
HAL Id: hal-01015148
https://hal.science/hal-01015148v2

Preprint submitted on 25 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Brief Tutorial On Recursive Estimation With
Examples From Intelligent Vehicle Applications (Part I):

Basic Spirit And Utilities
Hao Li

To cite this version:
Hao Li. A Brief Tutorial On Recursive Estimation With Examples From Intelligent Vehicle Applica-
tions (Part I): Basic Spirit And Utilities. 2014. �hal-01015148v2�

https://hal.science/hal-01015148v2
https://hal.archives-ouvertes.fr

A Brief Tutorial On Recursive Estimation
With Examples From Intelligent Vehicle
Applications (Part I): Basic Spirit And

Utilities

Hao Li

Abstract

Estimation is an indispensable process for an ocean of applications,
which are rooted in various domains including engineering, economy,
medicine, etc. Recursive estimation is an important type of estima-
tion, especially for online or real-time applications. In this brief tuto-
rial, we will explain the utilities, the basic spirit, and some common
methods of recursive estimation, with concrete examples from intelli-
gent vehicle applications.

Keywords: recursive estimation, Bayesian inference, Kalman filter
(KF), intelligent vehicles

1 Introduction

Estimation, simply speaking, is a process of “revealing” (“finding” etc) the
true value of certain entity (or entities) that we care about in certain activity
(or activities). Even more generally and abstractly speaking, estimation can
be regarded as a process of trying to know our world. In this sense, estimation
is a ubiquitous process for human activities. No matter which activity we are
going to carry out, we will normally not act blindly but act according to our
evaluation of things related to our activity. Take the ordinary and routine
behavior, walking, as an example: during a walking process, we will figure
out unceasingly a navigable (and often as short as possible) path according

1

to our observation of environment objects . In other words, we base our
walking behavior unceasingly on estimation of the environment in which we
are walking.

In above explanations, the intuitive words “entities that we care about”
are more formally referred to as the term state by researchers. A state can
refer to the pose (position and orientation) of an airplane; it can refer to the
poses of a group of airplanes; it can refer to the temperature of a patient; it
can refer to the trading volume of a capital market, etc. In intelligent vehicle
applications (to which the examples in this brief tutorial are related), a state
can refer to the vehicle pose [1] [2] [3] [4], can refer to certain info of specific
objects (such as lane marks and surrounding vehicles) [5] [6] [7], can refer
to a generic representation of the local environment of a vehicle [8] [9] etc.
What a state actually refers to depends on concrete applications.

Like state, another important concept well related to estimation is sys-
tem model (we examine entities from system perspective). A system model
of a state, is a (mathematical) model describing the constraints that the
state should satisfy as it evolves, or in other words, a (mathematical) model
describing the laws (physical, chemical, biological etc) that govern the evo-
lution or change of the state. Strictly speaking, we do not necessarily need a
system model to estimate a state, yet a better system model can help yield
a better estimate of the state. Consider the following problem as an exam-
ple: if we know certain object was in Paris one hour ago, and where may be
the object now? Given no specific information on the object, we may only
establish for its movement a weak system model no better than a random
guess model—Imagine that the object is a kind of hyper-developed alien who
masters transportation devices that move even much faster than light, and
it may appear potentially anywhere in the whole universe—If we know the
object is an airplane, we may establish a more specific system model con-
sidering the speed limitation of a normal airplane; then our answer is that
it may be somewhere in Europe and the answer becomes much better. If
we further know this airplane has been heading east since one hour ago, we
may establish a even detailed system model considering its moving direction;
then our answer is that it may be somewhere in Germany and the answer
becomes even better. Generally for a state, the better system model we have,
the better estimate of the state we may also obtain.

The third concept well related to estimation is measurement a.k.a. ob-
servation. A measurement on a state, as the term itself implies literally,
is a measured value of the state or a measured value related to the state.

2

Measurements on a state can be provided by specially designed instruments.
For example, an odometer, a speedometer, and an accelerometer installed
on a vehicle output respectively measurements on the traveled distance, the
speed, and the acceleration of the vehicle.

One may naturally ask: given that we can have measurements on a state,
do we still need to “estimate” the state and why? The answer is that we
do need to estimate the state. Reasons are two-folds First, measurements
usually have measurement errors or noises and may not reflect the true value
of a state. So we need an estimation technique to reveal the true value of
the state—although this will never be strictly achieved, yet we need to try to
obtain an estimate as precise as possible. Second, measurements sometimes
only reflect a state partially. In this case, we need an estimation technique to
reveal the entire state including the state part that is not directly measurable
(or directly observable) out of partial measurements on the state. An typical
example is a process of vehicle localization, where we need to estimate the
position as well as the orientation of a vehicle out of measurements only on
the position of the vehicle. Details of the example will be given in later
sections.

As we have the concept measurement now, we can further introduce the
forth important concept measurement model. A measurement model de-
scribes the relationship between the measurement and the state. Simply
speaking, a measurement model “predicts” what the measurement on a state
might be given that the state is known. This logic seems not to be consis-
tent with our intuition, because if we do have the true value of the state, it
would be meaningless to examine the so-called measurement model and other
“trouble” stuff related to estimation. To explain the utility of the measure-
ment model, we give a daily-life experience as a simple analogous example:
suppose a friend would come to your home for dinner in the evening if it
did not rain, and would not if it rained. In the evening, this friend has
not come. Question: what is the weather? One can easily give the answer
that it rains. In this example, the weather can be regarded as the state,
the friend’s choice can be regarded as the measurement on this “state”. The
relationship between the weather and the friend’s choice is what we mean a
“measurement model” here. As we can see, the “measurement model” helps
our inference on the “state”. It is this kind of inverse inference that makes
the “measurement model” useful—the logic is not that it rains because the
friend has not come, but that only the fact that it rains (“state”) can lead
to the result that the friend has not come (“measurement”)—In this exam-

3

ple, the measurement model is deterministic, in many real applications, we
can only have a probabilistic measurement model. However, a measurement
model, be it deterministic or probabilistic, can normally help our inference
on the state.

With above introduced concepts state, system model, measurement
and measurement model, we can now define estimation in a more formal
way. Estimation of a state is a process of inferring the state out of mea-
surements on the state, based on an available system model and an available
measurement model. In many applications especially real-time applications,
measurements will stream in from time to time; in these cases, we hope that
whenever a new measurement arrives we can obtain a new state estimate
based only on the old state estimate and the newly available measurement
instead of re-performing an estimation based on all historical measurements.
The practice of estimating a state recursively based only on the old state es-
timate and the newly available measurement in each time is called recursive
estimation. Detailed mathematical formalism of recursive estimation from
probabilistic perspective will be postponed to section 2.

This article is the first article of a planned series, i.e. the series “A brief

tutorial on recursive estimation with examples from intelligent vehicle appli-

cations”. One may treat this article as the “introduction” part of the series.
In this article we would explain the basic spirit and utilities of recursive es-
timation in a general way, whereas in each of potential articles in future we
would discuss one specific issue concerning (recursive) estimation in more
details.

2 Recursive Estimation: Bayesian Inference

In recursive estimation for real-time applications, we denote the time index
as t—Although the term “recursive” is not necessarily related to temporal
iteration but reflects certain iteration in more general sense, we will still
use the term “time index” throughout the presentation, on one hand for
expression simplicity and on the other hand to show that recursive estimation
is well rooted in real-time applications. We denote the state as x, denote the
measurement as z; we use subscript t to denote the values of the state and
the measurement at the instants specified by the subscript. For example, xt

and zt denote respectively the state value and the measurement at time t;
xt1:t2 and zt1:t2 denote respectively the state values and the measurements

4

from time t1 to t2.
We denote the system model as g:

xt = g(xt−1, ut, ǫt)

We denote the measurement model as h:

zt = h(xt, γt)

where u denotes the system input or the control signal; this part is not
necessary for all applications and whether it exists depends on concrete ap-
plications. ǫ and γ denote respectively the system model noise or error and
the measurement model noise or error.

In probabilistic terms, the system model and the measurement model can
be represented compactly by two conditional probability distributions
(CPD) p(xt|xt−1) (here we omit explicit representation of the system input
term) and p(zt|xt).

The estimation problem can be formulated as: given measurements z1:t,
compute the a posteriori distribution of xt, i.e. compute p(xt|z1:t). Simi-
larly, the recursive estimation problem can be formulated as: given the old
estimate p(xt−1|z1:t−1) and the newly available measurement zt, compute the
new estimate p(xt|z1:t).

2.1 Bayesian inference

In this subsection, we review the generic methodology of solving the recursive
estimation problem using Bayesian inference.

Before continuing, we review an important assumption in probability the-
ory i.e. the Markov assumption: the future is independent of the past
given the present. More specifically here, the Markov assumption means
that x(t+1,t+2,...) and z(t+1,t+2,...) are independent of x1:t−1 given xt (for arbi-
trary time index t).

Based on the Markov assumption, we can carry out Bayesian inference as
follows:

p(xt|z1:t) =
p(zt|xt, z1:t−1)p(xt|z1:t−1)

p(zt|z1:t−1)

=
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(1)

5

where p(zt|z1:t−1) is the normalization constant computed by:

p(zt|z1:t−1) =

∫

xt

p(zt|xt, z1:t−1)p(xt|z1:t−1) dxt

For discrete cases, the integral symbol
∫

is replaced by the sum symbol
∑

.
For the term p(xt|z1:t−1) in (1), we can expand it by applying the law of

total probability :

p(xt|z1:t−1) =

∫

xt−1

p(xt|xt−1, z1:t−1)p(xt−1|z1:t−1) dxt−1

=

∫

xt−1

p(xt|xt−1)p(xt−1|z1:t−1) dxt−1 (2)

(2) together with (1) gives the mechanism of computing the new estimate
p(xt|z1:t) recursively from the old estimate p(xt−1|z1:t−1) and the new mea-
surement zt. (2) is usually referred to as the prediction step, as it “predicts”
an a prior distribution of current state xt based on the old estimate. (1) is
usually referred to as the update step, as it “updates” the state distribution
to form an a posterior estimate by taking the newly available measurement
zt into account.

The prediction step specified in (2) and the update step specified in (1)
are the generic two-steps methodology of recursive estimation using Bayesian
inference. One may also refer to references such as [10] [11].

2.2 The Kalman filter

We have presented the generic methodology of recursive estimation using
Bayesian inference. It seems that we have finished the story. On the contrary,
we have just begun the story.

The formulas (2) and (1) are valuable mainly in theoretical sense, whereas
they can hardly be applied directly in most applications. The reason lies in
a forbidding computational burden and the impossibility to sample infinite
potential values of the state.

We have to approximate the formalism (2) and (1) in certain way to make
it tractable in real practice. A popular way is to approximate p(xt|xt−1)
and p(zt|xt) by linear-Gaussian models, which results in a famous recursive
estimation method (family) i.e. the Kalman filter (KF) [12].

6

More specifically, let the system model g and the measurement model h
be approximately represented by linear relationships:

xt = Axt−1 +But + ǫt

zt = Hxt + γt

Assume xt−1 ∼ N(x̂t−1, Σ̂xt−1
), ut ∼ N(ût,Σu), ǫt ∼ N(0,Σǫ), and γt ∼

N(0,Σγ), where N denotes the Normal or Gaussian distribution. Based on
these assumptions, we can compute the a priori distribution (denoted as x̄t)
and the a posteriori distribution (denoted as x̂t) of the state in the prediction
step and the update step as follows.
Prediction: xt (a priori) ∼ N(x̄t, Σ̄t)
where

x̄t = Ax̂t−1 +Bût; Σ̄t = AΣ̂xt−1
AT +BΣuB

T + Σǫ (3)

Update: xt (a posteriori) ∼ N(x̂t, Σ̂t)
where

x̂t = x̄t +K(zt −Hx̄t); Σ̂t = (I−KH)Σ̄t (4)

where K = Σ̄tH
T (HΣ̄tH

T + Σγ)
−1

Formulas (3) and (4) are a commonly encountered formalism of the Kalman
filter in literature. Detailed derivation of (3) and (4) by applying above linear-
Gaussian assumptions to (1) and (2) is omitted here. Instead, we would
explain the Kalman filter more from another perspective (the “information”
perspective) to clarify the essence of this famous estimation method.

Given {x1,Σ1} and {x2,Σ2} are two source estimates of a state x; we
want to obtain a new estimate (called “fusion estimate”) of x out these two
source estimates. The covariances Σ1 and Σ2 reflect the uncertainty of the
two estimates, thus we can use the inverses of the covariances i.e. Σ−1

1 and
Σ−1

2 to indicate the “quality” of the estimates: the smaller the covariance
of an estimate is, the higher the quality of the estimate is. This “quality”
is usually referred to more formally as “information” (hence the covariance
inverse is referred to as “information matrix”).

By so far, a rather intuitive idea of how to fuse the two estimates may
come into our mind, i.e. forming a weighted combination of the two estimates
and giving a weight to each estimate proportional to its “quality”. This
intuitive idea can be formulated as:

x̂ = (Σ−1
1 + Σ−1

2)−1(Σ−1
1 x1 + Σ−1

2 x2); Σ̂ = (Σ−1
1 + Σ−1

2)−1 (5)

7

Why introduce this intuitive idea of fusing two estimates? The answer
is simple, because this idea, formulated in (5), is equivalent to the Kalman
filter. To better understand this point, we can reformulate (5) as follows:

K = Σ1(Σ1 + Σ2)
−1

x̂ = x1 +K(x2 − x1); Σ̂ = (I−K)Σ1 (6)

Now one can easily see the similarity between (6) and (4). (5) and (6) are for
cases where both estimates are full-rank observations. Given a case where
one estimate (say x2) has a rank-deficient observation matrixH i.e. x2 = Hx,
one can derive from (5) or (6) a formalism essentially the same to (4) i.e.:

x̂ = x1 +K(x2 −Hx1); Σ̂ = (I−KH)Σ1 (7)

where K = Σ1H
T (HΣ1H

T + Σ2)
−1

One can refer to [2] for the derivation (if P1d and P2d in (6) in [2] are set
zero). One can easily verify that the formalism (7) always holds regardless
of whether the observation matrix H has full rank or is rank deficient.

From above interpretation, one can see that the Kalman filter, in essence,
is a fusion method that forms the fusion estimate by a linear weighted
combination of source estimates.

The Kalman filter formalism (3) and (4) apply directly to linear systems.
For non-linear systems, one may carry out an adapted version of the Kalman
filter by linearizing the system model and the measurement model locally
around the old estimate and the a priori estimate and hence obtain the
extended Kalman filter (EKF) [13].

2.3 The particle filter

The Kalman filter (including its variants such as the EKF) is generally an
effective and efficient method for unimodal estimation problems. In some ap-
plications, the state distribution may be multimodal—this is likely to hap-
pen especially when measurement ambiguity exists i.e. there are multiple
measurements on a state at the same time and one can not be sure which
measurement actually correspond to the state—The need to handle multi-
modal ambiguities lead to another well known recursive estimation method,
the particle filter (or a sequential Monte Carlo method) [14] [15].

The basic idea is to approximate the state distribution p(xt|z1:t) directly
by a group of finite state samples called particles {xj

t |j = 1, ..., N} together

8

with correspondingweights {wj
t |j = 1, ..., N} and approximate the evolution

of the state by a sampling process xt ∼ q(xt|xt−1, zt), as follows:
Prediction:

x̄j
t ∼ q(xt|x

j
t−1, zt);

Update:

xj
t = x̄j

t ;

w̄j
t =

wj
t−1p(zt|x̄

j
t)p(x̄

j
t |x

j
t−1)

q(x̄j
t |x

j
t−1, zt)

wj
t = w̄j

t/

N
∑

j=1

w̄j
t

where q(xt|xt−1, zt) is called the proposal distribution (function). Often,
it is chosen the same to p(xt|xt−1) and the weight update step is reduced to
a simple form:

w̄j
t = wj

t−1p(zt|x̄
j
t)

As one can easily see the simplicity of this reduced form, one may natu-
rally pose the question: why do we bother to keep the proposal distribution
term in the formalism of the particle filter? Reasons are two-folds. First,
the p(xt|xt−1) may be complicated and it may be difficult to generate sam-
ples according to p(xt|xt−1). In this case, we would prefer a tractable pro-
posal distribution according to which samples can be generated more easily.
Second, using p(xt|xt−1) as the proposal distribution may not work well in
cases where the distribution p(zt|xt) (representing the measurement model)
is much narrower than the distribution p(xt|xt−1) (representing the system
model), in other words, in cases where the sensor measurements are more
informative than the a priori predicted by the system model. In these cases,
most of the sample particles generated according to the system dynamics
will get very low weight in the update step and hence waste the sampling
resource. To handle these cases, we would prefer a proposal distribution that
can concentrate the sample particles more around measurements.

As the particle filtering process continues, the particles will gradually di-
verge and many of them will drift to states with low weight updating ratio.
This is a severe waste of the sampling resource, which quickly degrades the
performance of the particle filter. To handle this problem, a common tech-
nique is usually employed, i.e. the resampling technique: if the weights

9

wj
t |j = 1, ..., N are not distributed “uniformly” enough (For example, the in-

dicator to the uniform degree of the distribution of the weights can be chosen
as the inverse of the summed squares of the weights), a heuristic step called
resampling will take place, which draw new particles from current particles
with their chance to be selected proportional to their associated weights and
reset all weights to 1/N .

3 Examples: Vehicle Localization

In this subsection, we demonstrate the utilities of recursive estimation with
examples from intelligent vehicle applications. More specifically, we examine
the cases of vehicle localization and demonstrate the performance of the
Kalman filter.

3.1 Vehicle localization in a 1D case

3.1.1 Application description

Suppose a vehicle is moving on a straight road and we treat only its longitu-
dinal position as its state denoted as px. The system model is given as the
following kinematic model:

px,t = px,t−1 + vx,t∆T (8)

where vx denotes the vehicle longitudinal speed which is regarded as the sys-
tem input; ∆T denotes the system period. Suppose the vehicle is equipped
with a speedometer that monitors the vehicle speed. The speedometer out-
puts, denoted as v̂x, suffer from certain errors which are assumed to fol-
low the Gaussian distribution with zero mean and the covariance Σv, i.e.
vx,t ∼ N(v̂x,t,Σv).

Suppose the vehicle is also equipped with a GPS (Global Positioning Sys-
tem) that outputs directly measurements on the vehicle longitudinal position
i.e. the vehicle state. Let GPS measurements be denoted as zx. Then the
measurement model is given as:

zx,t = px,t + γt (9)

where γ denotes the measurement error which is assumed to follow the Gaus-
sian distribution with zero mean and the covariance Σγ, i.e. γ ∼ N(0,Σγ).

10

Carry out the prediction and update steps (3) and (4) in the Kalman
filter. Note that the system model error is zero here.
Prediction:

p̄x,t = p̂x,t−1 + v̂x,t∆T

Σ̄px,t = Σ̂px,t−1 + Σv∆T 2

Update:

K = Σ̄px,t(Σ̄px,t + Σγ)
−1

p̂x,t = p̄x,t +K(zx,t − p̄x,t)

Σ̂px,t = (I−K)Σ̄px,t

3.1.2 Simulation

We test the performance of the Kalman filter using synthetic data generated
according to the system model (8) and the measurement model (9). In the
simulation, let ∆T = 1(s); let Σv = 0.52(m2/s2); let Σγ = 102(m2). Set the
ground-truth px,0 = 0(m) and vx,t = 10(m/s). The speedometer outputs are
synthesized according to v̂x,t ∼ N(vx,t,Σv) and the GPS measurements are
synthesized according to zx,t ∼ N(px,t,Σγ).

The Kalman filter was applied to the synthetic data and estimates on
the vehicle state (i.e. the vehicle longitudinal position) were obtained. The
estimate errors were computed and compared with the measurement errors.
The result of one trial is shown in Fig.1. For a statistical evaluation, 100
Monte Carlo trials were performed and the result is shown in Fig.2. As we
can see, the estimate errors are apparently smaller than the measurement
errors—This demonstrates well one merit of estimation mentioned previ-
ously in section 1 i.e. a proper estimation method can provide more precise
estimates of a state than raw measurements do. This is also why many esti-
mation methods are called “filters” such as the Kalman filter, particle filter
etc, because they do “filter” measurement noises.

3.2 Vehicle localization in a 2D case

3.2.1 Application description

Now consider a more general case where the vehicle is navigating on a 2D
plane. In this case, vehicle localization consists in estimating the pose (the

11

Figure 1: Estimation and measurement errors for one trial

Figure 2: Estimation and measurement errors for 100 Monte Carlo trials

position (x, y) as well as the orientation θ) of the vehicle. In other words,

12

we treat the pose of the vehicle as its state and try to estimate this state
denoted compact as p i.e. p = (x, y, θ). The system model is given as the
following kinematic model:

xt = xt−1 + vt∆Tcos(θt−1 + wt∆T/2)
yt = yt−1 + vt∆Tsin(θt−1 + wt∆T/2)
θt = θt−1 + wt∆T

(10)

where ∆T denotes the system period; v and w denote respectively the speed
and the yawrate of the vehicle. Suppose the vehicle is equipped with devices
that monitor its speed and its yawrate. The speed measurements are denoted
as v̂, and yawrate measurements are denoted as ŵ. Their errors are assumed
to follow the Gaussian distribution as ∆vt ∼ N(0,Σv) and ∆wt ∼ N(0,Σw).

Suppose the vehicle is also equipped with a GPS that outputs measure-
ments on the vehicle position (x, y). Let GPS measurements be denoted as
z and the measurement model is given as:

zt = Hpt + γt (11)

H =

[

1 0 0
0 1 0

]

where γ denotes the measurement error which is assumed to follow the Gaus-
sian distribution with zero mean and the covariance Σγ, i.e. γ ∼ N(0,Σγ).
As we can see, the measurement model given in (11) is a partial measurement
model. We do not have direct measurements on the orientation part of the
state and we can only reveal the orientation part indirectly through proper
estimation.

The system model (10) is a nonlinear model with respect to the vehicle
orientation θ. We have linearize locally the system model in order to apply
the formulas (3) and (4). This adapted Kalman filter with local linearization
is called extended Kalman filter (EKF)—It is worth noting that “local lin-
earization” can refer not only to local linearization of the system model but
also to that of the measurement model if the measurement model is nonlin-
ear. In the example presented here, the measurement model is already linear
and hence exempt from a preliminary step of local linearization.

The locally linearized system model is rewritten as follows:

xt

yt
θt

 ≈

x̄t

ȳt
θ̄t

+A(pt−1,ut)

∆xt−1

∆yt−1

∆θt−1

+B(pt−1,ut)

[

∆vt
∆wt

]

(12)

13

x̄t = xt−1 + vt∆Tcos(θt−1 + wt∆T/2)
ȳt = yt−1 + vt∆Tsin(θt−1 + wt∆T/2)
θ̄t = θt−1 + wt∆T

A(pt−1,ut) =

1 0 −vt∆Tsin(θt−1 + wt∆T/2)
0 1 vt∆Tcos(θt−1 + wt∆T/2)
0 0 1

B(pt−1,ut) =

∆Tcos(θt−1 + wt∆T/2) −vt∆T 2sin(θt−1 + wt∆T/2)/2
∆Tsin(θt−1 + wt∆T/2) vt∆T 2cos(θt−1 + wt∆T/2)/2

0 ∆T

where ut = (vt, wt). As we can see, the matrices A(pt−1,ut) and B(pt−1,ut)
are actually the Jacobian matrices of the state evolution function (specified
in (10)) with respect to pt−1 and ut respectively. With this locally linearized
system model (12) and the measurement model (11), we can carry out the
prediction and update steps (3) and (4) in the Kalman filter—It is worth
noting that there exists linearization error and this error may be modeled in
certain way and treated as the system model error. Since this linearization
error is not essential to demonstrating the mechanism of the adapted Kalman
filter with local linearization i.e. the EKF, we neglect it here.
Prediction:

x̄t

ȳt
θ̄t

 =

x̂t−1 + v̂t∆Tcos(θ̂t−1 + ŵt∆T/2)

ŷt−1 + v̂t∆Tsin(θ̂t−1 + ŵt∆T/2)

θ̂t−1 + ŵt∆T

Σ̄p,t = A(p̂t−1, ût)Σ̂p,t−1A(p̂t−1, ût)
T +B(p̂t−1, ût)

[

Σv 0
0 Σw

]

B(p̂t−1, ût)
T

Update:

K = Σ̄p,tH
T (HΣ̄p,tH+ Σγ)

−1

p̂t =

x̄t

ȳt
θ̄t

+K(zt −H

x̄t

ȳt
θ̄t

)

Σ̂px,t = (I−KH)Σ̄p,t

3.2.2 Simulation

We test the performance of the Kalman filter using synthetic data that gen-
erated according to the system model (10) and the measurement model

14

(11). In the simulation, let ∆T = 1(s); let Σv = 0.52(m2/s2); let Σw =
0.022(rad2/s2); let Σγ = diag(102, 102)(m2). Set the ground-truth p0 =
[0(m), 0(m),−π/2(rad)]T ; vt = 10(m/s) and wt = 0.04(rad/s). The speed
measurements and the yawrate measurements are synthesized according to
v̂t ∼ N(vt,Σv) and ŵt ∼ N(wt,Σw). The GPS measurements are synthesized
according to zt ∼ N(pt,Σγ).

The Kalman filter was applied to the synthetic data and estimates on
the vehicle state (i.e. the vehicle position as well as the vehicle orientation)
were obtained. The result of one trial is shown in Fig.3, in which the black
line represents the ground-truth of the vehicle trajectory, the red line rep-
resents the estimated vehicle trajectory, and the blue crosses represent GPS
measurements on the vehicle position. As we can see, the estimated vehicle
trajectory is noticeably smoother than the jumping measurements.

0 50 100 150 200 250 300 350 400

−300

−250

−200

−150

−100

−50

0

Position X (m)

P
o
s
it
io

n
 Y

 (
m

)

position measurements

position estimate

position ground−truth

Figure 3: Position measurements and estimates for one trial

The position estimate errors were computed and compared with the po-
sition measurement errors. The result of 100 Monte Carlo trials is shown in
Fig.4. As we can see, the estimate errors are also apparently smaller than
the measurement errors, similar to the results in previous example.

The orientation estimate errors were also computed and the result of the
same 100 Monte Carlo trials is shown in Fig.5. As we can see, the orientation

15

0 10 20 30 40 50 60
0

5

10

15

Time Index

P
o
s
it
io

n
 E

rr
o
r

(m
)

measurement errors

estimation errors

Figure 4: Position estimate and measurement errors for 100 Monte Carlo
trials

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time Index

O
ri
e
n
ta

ti
o
n
 E

rr
o
r

(r
a
d
)

estimation errors

Figure 5: Orientation estimate errors for 100 Monte Carlo trials

16

estimate errors vary around 0.05 rad i.e. a bit smaller than 3 degrees (note
that the tiny angle formed by two neighboring tick marks on a clock hold
even 6 degrees). Here, we do not intend to examine isolated the quality of
the orientation estimates, because the quality of these estimates including
all above demonstrated results many change given different vehicle configu-
rations. What we try to highlight is: without estimation in this application,
we can not have any estimate of the vehicle orientation except a random
guess—concerning the orientation, the error of a random guess can be as
large as π/2 i.e. 180 degrees—This example demonstrates well another im-
portant utility of estimation i.e. a proper estimation method can reveal state
part that is not directly measurable.

It is worth noting that not all kinds of states can be either directly or
indirectly observable. The observability of a state depends on the system
model as well as the measurement model. On can refer to control theory
literature such as [16] for more explanations on this issue.

4 Conclusion

In this brief tutorial, we have reviewed several fundamental concepts con-
cerning estimation, i.e. state, system model, measurement, and measure-
ment model. We have reviewed the generic formalism of recursive estimation
using Bayesian inference and have reviewed concrete formulas of two com-
monly used recursive estimation methods i.e. the Kalman filter and the
particle particle. For the Kalman filter, we have explained its essence from
“information” perspective and presented two examples of its application to
vehicle localization problems. With these examples, we have demonstrated
two important utilities of estimation, summarized in short words, i.e. “can
know” and “know better”.

This brief tutorial is far away from and by no means intended to be a
comprehensive survey of estimation methods. It is only intended to enlighten
beginners on basic spirit of recursive estimation and how recursive estimation
can potentially benefit concrete applications and to arouse their interests in
studying more profound issues on estimation such as estimation methods for
handling cooperative systems [2] [17] [18].

17

References

[1] H. Li, F. Nashashibi, and G. Toulminet. Localization for intelligent
vehicle by fusing mono-camera, low-cost gps and map data. In IEEE

International Conference on Intelligent Transportation Systems, pages
1657–1662, 2010.

[2] H. Li, F. Nashashibi, and M. Yang. Split covariance intersection filter:
Theory and its application to vehicle localization. IEEE Transactions

on Intelligent Transportation Systems, 14(4):1860–1871, 2013.

[3] H. Li and F. Nashashibi. Cooperative multi-vehicle localization using
split covariance intersection filter. IEEE Intelligent Transportation Sys-

tems Magazine, 5(2):33–44, 2013.

[4] H. Li and F. Nashashibi. Multi-vehicle cooperative localization using in-
direct vehicle-to-vehicle relative pose estimation. In IEEE International

Conference on Vehicular Electronics and Safety, pages 267–272, 2012.

[5] H. Li and F. Nashashibi. Robust real-time lane detection based on
lane mark segment features and general a priori knowledge. In IEEE

International Conference on Robotics and Biomimetics, pages 812–817,
2011.

[6] H. Li and F. Nashashibi. Lane detection (part i): Mono-vision based
method. INRIA Tech Report, RT-433, 2013.

[7] H. Li, F. Nashashibi, B. Lefaudeux, and E. Pollard. Track-to-track
fusion using split covariance intersection filter-information matrix fil-
ter (scif-imf) for vehicle surrounding environment perception. In IEEE

International Conference on Intelligent Transportation Systems, pages
1430–1435, 2013.

[8] H. Li and F. Nashashibi. Multi-vehicle cooperative perception and aug-
mented reality for driver assistance: A possibility to see through front
vehicle. In IEEE International Conference on Intelligent Transportation

Systems, pages 242–247, 2011.

[9] H. Li, M. Tsukada, F. Nashashibi, and M. Parent. Multivehicle coop-
erative local mapping: A methodology based on occupancy grid map

18

merging. IEEE Transactions on Intelligent Transportation Systems, in
press, 2014.

[10] K.P. Murphy. Dynamic Bayesian networks: Representation, inference

and learning. Ph.D. Dissertation, UC Berkeley, 2002.

[11] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press,
2005.

[12] R.E. Kalman. A new approach to linear filtering and prediction problem.
ASME Trans, Ser. D, J. Basic Eng., 82:35–45, 1960.

[13] M.S. Grewal and A.P. Andrews. Kalman filtering: Theory and practice.
New York, USA: Wiley, 2000.

[14] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174–188, 2002.

[15] A. Doucet, N. De Freitas, and N. Gordon. Sequential Monte Carlo

methods in practice. New York, USA: Springer-Verlag, 2001.

[16] E. Sontag. Mathematical control theory: Deterministic finite dimen-

sional systems. Springer, 1998.

[17] S.J. Julier and J.K. Uhlmann. General decentralized data fusion with
covariance intersection (ci). Handbook of Data Fusion, 2001.

[18] H. Li. Cooperative perception: Application in the context of outdoor

intelligent vehicle systems. Ph.D. Dissertation, Mines ParisTech, 2012.

19

