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Abstract—In this paper, we derive the exact expression of the
finite-signal to noise ratio (SNR) diversity-multiplexing trade-
off (DMT) for Rayleigh fading multiple-input multiple-output
(MIMO) channels with dual correlated antennas at the transmit-
ter (2×Nr) and/or at the receiver (Nt × 2). We first derive the
exact outage probability versus SNR. While finite-SNR DMT and
outage probabilities are usually only estimated, we show that the
numerical results of our derived outage probability and finite-
SNR DMT are identical to those obtained using Monte Carlo
simulations. Furthermore, it is shown that achievable diversity
gains at realistic SNRs are significantly lower than asymptotic
values and that the DMT degrades as the spatial correlation
increases. Space-time codes (STCs) for MIMO systems are
conventionally designed to achieve the asymptotic DMT frontier.
This finite-SNR DMT could provide a new insight to design STCs
for practical MIMO systems optimized at realistic SNRs and
propagation environments.

I. INTRODUCTION

Most of the modern wireless communication systems as

WiMAX, WiFi, LTE and 4G have adopted the use of multiple

antennas at the transmitter and the receiver, called multiple-

input multiple-output (MIMO). Indeed, MIMO coding poten-

tial benefits are data rate increase and better reliability. Spatial

multiplexing techniques [1] have been incorporated for data

rate increase whereas space-time codes (STCs) [2] have been

designed to improve the channel reliability through spatial

diversity. Multiplexing and diversity gains can be simultane-

ously delivered with a fundamental tradeoff between them [3].

The diversity-multiplexing tradeoff (DMT) defines the optimal

tradeoff between achievable diversity and multiplexing gains

of any transmission over Nt ×Nr MIMO channels.

The DMT formulated in [3] for uncorrelated Rayleigh

MIMO channels represents an asymptotic framework as the

signal to noise ratio (SNR) tends to infinity. Furthermore,

spatial correlation does not affect the asymptotic DMT. It

only degrades outage probability [4]. Space-time block codes

(STBCs) for MIMO systems are commonly designed accord-

ing to the asymptotic rank-determinant criteria [2]. A nonzero

minimum determinant is sufficient to reach the frontier of the

asymptotic DMT [5]. Recently, several papers have noted that

STBCs designed at high (asymptotic) SNRs are not effective

at low to medium SNRs [6–8] where practical communication

systems operate. Moreover, we have shown in [7, 8] that design

parameters of STBCs are SNR-dependent and therefore that

adaptive STBCs are more effective for practical communica-

tion systems.

Motivated by the characterization of the tradeoff between

diversity and multiplexing gains at finite SNRs, the finite-

SNR DMT has been proposed in [9, 10]. This finite-SNR DMT

could provide new insights on how to design MIMO systems

particularly suited to the propagation environment and opti-

mized for realistic SNRs. In [9, 10], Narasimhan has pointed

out that the exact form of the outage probability and therefore

the finite-SNR DMT for any Nt × Nr MIMO channels are

not tractable. Consequently, estimates of the finite-SNR DMT

are usually derived, e.g., in [9–13]. In some special cases,

the exact expression of the outage probability and the finite-

SNR DMT can be derived. To the best of our knowledge, the

exact expression of the finite-SNR DMT is derived only for

2× 2 MIMO systems with uncorrelated Rayleigh fading [14],

and for multiple-input single-output (MISO) and single-input

multiple-output (SIMO) systems with uncorrelated [15] and

correlated [13] Rayleigh fading. Recently, we have derived

in [16] the exact outage probability and the finite-SNR DMT

for uncorrelated Rayleigh fading MIMO channels with dual

antennas. However, in real scenarios, channel coefficients

are not always independent, e.g., when the spacing between

antennas is insufficient [17]. The spatial correlation may lead

to a substantial degradation of the achievable diversity gains

at finite SNRs [10, 12, 13]. In this paper, inspired from our

work in [16], we derive the exact outage probability and finite-

SNR DMT for Rayleigh fading channels with dual correlated

antennas, i.e., Nt × 2 and 2×Nr MIMO systems.

The rest of the paper is organized as follows. Section II in-

troduces the system model and the definitions of diversity and

multiplexing gains at finite SNR. The exact outage probability

and finite-SNR DMT for spatially correlated Rayleigh fading

MIMO channels with dual antennas are derived in Section III.

Outage probability and finite-SNR DMT results are provided

in Section IV. Section V concludes the paper.



II. SYSTEM MODEL AND DEFINITIONS

We consider a MIMO system with Nt transmit antennas

and Nr receive antennas, operating over a flat Rayleigh fading

channel. A perfect channel state information (CSI) is assumed

at the receiver, but not at the transmitter. A quasi-static fading

is assumed where the channel remains constant over one space-

time coding block of length T and changes independently

across blocks.

The channel input-output relation is given by:

Y = HX+N (1)

where X[Nt×T ] is the transmitted space-time block code,

Y[Nr×T ] is the matrix of received Nt noisy signals over T
channel uses and N[Nr×T ] is the matrix of additive com-

plex white Gaussian noise with independent and identically

distributed (i.i.d.) entries and probability density function

(pdf) ∼ CN(0, σ2). The MIMO spatially correlated Rayleigh

channel is modeled by the matrix H which can be factorized

as:

H = R
1/2
Rx HwR

1/2
Tx (2)

where Hw is the Nr × Nt matrix modeling the uncorrelated

Rayleigh fading channel with i.i.d. circularly symmetric com-

plex Gaussian random variables entries and pdf ∼ CN(0, 1),
RRx and RTx are the Nr×Nr and Nt×Nt correlation matrices

at the receiver and the transmitter respectively. The channel

model in (2) is known in the literature as the Kronecker model

and it is usually used to model the spatially correlated channel,

e.g., in [4, 10–13, 18–20].

In [3], conventional asymptotic definitions of multiplexing

and diversity gains for a MIMO channel are given by:

rasymptotic = lim
ρ→∞

R

log ρ
(3)

dasymptotic = − lim
ρ→∞

logPout

log ρ
(4)

where rasymptotic and dasymptotic represent the asymptotic multi-

plexing and diversity gains respectively, ρ is the average SNR

per receive antenna, R is the MIMO system data rate and

Pout is the outage probability. As no CSI is available at the

transmitter, an equal power across transmit antennas is adopted

and Pout is defined as:

Pout = Pr [I ≤ R] , (5)

where I is the mutual information between received and

transmitted signals over the MIMO channel.

The asymptotic diversity-multiplexing or data rate-

reliability tradeoff represents the upper bound achievable

by any transmission over a Nt × Nr MIMO system. The

asymptotic DMT has been established in [3] for uncorrelated

Rayleigh fading channels. Later, [4] has proved that the

spatial correlation does not affect the asymptotic DMT. The

asymptotic DMT is given by the piece-wise linear function

connecting the points (k, d∗(k)) where d∗(k) is given by:

d∗ (k) = (Nt − k) (Nr − k) ; k = 1, · · · ,min (Nt, Nr) (6)

At finite SNR ρ, the multiplexing gain r is defined as the

ratio of the system data rate R to the capacity of an additive

white Gaussian noise (AWGN) channel with array gain G [10]:

r =
R

log (1 +Gρ)
(7)

where the array gain is chosen such that G = Nr in order to

have a fair comparison of diversity and outage performance

across different combinations of Nt and Nr antennas at low

to medium SNRs [9, 10].

When considering a capacity-approaching channel code in

the communication chain, the block-error probability is well

approximated by the channel outage at finite SNR [9, 10].

Therefore, the diversity gain d (r, ρ) of a system with a fixed

multiplexing gain r at SNR ρ is defined by the negative slope

of the log-log curve of the outage probability versus SNR,

leading to:

d (r, ρ) = −
∂ logPout (r, ρ)

∂ log ρ
= −

ρ

Pout (r, ρ)

∂Pout (r, ρ)

∂ρ
(8)

This definition is important for system design as the diversity

gain at a particular operating SNR can be used to estimate the

additional SNR required to reach a target outage probability,

for a given data rate represented by the multiplexing gain.

In the sequel, we derive the exact finite-SNR DMT for

systems with dual correlated transmit and/or receive antennas

over Rayleigh fading channels.

III. COMPUTATION OF FINITE-SNR DMT

A. Mutual information pdf

In this section, we derive an analytical expression for the pdf

of the mutual information between received and transmitted

signals for Nt×2 and 2×Nr MIMO systems. By assuming that

X is a zero-mean white complex Gaussian random variable,

the MIMO mutual information I conditioned on the channel

realization H is given by [21]:

I = log det
(

INr
+ ρ

Nt
HH

H
)

= log det
(

INt
+ ρ

Nt
H

H
H

) (9)

where the superscript H stands for conjugate transpose.

As in [10–13], we focus on the spatial correlation only

on one side, i.e., the transmitter side or the receiver side.

A typical example of such a system is a communication

between a mobile station with dual antennas and a base station

with n antennas. Here, the antennas at the base station can

be spaced sufficiently far apart to achieve uncorrelation but,

due to physical size constraints, it is more difficult to space

antennas far apart at the mobile station. Indeed, when dual

transmit antennas are correlated, the channel matrix H is equal

to HwR
1/2
Tx , and when dual receive antennas are correlated

H is equal to R
1/2
Rx Hw. For this case, matrices HH

H and

H
H
H are central complex Wishart distributed and the pdf



f corr(x, y) =
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)e
x+y (ex − ey) (ex − 1)

n−2
(ey − 1)

n−2

×
[

e−
Nt
ρ

(a1e
x+a2e

y
−a1−a2) − e−

Nt
ρ

(a1e
y+a2e

x
−a1−a2)

]

,
(13)

f corr(I, y, ρ) =
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)e
I
(

eI−y − ey
) (

eI−y − 1
)n−2

(ey − 1)
n−2

×
[

e−
Nt
ρ (a1e

I−y+a2e
y
−a1−a2) − e−

Nt
ρ (a1e

y+a2e
I−y

−a1−a2)
]

,
(17)

gcorr(y, I, ρ) =
(

eI−y − ey
) (

eI−y − 1
)n−2

(ey − 1)
n−2

×
[

e−
Nt
ρ (a1e

I−y+a2e
y
−a1−a2) − e−

Nt
ρ (a1e

y+a2e
I−y

−a1−a2)
]

.
(19)

∂gcorr(y,I,ρ)
∂ρ =

(

eI−y − ey
) (

eI−y − 1
)n−2

(ey − 1)
n−2

×

[

Nt

ρ2

(

a1e
I−y + a2e

y − a1 − a2
)

e−
Nt
ρ (a1e

I−y+a2e
y
−a1−a2)

−Nt

ρ2

(

a2e
I−y + a1e

y − a1 − a2
)

e−
Nt
ρ (a2e

I−y+a1e
y
−a1−a2)

]

.
(25)

of their eigenvalues1can be found in [22]. Let us define

m
∆

= min (Nt, Nr) and n
∆

= max (Nt, Nr). For m = 2, the

joint pdf of the two nonzero ordered eigenvalues λ1 and λ2

(λ1 ≥ λ2 ) is given by [22]:

f corr(λ1, λ2) =
(a1a2)

n(λ1λ2)
n−2(λ1−λ2)

(a2−a1)Γ(n)Γ(n−1)

×
[

e−(a1λ1+a2λ2) − e−(a1λ2+a2λ1)
] (10)

where a1 and a2 are the ordered eigenvalues (a2 ≥ a1) of R−1
Rx

(downlink) or R
−1
Tx (uplink) and Γ(x) is the gamma function

defined by
∫

∞

0
tx−1e−tdt.

Therefore, the mutual information I is expressed by:

I = log

(

1 + λ1
ρ

Nt

)

+ log

(

1 + λ2
ρ

Nt

)

. (11)

Let us define new variables x and y as:

x
∆

= log

(

1 + λ1
ρ

Nt

)

and y
∆

= log

(

1 + λ2
ρ

Nt

)

. (12)

Lemma 1: The joint pdf of x and y denoted by f corr(x, y)
is given in (13) at the top of the page, where x ≥ y ≥ 0.

Proof: The joint pdf of x and y can be derived from (10)

by [23],

f corr(x, y) = f corr(λ1, λ2)
∂λ1

∂x

∂λ2

∂y
(14)

where

λ1
∆

=
Nt

ρ
(ex − 1) and λ2

∆

=
Nt

ρ
(ey − 1) . (15)

By replacing λ1 and λ2 in (10) and computing

∂λ1

∂x
=

exNt

ρ
and

∂λ2

∂y
=

eyNt

ρ
. (16)

we obtain (13).

1We noted that the case of spatial correlation at both transmitter and receiver
sides leads to a more complex form of the pdf for the two nonzero ordered
eigenvalues λ1 and λ2 [22]. Therefore, the exact finite-SNR DMT is not
easily tractable for this case.

From the definition in (12) the mutual information between

received and transmitted signals is I = x + y. The joint pdf

of I and y, f corr(I, y, ρ), is then given in (17) at the top of the

page, where I/2 ≥ y ≥ 0.

Lemma 2: At SNR ρ, and after integration of (17), the pdf

of the mutual information between received and transmitted

signals for a MIMO system with n uncorrelated antennas and

dual correlated antennas is given by:

f corr(I, ρ) =
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)e
I

×
∫ I/2

0
gcorr(y, I, ρ)dy,

(18)

where gcorr(y, I, ρ) is expressed in (19) at the top of the page.

For each value of I and ρ, the expression
∫ I/2

0
g(y, I, ρ)dy

can be computed by numerical integration.

B. Outage probability

Theorem 1: For each SNR ρ and multiplexing gain r,

the exact outage probability P corr

out
(r, ρ) of a Rayleigh MIMO

channel with n uncorrelated antennas and dual correlated

antennas is given from (18) by:

P corr

out
(r, ρ) = Pr [I ≤ R]

=
∫ R

0
f corr(I, ρ)dI

=
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)

×
∫ r log(1+Gρ)

0
eI

(

∫ I/2

0
gcorr(y, I, ρ)dy

)

dI

(20)

(20) is computed by numerical integration. This outage

probability describes the performance of MIMO systems with

dual correlated antennas and its slope defines the diversity gain

at a given multiplexing gain r.

C. Analytical finite-SNR DMT

Theorem 2: The derivative of the outage probability of a

Rayleigh MIMO channel with n uncorrelated antennas and

dual correlated antennas
∂P corr

out (r,ρ)
∂ρ is given by:

∂P corr

out
(r, ρ)

∂ρ
= Acorr

1 (r, ρ) +Acorr

2 (r, ρ) +Acorr

3 (r, ρ) (21)
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r = 0.5

r = 1

Fig. 1. Outage probability for different multiplexing gains r = 0.5, 1;
Nt = Nr = 2, uncorrelated and correlated (ρt = 0.0043 + j0.9789) flat
Rayleigh fading with dashed and solid lines respectively.

where

Acorr

1 (r, ρ) =
(−2n+1)(Nt)

2n−1 1

ρ2n
(a1a2)

n

(a2−a1)Γ(n)Γ(n−1)

×
∫ r log(1+Gρ)

0
eI

(

∫ I/2

0
gcorr(y, I, ρ)dy

)

dI

= − 2n−1
ρ Pout (r, ρ) ,

(22)

Acorr

2 (r, ρ) =
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)
rG

1+Gρe
r log(1+Gρ)

×
(

∫ r log(1+Gρ)/2

0
gcorr(y, r log (1 +Gρ) , ρ)dy

)

,
(23)

and

Acorr

3 (r, ρ) =
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)

×
∫ r log(1+Gρ)

0
eI

(

∫ I/2

0
∂gcorr(y,I,ρ)

∂ρ dy
)

dI
(24)

where
∂gcorr(y,I,ρ)

∂ρ is given in (25) at the top of the previous

page.

Proof: The proof is presented in Appendix A.

The above expressions can also be computed using numer-

ical integration. Using the outage probability given in (20)

and its derivative given in (21), the finite-SNR DMT for a

Rayleigh MIMO channel with n uncorrelated antennas and

dual correlated antennas is now easily computed using (8).

IV. NUMERICAL RESULTS

In this section, numerical results are given. We consider as

in [10–13] that the dual transmit antennas are correlated. The

transmit correlation matrix is then given by:

RTx =

[

1 ρt
ρ∗t 1

]

(26)

In order to assess the accuracy of our derived DMT, we

consider, as in [10], ρt equal to 0.0043 + j0.9789 for the

high spatial correlation case. Note that the results obtained in

[16] for uncorrelated channels can be easily computed from

the derived equations by letting ρt → 0.
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t
=0.5
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t
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SNR → ∞

Simulation results

Fig. 2. Asymptotic and exact finite-SNR DMT curves for 2×2 correlated flat
Rayleigh MIMO channel with low ρt = 0.1 (red curves), medium ρt = 0.5
(blue curves) and high ρt = 0.0043+ j0.9789 (black curves) correlations at
SNR = 5 dB with dashed lines and SNR = 10 dB with solid lines.

Fig. 1 depicts the outage probability for multiplexing gain r
equal to 0.5 and 1 as a function of SNR, for both uncorrelated

and correlated flat Rayleigh fading channels with dashed

and solid lines respectively. Our outage probability curves

computed by (20) are identical to the ones obtained by Monte

Carlo simulations, which shows that our exact results are very

accurate. It can also be observed that the lower bounds on the

outage probability derived by Narasimhan [10] and by Rezki

et. al [12] are far from exact values for both uncorrelated

and correlated channels. Furthermore, Fig. 1 shows that a

lower outage probability is reached in the uncorrelated case.

At r = 0.5 and r = 1, a steeper slope of the outage probability

curves is observed for the uncorrelated channel with respect to

the correlated channel at low to moderate SNRs. Thus, at the

same multiplexing gain r and at finite SNR, one can expect

that a higher diversity gain is obtained for the uncorrelated

channel compared to the correlated channel.

Fig. 2 depicts the exact finite-SNR DMT curves for Nr =
n = 2 at SNR = 5 and 10 dB over correlated flat Rayleigh

channel with low ρt = 0.1, medium ρt = 0.5 and high

ρt = 0.0043 + j0.9789 correlations. For all cases, our nu-

merical results are identical to the simulation results obtained

by Monte Carlo simulations. In addition, the upper bounds

on the finite-SNR DMT derived by Narasimhan [10] and by

Rezki et. al [12], not shown for figure clarity, overestimate

the achievable finite-SNR DMT. At ρt = 0.1, almost the same

finite-SNR DMT is obtained for both uncorrelated [16] and

correlated channels. As expected based on outage probability

curves, the diversity gain decreases for correlated channels

with respect to uncorrelated channels. Moreover, when the

correlation coefficient increases, the diversity gain decreases.

However, the diversity gain is only slightly degraded at low

to moderate values of spatial correlation. On the contrary,

the diversity gain is severely degraded at high correlations.
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Also, Fig. 2 shows that the maximum achievable diversity,

i.e., the diversity gain for r → 0, at finite SNR is the same

regardless of the spatial correlation value and is equal to the

one of uncorrelated channels. Similar conclusions have also

been found in [12] based on their derived estimates of finite-

SNR DMT.

Now let us consider a higher number of antennas n ≥
3. Fig. 3 depicts the outage probability curves when the

multiplexing gain r tends to 0. A high spatial correlation

(ρt = 0.0043 + j0.9789) at the transmitter and several uncor-

related antennas (Nr = 2, 3, 4) at the receiver are considered.

Outage probability curves define the achievable block-error

probability by any transmission over 2 × n uncorrelated and

correlated MIMO channels. Furthermore, low outage proba-

bilities can be easily assessed using our derived analytical

equations while Monte Carlo simulation results are limited to

outage probabilities higher than 10−6 because of simulation

complexity [9–13]. Fig. 3 also proves that the exact maximum

diversity at finite-SNR is the same for both uncorrelated and

correlated channels. Indeed, at any SNR, the figure shows that

the outage probability curves for uncorrelated and correlated

channels have the same slope and therefore the same maximum

diversity, with a SNR loss for the correlated channels with

respect to the uncorrelated channels. Indeed, lower outage

probabilities can be achieved for the uncorrelated case. The

SNR loss between uncorrelated and correlated channels is

shown to increase with the increase of the number of receive

antennas.

Finally, we investigate the effect of increasing the number

of antennas on the finite-SNR DMT. Fig. 4 depicts, with

dashed lines for a low correlation ρt = 0.1 and solid lines

for a high correlation ρt = 0.0043 + j0.9789, the exact

finite-SNR DMT curves for 2 × 2 and 2 × 5 correlated

flat Rayleigh MIMO channels at various SNRs. This figure

shows that the diversity loss between finite-SNR DMT for
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2 × 2, SNR = 0 dB

2 × 5, SNR = 0 dB

2 × 5, SNR = 10 dB

2 × 5, SNR = 40 dB

2 × 5, SNR → ∞

Fig. 4. Exact finite-SNR DMT curves for 2 × 2 and 2 × 5 correlated flat
Rayleigh MIMO channel with a low ρt = 0.1 and high ρt = 0.0043 +

j0.9789 correlation at various SNRs (dashed and solid lines respectively).

low and high spatial correlation curves increases with the

increase of the number of receive antennas. Moreover, this

diversity loss decreases with the SNR increase especially for

low multiplexing gains. When r → 0, the same maximum

diversity is achieved regardless of the spatial correlation value

as proven above based on Fig. 3.

Also, all presented finite-SNR DMT curves show that

achievable diversity gains at finite SNR are significantly lower

than asymptotic values. A convergence of the finite-SNR DMT

to the asymptotic DMT is obtained at high SNRs.

V. CONCLUSIONS

In this paper, we have derived the exact outage probability

and finite-SNR diversity-multiplexing tradeoff for Rayleigh

MIMO channels with dual correlated antennas. Actually,

achievable diversity gains at realistic SNRs are significantly

lower than asymptotic values for SNR → ∞. The finite-

SNR DMT characterizes the system at operational SNRs

where available diversity gains are computed. While finite-

SNR DMT and outage probabilities are usually only estimated,

we have shown that the numerical results of our derived

outage probability and finite-SNR DMT are identical to those

obtained using Monte Carlo simulations. Also, it has been

shown that the outage probability and the finite-SNR DMT

degrade as the spatial correlation increases. They are only

slightly degraded at low to moderate spatial correlations while

important penalties are observed at high spatial correlations.

However, we have proven that the spatial correlation does not

affect the maximum diversity gain at finite SNRs. Afterwards,

the SNR loss between outage probability curves, and the diver-

sity loss between finite-SNR DMT curves, for low and high

spatial correlations are shown to increase with the increase

of the number of antennas. Conventionally, STCs for MIMO

systems are designed to achieve the asymptotic DMT frontier

and therefore are not efficient at realistic SNRs. This finite-

SNR DMT could provide new insights on how to design STCs



for practical MIMO systems optimized at realistic SNRs and

propagation environments.

APPENDIX A

PROOF OF THEOREM 2

The Leibniz integral rule is used to compute the derivative

of an integral and is expressed by [23]:

∂
∂ρ

∫ b(ρ)

a(ρ)
f(I, ρ)dI =

∫ b(ρ)

a(ρ)
∂f(I,ρ)

ρ dI

+f(b(ρ), ρ)∂b(ρ)∂ρ − f(a(ρ), ρ)∂a(ρ)∂ρ

(27)

In our case,

P corr

out
(r, ρ) =

∫ R

0

f corr(I, ρ)dI (28)

where

f corr(I, ρ) =
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)e
I

×
∫ I/2

0
gcorr(y, I, ρ)dy,

(29)

Afterwards,

∂P corr

out
(r, ρ)

∂ρ
=

∂

∂ρ

∫ R

0

f corr(I, ρ)dI (30)

can be computed using the Leibniz integral rule where a(ρ) =
0 and b(ρ) = R = r log (1 +Gρ). Therefore,

f corr(a(ρ), ρ)
∂a(ρ)

∂ρ
= 0, (31)

and

∂P corr
out (r,ρ)
∂ρ =

∫ b(ρ)

a(ρ)
∂f corr(I,ρ)

ρ dI + f corr(b(ρ), ρ)∂b(ρ)∂ρ

= Acorr

1 (r, ρ) +Acorr

2 (r, ρ) +Acorr

3 (r, ρ) .
(32)

Indeed,

f corr(b(ρ), ρ)∂b(ρ)∂ρ = f corr(r log (1 +Gρ) , ρ) rG
1+Gρ

=
(a1a2)

n(Nt
ρ )

2n−1

(a2−a1)Γ(n)Γ(n−1)
rG

1+Gρe
r log(1+Gρ)

×
(

∫ r log(1+Gρ)/2

0
gcorr(y, r log (1 +Gρ) , ρ)dy

)

= Acorr

2 (r, ρ) ,

(33)

and

∫ b(ρ)

a(ρ)
∂f corr(I,ρ)

ρ dI =




(a1a2)
n(Nt

ρ )
2n−1

(a2−a1)Γ(n)Γ(n−1)

×
∫ r log(1+Gρ)

0
eI

(

∫ I/2

0
∂gcorr(y,I,ρ)

∂ρ dy
)

dI





+





(−2n+1)(Nt)
2n−1 1

ρ2n
(a1a2)

n

(a2−a1)Γ(n)Γ(n−1)

×
∫ r log(1+Gρ)

0
eI

(

∫ I/2

0
gcorr(y, I, ρ)dy

)

dI





= Acorr

3 (r, ρ) +Acorr

1 (r, ρ) .

(34)
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