
HAL Id: hal-01015171
https://hal.science/hal-01015171v1

Submitted on 25 Jun 2014 (v1), last revised 24 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterizing Polynomial and Exponential Complexity
Classes in Elementary Lambda-Calculus

Patrick Baillot, Erika de Benedetti, Simona Ronchi Della Rocca

To cite this version:
Patrick Baillot, Erika de Benedetti, Simona Ronchi Della Rocca. Characterizing Polynomial and
Exponential Complexity Classes in Elementary Lambda-Calculus. IFIP conference on Theoretical
Computer Science, Aug 2014, Rome, Italy. 15 p. �hal-01015171v1�

https://hal.science/hal-01015171v1
https://hal.archives-ouvertes.fr

Characterizing Polynomial and Exponential
Complexity Classes in Elementary

Lambda-Calculus⋆

(Long Version)

Patrick Baillot1, Erika De Benedetti1,2, and Simona Ronchi Della Rocca2

1 CNRS, ENS de Lyon, INRIA, UCBL, Université de Lyon, LIP - Lyon, France

2 Università degli Studi di Torino, Dipartimento di Informatica - Torino, Italy

Abstract. In this paper an implicit characterization of the complexity
classes k-EXP and k-FEXP, for k ≥ 0, is given, by a type assignment sys-
tem for a stratified λ-calculus, where types for programs are witnesses
of the corresponding complexity class. Types are formulae of Elemen-
tary Linear Logic (ELL), and the hierarchy of complexity classes k-EXP is
characterized by a hierarchy of types.

Keywords: Implicit computational complexity · Linear logic · Lambda-
calculus

1 Introduction

Context. Early work on the study of complexity classes by means of pro-
gramming languages has been carried out by Neil Jones [9,10], in partic-
ular using functional programming. The interest of these investigations is
twofold: from the computational complexity point of view, they provide
new characterizations of complexity classes, which abstract away from
machine models; from the programming language point of view, they
are a way to analyze the impact on complexity of various programming
features (higher-order types, recursive definitions, read/write operations).
This fits more generally in the research line of implicit computational com-

plexity (ICC), whose goal is to study complexity classes without relying
on explicit bounds on resources but instead by considering restrictions on
programming languages and calculi. Seminal research in this direction has
been carried out in the fields of recursion theory [3,12], λ-calculus [14] and

⋆ This work was supported by the LABEXMILYON (ANR-10-LABX-0070) of Univer-
sité de Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR).

2

linear logic [8]. These contributions usually exhibit a new specific language
or logic for each complexity class, for instance PTIME, PSPACE, LOGSPACE:
let us callmonovalent the characterizations of this kind. We think however
that the field would benefit from some more uniform presentations, which
would consist in both a general language and a family of static criteria
on programs of this language, each of which characterizing a particular
complexity class. We call such a setting a polyvalent characterization; we
believe that this approach is more promising for providing insights on the
relationships between complexity classes. Polyvalent characterizations of
this nature have been given in [10,13], but their criteria used for reaching
point (2) referred to the construction steps of the programs. Here we are
interested in defining a polyvalent characterization where (2) is expressed
by means of the program’s type in a dedicated system.

Stratification and Linear Logic. An ubiquitous notion in implicit com-
plexity is that of stratification, by which we informally designate here the
fact of organizing computation into distinct strata. This intuition under-
lies several systems: ramified and safe recursion [12,3], in which data is
organized into strata; stratified comprehension [13], where strata are used
for quantification; variants of linear logic [8] where programs are divided
into strata thanks to a modality. More recently stratification of data has
been related fruitfully to type systems for non-interference [17].
The linear logic approach to ICC is based on the proofs-as-programs cor-
respondence. This logic indeed provides a powerful system to analyse the
duplication and sharing of arguments in functional computation: this is
made possible by a specific logical connective for the duplication of ar-
guments, the ! modality. As in functional computation the reuse of an
argument can cause a complexity explosion, the idea is to use weak ver-
sions of ! to characterize complexity classes. This intuition is illustrated by
elementary linear logic (ELL) [8,7], a simple variant of linear logic which
provides a monovalent characterisation of elementary complexity, that is
to say computation in time bounded by a tower of exponentials of fixed
height. Other variants of linear logic provide characterizations of PTIME,
but they use either a more complicated language [8] or a more specific
programming discipline [11].

Contribution and Comparison. In [2] a polyvalent characterization in ELL

proof-nets of the complexity classes k-EXP = ∪i∈NDTIME(2
ni

k) for all k ≥ 0
has been obtained. However this approach has some shortcomings:

3

1. The complexity soundness proof uses a partly semantic argument ([2]
Lemma 3 p. 10) and so it does not provide a syntactic way to evaluate
the programs with the given complexity bound.

2. The characterization is given for classes of predicates, and not for
classes of functions. Moreover it is not so clear how to extend this
result to functions because of the semantic argument mentioned above.

3. The language of proof-nets is not as standard and widespread as say
that of λ-calculus.

In the present work, we wish to establish an analogous polyvalent charac-
terization in the setting of λ-calculus, with a stronger complexity sound-
ness result based on a concrete evaluation procedure. We think this could
provide a more solid basis to explore other characterizations of this kind.
In particular we define the λ!-calculus, a variant of λ-calculus with ex-
plicit stratifications, which allows both to recover the results of [2] and
to characterize also the function complexity classes k-FEXP, by two dis-
tinct hierarchies of types. In fact, the characterization obtained through a
standard representation of data-types like in [2] does not account for some
closure properties of the function classes k-FEXP, in particular composi-
tion, so we propose a new, maybe less natural, representation in order
to grasp these properties. Our language makes it easier to define such
non-standard representation.

Technical Approach. One could expect that the results of [2] might be
extended to λ!-calculus by considering a translation of terms into proof-
nets. However it is not so straightforward: term reduction cannot be di-
rectly simulated by the evaluation procedure in [2], because (i) it follows
a specific cut-elimination strategy and (ii) ultimately it uses a semantic
argument. For this reason we give here a direct proof of the result in
λ!-calculus, which requires defining new measures on terms and is not a
mere adaptation of the proof-net argument.

Related Works. The first results on ELL [8,7] as well as later works [18,5]
have been carried out in the setting of proof-nets. Other syntaxes have
then been explored. First, specific term calculi corresponding to the re-
lated system LLL and to ELL have been proposed [21,16,15]. Alternatively
[4] used standard λ-calculus with a type system derived from ELL. The
λ!-calculus we use here has a syntax similar to e.g. [20,6], and our type
system is inspired by [4].

Outline. In the following we first introduce the λ!-calculus as an untyped
calculus, delineate a notion of well-formed terms and study the complex-

4

ity of the reduction of these terms (Sect. 2). We then define a type system
inspired by ELL and exhibit two families of types corresponding respec-
tively to the hierarchies k-EXP and k-FEXP for k ≥ 0 (Sect. 3). Finally
we introduce a second characterization of this hierarchy, based on a non-
standard data-type (Sect. 4). A conclusion follows.

2 The λ
!-Calculus

2.1 Terms and Reduction

We use a calculus, λ!-calculus, which adds to ordinary λ-calculus a !
modality and distinguishes two notions of λ-abstraction:

M, N ::= x | λx.M | λ!x.M | MN |!M

where x ranges over a countable set of term variables Var. The usual
notions of free variables is extended with FV(λ!x.M) = FV(M) \ {x},
FV(!M) = FV(M). As usual, terms are considered modulo renaming of
bound variables, and = denotes the syntactic equality modulo this re-
naming.

Contexts. We consider the class of (one hole) contexts generated by the
following grammar:

C ::= � | λx.C | λ!x.C | CM | MC |!C

As usual, capture of variables may occur. The occurrence of a term N

in M is a context C such that M = C[N]; in practice we simply write N for
the occurrence if there is no ambiguity and call it a subterm of M.

Depth. The depth of the occurrence C in M, denoted by δ(C, M), is the
number of ! modalities surrounding the hole of C in M.

Moreover, the depth δ(M) of a term M is the maximal nesting of ! in M.

Example 1. M =!((λx.x) !!y !y). Then δ(!((λx.x) !!� !y), M) = 3 and
δ(!((λx.x) !!y !�), M) = 2; moreover, δ(M) = 3.

Dynamics. The reduction → is the contextual closure of the following
rules:

(λx.M)N −→ M[N/x] (β-rule) (λ!x.M)!N −→ M[N/x] (!-rule)

5

where [N/x] denotes the capture free substitution of x by N, whose def-
inition is the obvious extension of the corresponding one for λ-calculus.
Observe that a term such as (λ!x.M)P is a redex only if P =!N for some N;
the intuition behind these two kinds of redexes is that the abstraction λ
expects an input at depth 0, while λ! expects an input at depth 1.

A subterm at depth i in M is an occurrence C in M such that δ(C, M) = i;
we denote by →i the reduction of a redex occurring at depth i. As usual,
∗
→ (

∗
→i) denotes the reflexive and transitive closure of → (→i). We say

that a term is in i-normal form if it does not have any redex at depth less
than or equal to i; then M is in normal form iff it is in δ(M)-normal form.
We denote as nf i the set of terms in i-normal form.

We have a confluence property, whose proof is adapted from [19],
taking into account the notion of depth:

Proposition 1.

(i) Let M ∈ nf i and M →i M
′, with j ≥ i+ 1, then M′ ∈ nf i.

(ii) [Confluence at fixed depth] Let M →i P and M →i Q, then there is a

term N such that P
∗
→i N and Q

∗
→i N.

(iii) [Confluence] Let M → P and M → Q, then there is a term N such that

P
∗
→ N and Q

∗
→ N.

We consider a specific subclass of terms, inspired by elementary linear
logic (ELL) [8,16]:

Definition 1 (Well-formed Term). A term M is well-formed (w.f.) if
and only if, for any subterm N of M which is an abstraction, we have:

1. if N = λx.P, then x occurs at most once and at depth 0 in P;
2. if N = λ!x.P, then x can only occur at depth 1 in P.

Example 2. λf.λx.f(fx), the standard representation of the Church in-
teger 2, is not w.f.; its w.f. counterpart is λ!f.!(λx.f(fx)).

The motivation behind such definition is that the depth of subterms
in a w.f. term does not change during reduction: if an abstraction expects
an input at depth 0 (resp. 1), which is the case of λ (resp. λ!), then the
substitutions occur at depth 0 (resp. 1), as each occurrence of its bound
variable is at depth 0 (resp. 1).

The class of w.f. terms is preserved by reduction and their depth does
not increase during reduction:

Lemma 1. If M is w.f. and M → M′, then M′ is w.f., and δ(M′) ≤ δ(M).

From now on, we assume that all terms are well formed.

6

Sizes. In order to study the reduction, it is useful to examine the size of

M at depth i, denoted by |M|i, defined as follows:

– If M = x, then |x|0 = 1 and |x|i = 0 for i ≥ 1;
– If M = λx.N or M = λ!x.N, then |M|0 = |N|0 + 1 and |M|i = |N|i for i ≥ 1;
– If M = NP, then |M|0 = |N|0 + |P|0 + 1 and |M|i = |N|i + |P|i for i ≥ 1;
– If M =!N, then |M|0 = 0 and |M|i+1 = |N|i for i ≥ 0;

Let δ(M) = d; then |M|i+ =
∑d

j=i |M|j and the size of M is |M| =
∑d

i=0 |M|i.
The definition is extended to contexts, where |�|i = 0 for i ≥ 0. We
consider how the size of a term changes during reduction:

Lemma 2. If M →i M
′, then |M′|i ≤ |M|i − 1, and |M′|j = |M|j for j < i.

Strategy. The fact that by Prop. 1.(i) reducing a redex does not cre-
ate any redex at strictly lower depth suggests considering the following,
non-deterministic, level-by-level reduction strategy: if the term is not in
normal form reduce (non deterministically) a redex at depth i, where
i ≥ 0 is the minimal depth such that M 6∈ nf i. A level-by-level reduction

sequence is a reduction sequence following the level-by-level strategy. We
say that a reduction sequence is maximal if either it is infinite, or if it
finishes with a normal term.

Proposition 2. Any reduction of a term by the level-by-level strategy
terminates.

It follows that a maximal level-by-level reduction sequence of a term
M has the shape shown in (1), where i denotes one reduction step ac-
cording to the level-by-level strategy, performed at depth i. We call round
i the subsequence of i starting from M1i . Note that, for all i and j > i,
M1j ∈ nf i. We simply write when we do not refer to a particular depth.

M10 0 ... 0 M
n0
0 = M11 1 ... 1 M

n1
1 = ... = M1δ δ ... δ M

nδ

δ (1)

In a particular case, namely in Lemma 3, we use a deterministic ver-
sion of the level-by-level strategy, called leftmost-by-level, which proceeds
at every level from left to right, taking into account the shape of the dif-
ferent redexes in our calculus. That is to say, it chooses at every step the
leftmost subterm of the shape MN, where M is an abstraction, and, in case
it is already a redex it reduces it, in case it is of the shape (λ!x.P)N, where
N 6=!Q, for some Q, then it looks for the next redex in N. This corresponds
to using the call-by-name discipline for β-redexes and the call-by-value
for !-redexes [19]. A formal definition of this strategy is given in Appendix
A.2.

7

M =⇒ N denotes that N is obtained from M by performing one reduction
step according to the leftmost-by-level strategy. All the notations for →
are extended to and =⇒ in a straightforward way.

2.2 Representation of Functions

In order to represent functions, we first need to encode data. For booleans
we can use the familiar encoding true = λx.λy.x and false = λx.λy.y.
For tally integers, the usual encoding of Church integers does not give
w.f. terms; instead, we use the following encodings for Church integers
and Church binary words:

n ∈ N, n = λ!f.!(λx.f (f ...(f x)...))
w ∈ {0, 1}⋆, w = 〈i1, ..., in〉, w = λ!f0.λ

!f1.!(λx.fi1 (fi2 ...(fin x)...))

By abuse of notation we also denote by 1 the term λ!f.!f . Observe
that the terms encoding booleans are of depth 0, while those representing
Church integers and Church binary words are of depth 1. We denote the
length of a word w ∈ {0, 1}⋆ by length(w).

We represent computation on a binary word by considering applica-
tions of the form P!w, with a ! modality on the argument, because the
program should be able to duplicate its input. Concerning the form of the
result, since we want to allow computation at arbitrary depth, we require
the output to be of the form !kD, where k ∈ N and D is one of the data
representations above.

We thus say that a function f : {0, 1}⋆ → {true, false} is represented
by a term (program) P if P is a closed normal term and there exists k ∈ N

such that, for any w ∈ {0, 1}⋆ and D = f(w) ∈ {true, false} we have:

P!w
∗
→!kD. This definition can be adapted to functions with other domains

and codomains.

2.3 Complexity of Reduction

We study the complexity of the reduction of terms of the form P!w. Actu-
ally it is useful to analyze the complexity of the reduction of such terms
to their k-normal form, i.e. by reducing until depth k, for k ∈ N. We
define the notation 2ni in the following way: 2x0 = x and 2xi+1 = 22

x
i .

Proposition 3. Given a program P, for any k ≥ 2, there exists a poly-
nomial q such that, for any w ∈ {0, 1}⋆, P!w

∗
 M1k ∈ nfk−1 in at most

2
q(n)
k−2 steps, and |M1k| ≤ 2

q(n)
k−2, where n = length(w). In particular, in the

case where k = 2 we have a polynomial bound q(n).

8

In the rest of this section we prove Prop. 3.

Let M = P!w and consider a level-by-level reduction sequence of M,
using the notations of (1). By Lemma 2 we know that the number of
steps at depth i is bounded by |M1i | and that there are (d+ 1) rounds. In
order to bound the total number of steps it is thus sufficient to bound
|M1i | by means of |M|:

Lemma 3 (Size-Growth). If M
∗

=⇒i M′ by c reduction steps, then
|M′| ≤ |M| · (|M|+ 1)c (0 ≤ i ≤ δ(M)).

The proof of Lemma 3 is quite delicate and is given in Appendix A.2.

Proof (Prop. 3). We proceed by induction on k ≥ 2. We assume that P is
of the form λ!y.Q (otherwise P!w is already a normal form).

– Case k = 2:

We consider a level-by-level reduction sequence of P!w. We need to ex-
amine reduction at depths 0 and 1. At depth 0 we have
(λ!y.Q)!w → Q[w/y] = M11. Observe that M11 ∈ nf0 because the occur-
rences of y in Q are at depth 1; denote by b the number of occurrences
of y in Q, which does not depend on n.
Since |Q[w/y]|1 ≤ |Q|1 + b · |w|0 and |w|0 = 2 (by definition of the en-
coding), we have that |M11|1 = |Q[w/y]|1 ≤ |Q|1 + 2b. Let c be |Q|1 + 2b,
which does not depend on n: then, by Lemma 2, the number of steps
at depth 1 is bounded by c. This proves the first part of the statement.

Let M12 ∈ nf1 be the term obtained after reduction at depth 1. By

Prop. 1.(ii) we have that M11
∗

=⇒1 M12 and by Lemma 2 this reduction
is done in c′ steps, where c′ ≤ |M11|1 ≤ c, so by Lemma 3 we have that
|M12| ≤ |M11| · (|M

1
1|+ 1)c. Moreover |M11| ≤ |Q|+ b|w|, so it is polynomial

in n, and the statement is proved for k = 2.

– Assume the property holds for k and let us prove it for k + 1.

By assumption M reduces to M1k in at most 2
q(n)
k−2 steps and |M1k| ≤ 2

q(n)
k−2.

Let M1k
∗
 k M1k+1 ∈ nfk. By Lemma 2 this reduction sequence has at

most |M1k|k steps, and |M1k|k ≤ |M1k| ≤ 2
q(n)
k−2. So on the whole M reduces

to M1k+1 in at most 2 · 2
q(n)
k−2 ≤ 2

2q(n)
k−2 steps. Moreover by Prop. 1.(ii) we

have that M1k
∗

=⇒ M1k+1 and by Lemma 2 and Lemma 3 we get

|M1k+1| ≤ |M1k| ·(|M
1
k|+1)2

q(n)
k−2 ≤ 2

q(n)
k−2 ·(2

2q(n)
k−2)2

q(n)
k−2 ≤ 2

q(n)
k−2 ·2

2
3q(n)
k−2 ≤ 2

q′(n)
k−1

for some polynomial q′(n).

9

Approximations. From Prop. 3 we can easily derive a 2
q(n)
k−2 bound on the

number of steps of the reduction of P!w not only to its (k − 1)-normal
form, but also to its k-normal form M1k+1. Unfortunately this does not

yield directly a time bound O(2
q(n)
k−2) for the simulation of this reduction

on a Turing machine, because during round k the size of the term at depth
k + 1 could grow exponentially. However if we are only interested in the
result at depth k, the subterms at depth k + 1 are actually irrelevant.
For this reason we introduce a notion of approximation, inspired by the
semantics of stratified coherence spaces [1], which allows us to compute
up to a certain depth k, while ignoring what happens at depth k + 1.

We extend the calculus with a constant ∗; its sizes | ∗ |i are defined as
for variables. If M is a term and i ∈ N, we define its i-th approximation

M
i
by: !M

0
=!∗, !M

i+1
=! M

i
, xi = x, and for all other constructions (·)

i

acts as identity, e.g. MN
i
= M

i
N
i
. See Appendix A.3 for more details.

So M
i
is obtained by replacing in M all subterms at depth i + 1 by ∗.

For instance we have w0 = λ!f0.λ
!f1.!∗ and wi+1 = w for i ≥ 0. The proof

of the following lemma is given in Appendix A.3:

Lemma 4. (i) Let M →i M
′: if j ≤ i then M

i
→i M

′
i
, otherwise M

i
= M′

i
.

(ii) Let M
i
→i M

′
i
: then |M′

i
| < |M

i
|.

Proposition 4. Given a program P, for any k ≥ 2, there exists a poly-

nomial q such that for any w ∈ {0, 1}⋆, the reduction of P!w
k
to its

k-normal form can be computed in time O(2
q(n)
k−2) on a Turing machine,

where n = length(w).

Proof. Observe that P!w
k
= P

k
!w. By Prop. 3 and Lemma 4.(i), it reduces

to its (k − 1)-normal form M1k
k
in O(2

q(n)
k−2) steps and with intermediary

terms of size O(2
q(n)
k−2). Now by Lemma 4.(ii) the reduction of M1k

k
at depth

k is done in O(2
q(n)
k−2) steps and with intermediary terms of size O(2

q(n)
k−2).

We can then conclude by using the fact that one reduction step in a term
M can be simulated in time p(|M|) on a Turing machine, for a suitably
chosen polynomial p.

3 Type System

We introduce a type assignment system for λ!-calculus, based on ELL, such
that all typed terms are also w.f. and the previous results are preserved.

10

Table 1. Derivation rules.

Γ, x : A | ∆ | Θ ⊢ x : A
(AxL)

Γ | ∆ | x : σ,Θ ⊢ x : σ
(AxP)

Γ, x : A | ∆ | Θ ⊢ M : τ

Γ | ∆ | Θ ⊢ λx.M : A⊸ τ
(⊸ IL)

Γ | ∆, x :!σ | Θ ⊢ M : τ

Γ | ∆ | Θ ⊢ λ!x.M :!σ⊸ τ
(⊸ II)

Γ1 | ∆ | Θ ⊢ M : σ⊸ τ Γ2 | ∆ | Θ ⊢ N : σ Γ1#Γ2

Γ1, Γ2 | ∆ | Θ ⊢ MN : τ
(⊸ E)

∅ | ∅ | Θ′ ⊢ M : σ

Γ |!Θ′, ∆ | Θ ⊢!M :!σ
(!)

Γ | ∆ | Θ ⊢ M : S a 6∈ FTV(Γ) ∪ FTV(∆) ∪ FTV(Θ)

Γ | ∆ | Θ ⊢ M : ∀a.S
(∀I)

Γ | ∆ | Θ ⊢ M : ∀a.S

Γ | ∆ | Θ ⊢ M : S[σ/a]
(∀E)

Γ | ∆ | Θ ⊢ M : S[µa.S/a]

Γ | ∆ | Θ ⊢ M : µa.S
(µI)

Γ | ∆ | Θ ⊢ M : µa.S

Γ | ∆ | Θ ⊢ M : S[µa.S/a]
(µE)

The set T of types are generated by the grammar

A ::= a | S (linear types)
S ::= σ⊸ σ | ∀a.S | µa.S (strict linear types)
σ ::= A |!σ (types)

where a ranges over a countable set of type variables. Observe that we
consider both polymorphic types (∀a.S) and type fixpoints (µa.S); the
restriction of both abstractions to act on strict linear types is necessary
for the subject reduction property.

A basis is a partial function from variables to types, with finite do-
main; given two bases Γ1 and Γ2, let Γ1#Γ2 iff dom(Γ1) ∩ dom(Γ2) = ∅.
Following the work of [4], we consider three different bases
Γ | ∆ | Θ, called respectively the linear, modal and parking basis, such
that Γ#∆, Γ#Θ and ∆#Θ. The premises in Γ assign to variables linear
types, while the premises in ∆ assign modal types.

The typing system proves statements of the shape Γ | ∆ | Θ ⊢ M : σ,
and derivations are denoted by Π,Σ. The rules are given in Table 1.
Observe that, in rule (⊸ E), M and N share variables in the modal and
parking basis, but their linear bases must be disjoint. Note also that there
is no axiom rule for variables in the modal basis, so the only way to in-
troduce a variable in this basis is the (!) rule, moving variables from the
parking to the modal basis. Finally, observe that there is no abstraction
rule for variables in the parking basis: indeed parking variables only have

11

a ”temporary” status, awaiting to be moved to the modal basis.
We say that a term M is well-typed iff there is a derivation
Π ⊲ Γ | ∆ | ∅ ⊢ M : σ for some Γ,∆, σ: indeed parking variables are only
considered as an intermediary status before becoming modal variables.
When all three bases are empty we denote the derivation by Π ⊲ ⊢ M : σ.
The main difference w.r.t. the type system of [4] is the (!) rule: here we
allow only the parking context to be non-empty, in order to ensure that

typable terms are well formed: it is the key to obtain a 2
poly(n)
k com-

plexity bound for a specific k depending on the type, instead of just an
elementary bound.

Both the type and depth of a term are preserved during reduction:

Theorem 1 (Subject Reduction). Γ | ∆ | Θ ⊢ M : σ and M → M′ imply
Γ | ∆ | Θ ⊢ M′ : σ.

A sketch of proof of this Lemma is given in Appendix B.1.

Proposition 5. If a term is well-typed, then it is also well-formed.

The proof comes easily from the following proposition:

Proposition 6 (Variables Depth). Let Γ | ∆ | Θ ⊢ M : σ. Then:

– if x ∈ dom(Γ) ∪ dom(Θ), then x can only occur at depth 0 in M;
– if x ∈ dom(∆), then x can only occur at depth 1 in M.

3.1 Datatypes

In section 2.2 we introduced w.f. terms encoding data, for which we now
define the following types, adapted from system F, representing respec-
tively booleans, Church tally integers and Church binary words:

B = ∀a.a⊸ a⊸ a N = ∀a.!(a⊸ a)⊸!(a⊸ a)

W = ∀a.!(a⊸ a)⊸!(a⊸ a)⊸!(a⊸ a)

We also use Scott binary words, defined inductively as

ǫ̂
def
= λf0.λf1.λx.x 0̂w

def
= λf0.λf1.λx.f0ŵ 1̂w

def
= λf0.λf1.λx.f1ŵ

having type WS
def
= µb.∀a.(b⊸ a)⊸ (b⊸ a)⊸ (a⊸ a).

The following properties ensure that, given a datatype, every deriva-
tion having such type reduces to a term having the desired shape:

Proposition 7. (i) If ⊢ M :!kB for k ≥ 0 and M ∈ nfk, then either
M =!ktrue or M =!kfalse.

(ii) If ⊢ M :!kWS for k ≥ 0 and M ∈ nfk, then M =!kŵ for some ŵ.

The proof of Proposition 7.i is given in Appendix B.2.

12

3.2 Complexity Soundness and Completeness

We are interested in giving a precise account of the hierarchy of classes
characterized by this typed λ!-calculus. Denote by FDTIME(F (n)) and by
DTIME(F (n)) respectively the class of functions and the class of predicates
on binary words computable on a deterministic Turing machine in time
O(F (n)); the complexity classes we are interested in, for k ≥ 0, are:

k-EXP = ∪i∈NDTIME(2
ni

k) and k-FEXP = ∪i∈NFDTIME(2
ni

k).

In particular, observe that PTIME = ∪i∈NDTIME(n
i) = 0-EXP and

FPTIME = ∪i∈NFDTIME(n
i) = 0-FEXP.

Soundness Let F(σ) denote the set of closed terms representing functions,
to which type σ can be assigned: we prove that F(!W⊸!k+2B) ⊆ k-EXP
and F(!W⊸!k+2WS) ⊆ k-FEXP.

Theorem 2 (Soundness). Let ⊢ P :!W⊸!k+2B where P is a program,

and let ⊢ w : W where length(w) = n; then the reduction P!w
∗
→!k+2D

can be computed in time 2
p(n)
k , where D is either true or false and p is

a polynomial.

Proof. Recall that a program P is a typed closed term in normal form: we

denote by M′ the normal form of P!w. By Prop. 4 we know that P!w
k+2

can

be reduced to a term N in nfk+2 in time O(2
p(n)
k) on a Turing machine,

where n = length(w). Moreover by Lemma 4.(i) and Prop. 1.(iii) we have

that M′
k+2

= N. Now, as P!w has type !k+2B, by Theorem 1 the term M′

is a closed term of type !k+2B and, by Prop. 7.(i), it is equal to !k+2true

or !k+2false. Then N = M′
k+2

= M′, so P!w can be computed in time

O(2
p(n)
k).

Complexity soundness can be proved for functions by a similar proof,
in which Prop. 7.(ii) is used in order to read the output as a Scott word:

Theorem 3. Let ⊢ P :!W ⊸!k+2WS where P is a program, and let
⊢ w : W where length(w) = n; then the reduction P!w

∗
→!k+2ŵ′ can

be computed in time 2
p(n)
k , where p is a polynomial.

Completeness We proved that F(!W ⊸!k+2B) ⊆ k-EXP and
F(!W⊸!k+2WS) ⊆ k-FEXP; now we want to strengthen this result by ex-
amining the converse inclusions. To do so we simulate k-EXP time bounded
Turing machines, by an iteration, so as to prove the following results:

13

Theorem 4 (Extensional Completeness).

– Let f be a binary predicate in k-EXP, for any k ≥ 0; then there is a
term M representing f such that ⊢ M :!W⊸!k+2B.

– Let g be a function on binary words in k-FEXP, for k ≥ 0; then there
is a term M representing g such that ⊢ M :!W⊸!k+2WS.

The complete proof is given in Appendix B.3
Note that this characterization, for k = 0, does not account for the

fact that FPTIME is closed by composition: indeed, programs of type
!W ⊸!k+2WS cannot be composed, since we do not have any coercion
from WS to W. For this reason, we explore an alternative characteriza-
tion.

4 Refining Types for an Alternative Characterization

Our aim is to take a pair 〈n,w〉 to represent the word w′ such that:

w′ =

{
w if length(w) ≤ n,

the prefix of w of length n otherwise.

For this reason, we introduce a new data-type using the connective ⊗

defined by σ⊗ τ
def
= ∀a.((σ⊸ τ ⊸ a)⊸ a) on types and the correspond-

ing constructions on terms:

M1 ⊗ M2
def
= λx.xM1M2

λ(x1 ⊗ x2).M
def
= λx.(xλy1y2.λz.zy1y2)λx1x2.M

λ!(x1 ⊗ x2).M
def
= λx.(xλ!y1y2.λz.z!y1!y2)λ

!x1x2.M

Note that we cannot define the abstraction in the usual way, i.e.

λ(x1 ⊗ x2).M
def
= λx.x(λx1.λx2.M), otherwise we could not type pairs in

a uniform way; moreover, when applied to a pair, this term reduces to
the usual one.
The associated reduction rules (λ(x1 ⊗ x2).N)(M1 ⊗ M2) → N[M1/x1, M2/x2]
and (λ!(x1 ⊗ x2).N)(!M1⊗!M2) → N[M1/x1, M2/x2] are derivable.

We represent a pair 〈n,w〉 through a term !n⊗!2ŵ of type !N⊗!2WS ,
i.e. a combined data-type containing a Church integer !n and a Scott word
!2ŵ: in practice, n is meant to represent the length of a list, whose content
is described by ŵ. In order to mantain this invariant, when computing on
elements !n⊗!2ŵ of this data-type, the property that the length of w is
inferior or equal to n is preserved.

14

As before, we need to be able to extract the result, in this case a pair:

Proposition 8. If ⊢ M :!kN⊗!k+1WS for k ≥ 0 and M ∈ nfk+1, then there
exists m ∈ N and w ∈ {0, 1}⋆ such that M =!km⊗!k+1ŵ.

Then we are able to prove both soundness and completeness results:

Theorem 5. Let ⊢ P : (!N⊗!2WS) ⊸ (!k+1N⊗!k+2WS) where P is a
program, then for any m and ŵ the reduction of P(!m⊗!2ŵ) to its nor-

mal form can be computed in time 2
p(n)
k , where p is a polynomial and

n = m+ length(w).

Theorem 6. Let f be a function on binary words in k-FEXP, for k ≥ 0;
then there is a term M representing f such that
⊢ M : (!N⊗!2WS)⊸ (!k+1N⊗!k+2WS).

Proofs of the previous statements are in Appendix C.1-C.3.
Observe that we are able to compose two terms having type

(!N⊗!2WS)⊸ (!N⊗!2WS), so to illustrate the fact that FPTIME is closed
by composition; moreover, if f ∈ FPTIME and g ∈ k-FEXP, then we can
compose terms representing them, which shows that g ◦ f ∈ k-FEXP.

While the previous characterization of k-FEXP in Section 3.2 offers the
advantage of simplicity, because it uses classical data-types (Church and
Scott binary words), this second characterization offers a better account
of the closure properties of these complexity classes, at the price of a
slightly more involved representation of words.

5 Conclusions

We have shown how the concept of !-stratification coming from linear logic
can be fruitfully employed in λ-calculus and characterize the hierarchies
k-EXP and k-FEXP, including the classes PTIME and FPTIME. A nice aspect
of our system with respect to former polyvalent characterizations [10,13]
is that the complexity bound can be deduced by looking only at the inter-
face of the program (its type) without refering to the constructions steps.
In our proofs we have carefully distinguished the respective roles played
by syntactic ingredients (well-formedness) and typing ingredients. This
has allowed us to illustrate how types can provide two different charac-
terizations of the class k-FEXP, based on the use of different data-types.
We believe that the separation between syntactic and typing arguments
can facilitate the possible future usage of our calculus with other type

15

systems. As future work it would be challenging to investigate if simi-
lar characterizations could be obtained for other hierarchies, like possibly
space hierarchies.

References

1. Baillot, P.: Stratified coherence spaces: a denotational semantics for light linear
logic. Theor. Comput. Sci. 318(1-2), 29–55 (2004)

2. Baillot, P.: Elementary linear logic revisited for polynomial time and an exponential
time hierarchy. In: Yang, H. (ed.) APLAS. Lecture Notes in Computer Science, vol.
7078, pp. 337–352. Springer (2011)

3. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the poly-
time functions. Computational Complexity 2, 97–110 (1992)

4. Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Light logics and the call-by-
value lambda-calculus. Logical Methods in Computer Science 4(4) (2008)

5. Dal Lago, U.: Context semantics, linear logic, and computational complexity. ACM
Trans. Comput. Log. 10(4) (2009)

6. Dal Lago, U., Masini, A., Zorzi, M.: Quantum implicit computational complexity.
Theor. Comput. Sci. 411(2), 377–409 (2010)

7. Danos, V., Joinet, J.B.: Linear logic and elementary time. Inf. Comput. 183(1),
123–137 (2003)

8. Girard, J.Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998)
9. Jones, N.D.: Computability and complexity - from a programming perspective.

Foundations of computing series, MIT Press (1997)
10. Jones, N.D.: The expressive power of higher-order types or, life without cons. J.

Funct. Program. 11(1), 5–94 (2001)
11. Lafont, Y.: Soft linear logic and polynomial time. Theor. Comput. Sci. 318(1-2),

163–180 (2004)
12. Leivant, D.: Predicative recurrence and computational complexity I: word recur-

rence and poly-time. In: Feasible Mathematics II, pp. 320–343. Birkhauser (1994)
13. Leivant, D.: Calibrating computational feasibility by abstraction rank. In: LICS.

pp. 345–. IEEE Computer Society (2002)
14. Leivant, D., Marion, J.Y.: Lambda-calculus characterizations of poly-time. Fun-

dam. Inform. 19(1/2), 167–184 (1993)
15. Madet, A.: Implicit Complexity in Concurrent Lambda-Calculi. Ph.D. thesis, Uni-

versité Paris 7 (December 2012), http://tel.archives-ouvertes.fr/tel-00794977
16. Madet, A., Amadio, R.M.: An elementary affine lambda-calculus with multithread-

ing and side effects. In: Ong, C.H.L. (ed.) TLCA. Lecture Notes in Computer
Science, vol. 6690, pp. 138–152. Springer (2011)

17. Marion, J.Y.: A type system for complexity flow analysis. In: LICS. pp. 123–132.
IEEE Computer Society (2011)

18. Mazza, D.: Linear logic and polynomial time. Mathematical Structures in Com-
puter Science 16(6), 947–988 (2006)

19. Ronchi Della Rocca, S., Paolini, L.: The Parametric Lambda-Calculus:
a Metamodel for Computation. Texts in Theoretical Computer Science,
Springer, Berlin (2004), http://www.springer.com/sgw/cda/frontpage/0,

,5-40356-72-14202886-0,00.html

20. Ronchi Della Rocca, S., Roversi, L.: Lambda-calculus and intuitionistic linear logic.
Studia Logica 59(3), 417–448 (1997)

http://www.springer.com/sgw/cda/frontpage/0,,5-40356-72-14202886-0,00.html
http://www.springer.com/sgw/cda/frontpage/0,,5-40356-72-14202886-0,00.html

16

21. Terui, K.: Light affine lambda-calculus and polynomial time strong normalization.
Arch. Math. Log. 46(3-4), 253–280 (2007)

17

APPENDIX

A The λ
!-calculus

A.1 Proof of of Proposition 2

Let δ = δ(M). First by Prop. 1 we know that to reduce M it is sufficient to
reduce it to a δ-normal form. We will prove for any i ≤ δ the following
statement by induction on i:

H(i): any maximal level-by-level reduction sequence s of M contains
an i-normal form.

For proving H(0), just observe that by Lemma 2 the number of re-
duction steps at depth 0 is bounded by |M|0.

Now assume H(i) for i < δ, and consider a maximal level-by-level
reduction sequence s. Let Mi be the first i-normal form reached by s.
Then by Prop. 1.(i) all reduction steps in s after Mi occur at depth strictly
superior to i. Moreover by Lemma 2 there are at most |Mi|i+1 reduction
steps at depth i + 1, therefore s does reach an (i + 1)-normal form and
thus H(i+ 1) is proved. The statement then follows from H(δ).

A.2 Proof of Lemma 3

In order to prove this Lemma, we need a formal definition of the leftmost-
by-level strategy. To this aim, we need some additional definitions for con-
texts. We consider a more general notion of context than that introduced
in Sect. 2.1, with possibly several holes:

C ::= � | x | λx.C | λ!x.C | CC |!C

We call simple contexts the contexts defined in Sect. 2.1, with only one
hole.

We denote by C[, ...,︸ ︷︷ ︸
n

]i with i ∈ N a context that has exactly n

subterms at depth i, which are all holes. Note that this definition implies
that, given a term M and an integer i, there is a unique way of representing
it as C[N1, ..., Nn]i. For example, let M = (λ!x.y!x!(λ!z.!z))!I, where I =
λx.x. Then M = C[x, λ!z.!z, I]1, where C = (λ!x.y!�!�)!�.

Now we define a notion of evaluation context which will be useful to
describe the leftmost-by-level strategy.

Definition 2 (Stratified evaluation context). The stratified evalua-
tion context of M at depth i (i ≤ δ(M)), denoted by EM

i , is a simple context
defined by induction on i:

18

– EM
0 is defined inductively as

⊡ if M = (λx.P)Q or M = (λ!x.P)!Q

(λ!x.P)EQ
0 if M = (λ!x.P)Q and Q 6=!Q′

(λ!x.EP
0)Q if M = (λ!x.P)Q, Q ∈ nf0 and Q 6=!Q′

λx.EN
0 if M = λx.N

λ!x.EN
0 if M = λ!x.N

NEQ
0 if M = NQ, N is not an abstraction and N ∈ nf0

EN
0Q if M = NQ and N is not an abstraction

undefined in any other case

– Let M = C[N1, ..., Nn]i, and let Nk (1 ≤ k ≤ n) be the leftmost subterm
of M such that Nk 6∈ nf i: then EM

i = ENk
0

The evaluation context of a term is defined accordingly as follows.

Definition 3 (Evaluation context). The evaluation context E of a
term M, denoted by EM, is defined by the following procedure:
i := 0;

while i ≤ δ(M)

{ if EM
i is defined then EM = EM

i else i := i+ 1 }

Now the leftmost-by-level strategy =⇒ is described by:

M =⇒ M′ if there are an evaluation context EM, a redex N and a term
N′ such that M = EM[N], M′ = EM[N′] and N → N′.

In order to find a sharp bound for the increase of size at depth i or
greater, we want to find a measure at depth i which decreases with every
reduction at depth i − 1, for any i > 0. Clearly the size at depth i does
not have such a property, as any !-redex can make the size at depth i
grow quadratically.

Let us consider M =⇒i M′ 3: the measure we will use is the maxi-
mum number of potential duplications of a subterm at depth i during
the reduction of M, called active points, denoted by ⌈M⌉i. Such measure
is dynamic, since it counts the number of occurrences of variables bound
by λ! which could be replaced during the reduction, so it depends strictly
on the evaluation strategy.

Definition 4. 1. The maximum number of λ!-bounded occurrences at
depth i in M, denoted by oi(M), for i > 0, is defined inductively as
follows:

3 By the α-rule, we assume that all bound variables in M are different.

19

– If i = 1, then

• M = x implies o1(M) = 0;
• M = λx.P implies o1(M) = o1(P);
• M = λ!x.P implies o1(M) = max{occ(x, P), o1(P)};
• M = NP implies o1(M) = max{o1(N), o1(P)};
• M =!N implies o1(M) = 0

– If i > 1, then M = C[N1, ..., Nm]i−1 implies o1(M) = max1≤j≤m o1(Nj).

2. The number of active points of M at depth i, denoted by ⌈M⌉i, is defined
by induction on EM as follows:

– If EM = EM
0 , then

• EM
0 = ⊡ implies ⌈M⌉1 = o1(M);

• EM
0 = λx.EN

0 implies ⌈M⌉1 = ⌈N⌉1;
• EM

0 = λ!x.EN
0 implies ⌈M⌉1 = ⌈N⌉1;

• EM
0 = PEN

0 implies ⌈M⌉1 = ⌈N⌉1;
• EM

0 = EP
0N implies ⌈M⌉1 = max{⌈P⌉1, o1(N)};

• EM
0 = (λ!x.P)EN

0 implies ⌈M⌉1 = max{o1(λ
!x.P), ⌈N⌉1};

• EM
0 = (λ!x.EP

0)N implies ⌈M⌉1 = ⌈P⌉1.

– If EM = EM
i for some i > 0, then by definition M = C[N1, ..., Nm]i,

and ⌈M⌉i+1 = max1≤j≤m⌈Nj⌉1.
– If EM

i is undefined for all i ≥ 0, then ⌈M⌉i+1 = 0.

Observe that the number of active points is defined starting from
depth 1: indeed there are no active points at depth 0, because all variables
bound by λ! occur at depth greater than 1. Moreover, it is easy to see
that ⌈M⌉1 ≤ |M|1 for any M.

Now our goal is to show that the number of active points does not
increase during a reduction; to do so, we first prove that the number of
active points of a term M at depth i is bounded by oi(M), and that reducing
a redex M to M′ implies o1(M

′) ≤ o1(M).

Lemma 5. 1. If x occurs at level 0 in P, then oi(P[Q/x]) ≤ max{oi(P), oi(Q)},
otherwise oi(P[Q/x]) ≤ oi(P).

2. ⌈M⌉i+1 ≤ oi+1(M) for every M, i ≥ 0.

3. Let M = (λx.P)Q or M = (λ!x.P)!Q: then M′ = P[Q/x] implies o1(M
′) ≤

⌈M⌉1.

Proof. All proofs are easy.

Lemma 6. M =⇒ M′ implies ⌈M′⌉i+1 ≤ ⌈M⌉i+1, for every i ≥ 0.

Proof. We proceed by induction on i.

20

If i = 0, then we proceed by induction on EM
0 . Observe that if M′ ∈ nf0

then the proof is trivial, since ⌈M′⌉1 = 0 ≤ ⌈M⌉1; therefore we consider all
possible cases where EM′

0 is defined. As an example, let EM
0 = (λ!x.P)EN

0 , so
M = (λ!x.P)N and M′ = (λ!x.P)N′ where N =⇒0 N

′. By inductive hypothesis,
⌈N′⌉1 ≤ ⌈N⌉1. We consider three cases:

– if EM′

0 = (λ!x.P)EN′

0 , then the proof follows by induction;
– if EM′

0 = (λ!x.EP
0)N

′, then by definition ⌈M′⌉1 = ⌈P⌉1 and by Lemma
5.(2) ⌈P⌉1 ≤ max{o1(λ

!x.P), ⌈N⌉1} = ⌈M⌉1;
– if EM′

0 = ⊡, then N′ =!N′′ for some term N′′, and M′ = (λ!x.P)!N′′, so by
definition ⌈M′⌉1 = o1(λ

!x.P) ≤ max{o1(λ
!x.P), ⌈N⌉1} = ⌈M⌉1;

Finally the property can be easily proved for i > 0 by using the
definition of context.

We now need to study how performing a =⇒n step at depth n changes
the size of the whole term at higher depths.

Lemma 7. M =⇒n N implies |N|i ≤ ⌈M⌉n+1 · |M|i + |M|i for every i > n.

Proof. We proceed by induction on n, and then by induction on EM
n, again

by considering all possible cases.

In this way we can obtain easily a sort of stratified version of Lemma
3.

Lemma 8. Let M be a well-formed term: M
∗

=⇒n M′ in k reduction steps
implies |M|′i ≤ |M|i · (⌈M⌉n+1 + 1)k for every i > n.

Proof. Let M = M0 =⇒n M1 =⇒n ... =⇒n Mk = M′: we proceed by induction
on k.

If k = 1, then M =⇒ M′ and ⌈M⌉n+1 = |M|n+1, so by Lemma 7 |M|′i ≤
|M|i · (⌈M⌉n+1 + 1).

Now let M =⇒n Mh−1 in h reduction steps, for some h > n, so by
inductive hypothesis |Mh−1|i ≤ |M|i · (⌈M⌉n+1 + 1)h−1 for every i > n.

If Mh−1 =⇒n Mh, then

|Mh|i ≤ |Mh−1|i · (⌈M
h−1⌉n+1 + 1) by Lemma 7

≤ |Mh−1|i · (⌈M⌉n+1 + 1) by Lemma 5

Hp
≤ |M|i · (⌈M⌉n+1 + 1) · (⌈M⌉n+1 + 1)h−1

= |M|i · (⌈M⌉n+1 + 1)h

The proof of Lemma 3 now follows trivially from Lemma 8.

21

A.3 Proof of Lemma 4

Approximations M
i
and C

i
of a term and a context are defined inductively

by:

!M
0
=!∗, !M

i+1
=! M

i
, xi = x, �

i
= �,

MN
i
= M

i
N
i
, λx.M

i
= λx.M

i
, λ!x.M

i
= λ!x.M

i
.

We need first to examine the effect of approximation on substitutions
and on contexts.

Lemma 9. – If all occurrences of x in M are at depth 0, then M[N/x]
i
=

M
i
[N

i
/x].

– If all occurrences of x in M are at depth 1, then M[N/x]
0
= M

0
, M[N/x]

i+1
=

M
i+1

[N
i
/x], for i ≥ 0.

In the rest of this Section denote by C[]i a context with a single hole,
which is at depth i; note that here the context might contain other sub-
terms at depth i than this hole. Note that it follows from the definition

that C[M]j
i
= C

i
, if i < j, and C[M]j

i
= C

i
[M

i−j
]j , if i ≥ j.

Lemma 10. We have for i ≥ 0:

(λx.M)N
i
→ M[N/x]

i

(λ!x.M)!N
i
→ M[N/x]

i

and these reduction steps take place at depth 0.

Proof. It is sufficient to examine each case and to use Lemma 9.

Proof (of Lemma 4).

(i) As M → M′ by one step at depth j, we have that M = C[P]j and
M′ = C[P′]jwhere P is a redex and P′ is its contractum. Therefore by
Lemma 9:
– If i+ 1 ≤ j, then M

i
= M′

i
,

– If i ≥ j, then M
i
= C

i
[P

i−j
]j → C

i
[P′

i−j
]j = M′

i
, by using Lemma

10, and the reduction takes place at depth j.

(ii) Assume that M
i
→ M′

i
by one step at depth i. We already know that

|M′
i
|j ≤ |M

i
|j , for j < i,

|M′
i
|i < |M

i
|i.

We now need to examine what happens to |M
i
|i+1.

We have that M
i
= C[P]i and M′

i
= C[P′]i where P is a redex and P′ is

its contractum.

22

– If P is a β redex then we have |M′
i
|i+1 < |M

i
|i+1.

– If P is a ! redex then as M
i
= C[P]i we have that P = (λ!x.N)!∗.

Moreover as the term is well-formed, if there is an occurrence of
x in N then it should be at depth 1 in N, so at depth i+ 1 in M

i
.

But any subterm of M
i
at depth i+ 1 is of the form ∗. So x has

no occurrence in N, and thus P′ = N and |M′
i
|i+1 < |M

i
|i+1.

Moreover for j ≥ 2 we have that |M′
i
|j = 0 = |M

i
|j . So the statement

follows.

B Type system

B.1 Proof of Theorem 1

Remark 1. Π ⊲ Γ | ∆ | Θ ⊢!M :!σ implies Π ends with an application of
rule (!).

Lemma 11 (Weakening). If Π ⊲ Γ1 | ∆1 | Θ1 ⊢ M : σ, then there is
a derivation Σ ⊲ Γ1, Γ2 | ∆1, ∆2 | Θ1, Θ2 ⊢ M : σ, for every Γ2, ∆2, Θ2

disjoint from each other and from Γ1, ∆1, Θ1.

Lemma 12 (Substitution). Let Γ1#Γ2. Then:

(i) If Π ⊲ Γ1, x : A | ∆ | Θ ⊢ M : τ and Σ ⊲ Γ2 | ∆ | Θ ⊢ N : A, then there
is a derivation S(Σ,Π) ⊲ Γ1, Γ2 | ∆ | Θ ⊢ M[N/x] : τ .

(ii) If Π ⊲ Γ1 | ∆ | Θ, x : σ ⊢ M : τ and Σ ⊲ ∅ | ∆ | Θ ⊢ N : σ, then there
is a derivation S(Σ,Π) ⊲ Γ1 | ∆ | Θ ⊢ M[N/x] : τ .

(iii) If Π ⊲ Γ1 | ∆, x :!σ | Θ ⊢ M : τ and Σ ⊲ Γ2 | ∆ | Θ ⊢!N :!σ, then there
is a derivation S(Σ,Π) ⊲ Γ1, Γ2 | ∆ | Θ ⊢ M[N/x] : τ .

Proof. All three points follow easily by induction on Π. In particular it
is worth noticing the case where, in point iii), the last applied rule is (!);
then either x 6∈ FV(P) and Π is

Π ′ ⊲ ∅ | ∅ | Θ′ ⊢ P : ρ

Γ1 | ∆, x :!σ | Θ ⊢!P :!ρ
(!)

where M =!P, τ =!ρ and ∆ =!Θ′, ∆′, so S(Σ,Π) is

Π ′ ⊲ ∅ | ∅ | Θ′ ⊢ P : ρ

Γ1, Γ2 | ∆ | Θ ⊢!P :!ρ
(!)

or x ∈ FV(P) and Π is

Π ′ ⊲ ∅ | ∅ | Θ′, x : σ ⊢ P : ρ

Γ1 | ∆, x :!σ | Θ ⊢!P :!ρ
(!)

23

where M =!P, τ =!ρ and ∆ =!Θ′, ∆′. By Remark 1, Σ is

Σ′ ⊲ ∅ | ∅ | Θ′′ ⊢ N : σ

Γ | ∆ | Θ ⊢!N :!σ
(!)

where ∆ =!Θ′′, ∆′′. By Lemma 11 we can obtain Π ′′ ⊲ ∅ | ∅ | Θ′′′, x : σ ⊢
P : ρ and Σ′′ ⊲ ∅ | ∅ | Θ′′′ ⊢ N : σ such that Θ′′′ = Θ′, Θ′′ and ∆ =!Θ′′′, ∆′′′

for some context ∆′′′. Then by applying point (ii) of the current Lemma
to Π ′′, followed by one application of rule (!), S(Σ,Π) is

S(Σ′′, Π ′′) ⊲ ∅ | ∅ | Θ′′′ ⊢ P[N/x] : ρ

Γ1, Γ2 | ∆ | Θ ⊢!(P[N/x]) :!ρ
(!)

Proof (of Theorem 1). The subject reduction theorem follows easily from
Lemma 12.

B.2 Proof of Proposition 7.(i)

We call rules (µI), (µE), (∀I), (∀E) of Table 1 non structural-rules, since
they do not contribute to the construction of a term.

We first need to show two properties on terms: the first one is about
terms having a modal type, while the second one is about conditions for
showing that a term is not an application.

Proposition 9. Let Π ⊲ Γ | ∆ | ∅ ⊢ M :!σ, where M ∈ nf0. Then:

1. Γ = ∅ implies M =!N for some N.
2. if there exists a variable x occurring free in M and such that Γ (x) is

defined, then we have M = NQ, for some N,Q.

Proof. Let Π ⊲ Γ | ∆ | ∅ ⊢ M :!σ, for some σ: both points follow by
induction on Π and by observing that the only rules that can assign a
non-linear type are (!) and (⊸ E).

Lemma 13. Assume Π ⊲ Γ | ∅ | ∅ ⊢ M : σ and:

(i) M ∈ nf0;
(ii) for every x ∈ FV(M), Γ (x) is a type variable a or a linear type

A⊸ a;

then M is not an application.

Proof. By induction on Π. The only non obvious case is when Π is an ap-
plication of the rule (⊸ E), followed by a (possibly empty) sequence δ of
non-structural rules; then the proof follows by contradiction by applying
Prop. 9.

24

Proof (of Prop. 7.(i)). We proceed by induction on k.

– First consider the case where k = 0. By Lemma 13, M is not an appli-
cation and it cannot be a variable, since it is closed. So M = λx.N or
λ!x.N and the derivation is

Γ | ∆ | ∅ ⊢ N : τ

∅ | ∅ | ∅ ⊢ M : σ⊸ τ
(⊸ I∗)

∅ | ∅ | ∅ ⊢ M : ∀a.a⊸ a⊸ a
δ

where either the rule is (⊸ IL) and Γ = x : σ, ∆ = ∅, or the rule is
(⊸ II), Γ = ∅ and ∆ = x : σ, and δ is a sequence of non-structural
rules: then δ is a (∀I) rule, and so σ⊸ τ = a⊸ a⊸ a. So the only
possibility is x : a | ∅ | ∅ ⊢ N : a⊸ a. Again by Lemma 13, N cannot be
an application. It cannot be a variable either, because of the context,
so either N = λy.P or N = λ!y.P. By repeating the same reasoning, we
have N = λy.P, and x : a, y : a | ∅ | ∅ ⊢ P : a. By Lemma 13, P cannot
be an application, and it cannot be an abstraction, since in this case
x : a, y : a | ∅ | ∅ ⊢ P : a would be obtained by a rule (⊸ I∗) (where
∗ ∈ {L, I}), followed by a sequence of non-structural rules. But a rule
(⊸ I∗) derives a type of the shape σ ⊸ τ and a cannot be obtained
from σ⊸ τ by a sequence of non-structural rules. So P is either x or
y, and the proof is given.

– Now consider the case k + 1. By repeatedly applying Prop. 9.1, M =
!k+1N, and ∅ | ∅ | ∅ ⊢ N : ∀a.a⊸ a⊸ a.
Then the proof of the previous point applies.

B.3 Proof of Theorem 4

We prove the functoriality of the ! modality:

Proposition 10. Let ⊢ M : σ1 ⊸ ... ⊸ σn ⊸ τ for some n > 0:
then there is a term Mk such that ⊢ Mk :!kσ1 ⊸ ... ⊸!kσn ⊸!kτ , and
Mk!

kP1...!
kPn and !k(MP1...Pn) have the same normal form, for any closed

term Pi (1 ≤ i ≤ n), for any k ≥ 1.

Proof. By induction on k. Let us consider the base case k = 1: by first
applying n times rule (⊸ E) to ⊢ M : σ1 ⊸ ... ⊸ σn ⊸ τ and to the
(parking) axioms ∅ | ∅ | xi : σi ⊢ xi : σi (1 ≤ i ≤ n), we obtain the proof
∅ | ∅ | x1 : σ1, ..., xn : σn ⊢ Mx1...xn : τ ; then we apply a rule (!), followed by
n applications of rule (⊸ II), so obtaining ⊢ λ!x1...xn.!(Mx1...xn) :!σ1 ⊸
...!σn⊸!τ . Observe that (λ!x1...xn.!(Mx1...xn))!P1...!Pn and !(MP1...Pn) have
the same normal form.

The inductive case follows easily.

25

In order to prove completeness, we need to represent some functions
over tally integers:

Lemma 14. If p is a polynomial over one variable with coefficients in
N, then

(i) there is M representing p(n) such that ⊢ M :!N⊸!N;

(ii) there is M representing 2
p(n)
k such that ⊢ M :!N ⊸!k+1N, for any

k ≥ 1.

Proof. We give a sketch of the proof, showing that, by composing addition
and multiplication with the term representing the exponential function, it

is possible to represent all the functions of the form 2
q(n)
k on tally integers,

for some polynomial q(n) and k ≥ 0.

The sum and multiplication of two tally integers are given respec-

tively by ⊢ add : N⊸ N⊸ N and ⊢ mult : N⊸ N⊸ N, where add
def
=

λn.λm.λ!s.(λ!x.λ!y.!(λz.x(yz)))(n!s)(m!s) and mult
def
= λn.λm.λ!s.n(m!s).

(i) By composing add and mult in a suitable way, we can build a term
M representing the polynomial q(n), such that M :!N⊸!N.

(ii) The function f(n) = 2n is represented by Πdouble⊲ ⊢ double
def
=

mult 2 : N⊸ N; then the function 2n can be represented by iterating
double, so the resulting derivation is Πexp ⊢ exp : N ⊸!N, where

exp
def
= λx.(λ!y.!(y 1))(x !double).

Now, by applying Prop. 10 to Πexp and composing k times exp, we
can represent the function 2nk by Πexpk

⊲ ⊢ expk : N ⊸!kN and, by
applying Prop. 10 to it, we compose the resulting derivation with
⊢ M :!N⊸!N such that M represents the polynomial q(n), obtaining

the term of type !N⊸!k+1N representing 2
q(n)
k .

In the main proof we will use the construction ⊗ on terms and types,
which is defined in Sect. 4 of the paper.

Scott words allow for an easy definition of the basic operations on
binary words and of a case function:

cons0
def
= λw.λs0.λs1.λx.s0w : WS ⊸WS nil

def
= λs0.λs1.λx.x : WS

cons1
def
= λw.λs0.λs1.λx.s1w : WS ⊸WS tail

def
= λw.w I I nil : WS ⊸WS

case
def
= λs0.λs1.λx.λw.ws0s1x : ∀a.(WS ⊸ a)⊸ (WS ⊸ a)⊸ a⊸ (WS ⊸ a)

It is possible to define a term length
def
= λw.λ!s.(λ!x.!(λz.xz))(wss) :

W ⊸ N, returning the length of a word as a tally integer, and also a

26

term conv
def
= λw.(λ!x.!(x nil))(w !cons0 !cons1) : W⊸!WS , converting

a Church binary word into the corresponding Scott binary word. Note: in
the following, for any given term : σ1⊸ ...⊸ σn⊸ τ , we will denote by
termk :!kσ1 ⊸ ... ⊸!kσn ⊸!kτ the term such that !k(term P1...Pn) and
termk!

kP1...!
kPn reduce to the same normal form, by implicitly applying

Prop. 10.
Starting from a few basic operations on Church binary words

S0
def
= λw.λ!

s0.λ
!
s1.(λ

!
y.!(λx.y(s0x)))(w!s0!s1) : W⊸W

S1
def
= λw.λ!

s0.λ
!
s1.(λ

!
y.!(λx.y(s1x)))(w!s0!s1) : W⊸W Z

def
= λ!

s0.λ
!
s1.!(λx.x) : W

it is possible to define a program coer
def
= λw.(λ!y.!(yZ))(w!S0!S1) : W⊸

!W, such that coer w =!w; moreover, we can build the term coerk
def
=

λ!w.coerk(coerk−1(...(coer1 !w)...)) :!W ⊸!k+1W, for k ≥ 1, such that

coerk!w
∗
→!k+1w for any Church word w.

Finally, we define ⊢ iter :!A⊸!(A⊸ A)⊸ N⊸!A as the term which,
when applied to a base, a step function and a value n, iterates the step
function n times starting from the base.

Let M be a Turing machine with alphabet Σ = {0, 1} and a set of n
states Qn = {q1, ..., qn}. We can represent the configurations of a one-tape
Turing machine M over a binary alphabet with n states, through a term

NL ⊗ P ⊗ NR ⊗ P having type ConfS
def
= WS ⊗ B ⊗ WS ⊗ Bn where: the

first component represents the portion of the tape on the left-hand side
of the scanned symbol, in reverse order; the second component represents
the scanned symbol; the third component represents the portion of the
tape on the right-hand side of the scanned symbol; the fourth component
represents the current state of the machine.

Before proving the completeness lemma, we need do define three more
terms, which will allow us to simulate the operations of a Turing machine
through λ!-calculus.

Lemma 15. Let M be a one-tape deterministic Turing machine over a
binary alphabet; then the following terms can be defined:

(i) init : WS ⊸ ConfS
(ii) step : ConfS ⊸ ConfS
(iii) accept : ConfS ⊸ B

such that init maps a Scott word into the corresponing initial configura-
tion of M, step computes the next configuration of M based on a given
configuration, and accept returns true (respectively false) if the state
of the given configuration is accepting (respectively rejecting).

27

Proof. For simplicity, we extend the notation for the tensor product to the

n-ary case, so M1⊗ ...⊗Mn
def
= λx.xM1...Mn, and let z be x1⊗ ...⊗xnin N

def
=

z(λx1. ...λxn.N).

(i) We define init to be init
def
= case M1M2M3 : WS ⊸ ConfS where

M1 = λw.nil⊗true⊗w⊗1̃ M2 = λw.nil⊗false⊗w⊗1̃ M3 = nil⊗false⊗nil⊗1̃

and 1̃ : Bn represents (by convention) the initial state.
(ii) The term step can be defined based on the transition function of

M by doing a case distinction through the case term.

(iii) Finally, we define accept
def
= λz.let z be yL⊗x⊗yR⊗s in sQ1...Qn :

ConfS ⊸ B where, for 1 ≤ i ≤ n, Qi = true (respectively Qi =
false) if the state encoded by the i-th element of type Bn is ac-
cepting (respectively rejecting) for M.

Finally we can prove the main completeness result:

Proof (of Theorem 4).

Let M be a deterministic Turing machine of time 2
q(n)
k computing

a binary function f on binary words. By Lemma 14, there is a deriva-

tion ⊢ Q :!N ⊸!k+1N representing 2
q(n)
k . By applying ∅ | w :!W | ∅ ⊢

iterk+1 :!k+2ConfS ⊸!k+2(ConfS ⊸ ConfS) ⊸!k+1N ⊸!k+2ConfS to
the arguments

Π ⊲ ∅ | w :!W | ∅ ⊢ initk+2(convk+1(coer
k !w)) :!k+2

ConfS

Σ⊲∅ | w :!W | ∅ ⊢!k+2
step :!k+2(ConfS ⊸ ConfS) Φ⊲∅ | w :!W | ∅ ⊢ Q(length1 !w) :!k+1N

the resulting derivation Ψ is

∅ | w :!W | ∅ ⊢ iterk+1(initk+2(convk+1(coer
k !w)))(!k+2

step)(Q(length1 !w)) :!k+2
ConfS

Then we can apply rule (⊸ E) to ∅ | w :!W | ∅ ⊢ acceptk+2 :!
k+2ConfS ⊸

!k+2B and to Ψ , followed by one application of rule (⊸ II) to abstract
over w, and we get the desired derivation.

C Refining types for an alternative characterization

It is easy to check that the following typing rules are derivable:

Γ, x1 : A1, x2 : A2 | ∆ | Θ ⊢ M : τ

Γ | ∆ | Θ ⊢ λ(x1 ⊗ x2).M : A1 ⊗ A2⊸ τ
(⊸ IL⊗)

Γ | ∆, x1 :!σ1, x2 :!σ2 | Θ ⊢ M : τ

Γ | ∆ | Θ ⊢ λ!(x1 ⊗ x2).M :!σ1⊗!σ2⊸ τ
(⊸ II⊗)

Γ1 | ∆ | Θ ⊢ M1 : σ1 Γ2 | ∆ | Θ ⊢ M2 : σ2 Γ1#Γ2

Γ1, Γ2 | ∆ | Θ ⊢ M1 ⊗ M2 : σ1 ⊗ σ2
(⊗I)

28

C.1 Proof of Prop. 8

In order to prove Prop. 8, we will need a few intermediary lemmas. A
derivation is clean if it does not contain any ∀ nor µ detours, in the sense
of natural deduction.

Lemma 16. Let Π ⊲ Π | ∅ | Θ ⊢ M :!τ and M ∈ nf0, such that Γ,Θ ⊆
x : σ1 ⊸ ...⊸ σn ⊸ a, y1 : a1, ..., yk : ak (n ≥ 1, k ≥ 0): then M =!N for
some N.

Proof. By induction on Π. By inspecting the rules of the system, the last
rule of Π is either (!) or (⊸ E). If the last rule is (!) then the result
follows trivially. Otherwise, let Π be

Π1 ⊲ Γ1 | ∅ | Θ ⊢ P : ρ⊸!τ Π2 ⊲ Γ2 | ∅ | Θ ⊢ Q : ρ

Γ1, Γ2 | ∅ | Θ ⊢ PQ :!τ
(⊸ E)

where M = PQ and Γ = Γ1, Γ2. We check all three possible cases:

– M = (λz.R)A⊸!τQA: this case is not possible, because then M would be
a β-redex, contradicting the inital hypothesis that M ∈ nf0.

– M = (λ!z.R)!σ⊸!τQ!σ: but by induction hypothesis on Π2 we know that
Q =!Q′ for some Q′, so M would be a !-redex, contradicting the initial
hypothesis that M ∈ nf0, so this case is not possible.

– M = zρ1⊸...⊸ρm⊸!τP
ρ1
1 ...Pρmm : because the only variable with an arrow

type (if any) is x, we have that z = x, so Π1 ⊲Γ1 | ∅ | Θ ⊢ xP1...Pm−1 :
σ⊸!τ and Π2 ⊲Γ2 | ∅ | Θ ⊢ Pm : σ; but any application of x to m ≤ n
subterms will produce a term having either an arrow type or a type
variable, so this case is not possible either.

Lemma 17. Let Π ⊲ Γ | ∅ | Θ ⊢ M : a, such that M ∈ nf0 and Γ,Θ = x :
σ1 ⊸ ...⊸ σn ⊸ a, y1 : a1, ..., yk : ak (n ≥ 1, k ≥ 0): then either M = yi,
if a = ai, or M = xP1...Pn for some P1, ..., Pn.

Proof. Consider the shape of Π. The last rule cannot be (⊸ IL) or (⊸
II), since a is not an arrow type. Similarly, we know that the last rule can
not be a ∀ or a µ rule, since the assumption of Π being clean. Moreover,
since the type is linear we know that the last rule is not (!).

If the last rule is (AxL) (resp. (AxP)), then there is yi ∈ dom(Γ)
(resp. yi ∈ dom(Θ)) such that x = yi and a = ai; so the first point is
proved.

Otherwise the last rule is (⊸ E), so Π is

Π1 ⊲ Γ1 | ∅ | Θ ⊢ P : ρ⊸ a Π2 ⊲ Γ2 | ∅ | Θ ⊢ Q : ρ

Γ1, Γ2 | ∅ | Θ ⊢ PQ : a
(⊸ E)

29

where M = PQ and Γ = Γ1, Γ2. Since M ∈ nf0, there are only two possibil-
ities:

– M = (λ!y.P)!τ⊸aQ!τ where Q 6=!Q′, i.e. M is a block: but by Lemma
16 applied to Π2 ⊲ Γ2 | ∅ | Θ ⊢ Q :!τ we know that Q =!Q′, which
contradicts the hypothesis that M ∈ nf0. So M is not a block.

– M = zρ1⊸...⊸ρm⊸aP
ρ1
1 ...Pρmm : since x is the only variable having an

arrow type ending with a, m = n and Π ⊲ Γ | ∅ | Θ ⊢ xP1...Pn : a,
where x is introduced either through rule (AxL), if x ∈ dom(Γ), or
through rule (AxP), if x ∈ dom(Θ). So the second point is proved.

Lemma 18. If ⊢ M : (σ1 ⊗ σ2) and M ∈ nf0, then there are ⊢ M1 : σ1 and
⊢ M2 : σ2 such that M = M1 ⊗ M2.

Proof. We consider a clean derivation Π proving ⊢ M : ∀a.((σ1 ⊸ σ2 ⊸
a) ⊸ a). Since Π is clean, the last rule is (∀I) applied to the premise
Π ′⊲ ⊢ M : (σ1⊸ σ2⊸ a)⊸ a. Now consider Π ′: by Lemma 13 we know
that M is not an application, and moreover M is not a variable, since the
empty bases; therefore, M is an abstraction, in particular a linear one since
the type is of the shape A⊸ a; then M = λx.N and the last rule of Π ′ is
(⊸ IL) applied to the premise Π ′′ ⊢ x : σ1 ⊸ σ2 ⊸ a | ∅ | ∅ ⊢ N : a.
Finally, by applying Lemma 17 to Π ′′, it follows that N = xM1M2 for some
terms M1, M2: so Π ′′ is

Γ | ∅ | ∅ ⊢ x : σ1 ⊸ σ2 ⊸ a
(AxL)

Σ1⊲ ⊢ M1 : σ1

Γ | ∅ | ∅ ⊢ xM1 : σ2 ⊸ a
(⊸ E)

Σ2⊲ ⊢ M2 : σ2

Γ | ∅ | ∅ ⊢ xM1M2 : a
(⊸ E)

where Γ = x : σ1 ⊸ σ2 ⊸ a; so M = λx.xM1M2 = M1 ⊗ M2 and the
desired derivations for M1 and M2 are respectively Σ1 and Σ2.

Lemma 19. If ⊢ M :!kN for k ≥ 0 and M ∈ nfk+1, then there exists n ∈ N

such that M =!kn.

Proof. Recall that n = λ!f.!(λx.fnx) for any n ∈ N. Let Π be a clean
derivation for ⊢ M :!kN; we proceed by induction on k.

Let k = 0, so Π⊲ ⊢ M : N and M ∈ nf1, and let us consider the shape of
Π. Since Π is clean, the derivation ends with an application of rule (∀I)
to the premise Π ′⊲ ⊢ M :!(a⊸ a)⊸!(a⊸ a). By Lemma 13, M is not an
application; moreover, M is not a variable since the term is closed; so M is
an abstraction, and in particular M = λ!f.N since the type has the shape
!σ ⊸ τ : then Π ′ ends with an application of rule (⊸ II) to the premise
∅ | f :!(a ⊸ a) | ∅ ⊢ N :!(a ⊸ a). By Prop. 9, we know that N =!P for
some P: then M = λ!f.!P and Π ′′ ends with an application of rule (!) to the

30

premise Σ⊲∅ | ∅ | f : a⊸ a ⊢ P : a⊸ a. Again by Lemma 13, P is not an
application. If P = f , then M = λ!f.!f and Σ is a parking axiom, so the
proof is done. Otherwise P is an abstraction, and in particular P = λx.Q
since the type has the shape A ⊸ τ : then Σ ends with an application
of rule (⊸ IL) to the premise Σ′ ⊲ x : a | ∅ | f : a ⊸ a ⊢ Q : a: then
by Lemma 17 we know that either Q = x, so M = 0, or Q = fQ′: in the
second case, Σ′ ends with an application of rule (⊸ E) to parking axiom
∅ | ∅ | f : a ⊸ a ⊢ f : a ⊸ a and to Σ′′ ⊢ x : a | ∅ | f : a ⊸ a ⊢ Q′ : a;
finally, by repeating the same reasoning n times on the right premise of
rule (⊸ E) we get M = λ!f.!(λx.fnx) for some n ∈ N: so M = n and the
proof is complete.

Now consider the case k+1. By repeatly applying Prop. 9, M =!k+1N,
and Π ′⊲ ⊢ N : N: then the proof of the previous point applies.

Proof (of Prop. 8). By Lemma 18, we know that ⊢ M :!kN⊗!k+1WS and
M ∈ nf0 imply there are derivations ⊢ M1 :!

kN and ⊢ M2 :!
k+1WS such that

M = M1⊗M2: then the result follows easily by Prop. 7.(ii) in the paper and
Lemma 19.

C.2 Proof of Theorem 5

Proposition 11. Given a program P, for any k ≥ 2, there exists a poly-
nomial q such that, for any m ∈ N, w ∈ {0, 1}⋆, P(!m⊗!2ŵ)

∗
 M1k ∈ nfk−1

in at most 2
q(n)
k−2 steps, and |M1k| ≤ 2

q(n)
k−2, where n = m + length(w). In

particular, in the case where k = 2 we have a polynomial bound q(n).

Proof (Sketch). This statement can be proved in a way similar to Prop.
3. The only difference is in the case k = 2 for bounding the number of
reduction steps at depths 0 and 1, but it can be checked that here also the
number of steps at depths 0 and 1 are bounded by a constant, essentially
because the structure of the term P!m⊗!2ŵ at depth lower or equal to 1
does not depend on m or w.

Proposition 12. Given a program P, for any k ≥ 2, there exists a
polynomial q such that for any m ∈ N, w ∈ {0, 1}⋆, the reduction of

P(!m⊗!2ŵ) to its k-normal form can be computed in time O(2
q(n)
k−2) on a

Turing machine, where n = m+ length(w).

Proof (of Theorem 5). By combining the results of Prop. 12, the subject-
reduction property and Prop. 8.

31

C.3 Proof of Theorem 6

The following lemma states that from any pair !n⊗!2ŵ we can obtain the
prefix of ŵ of length n, possibly at higher depth:

Lemma 20. For any k ≥ 0, there exists a term ⊢ M : (!N⊗!2WS) ⊸
!k+2WS such that for any n, ŵ, the term M(!n⊗!2ŵ) reduces to !k+2ŵ′,
where w′ = w if w is of length inferior or equal to n, and otherwise w′ is
the prefix of w of length n.

The completeness proof is very similar to the one of Theorem 4, show-
ing how to simulate a Turing machine for a function of k-FEXP by a term
of type !W⊸!k+2WS :

Proof (Sketch, of Theorem 6). Consider a Turing machine M of time

2
q(n)
k computing f : then the size of the word output is bounded by 2

q(n)
k .

By Lemma 14, let ⊢ Q :!N⊸!k+1N be a term representing 2
q(n)
k ; moreover,

denote by !m⊗!2ŵ the input of M, where we assume that length(w) ≤ m.
By Lemma 20, there is a term P which can be applied to !m⊗!2ŵ and
outputs !k+2ŵ. By applying the term ⊢ Q :!N ⊸!k+1N to !m, we obtain

!k+12
q(m)
k : this term is used as the first component of the output pair.

Now we proceed as in the proof of Theorem 4: first we apply ⊢ init′S :
!k+2WS ⊸!k+2ConfS to !k+2ŵ and we obtain the initial configuration

!k+2c0; then we use !k+12
q(m)
k to iterate the term step executing one

step of the machine, starting from base !k+2c0; we then obtain the final
configuration !k+2c, from which we can extract the expected word !k+2ŵ′.

Finally we output the pair !k+12
q(m)
k ⊗!k+2ŵ′, of type (!k+1N⊗!k+2WS).

	Characterizing Polynomial and Exponential Complexity Classes in Elementary Lambda-Calculus
	Introduction
	The !-Calculus
	Terms and Reduction
	Representation of Functions
	Complexity of Reduction

	Type System
	Datatypes
	Complexity Soundness and Completeness

	Refining Types for an Alternative Characterization
	Conclusions
	The !-calculus
	Proof of of Proposition 2
	Proof of Lemma 3
	Proof of Lemma 4

	Type system
	Proof of Theorem 1
	Proof of Proposition 7.(i)
	Proof of Theorem 4

	Refining types for an alternative characterization
	Proof of Prop. 8
	Proof of Theorem 5
	Proof of Theorem 6

