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Abstract

We describe in this paper new design techniques used in the C++ ex-
act linear algebra library LinBox, intended to make the library safer and
easier to use, while keeping it generic and efficient. First, we review the
new simplified structure for containers, based on our founding scope al-

location model. We explain design choices and their impact on coding:
unification of our matrix classes, clearer model for matrices and subma-
trices, etc. Then we present a variation of the strategy design pattern
that is comprised of a controller–plugin system: the controller (solution)
chooses among plug-ins (algorithms) that always call back the controllers
for subtasks. We give examples using the solution mul. Finally we present
a benchmark architecture that serves two purposes: Providing the user
with easier ways to produce graphs; Creating a framework for automati-
cally tuning the library and supporting regression testing.

Keywords: LinBox; design pattern; algorithms and containers; bench-
marking; matrix multiplication algorithms; exact linear algebra.

4This material is based on work supported in part by the National Science Foundation
under Grant CCF-1115772 (Kaltofen) and Grant CCF-1018063 (Saunders)

5This material is based on work supported in part by the Agence Nationale pour la
Recherche under Grant ANR-11-BS02-013 HPAC (Dumas, Giorgi, Pernet).

1

mailto:bbboyer@ncsu.edu
mailto:Jean-Guillaume.Dumas@imag.fr
mailto:pascal.giorgi@lirmm.fr
mailto:clement.pernet@imag.fr
mailto:saunders@udel.edu


1 Introduction

This article follows several papers and memoirs concerning LinBox1 (cf. [2,7,8,
13,19]) and builds upon them. LinBox is a C++ template library for fast and exact
linear algebra, designed with generality and efficiency in mind. The LinBox

library is under constant evolution, driven by new problems and algorithms, by
new computing paradigms, new compilers and architectures. This poses many
challenges: we are incrementally updating the design of the library towards a
2.0 release. The evolution is also motivated by developing a high-performance
mathematical library available for researchers and engineers that is easy to use
and help produce quality reliable results and quality research papers.

Let us start from a basic consideration: we show in the Table 1 the increase
in the “lines of code” size2 of LinBox and its coevolved dependencies Givaro

and Fflas–Ffpack3. This increase affects the library in several ways. First, it

LinBox 1.0.0
†‡

1.1.0
†‡

1.1.6
‡

1.1.7
‡

1.2.0 1.2.2 1.3.0 1.4.0

loc (×1000) 77.3 85.8 93.5 103 108 109 112 135

Fflas–Ffpack n/a n/a n/a 1.3.3 1.4.0 1.4.3 1.5.0 1.8.0

loc — — — 11.6 23.9 25.2 25.5 32.1

Givaro n/a n/a 3.2.16 3.3.3 3.4.3 3.5.0 3.6.0 3.8.0

loc — — 30.8 33.6 39.4 41.1 41.4 42.8

total 77.3 85.8 124 137 171 175 179 210

Table 1: Evolution of the number of lines of code in LinBox.

demands a stricter development model, and we are going to list some tech-
niques we used. For instance, we have transformed Fflas–Ffpack (cf. [10]) into a
new standalone header library, resulting in more visibility for the Fflas–Ffpack

project and also in better structure and maintainability of the library. A larger
template library is harder to manage. There is more difficulty to trace, debug,
and write new code. Techniques employed for easier development include reduc-
ing compile times, enforcing stricter warnings and checks, supporting more com-
pilers and architectures, simplifying and automating version number changes,
automating memory leak checks, and setting up buildbots to check the code
frequently.

This size increase also requires more efforts to make the library user friendly.
For instance, we have: Developed scripts that install automatically the latest
stable/development versions of the trio, resolving version dependencies; Eased
the discovery of Blas/Lapack libraries; Simplified and sped up the checking
process, covering more of the library; Updated the documentation and distin-
guished user and developer oriented docs; Added comprehensive benchmarking
tools.

Developing generic high performance libraries is difficult. We can find a
large literature on coding standards and software design references in (cf. [1,
11, 15, 17, 18]), and draw from many internet sources and experience acquired

1See http://www.linalg.org.
2Using sloccount, available at http://sourceforge.net/projects/sloccount/.
3symbol †when Givaro is included and ‡when contains Fflas–Ffpack
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by/from free software projects. We describe advances in the design of LinBox
in the next three sections. We will first describe the new container framework
in Section 2, then, in Section 3, the improved matrix multiplication algorithms
made by contributing special purpose matrix multiplication plugins, and, finally,
we present the new benchmark/optimization architecture (Section 4).

2 Containers architecture

LinBox is mainly conceived around the RAII (Resource Acquisition Is Initial-
ization, see [17]) concept with reentrant function. We also follow the founding
scope allocation model (or mother model) of [8] which ensures that the memory
used by objects is allocated in the constructor and freed only at its destruction.
The management of the memory allocated by an object is exclusively reserved
to it.

LinBox uses a variety of container types (representations) for matrix and
vectors over fields and rings. The fragmentation of the containers into various
matrix and blackbox types has been addressed and simplified. The many dif-
ferent matrix and vector types with different interfaces has been reduced into
only two containers: Matrix and Vector.

2.1 General Interface for Matrices

First, in order to allow operations on its elements, a container is parameterized
by a field object (Listing 1), not the field’s element type. This is simpler and
more general. Indeed, the field element type can be inferred from a value_type

type definition within the field type. Then, the storage type is given by a second
template parameter that can use defaults, e.g. dense Blas matrices (stride and
leading dimension or increment), or some sparse format.

template < class _Field , class _Storage = denseDefault >

class Vector ;

Listing 1: Matrix or Vector classes in LinBox.

In the founding scope allocation model, we must distinguish containers that
own (responsible for dynamically allocated memory) and containers that share
memory of another. SubMatrix and SubVector types share the memory; Matrix
and Vector own it. All matrix containers share the common BlackBox interface
described in the next paragraphs, it accommodates both owner and sharer con-
tainer types, and defines the minimal methods required for a template BlackBox

matrix type:
Input/Output. Our matrix containers all read and write from Matrix Mar-

ket format4 which is well established in the numerical linear algebra community
and facilitates sharing matrices with other software tools. The MatrixMarket
header comment provides space for metadata about the provenance of a matrix
and our interest in it. However, because of our many entry domains and ma-
trix representations, extensions are necessary to the MatrixMarket format. For
instance, the header comment records the modulus and irreducible polynomial
defining the representation of a matrix over GF(pe). We can further adapt the

4See http://math.nist.gov/MatrixMarket/.
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header to suit our needs, for instance create new file formats that save space (e.g.
CSR fashion saves roughly a third space over COO, cf. Harwell-Boeing format).
Structured matrices (Toeplitz, Vandermonde, etc.) can have file representations
specified.

Apply method. This is essential in the BlackBox interface (Sections 2.2
and 3).

Rebind/Conversions. In addition to the rebind mechanism (convert from
one field to the other), we add conversion mechanisms between formats, for
instance all sparse matrix formats can convert to/from CSR format: this ‘star’
mechanism can simplify the code (to the expense of memory usage) and may
speed it up when some central formats are well tuned for some task.

This is a common minimal interface to all our matrix containers that can
be used by all algorithms. This interface provides the basic external function-
ality of a matrix as a “linear mapping” (black box). This interface is shared
by: dense containers (Blas-like,...); permutation containers (compressed Lapack

or cycle representation); sparse containers (based on common formats or on
STL containers such as map, deque,...); structured containers (Diagonal, Hankel,
Butterfly,...); compound containers (Compose, Submatrix,...). Additional func-
tions of a container can be added, and flagged with a trait, for example those
that support internal changes as for Gaussian elimination.

2.2 The apply method

The apply method (left or right) is arguably the most important feature in the
matrix interface and the LinBox library. It performs what a linear application
is defined for: apply to a vector (and by extension a block of vectors, i.e. a
matrix).

We propose the new interface (Listing 2), where In and Out are vector or
matrices, and Side is Tag::Right or Tag::Left, whether the operation y ← A⊤x
or y ← Ax is performed. We also generalize to the operation y ← αAx + βy.

template < class _In , class _Out >

_Out& apply (_Out &y, const _In& x, enum Side) ;

Listing 2: Apply methods.

This method is fundamental as it is the building block of the BlackBox

algorithms (for instance block-Wiedemann) and as the matrix multiplication,
main operation in linear algebra, needs to be extremely efficient (Section 3).
The implementation of the apply method can be left to a mul solution, which
can include a helper/method argument if the apply parameters are specialized
enough.

3 Improving LinBox matrix multiplication

We propose a design pattern (the closest pattern to our knowledge is the strategy
one, see [6, Fig 2.]) in Section 3.1 and we show a variety of new algorithms where
it is used in the mul solution (Section 3.2).

4



3.1 Plugin structure

We propose in Figure 1 a generalization of the strategy design pattern of [6, Fig
2.], where distinct algorithms (modules) can solve the same problem and are
combined, recursively, by a controller. The main advantage of our pattern is
that the modules always call the controller of a function so that the best version
will be chosen at each level. An analogy can be drawn with dynamic systems
— once the controller sends a correction to the system, it receives back a new
measure that allows for a new correction.

Controllers

Modules

input output

call

call back

Figure 1: Controller/Module de-
sign pattern

For instance, we can write (Figure 2)
the standard cascade algorithms (see [10]) in
that model. Cascade algorithms are used to
combine several algorithms that are switched
using thresholds, ensuring better efficiency
than that of any of the algorithms individ-
ually. This method allows for the reuse of
modules and ensures efficiency. It is then
possible to adapt to the architecture, the
available modules, the resources. The only
limitation is that the choice of module must
be fast. On top of this design, we have
Method objects that allow caller selection of
preferred algorithms, shortcutting the strat-
egy selection.

Algorithm 1: Algo: controller

Input: A and B, dense, with resp.
dimensions n × k and
k × n.

Input: H Helper
Output: C = A × B

if min(m, k, n) < H.threshold()
then

Algo(C,A,B,BaseCase()) ;
else

Algo(C,A,B,RecursiveCase())
end

Algorithm 2: Algo: recursive mod-
ule
Input: A, B, C as in controller.
Input: H , RecursiveCase Helper
Output: C = A × B

Cut A,B,C in Si, Ti

...
Pi = Algo(Si, Ti, H)
...

Figure 2: Conception of a recursive controlled algorithm

This infrastructure supports modular code. For instance, Fflas–Ffpack has
seen major modularization (addition, scaling, reduction,...) Not only does it
enable code to be hardly longer than the corresponding pseudocode listings,
[5], (compared to ≈ 2.5× on some routines before) but it also automatically
brings performance, because we can separately improve individual modules and
immediately have the benefit throughout the whole library.

3.2 New algorithms for the mul solution

New algorithms and techniques improve on matrix multiplication in several
ways: reducing memory consumption, reducing runtime, using graphics capa-
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bilities, generalizing the Blas to integer routines.
Reduced memory. The routine fgemm in Fflas uses by default the classic

schedules for the multiplication and the product with accumulation (cf. [5]),
but we also implement the low memory routines therein. The new algorithms
are competitive and can reach sizes that were limiting. One difficulty consists
in using the memory contained in a submatrix of the original matrix, that one
cannot free or reallocate.

Using Bini’s approximate formula. In [3], we use Bini’s approximate matrix
multiplication formula to derive a new algorithms that is more efficient that the
Strassen–Winograd implementation in fgemm by ≈ 5− 10% on sizes 1500–3000.
This is a cascade of Bini’s algorithm and Strassen–Winograd algorithm and/or
the näıve algorithm (using Blas). The idea is to analyze precisely the error term
in the approximate formula and make it vanish.

Integer Blas. In order to provide fast matrix multiplication with multipreci-
sion integers, we rely on multimodular approach through the Chinese remainder
theorem. Our approach is to reduce as much as possible to fgemm. Despite, the
existence of fast multimodular reduction (resp. reconstruction) algorithm [12],
the näıve quadratic approach can be reduced to fgemm which makes it more effi-
cient into practice. Note that providing optimized fast multimodular reduction
remains challenging. This code is directly integrated into Fflas.

Polynomial Matrix Multiplication over small prime fields. The situation is
similar to integer matrices since one can use evaluation/interpolation techniques
through DFT transforms. However, the optimized Fast Fourier Transform of [16]
makes fast evaluation (resp. interpolation) competitive into practice. We thus
rely on this scheme together with fgemm for pointwise matrix multiplications.
One can find some benchmark of our code in [14].

Sparse Matrix–Vector Multiplication. For sparse matrices a main issue is
that the notion of sparsity is too general vs. the specificity of real world sparse
matrices: the algorithms have to adapt to the shape of the sparse matrices.
There is a huge literature from numerical linear algebra on SpMV (Sparse Ma-
trix Vector multiplication) and on sparse matrix formats, some of which are
becoming standard (COO, CSR, BCSR, SKY,...). In [4] we developed some
techniques to improve the SpMV operation in LinBox. Ideas include the sep-
aration of the ±1 for removing multiplications, splitting in a sum (HYB for
hybrid format) of sparse matrix whose formats are independent and using spe-
cific routines. For instance, on Z/pZ with word size p, one can split the matrix
ensuring no reduction is needed in the dot product and call Sparse Blas (from
Intel MKL or Nvidia cuBLAS for instance) on each matrix. One tradeoff is
as usual between available memory, time spent on optimizing vs. time spent
on apply, and all the more so because we allow the concurrent storage of the
transpose in an optimized fashion, usually yielding huge speedups. This can be
decided by ad hoc. optimizers.

Work on parallelizations using OpenCL, OpenMP or XKaapi for dense or
sparse matrix multiplication include [4, 9, 20].
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4 Benchmarking for automated tuning and re-

gression testing

Benchmarking was introduced in LinBox for several reasons. First, It gives the
user a convenient way to produce quality graphs with the help of a graphing
library like gnuplot5 and provides the LinBox website with automatically up-
dated tables and graphs. Second, it can be used for regression testing. Finally, it
will be used for selecting default methods and setting thresholds in installation
time autotuning.

4.1 Performance evaluation and Automated regression test-

ing

Our plotting mechanism is based on two structures: PlotStyle and PlotData.
The PlotGraph structure uses the style and data to manage the output. We allow
plotting in standard image formats, html and LATEXtables, but also in raw csv
or xml for file exchange, data comparisons and extrapolation. This mechanism
can also automatically create benchmarks in LinBox feature matrix (this is a
table that describes what solutions we support, on which the fields).

Saving graphs in raw format can also enable automatic regression testing on
the buildbots that already checked our code. For some specifically determined
matrices (of various shapes and sizes and over several fields), we can accumulate
the timings for key solutions such as (rank, det, mul,...) over time. At each new
release, when the documentation is updated, we can check any regression on
these base cases and automatically update the regression plots.

4.2 Automated tuning and method selection

Some of the code in LinBox is already automatically tuned (such as thresholds
in fgemm), but we improve on it. Instead of searching for a threshold using fast
dichotomous techniques, for instance, we propose to interpolate curves and find
the intersection. Using least squares fitting, we may even tolerate outliers (but
this is time consuming).

Automatically tuning a library is not only about thresholds, it may also
involve method/algorithm selection. Our strategy is the following: a given
algorithm is tuned for each Helper (method) it has. Then the solution (that
uses these algorithms) is tuned for selecting the best methods. At each stage,
defaults are given, but can be overridden by the optimizer. The areas where a
method is better are extrapolated from the benchmark curves.
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