2 \(Σ0∪B1) |x| 2β |∂ α w ∞ | 2 dx ≤ j≥0 ˆB2 j+1 \B 2 j |x| 2β |D 2 w ∞ | 2 dx ≤ j≥0 2 2βj ˆB2 j+1 \B 2 j |D 2 w ∞ | 2 dx ≤ j≥0 C2 2βj 2 j+1 < +∞ provided that β < -1/2. We next show that the functions x → |x| β-1 ∇w ∞ (x) and x → |x| β-2 w ∞ (x) belong to L 2 (R 2 \ Σ 0 )
ˆ(B 2 j+1 \B 2 j )\Σ0 |w ∞ | 2 dx ≤ C 0 2 2j ˆ(B 2 j+1 \B 2 j )\Σ0 |∇w ∞ | 2 dx, and 
ˆ(B 2 j+1 \B 2 j )\Σ0 |∇w ∞ | 2 dx ≤ C 0 2 2j ˆ(B 2 j+1 \B 2 j )Σ0 |D 2 w ∞ | 2 dx,
which hold since both w ∞ and ∇w ∞ vanish on Σ 0 allowing us to apply Poincaré inequality to them. Therefore it leads to w ∞ ∈ V 2 β0 (R 2 \ Σ 0 ) for β 0 = -1/2ε, where ε > 0 is small.

Conclusion.

We finally gather all the results established so far by taking the same β 0 for the above functions w 0 and w ∞ . Observing that S ∩ (1, 1β 0 ) = {3/2}, we get that, in polar coordinates, w(r cos θ, r sin θ) = r 3/2 ϕ 3/2 (θ) + z(r cos θ, r sin θ) for a.e. (r, θ) ∈ (0, +∞) × (0, 2π), for some z ∈ V 2 -1/2-ε (R 2 \ Σ 0 ). We finally complete the proof of the proposition by establishing that z = 0. To this aim, we recall that the function (r, θ) → r 3/2 φ 3/2 (θ) is biharmonic on R 2 \ Σ 0 , and that it vanishes together with its gradient on the crack Σ 0 . In other words it is a solution of (P 1 ) with f = 0. We deduce that z ∈ V 2 -1/2-ε (R 2 \ Σ 0 ) must be a solution of (P 1 ) with f = 0 as well. But since -1/2ε ∈ S, Theorem B.1 (with β = 3/2 and ℓ = 2) ensures that z = 0. 6.2. Blow-up analysis of the displacement. We are now in position to study the blow-up of the displacement. We show that, up to a subsequence and rigid movement, it converges to the usual positively 1/2-homogeneous function satisfying the Lamé system outside a half-line. Theorem 6.4. For every sequence (ε n ) ց 0 + , there exist a subsequence

(ε k ) ≡ (ε n k ) ց 0 + , a sequence (m k ) of rigid movements and a function u Σ0 ∈ LD loc (R 2 \ Σ 0 ) such that the blow-up sequence of displacements satisfies ® u ε k -m k → u Σ0 strongly in L 2 loc (R 2 ; R 2 ), e(u ε k )χ R 2 \Σε k → e(u Σ0 ) strongly in L 2 loc (R 2 ; M 2×2 sym ). (6.13) 
In addition, the function u Σ0 is positively 1/2-homogeneous and it is given in polar coordinates by

u Σ0 (r cos θ, r sin θ) = √ r[κ 1 φ 1 (θ) + κ 2 φ 2 (θ)
] for all (r, θ) ∈ (0, +∞) × (0, 2π), (

where κ 1 and κ 2 ∈ R are constants, while φ 1 and φ 2 are defined by

φ 1 (θ) := Ç λ+µ 2 cos 3θ 2 + λ-3µ 2 cos θ 2 λ+µ 2 sin 3θ 2 + 5λ+9µ 2 sin θ 2 å , (6.15) 
and

φ 2 (θ) := Ç -λ+µ 2 sin 3θ 2 -3λ+7µ 2 sin θ 2 λ+µ 2 cos 3θ 2 + λ+5µ 2 cos θ 2 å . (6.16) 
Proof. A scalar version of that theorem is contained in [9, Theorem 1.1], but the proof does not extend directly to the vectorial case. This is why we present here an alternative argument based on the Airy function.

Let (ε k ) be the subsequence given by Proposition 6.1. As in the proof of that result, R > 1 is fixed, and k ∈ N is large enough such that 2R < R 0 /ε k .

Compactness. Let us denote by C := B 1/4 (1/2, 0) the ball of center (1/2, 0) and radius 1/4. We consider the following sequence of rigid displacements

ūk (x) := 1 |C| ˆC u ε k (y) dy + Å 1 |C| ˆC ∇u ε k (y) -∇u ε k (y) T 2 dy ã Å x - 1 |C| ˆC y dy ã .
Thanks to (4.3), (6.2) and (6.3), the stress is given by

Ce(u ε k ) = Å D 22 w ε k -D 12 w ε k -D 12 w ε k D 11 w ε k ã . (6.17) 
Therefore, according to (6.6), we deduce that the sequence (e(u ε k )) k∈N is uniformly bounded in L 2 (B R ; M 2×2 sym ). Consequently, up to a subsequence (not relabeled), there exists e ∈ L 2 loc (R 2 ; M 2×2 sym ) such that e(u ε k ) ⇀ e weakly in L 2 loc (R 2 ; M 2×2 sym ). In addition, the strong H 2 loc (R 2 )-convergence of the Airy function established in Theorem 6.1 together with (4.3), (6.2) and (6.3) shows that actually e(u ε k ) → e strongly in L 2 loc (R 2 ; M 2×2 sym ). We next show that e is the symmetrized gradient of some displacement. To this aim, we consider, for any 0 < δ < 1/10, the Lipschitz domain

U δ := {x ∈ B R : dist(x, Σ 0 ) > δ}.
Note that for such δ, C ⊂⊂ U δ , while Σ ε k ∩ U δ = ∅ for k large enough (depending on δ). By virtue of the Poincaré-Korn inequality [2, Theorem 5.2 and Example 5.3] we get that

u ε k -ūk H 1 (U δ ) ≤ c δ e(u ε k ) L 2 (U δ ) , (6.18) 
for some constant c δ > 0 depending on δ. Thanks to a diagonalisation argument, we obtain for a subsequence (not relabeled) a function ûΣ0

∈ LD loc (R 2 \ Σ 0 ) such that u ε k -ūk → ûΣ0 strongly in H 1 (U δ ; R 2
), for any 0 < δ < 1/10. Necessarily we must have that e = e(û Σ0 ) and

® u ε k -ūk → ûΣ0 strongly in L 2 loc (R 2 ; R 2 ), e(u ε k )χ R 2 \Σε k → e(û Σ0 ) strongly in L 2 loc (R 2 ; M 2×2 sym ).
Minimality. We next show that ûΣ0 satisfies the minimality property

ˆBR Ce(û Σ0 ) : e(û Σ0 ) dx ≤ ˆBR Ce(û Σ0 + v) : e(û Σ0 + v) dx for all v ∈ LD(B R \ Σ 0 ) such that v = 0 on ∂B R \ Σ 0 . According to [5, Theorem 1], it is enough to consider competitors v ∈ H 1 (B R \ Σ 0 ; R 2 ) with v = 0 on ∂B R \ Σ 0 . Moreover, since {0} has zero Cap 1,2
-capacity, we can also assume without loss of generality that v = 0 in a neighborhood of the origin.

Denoting by C ± k the connected component of (B R \ Σ ε k ) ∩ {x 1 ≤ 0} which contains the point (-1/2, ±1/2), we define v k as follows:

• v k (x 1 , x 2 ) = v(x 1 , x 2 ) if (x 1 , x 2 ) ∈ [B R ∩ {x 1 > 0}] ∪ [C + k ∩ {x 2 ≥ 0}] ∪ [C - k ∩ {x 2 ≤ 0}]; • v k (x 1 , x 2 ) = v(x 1 , -x 2 ) if (x 1 , x 2 ) ∈ [C + k ∩ {x 2 < 0}] ∪ [C - k ∩ {x 2 > 0}]; • v k (x 1 , x 2 ) = 0 elsewhere. Then, one can check that v k ∈ H 1 (B R \ Σ ε k ; R 2 ) and v k = 0 on ∂B R \ Σ ε k . Moreover, v k → v strongly in L 2 (B R ; R 2 ) and (∇v k )χ BR\Σε k → ∇v strongly in L 2 (B R ; M 2×2 sym )
. Therefore, thanks to the minimality property (3.3) satisfied by u 0 , we infer that

ˆBR Ce(u ε k ) : e(u ε k ) dx ≤ ˆBR Ce(u ε k + v k ) : e(u ε k + v k ) dx,
so that passing to the limit as k → ∞, and invoking the strong convergences (6.13) yields the desired minimality property.

Explicit expression of the displacement. According to Theorem I and Remark 1.2 in [START_REF] Grisvard | Singularité en élasticité[END_REF], (see also Remark 2.1. in [START_REF] Chambolle | Revisiting energy release rate in brittle fracture[END_REF]), there exist constants κ 1 and κ 2 ∈ R, and a function g

∈ H 2 loc (R 2 ) such that ûΣ0 (r cos θ, r sin θ) = √ r[κ 1 φ 1 (θ) + κ 2 φ 2 (θ)] + g(r cos θ, r sin θ) for a.e. (r, θ) ∈ (0, +∞) × (0, 2π).
The previous expression of the displacement shows that

Ce(û Σ0 ) = Φ + Ce(g), (6.19) 
where Φ is a positively -1/2-homogeneous function. On the other hand, passing to the limit in (6.17) as k → ∞ and using Proposition 6.1 yields

Ce(û Σ0 ) = Å D 22 w Σ0 -D 12 w Σ0 -D 12 w Σ0 D 11 w Σ0 ã . (6.20) 
According to Proposition 6.3 the right hand side of the previous equality is positively -1/2homogeneous as well. Therefore gathering (6. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]) and (6.20) ensures that e(g) = 0 which shows that g = m is a rigid movement. We finally define the rigid displacement m k := ūk + m which fullfills the conclusions of the proposition.

Energy release rate

Following the approach of [START_REF] Chambolle | Revisiting energy release rate in brittle fracture[END_REF], our aim is to give a definition of energy release rate by studying the convergence of the blow-up functional 1 ε G(εΓ). The following statement is the same as [7, Theorem 3.1.], but with the substantial difference that now Γ 0 is not assumed to be a straight line segment near the origin, but only blowing-up to such a segment for the Hausdorff distance.

Theorem 7.1. Let (Γ ε ) ε>0 be a sequence of crack increment in K(Ω) be such that sup ε H 1 (Γ ε ) < ∞, and Γ ε → Γ in the sense of Hausdorff in Ω. Let us consider the rescaled crack Σ ε and displacement u ε defined, respectively by (6.1) and (6.2). Then for every sequence (ε n ) ց 0 + , there exist a subsequence (ε k ) ≡ (ε n k ) ց 0 + and a rotation R ∈ SO(2) such that

lim k→∞ 1 ε k G(ε k Γ ε k ) = F (Γ) (7.1)
where F is defined by where R > 0 is any radius such that Γ ⊂ B R .

F (Γ) := min w∈LD(R 2 \(Σ0∪R(Γ)))
Remark 7.2. The proof of Theorem 7.1 follows the scheme of [START_REF] Chambolle | Revisiting energy release rate in brittle fracture[END_REF]Theorem 3.1], but some technical issues arise at two main points: 1) the explicit expression for the blow-up at the origin does not come directly from the literature but now follows from our first main result Theorem 6.4, and 2) the construction of a recovery sequence of functions in the moving domains that converges in a strong sense to prove the minimality of the limit is more involved, since now after rescaling everything in B 1 our sequence of domains also moves on ∂B 1 .

Remark 7.3. In the scalar case (antiplane) the limit does actually not depend on the subsequence due to the existence of blow-up limit for the whole sequence [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF].

Proof of Theorem 7.1. Let (ε n ) ց 0 + and (ε k ) ≡ (ε n k ) ⊂ (ε n ) be the subsequence given by Theorem 6.4. Let us consider the rotation R ε be introduced at the beginning of section 6. It is not restrictive to assume that R ε k converges to some limit rotation R. In particular R ε k (Γ ε k ) converges to R(Γ) in the sense of Hausdorff.

Rescaling. We denote by u k a solution of the minimization problem

min ß 1 2 ˆΩ Ce(v) : e(v) dx : v ∈ LD(Ω \ (Γ 0 ∪ ε k Γ ε k )) and v = ψ on ∂Ω \ (Γ 0 ∪ ε k Γ ε k ) ™ . (7.3) 
Recalling (3.6) and (3.7), we can write

G ε k = 1 ε k G(ε k Γ ε k ) = 1 2ε k ˆΩ Ce(u k ) : e(u k ) -Ce(u 0 ) : e(u 0 ) dx,
and setting ŵk := u ku 0 , we obtain that

1 ε k G(ε k Γ ε k ) = 1 2ε k ˆΩ Ce( ŵk ) : e( ŵk ) dx + 1 ε k ˆΩ Ce( ŵk ) : e(u 0 ) dx.
Since ŵk = 0 on ∂Ω \ (Γ 0 ∪ ε k Γ ε k ), the variational formulation of (7.3) ensures that ˆΩ Ce(u k ) : e( ŵk ) dx = 0, and it follows, writing

u 0 = u k -ŵk , 1 ε k G(ε k Γ ε k ) = - 1 2ε k ˆΩ Ce( ŵk ) : e( ŵk ) dx. (7.4)
On the other hand, from (7.3) it is easy to see that 1

ε k G(ε k Γ ε k
) is also resulting from a minimization problem with homogeneous boundary condition. Indeed, for any ŵ

∈ LD(Ω \ (Γ 0 ∪ ε k Γ ε k )) with ŵ = 0 on ∂Ω \ (Γ 0 ∪ ε k Γ ε k ), denoting v = u 0 + ŵ, we obtain that 1 2 ˆΩ Ce(v) : e(v) dx = 1 2 ˆΩ Ce(u 0 ) : e(u 0 ) dx + 1 2 ˆΩ Ce( ŵ) : e( ŵ) dx + ˆΩ Ce(u 0 ) : e( ŵ) dx, which implies 1 ε k G(ε k Γ ε k ) = 1 ε k min 1 2 ˆΩ Ce( ŵ) : e( ŵ) dx + ˆΩ Ce(u 0 ) : e( ŵ) dx : ŵ ∈ LD(Ω \ (Γ 0 ∪ ε k Γ ε k )) and ŵ = 0 on ∂Ω \ (Γ 0 ∪ ε k Γ ε k ) (7.5) = 1 2ε k ˆΩ Ce( ŵk ) : e( ŵk ) dx + 1 ε k ˆΩ Ce(u 0 ) : e( ŵk ) dx.
According to the assumptions done on Γ ε , there exists R > 0 such that if ε is small enough, then Γ ε ⊂ B R ⊂ Ω, and H 1 (εΓ ε ) ≤ Cε for some constant C > 0 independent of ε. In addition, thanks to the lower bound in Proposition 5.1, we get again for ε small enough,

- 1 ε G(εΓ ε ) ≤ C,
which implies from (7.4)

1 ε k ˆΩ Ce( ŵk ) : e( ŵk ) dx ≤ C. (7.6) 
We now proceed to the following change of variable:

Ω k := ε -1 k R ε k (Ω), Σ ε k := ε -1 k R ε k (Γ 0 ), and for y ∈ Ω k , w k (y) := ε -1/2 k ŵk (R -1 ε k (ε k y)), u ε k (y) := ε -1/2 k u 0 (R -1 ε k (ε k y)). We easily deduce from (7.6) that ˆΩk Ce(w k ) : e(w k ) dx ≤ C. (7.7) 
We can also recast the minimisation problem in (7.5) in terms of w k , which now writes as 

1 ε k G(ε k Γ ε k ) = min
w ∈ LD(Ω k \ (Σ ε k ∪ R ε k (Γ ε k ))) and w = 0 on ∂Ω k \ (Σ ε k ∪ R ε k (Γ ε k )) = 1 2 ˆΩk Ce(w k ) : e(w k ) dx + ˆΩk Ce(u ε k ) : e(w k ) dx (7.8) 
where we used (7.4) in the last equality.

Compactness. We now extend w k by 0 outside Ω k in such a way that

w k ∈ LD(R 2 \ (Σ ε k ∪ R ε k (Γ ε k )))
. Defining

e k := ß e(w k ) in Ω k 0 otherwise,
and using (7.7) together with the coercivity of C, we infer that the sequence (e k ) k∈N is uniformy bounded in L 2 (R 2 ; M 2×2 sym ). Consequently, up to a new subsequence (not relabeled), we can assume that e k ⇀ e weakly in L 2 (R 2 ; M 2×2 sym ) for some function e ∈ L 2 (R 2 ; M 2×2 sym ). Let us recall that Σ ε → Σ 0 := (-∞, 0] × {0} locally in the sense of Hausdorff in R 2 , and that Γ ε → Γ in the sense of Hausdorff in Ω. Let us denote by B := B 1/2 ((R + 1, 0)) the ball of R 2 centered at the point (R + 1, 0) and of radius 1/2. Since Γ ⊂ B R and thus R(Γ) ⊂ B R , we deduce that

(Σ 0 ∪ R(Γ)) ∩ B = ∅. Therefore, for k large enough, B ⊂ Ω k \ (Σ ε k ∪ R ε k (Γ ε k )). Let us consider a bounded and smooth open set U ⊂ R 2 \ (Σ 0 ∪ R(Γ)) containing B. Then for all k large enough, we have U ⊂ Ω k \ (Σ ε k ∪ R ε k (Γ ε k ))
, and we denote by r k the rigid movement defined by

r k (x) := 1 | B| ˆB w k (y) dy + Ç 1 | B| ˆB ∇w k (y) -∇w k (y) T 2 dy å Ç x - 1 | B| ˆB y dy å .
By Korn's inequality, we obtain that

w k -r k H 1 (U) ≤ C U ,
for some constant C U > 0 depending on U but independent of k. This implies that, up to a subsequence, w kr k ⇀ w weakly in H 1 (U ; R 2 ) for some w ∈ H 1 (U ; R 2 ). By exhausting

R 2 \ (Σ 0 ∪ R(Γ))
with countably many open sets, extracting successively many subsequences and using a diagonal argument, we obtain that

w ∈ H 1 loc (R 2 \ (Σ 0 ∪ R(Γ)); R 2 ) and w k -r k ⇀ w weakly in H 1 loc (R 2 \ (Σ 0 ∪ R(Γ)); R 2 ).
Moreover by uniqueness of the limit we infer that e(w) = e a.e. in R 2 \ (Σ 0 ∪ R(Γ)), therefore that e(w) ∈ L 2 (R 2 ; M 2×2 sym ) and w ∈ LD(R 2 \ (Σ 0 ∪ R(Γ))).

Lower bound inequality. Let ζ ∈ W 1,∞ (R 2 ; [0, 1]) be a cut-off function such that ζ = 1 on B R and ζ = 0 on R 2 \ B R ′ for some given R ′ > R. Recalling (7.8) we can write 1 ε k G(ε k Γ ε k ) = 1 2 ˆΩk Ce(w k ) : e(w k ) dx + ˆBR ′ ζ Ce(u ε k ) : e(w k ) dx + ˆΩk \BR (1 -ζ)Ce(u ε k ) : e(w k ) dx = 1 2 ˆΩk Ce(w k -r k ) : e(w k -r k ) dx + ˆBR ′ ζ Ce(u ε k ) : e(w k -r k ) dx + ˆΩk \BR (1 -ζ)Ce(u ε k ) : e(w k -r k ) dx.
Let R ′′ < R be such that Γ ⊂ B R ′′ and ε k R ′′ ∈ N , where N is the L 1 -negligible set given by Lemma A.2. According to that result, we infer that

ˆΩk \B R ′′ Ce(u ε k ) : e (1 -ζ)(w k -r k ) dx = - ˆ∂B R ′′ \Σε k (1 -ζ)(Ce(u ε k ν) • (w k -r k ) dH 1 = 0,
and thus

ˆΩk \B R ′′ (1 -ζ)Ce(u ε k ) : e(w k -r k ) dx = ˆΩk \B R ′′ (∇ζ ⊙ (w k -r k )) : Ce(u ε k ) dx. Letting R ′′ ր R leads to 1 ε k G(ε k Γ ε k ) = 1 2 ˆΩk Ce(w k -r k ) : e(w k -r k ) dx + ˆBR ′ ζ Ce(u ε k ) : e(w k -r k ) dx + ˆΩk \BR (∇ζ ⊙ (w k -r k )) : Ce(u ε k ) dx.
Recalling from Theorem 6.4 that u ε k → u Σ0 strongly in L 2 loc (R 2 ; R 2 ), and e(u ε k ) → e(u Σ0 ) strongly in L 2 loc (R 2 ; M 2×2 sym ), while w kr k → w strongly in L 2 loc (R 2 ; R 2 ), and e(w kr k ) ⇀ e(w) weakly in

L 2 (R 2 ; M 2×2 sym ), we infer that lim inf j→∞ 1 ε k G(ε k Γ ε k ) ≥ 1 2 ˆR2 Ce(w) : e(w) dx + ˆBR ′ ζ Ce(u Σ0
) : e(w) dx + ˆΩk \BR (∇ζ ⊙ w) : Ce(u Σ0 ) dx. (7.9)

We now let ζ be the Lipschitz and radial function defined by

ζ(x) =      1 if x ∈ B R , |x| -R R ′ -R if x ∈ B R ′ \ B R , 0 if x ∈ R 2 \ B R ′ . (7.10) 
Letting R ′ → R in the right-hand side of (7.9) we finally get that, for L 1 -a.e. R > 0, lim inf

j→∞ 1 ε k G(ε k Γ ε k ) ≥ 1 2 ˆR2 Ce(w) : e(w) dx + ˆBR Ce(u Σ0 ) : e(w) dx + ˆ∂BR w • (Ce(u Σ0 ν)) dH 1 . Reduction to competitors in H 1 (R 2 \ (Σ 0 ∪ R(Γ)); R 2
) with compact support. In order to show that w is a minimizer of the limit problem (7.2), we start by establishing that, without loss of generality, competitors in (7.2) can be taken in

H 1 (R 2 \ (Σ 0 ∪ R(Γ)); R 2 ) with compact support.
First we reduce to the case where the competitor belong to LD(R 2 \ (Σ 0 ∪ R(Γ))) have compact support. To this purpose, let us show that any z ∈ LD(R 2 \ (Σ 0 ∪ R(Γ))) can be approximated strongly in LD(R 2 \ (Σ 0 ∪ R(Γ))) by functions with compact support. To this aim we consider ϕ ∈ C ∞ c (B 2 ; [0, 1]) satisfying ϕ = 1 on B 1 , and define

ϕ R (x) := ϕ x R .
We assume that R is large enough so that Γ ⊂ B R . Then we set z R := (zm R )ϕ R where m R is a suitable rigid movement associated to the Poincaré-Korn inequality in the domain

B 2R \ (B R ∪ Σ 0 ) (which is diffeomorphic to the Lipschitz set (0, 2πR) × (0, R)), namely ˆB2R\(BR∪Σ0) |z -m R | 2 dx ≤ CR 2 ˆB2R\(BR∪Σ0) |e(z)| 2 dx (7.11)
Moreover a immediate computation yields

e(z R ) = ϕ R e(z) + 1 R ∇ϕ • R ⊙ (z -m R ).
The first term converges strongly to e(z) in L 2 (R 2 ; M 2×2 sym ), while the second term converges to 0 strongly in L 2 (R 2 ; M 2×2 sym ) due to (7.11). As a consequence z R → z strongly in LD(R 2 \(Σ 0 ∪R(Γ))). Next, we reduce to the case where z lies in the Sobolev space H 1 (R 2 \ (Σ 0 ∪ R(Γ)); R 2 ). Let D and D ′ be bounded open sets such that Supp(z) ⊂ D ′ ⊂⊂ D. According to the density result [5, Theorem 1], we get the existence of a sequence (z

n ) ⊂ H 1 (D \ (Σ 0 ∪ R(Γ)); R 2 ) such that z n → z strongly in L 2 (D; R 2 ) and e(z n ) → e(z) both strongly in L 2 (D; M 2×2 sym ). This implies in particular that z n → 0 in L 2 (D \ D ′ ; R 2 ). Let ϕ ∈ C ∞ c (D; [0, 1]), ϕ = 1 on D ′ , and set ẑn = ϕz n ∈ H 1 (R 2 \(Σ 0 ∪R(Γ)))
with Supp(ẑ n ) ⊂ D, and satisfying ẑn → z strongly in L 2 (R 2 ; R 2 ), and e(ẑ n ) → e(z) strongly in L 2 (R 2 ; M 2×2 sym ). Upper bound and minimality. We now assume that z ∈ H 1 (R 2 \(Σ 0 ∪R(Γ)); R 2 ) with compact support, contained in some bounded open set D. Clearly the number of connected components of

∂D ∪ ((Σ ε k ∪ R ε k (Γ ε k )) ∩ D) is bounded.
Hence by [START_REF] Bucur | A duality approach for the boundary variation of Neumann problems[END_REF] or [START_REF] Chambolle | Continuity of Neumann linear elliptic problems on varying two-dimensional bounded open sets[END_REF] we get the existence of

z k ∈ H 1 (D \ (Σ ε k ∪ R ε k (Γ ε k )); R 2 ) such that z k → z strongly in L 2 (D; R 2 ) and (∇z k )χ D\(Σε k ∪Rε k (Γε k )) → ∇z strongly in L 2 (D; M 2×2 sym ).
Multiplying by the same cut-off function ϕ as in the previous step, we can also assume that z k = 0 in a neighborhood of ∂D. In this way we have obtained Let ζ be the cut-off function defined in (7.10), then performing an integration by parts exactly as we did in step 3 (with z k instead of w kr k ) we arrive at the following

z k ∈ H 1 (R 2 \ (Σ ε k ∪ R ε k (Γ ε k )); R 2 ) satisfying Supp(z k ) ⊂ D ⊂ Ω k (for k large enough), z k → z strongly in L 2 (R 2 ; R 2 ), (∇z k )χ R 2 \(Σε k ∪Rε k (Γε k )) → ∇z strongly in L 2 (
1 ε k G(ε k Γ ε k ) = 1 2 ˆΩk Ce(w k ) : e(w k ) dx + ˆΩk ζCe(u ε k ) : e(w k ) dx + ˆΩk [∇ζ ⊙ w k ] : Ce(u ε k ) dx ≤ 1 2 ˆΩk Ce(z k ) : e(z k ) dx + ˆΩk ζCe(u ε k ) : e(z k ) dx + ˆΩk [∇ζ ⊙ z k ] : Ce(u ε k ) dx.
The convergences established so far for the sequences (z k ) and (u ε k ) enable one to pass to the limit in the previous expression, first as k → ∞ and then R ′ → R. We finally get that lim sup

j→∞ 1 ε k G(ε k Γ ε k ) ≤ 1 2 ˆR2 Ce(z) : e(z) dx + ˆBR Ce(u Σ0 ) : e(z) dx + ˆ∂BR z • (Ce(u Σ0 )ν) dH 1 (7.13)
for almost every R > 0. By the density result established in step 4, inequality (7.13) holds for any z ∈ LD(R 2 \ (Σ 0 ∪ R(Γ))). Taking z = w, and gathering with (7.9) yields

lim j→∞ 1 ε k G(ε k Γ ε k ) = 1 2 ˆR2 Ce(w) : e(w) dx + ˆBR Ce(u Σ0 ) : e(w) dx + ˆ∂BR w • (Ce(u Σ0 )ν) dH 1 ,
and using again (7.13), we deduce that w is a solution of the minimization problem (7.2) for a.e. R > 0 with Γ ⊂ B R . Finally, an integration by parts ensures that the value of F (Γ) is independent of R > 0 and a fortiori holds for every R > 0. In the proof of Lemma 4.1, we used the following auxiliary result.

Lemma A.1. For any g ∈ L 2 (U ∩ ∂B), there exists a function σ ∈ L 2 (U ; R 2 ) with divσ = 0 in H -1 (U ), σν = 0 in H -1/2 (∂U ) and σν = g in L 2 (U ∩ ∂B).

Proof. For any u ∈ H 1 0 (U ), let T 1 (u) := ˆU∩∂B gu dH 1 .

The mapping T 1 : H 1 0 (U ) → R is clearly linear, and it is in addition continuous since by the trace theorem,

|T 1 (u)| ≤ u L 2 (U∩∂B) g L 2 (U∩∂B) ≤ C u H 1 (U) .

Therefore, T 1 ∈ H -1 (U ), and thus, there exists σ 1 ∈ L 2 (U ; R 2 ) such that T 1 (u) = ˆU σ 1 • ∇u dx for any u ∈ H 1 0 (U ).

Taking in particular u ∈ H 1 0 (U ∩ B) ⊂ Ker(T 1 ), we deduce by definition of weak derivatives that divσ 1 = 0 in H -1 (B ∩ U ), and, using the integration by parts formula in H 1 (U ∩ B), that

ˆU∩∂B

gu dH 1 = T 1 (u) = σ 1 ν, u H -1/2 (∂(U∩B)),H 1/2 (∂(U∩B)) .

This shows that σ 1 ν = g in L 2 (U ∩ ∂B) (where ν is the outer normal to ∂B), and σ 1 ν = 0 in [H 1/2 (B ∩ ∂U )] ′ . Arguing similarly on U \ B, we get that divσ 1 = 0 in H -1 (B \ U ), σ 1 ν = g in L 2 (U ∩ (where now ν is the inner normal to ∂B) and σ 1 ν = 0 in [H 1/2 (∂U \ B)] ′ . Let us define σ ∈ L 2 (B; R 2 ) by σ = σ 1 in U ∩ B and σ = -σ 1 in U \ B. Clearly, σν = 0 in H -1/2 (∂U ), and since the normal trace of σ do not jump across ∂B ∩ U , we infer that divσ = 0 in H -1 (U ) and σν = g in L 2 (∂B ∩ U ) (where ν is the outer normal to ∂B).

In the proof of Proposition 5.1 and Theorem 7.1, we used the following generalized integration by parts formula (see Lemmas 3.1 and 3.2 in [START_REF] Chambolle | The stress intensity factor for non-smooth fractures in antiplane elasticiy[END_REF] for a similar result in the scalar case).

Lemma A.2. Let Γ ∈ K(Ω). There exists a set N ⊂ R + of zero Lebesgue measure with the following property: for all v ∈ H 1 (Ω \ (Γ 0 ∪ Γ); R 2 ) such that v = 0 on ∂Ω \ Γ 0 , and for all r ∈ N with Γ ⊂ B r ⊂⊂ Ω, one has ˆ(Ω\Γ0)\Br We follow the notations and statements of the book [25, Section 6.1] that we briefly recall here in the case of the bilaplacian in the cracked plane R 2 \ Σ 0 . Let us consider weak solutions of the problem (P 1 ) ß ∆ 2 w = f in R 2 \ Σ 0 , w = 0 and ∂w ∂ν = 0 on Σ 0 , in weighted Sobolev spaces of type V ℓ β (R 2 \ Σ 0 ) (see the definition in Section 2.3) which is the core of Kondrat'ev's Theory. It is easily seen that ∆ 2 (associated with homogenous Dirichlet conditions) maps w ∈ V ℓ β (R 2 \Σ 0 ) to f ∈ V ℓ-4 β (R 2 \Σ 0 ). For ℓ ≥ 4 this fact is quite obvious from the definition, and for ℓ < 4, it follows from a standard extension argument (see [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF]Theorem 6.1.2]). Kondrat'ev theory ensures that this operator is actually of Fredhlom type, and that it defines an isomorphism provided β ∈ R \ S and ℓ ∈ Z, where S is an exceptional countable set. In our special case it turns out to be contained in the set of half integers 1 2 Z, as for most elliptic operators (see [START_REF] Costabel | Crack singularities for general elliptic systems[END_REF]). Indeed, this set appears as the spectrum of the Mellin transform of the operator written in polar coordinates, with corresponding boundary conditions. In the language of [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF] this will be called the Pencil operator, denoted by A(λ) and studied in [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF]Chapter 5] (and defined pp. 197 in [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF] in the case that we are interested in). The exact computations in the special case of the bilaplacian are quite standard, and can be found for instance in [START_REF] Kozlov | Spectral problems associated with corner singularities of solutions to elliptic equations[END_REF]Chapter 7.1] (see also [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Section 7.2.1], but with different notations and conventions leading to slightly different characteristic equations). Let us recall here those computations, still using the language of [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF]. Now let us look for the pencil operator. Since it is obtained via the Mellin transform of ∆ 2 (up to a factor r 4 ), we need to write it in polar coordinates (r, θ) which gives

∆ 2 = ∂ 4 r + 2∂ 3 r r - ∂ 2 r r 2 + ∂ r r 3 + ∂ 4 θ r 4 + 4∂ 2 θ r 4 - 2∂ 2 θ ∂ r r 3 + 2∂ 2 θ ∂ 2 r r 2 .
We then identify the terms of the form (r∂ r ) k , and for this purpose we shall use the following elementary formulas 

2. 1 .

 1 General notation. The Lebesgue measure in R n is denoted by L n , and the k-dimensional Hausdorff measure by H k . If E is a measurable set, we will sometimes write |E| instead of L n (E). If a and b ∈ R n , we write a • b = n i=1 a i b i for the Euclidean scalar product, and we denote the norm by |a| = √ a • a. The open ball of center x and radius ̺ is denoted by B ̺ (x). If x = 0, we simply write B ̺ instead of B ̺ (0).

2. 3 .

 3 Kondrat'ev spaces. Following [25, Section 6.1], if C is an open cone of R n with vertex at the origin, we define for any β ∈ R and ℓ ≥ 0 the weighted Sobolev space V ℓ β (C) by the closure of C ∞ c (C \ {0}) with respect to the norm

  Finally, according to the variational formulation (3.5), we have divσ 0 = 0 in D ′ (B \ Γ 0 ) from which (4.2) follows. Remark 4.4. The biharmonicity (4.2) of the Airy function w 0 is equivalent to the following local minimality property ˆB |D 2 w 0 | 2 dx ≤ ˆB |D 2 z| 2 dx,

1 2 ˆR2

 12 Ce(w) : e(w) dx + ˆBR Ce(u Σ0 ) : e(w) dx -ˆ∂BR Ce(u Σ0 ) : (w ⊙ ν)dH 1 , (7.2)

1 2 ˆΩk

 2 Ce(w) : e(w) dx + ˆΩk Ce(u ε k ) : e(w) dx :

Appendix A .

 . Technical lemmasThe object of this appendix is to prove several technical results used throughout this work. Let us recall few notations: Γ 0 ∈ K(Ω) is the original crack, and B is an open ball centered at the origin such that B ⊂ Ω and ∂B ∩ Γ 0 = ∅. In addition, U is a smooth open set such that U ∩ Γ 0 = ∅ and U ∩ ∂B = ∅.

  σ 0 : e(v) dx = -ˆ∂Br\Γ0 (σ 0 ν) • v dH 1 .Proof. Let r ′ < r be such that Γ ⊂ B r ′ ⊂⊂ B r ⊂⊂ Ω, and consider the cut-off function η ∈ W 1,∞ (Ω : [0, 1]) given byη(x) B r , 0 on B r ′ , |x|r ′ rr ′ on B r \ B r ′ .We set w := ηv so that w ∈ H 1 (Ω \ Γ 0 ; R 2 ) and w = 0 on ∂Ω \ Γ 0 . Since w = v outside B r , we infer that ˆ(Ω\Γ0)\Brσ 0 : e(v) dx = ˆ(Ω\Γ0)\Br σ 0 : e(w) dx = ˆΩ\Γ0 σ 0 : e(w) dx -ˆBr\Γ0 σ 0 : e(w) dx.According to the variational formulation (3.5), we haveˆΩ\Γ0 σ 0 : e(w) dx = 0.On the other hand, since e(w) = ηe(v)+ ∇η ⊙ v and ∇η(x) = 1 r-r ′ x |x| χ Br\B r ′ , we deduce that ˆ(Ω\Γ0)\Br σ 0 : e(v) dx = ˆBr\Γ0 ησ 0 : e(v) dx -1 rr ′ ˆ(Br\B r ′ )\Γ0 σ 0 :Letting r ′ → r, we get that ˆBr\Γ0 ησ 0 : e(v) dx → ˆBr\Γ0 σ 0 : e(v) dx, while Lebesgue's differentiation theorem applied to the integrable function ρ → ´∂Bρ\Γ0(σ 0 ν)•v dH 1 yields 1 rr ′ ˆ(Br\B r ′ )\Γ0 σ 0 : ν) • v dH 1 ,for all r ∈ N v , where N v ⊂ R + is a measurable set of zero Lebesgue measure. The fact that the exceptional set can be chosen independently of the test function v results from the separability of the space {v ∈ H 1 (Ω \ (Γ 0 ∪ Γ); R 2 ) : v = 0 on ∂Ω \ Γ 0 }.Appendix B. A short review of Kondrat'ev theory

  First we recall that the Mellin transform of a function g ∈ C ∞ c (R + ) is given by û(λ) = ˆ+∞ 0 r -λ-1 g(r)dr, for all λ ∈ C. (B.1) Another way to understand this transformation is by taking the Laplace transform of the function t → g(e t ). Relevant properties are recalled in [25, Lemma 6.1.3], and one of the most important is probably ' r∂ r g = λĝ. (B.2)

(r∂ r ) 2 = 2 r(r∂ r ) 3 = 3 r(r∂ r ) 4 =

 22334 r∂ r + r 2 ∂ r∂ r + 3r 2 ∂ 2 r + r 3 ∂ r∂ r + 7r 2 ∂ 2 r + 6r 3 ∂ 3 r + r 4 ∂ 4 r

  and only if for all multi-index α ∈ N n with length |α| ≤ k, ∂ α u has a (k -|α|, 2)quasicontinuous representative that vanishes Cap k-|α|,2 -quasi everywhere on ∂U , i.e. outside a set of zero Cap k-|α|,2 -capacity (see

  Hausdorff convergence of compact sets. Let K 1 and K 2 be compact subsets of a common compact set K ⊂ R n . The Hausdorff distance between K 1 and K 2 is given by

				.1)
	According to [2, Theorem 5.2, Example 5.3], it is possible to make r U more explicit in the following
	way: consider a measurable subset E of U with |E| > 0, then one can take r U (x) := 1 |E| ˆE u(y) dy + Å 1 |E| ˆE ∇u(y) -∇u(y) T 2 dy ã Å x -1 |E| provided the constant c U in (2.1) also depends on E.	ˆE y dy	ã	,
	2.5.			

  arguing exactly as in Step 1. It again relies on a dyadic partition of R 2 \ B 1 together with the following Poincaré inequalities in each annuli B 2 j+1 \ B 2 j

which imply ∆ 2 = r -4 [(r∂ r ) 4 -4(r∂ r ) 3 

The pencil operator A(λ) is then obtained by taking the Mellin transform (B.1) in the r variable of the operator L(∂ θ , r∂ r ) defined above. Using (B.2) we therefore obtain

and the boundary conditions in the variable θ are still zero (i.e. acting on functions ϕ with the boundary conditions ϕ(0) = ϕ(2π) = ϕ ′ (0) = ϕ ′ (2π) = 0). The set S is then the spectrum of A(λ), and according to the terminology of Operator Pencils this means the set of λ for which the operator is non invertible [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF]Chapter 5]. By [START_REF] Kozlov | Spectral problems associated with corner singularities of solutions to elliptic equations[END_REF]Chapter 7.1] (see in particular the last paragraph before Section 7.2 for the special case α = 2π), this set is real and

All of them, except λ = 0 and λ = 2, have geometric and algebraic multiplicities equal to 2. The associated eigenfunctions are given by explicit functions that one can find in [26, formulas (7.1.14) and (7.1.15)]. We shall only give the ones corresponding to λ = 3/2, which are the functions defined in (6.10) and (6.11).

According to all the above facts, a direct application of [25, Theorem 6.1.3] yields

then for every f ∈ V ℓ-4 β (R 2 \ Σ 0 ), there exists a unique solution w ∈ V ℓ β (R 2 \ Σ 0 ) of (P 1 ).

In addition, a direct application of [START_REF] Kozlov | Elliptic boundary value problems in domains with point singularities[END_REF]Theorem 6.1.5] implies that Theorem B.2. Let β 2 < β 1 be two real numbers, ℓ ∈ Z, and assume that

where the ϕ λ are linear combinations of eigenfunctions of A(λ). In particular

where ψ 1 and ψ 2 are defined in (6.10) and (6.11).
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