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Solving Nurse Rostering Problems Using Soft
Global Constraints

Jean-Philippe Métivier, Patrice Boizumault, and Samir Loudni

GREYC (CNRS - UMR 6072) — Université de Caen
Campus II — Boulevard du Maréchal Juin
14000 Caen Cedex

Abstract. Nurse Rostering Problems (NRPs) consist of generating ros-
ters where required shifts are assigned to nurses over a scheduling period
satisfying a number of constraints. Most NRPs in real world are NP-hard
and are particularly challenging as a large set of different constraints and
specific nurse preferences need to be satisfied. The aim of this paper is
to show how NRPs can be easily modelled and efficiently solved using
soft global constraints. Experiments on real-life problems and compari-
son with ad’hoc OR approaches are detailed.

1 Introduction

Due to their complexity and importance in real world modern hospitals, Nurse
Rostering Problems (NRPs) have been extensively studied in both Operational
Research (OR) and Artificial Intelligence (AI) for more than 40 years [5/11]. Most
NRPs in real world are NP-hard [16] and are particularly challenging as a large
set of different rules and specific nurse preferences need to be satisfied to warrant
high quality rosters for nurses in practice. Other wide range of heterogeneous
and specific constraints makes the problem over-constrained and hard to solve
efficiently [1127].

NRPs consist of generating rosters where required shifts are assigned to nurses
over a scheduling period satisfying a number of constraints [5[7]. These con-
straints are usually defined by regulations, working practices and preferences of
nurses and are usually categorised into two groups: hard constraints and soft
constraints (with their violation costs).

From a Constraint Programming (CP) point of view, global constraints are
often key elements in successfully modelling and solving real-life problems due
to their efficient filtering. Global constraints are particularly well suited [31] for
modelling NRPs: sequence constraints on every nurse planning, daily capacity
constraints, etc. But, for over-constrained problems as NRPs, such filtering can
only be performed in very particular cases. Soft global constraints proposed
by [30126/33] take advantage from the semantics of a constraint and from the
semantics of its violation to efficiently perform filtering. The aim of this paper
is to show how NRPs can be modelled using soft global constraints and solved
efficiently with solutions quality and computing times close to those obtained
using ad’hoc OR methods.



Section 2 gives a synthetic overview of NRPs and describes the problem we
selected as example for our presentation. Although this problem is fictional, hard
and soft constraints it contains are representative of constraints encountered in
most NRPs. Section 3 is devoted to soft global constraints and their filtering.
In Section 4, we show how NRPs can be modelled in a concise and elegant way
using soft global constraints.

The next two sections are devoted to the resolution of NRPs. First, we in-
troduce (Section 5) the global constraint regularCount (and its soft version)
which combines regular and atleast/atmost constraints in order to provide
a more efficient filtering. Then, we motivate and present our resolution method
VNS/LDS+CP [18] based on a Variable Neighborhood Search (VNS [22]) where
the reconstruction step is performed using a Limited Discrepancy Search (LDS
[13]) combined with filtering (CP) performed by soft global constraints.

The ASAP site (Automated Scheduling, optimization And Planning) of Uni-
versity of Nottingham (http://www.cs.nott.ac.uk/ tec/NRP/)records a large
and various set of NRPs instances as well as the methods used to solve them.
We performed experimentations over different instances we selected in order to
be representative of the diversity and the size of NRPs. For each instance, we
compare quality of solutions and computing times for our method with the best
known method for solving it [14]. Experimentations show (Section 7) that, de-
spite its genericity and flexibility, our method provides excellent results on small
and middle size problems and very promizing results on large scale problems.

2 Nurse Rostering Problems

2.1 An Overview of NRPs

NRPs consist of generating rosters where required shifts are assigned to nurses
over a scheduling period (planning horizon) satisfying a number of constraints
[6,11]. These constraints are usually defined by regulations, working practices
and nurses preference. Constraints are usually categorised into two groups: hard
and soft ones. Hard constraints must be satisfied in order to obtain feasible
solutions for use in practice. A common hard constraint is to assign all shifts
required to the limited number of nurses. Soft constraints are not obligatory but
are desired to be satisfied as much as possible. The violations of soft constraints in
the roster are used to evaluate the quality of solutions. A common soft constraint
in NRPs is to generate rosters with a balanced workload so that human resources
are used efficiently.

Shift types are hospital duties which usually have a well-defined start and end
time. Many nurse rostering problems are concerned with the three traditional
shifts Morning, (7:00-15:00), Evening (15:00-23:00), and Night (23:00-7:00).
Shift constraints express the number of personnel needed for every skill category
and for every shift or time interval during the entire planning period. Nurse
constraints refer to all the restrictions on personal schedules. All the personal
requests, personal preferences, and constraints on balancing the workload among
personnel belong to this category.



2.2 Example: A 3-Shifts NRP

The 3 shifts are Morning (M), Evening (F) and Night (N). Off (O) will represent
repose. 8 nurses must be planned over a planning horizon of 28 days satisfying
the below constraints.

1. Hard Constraints:

(H1) From Monday to Friday, M, E, N shifts require respectively (2, 2,1) nurses.
For weekend, the demand of all shifts is reduced to 1.

(H2) A nurse must have at least 10 days off.

(H3) A nurse must have 2 free Sundays.

(H4) A nurse is not allowed to work more than 4 N shifts.

(H5) The number of consecutive N shifts is at least 2 and at most 3.

(H6) Shift changes must be performed respecting the order: M, E, N.

2. Soft Constraints:

(S1) For a nurse, the number of M and N shifts should be within the range [5..10].
Any deviation ¢ is penalised by a cost ¢ x 10.

(S2) The number of consecutive working days is at most 4. Any excess § generates
a penality of 6 x 1000.

(S3) Every isolated day off is penalised by a cost 100.

(S4) Every isolated working day is penalised by a cost 100.

(S5) Two working days must be separated by 16 hours of rest. Any violation gen-
erates a cost 100.

(S6) An incomplete weekend has cost 200.

(S7) Over a period of 2 weeks a nurse must have 2 days off during weekends. Any
deviation ¢ is penalised by a cost § x 100.

(S8) A N shift on Friday before a free weekend is penalised by a cost 500.

Related CP Works. An operational system GYMNASTE using (hard) global
constraints is described in [31]. Other practical systems are also mentionned.
But, dealing with over-constrained problems is only discussed as perspectives.
Three directions are indicated (Hierarchical CP [1], heuristics and interactions).
The last two proposals are problem dependent. As quoted by [31], the main
difficulty with the Hierarchical CP approach is that global constraints have to
be extended to handle constraint violations. This is the aim of this paper.

3 Soft Global Constraints

3.1 Principles

Over-constrained problems are generally modelled as Constraint Optimization
Problems (COP). A cost is associated to each constraint in order to quantify its
violation. A global objective related to the whole set of costs is usually defined
(for example to minimize the total sum of costs). Global constraints are often
key elements in successfully modelling and solving real-life problems due to their
efficient filtering. But, for over-constrained problems, such filtering can only be
performed in very particular cases. Soft global constraints proposed by [30,26,33]
take advantage from the semantics of a constraint and from the semantics of its
violation to efficiently perform filtering.



Definition 1 (violation measure). p is a violation measure for the global
constraint c(X1, ..., Xpn) iff p is a function from D1 x Dy x ... x D, to RT s.t.
VA € D1 X Dy X ... X Dy, n(A) =0 iff A satisfies ¢(X1, ..., Xp).

To each soft global constraint ¢ are associated a violation measure p. and a
cost variable Z. that measures the violation of ¢. So the COP is transformed
into a CSP where all constraints are hard and the cost variable Z = )" Z. will
be minimized. If the domain of a cost variable is reduced during the search,
propagation will be performed on domains of other cost variables.

Definition 2 (soft global constraint). Let c(Xi,...,X,) be a global con-
straint, Z. its cost variable, and p a violation measure. The soft global con-
straint X-c([X1, ..., Xn], s Zc) has a solution iff A € Dy x Ds X ... X Dy, s.t.
min(Dz,) < p(A) < max(Dgzg,).

Example (decomposition based violation measure). Let ¢(X7, ..., X,,) be a
global constraint which can de decomposed as a conjunction of binary constraints
ci,; over variables X; and Xj;. Let ¢;; be the violation cost of ¢;;; let A €
Dy x Dy x ... x D, and unsat(A) be the set of constraints ¢; ; unsatisfied by A.

Then’ :udeC(A) = Zciyj cunsat(A) Pij-

3.2 Relaxation of gcc

i) A Global Cardinality Constraint (gcc) on a sequence of variables spec-
ifies, for each value in the union of their domains, an upper and lower bound to
the number of variables that are assigned to this value [28].

Definition 3. Let ¥ ={X;,...,X,,}, Doms=Ux,cxD;. LetvjeDoms, l; and u;
the lower and upper bounds for vj. gcc (X, 1, u) has a solution iff 3A € Dy x Dy x
. X Dy s.t. Yu; € Doms, l; <|{X; € X | X; = v} |[< uj.

Each constraint gce(X, [, u) can be decomposed as a conjunction of atleast and
atmost constraints over values in Doms:

gee(X, Lu) = A\, cpoms(atleast(X,v;, [;) A atmost(X, vj, u;))

ii) Global constraint X-gcc is a soft version of gcc for the decomposition
based violation measure fig4e[20]. X-gcc allows the violation of the lower and/or
upper bounds of values. To each value v;€Doms are associated a shortage func-
tion s(X,v;) measuring the number of missing assignments of v; to satisfy
atleast(X,v;,l;), and an excess function e(X,v;) measuring the number of
assignments of v; in excess to satisfy atmost(X,v;,u;). Each constraint X'-gcc
is modelled by adding wviolation arcs to the network of gcc [28]. These violation
arcs represent the shortage or the excess for each value of Doms [33,20].

Definition 4 (pgec). For each value v; € Doms, let <p?”e“5t be the wviolation
cost of its lower bound l; and w?tm‘m the violation cost of its upper bound u;,

,UJdec(X) = Zv]. cDoms ,UJcard(Xa vj)
where pieara(X,v5) = s(X,v5) X 18t 4 e(X,v;) x pjimest



Property 1 (filtering). Let Z be a cost variable and @ a violation structure,
Y-gee(X, 1, u, dec, P, Z) is domain-consistent iff for every arc a = (X, v;), there
exists an integer s — t flow f of value m(m:(n,zvjeDomS l;) with f(a) =1 and
weight p s.t. min(Dz) < p < mazx(Dg).

Worst case time complexity: O(n*log(n) x d) where d = maz(|D;]).

3.3 Relaxation of Regular
i) Global Constraint Regular [25]

Definition 5. Let M be a Deterministic Finite Automaton (DFA), L(M) the
language defined by M, X a sequence of n variables. regular (X ,M) has a so-
lution iff 3A € D1 X Dy X ... x Dy, s.t. A€ L(M).

A DFA is defined by a 5-tuple M={Q, X, 9, qo, F'} where @ is a finite set of states,
X is an alphabet, 0 : Q x X — @ is a transition function, g is the initial state
and F' C @Q is the set of final (or accepting) states. A regular constraint over a
sequence of n variables is modelled by a layered directed graph G = (V,U):

- vertex set V = {s}UVoU...UV, U{t} where Vi € [1.n],Vi={q! | ¢ € Q}
-arcset U ={(s,¢0)} Ul U... U, U{(q}';t) | ¢ € F}
where Vi € [L.n], Ui = {(q}, ¢, ", v;) | v; € Di, 6(q1,v5) = gm}

Property 2. Solutions for regular(X,M) correspond to s-t paths in graph G.

ii) Global Constraint Cost-Regular enables to model the fact that some
transitions of an automaton may have a cost. To each cost-regular constraint
is associated a directed weighted layered graph G = (V,U, @), where each arc
representing a transition is valued by the cost of this transition [10]. For an
instantiation A, the measure fi,c4(A) is defined as the total sum of the transition
costs for arcs belonging to the path associated to A.

Property 3 (filtering). Let Z be a cost variable and ¢ a violation structure.
cost-regular(X, M, fireq, D, Z) is domain-consistent iff for every arc a = (X;, v;)
there exists an s-t path of weight p s.t. min(Dz) < p < maz(Dg).

Worst case time complezity: O(n x |Q| x |X|). For each layer i, each vertex ¢}
may have at most | Y] successors.

iii) Cost-Regular used as a soft constraint for NRPs every hard constraint
of sequence ¢ will be modelled using a DFA M, (see Section 4.3). A soft constraint
of sequence X'-c will be modelled by adding new transitions to M, as well as
their costs. Let M/ be this new DFA; then a cost-regular constraint over M
is stated. So, for modelling NRPs, cost-regular will be used as a soft version
of regular (L(M.) C L(M])).

4 Modelling a 3-Shifts NRP

This section presents the modelling of the problem specified in Section 2.2 and
shows how soft global constraints are well suited for modelling NRPs.



4.1 Variables and Domains

Let J=[1..28] be the scheduling period and I=[1..8] the set of nurses; variable
X}, with domain Di=Doms={M,E,N,0}, will represent the shift assigned to
nurse ¢ for day j. For gcc constraints, values will be ordered as in Doms.

4.2 Capacity Constraints

(H1) Vj € [1,2,3,4,5,8,9, .., 24,25,26], gec([X}, ..., X§],[2,2,1,0], [2,2, 1, 8]).
Vj € [6,7,13,14,20,21,27,28], gee([X}, ..., X5],[1,1,1,0], 1, 1, 1, 8)).

(H2) Vi € I,atleast([X],..., X4, 0,10).

(H3) Vi € I,atleast([ X%, Xi,, X4, Xi], 0, 2).

(H4) Vi € I,atmost([ X7, ..., Xi], N, 4).

(S1) Vi € I, 5-gee([X. .. . Xb], [5, 5], [10, 10], [10, 10], [10, 10], Z;) for values M

and E with pgtleast=p3tmest=10 (violation costs for E are the same).
(S7) is also modelled using X'-gcc constraints.

(H2), (H4) and (S1) can be grouped together using X'-gcc constraints:
Viel, Y-gee([Xi,. .. Xi],[5,5,0,101,[10,10,4,28],[10,10,0,00],[10,10,00,0],Z;).

As (H2) is a hard atleast constraint, then up=28, p#!**'=00 and pH™most=(.

As (H4) is a hard atmost constraint, then [y=0, p&e®s'=0 and %™t =00.

4.3 Sequence Constraints

Let X be an alphabet, T will represent any symbol y € X s.t. y # x.

(H5) Vi € I, regular([X7,..., Xig], A1) (Figure 1)

(H6) states that shift changes must be performed respecting the order: M, E, N.
(see automaton Az (Figure 2)). For modelling (S5), two arcs are added: one
for transition (es, e2, F) with cost 100 and one for transition (ez,e1, M)
with cost 100. So, Vi € I, cost-regular([X],..., Xi], Aa, Z42).

(S6) V i€l, cost-regular([X{ X3, X5, X1y, X5r, Xis.],43,243) (Figure 3).

Finally, (S2), (S3) and (S4) can be grouped together using cost-regular. (S8)
can also be modelled by cost-regular.

Fig. 1. Automaton A1l for (H5)



Fig. 2. Automaton A2 for (H6) and (S5) Fig. 3. Automaton A3 for (S6)

5 Interaction between Global Constraints

Despite the efficient filtering of each global constraint, the lack of communica-
tion between them reduces significantly the quality of the whole filtering. In-
deed, each global constraint uses its internal representation (bipartite graph,
network,...) and does not (or partially) exploit information deduced by other
global constraints. In most NRPs, a great number of global constraints share a
common set of variables (e.g. constraints over the entire planning of a nurse).
Few works have been done on the interaction between global constraints:

— cardinality matrix constraint [29] combining several gcc as a matrix,
— multi-cost-regular [19] merging multiple cost-regular.

In this section, we propose the regularCount (resp. cost-regularCount) con-
straint which combines a regular (resp. cost-regular) constraint with several
atleast/atmost constraints on a same value.

5.1 Motivating Example

Rule (H4) is modelled as: Vi € I, atmost([X%,..., Xi],N,4) and rule (H5) as:
Vi € I, regular([X?,..., X%],A1) (see Section 2.2 & Section 4.3). Let us consider
the following reduced variable domains associated to the first week of nurse
i: Di=Di=Di={N}, D;={0} and Di=Di=D:={N,O}. Filtering separately
atmost and regular will not detect that value N should be removed from D%.
Indeed, if X{=N then X(=N by (H5) but (H4) fails. For analogous reasons,
value N should also be removed from D} and D%. This example illustrates the
weakness of separate filterings.

5.2 regularCount Constraint

For an automaton and a particular value v; € Doms, a regularCount constraint
will combine a regular constraint with several atleast/atmost constraints on
value v;.



Fig. 4. Graph representation for regularCount([X?,..., X¢],A1,N,0,4)

Definition 6. Let M ={Q, X, ,qo, F'} be a DFA, L(M ) its associated language,
X a sequence of n variables, v; € X, l; (resp. u;) an upper (resp. lower) bound
forvj. regularCount (X ,M v;,l;,u;) has a solution iff 3JA € D1 x...xD, | A€

The regularCount constraint has been used for developping a track planner for
a local Radio station. A new track has to be broadcast a bounded number of
times into the daily planning which must respect musical transitions expressed
as regular expressions. Other potential use for regularCount would be planning
advertising for TV stations or planning maintenance periods for assembly-lines.

Graph Representation. As for regular (see Section 3.3), a constraint
regularCount (X,M,v;,l;,u;) is modelled by a layered directed graph G'(V,U).
For each layer i, states ¢; are labelled both by the layer (¢! as for regular) and
by k the number of occurrences of v; found so far (g; , for atleast and atmost
constraints).

V={stuVU...uV,u{t}
Vi={dg,lacQkel0...n]}, Vie[l.n]
U={(s,400)} U0 U... U, UU;

Ur={(q'>t) | @ € FA(l; <k <)}

U, = {(quk,qf;i/,v) |v € D, 0(q,v) =qm}, Vi€ [l.n]
where if (v =v;)thenk’ =k + lelsek’ =k

Example (Section 5.1) is modelled as: Vi € I, regularCount([X}, ..,
X1],41,N,0,4). Figure 4 describes its graph representation. regularCount fil-
tering will remove value N from domains D, D§ and D%.

Property 4 (filtering). Let M={Q, X, 6, qo, F'} be a DFA, v; € X, [; (resp. u;)
the upper (resp. lower) bound for v;. regularCount(X,M,v;,l;,u;) is domain-
consistent iff for every arc a = (X;,v;) € U; there exists an s-t path in G'(V, U).

Proof. There is an arc from g, to qf;i/ iff there exists a value v € D; such
that 6(qi,v)= gm. If (v = v;) then k'= k+ 1 (i.e., the number of variables that
are assigned to v; is k + 1), otherwise k'=Fk. If an arc belongs to an s-t path, it
belongs to a path from qg  to ¢, with ¢; € F and I; < k' < u;.



Fig. 5. Graph representation for cost—regularCount([Xé,...,Xég],Ag,@,O,2,2,ZiA3)

Worst case time complexity: O(n?/2 x |Q| x |X|). For layer i, there are at
most ix|Q| vertices as at most ¢ occurrences of v; may be assigned to vari-
ables X1, ..., X;. As for regular, each vertex may have at most |X| successors.
Summing for all layers leads to > ., i x |Q] x |X].

5.3 Cost-regularCount Constraint

Let M={Q,X,4,q0,F} be a DFA and v; € Y. cost-regularCount is a soft
version of regularCount for which some transitions may have a cost and which
also allows the violation of lower/upper bounds for a value v;.

Definition 7 (violation measure Ti,.,). Let o5t (resp. ©3"°%) be the
violation cost associated to lower bound l; (resp. upper bound u;). Yv; € X,
ﬁreg(‘)(’ Uj) = /LTEQ(X) + :U’Clle(X’ Uj)'

Definition 8. Let M a DFA, v; € X, Z a cost variable and ¢ a wviola-
tion structure. cost-regularCount (X, M, Hyegs Py v, Ly uj, Z ) has a solution iff
JA€ Dy x...x Dpst. A€ L(M) AN min(Dz) < T, (A,v5) <max(Dz).

Graph Representation. There are two main differences between G”(V, U, @)
and G'(V,U) : i) transition costs are associated to corresponding arcs (as for
cost-regular), ii) arcs U; are replaced by violation arcs U;= {(q%,t) | @ €
F,k €[0...n]} which enable to model shortage or excess for a value v;. To each
violation arc a=(gj’;,t) is associated a cost w(a):

{ (I — k) x pfteest if k < ;

wla) = ¢ (k—uy) x ™ if k> uy

0 otherwise
Figure 5 gives the graph representation of (S6) and (S7) modelled as:
Viel, cost—regularCount([Xé,X%,Xig,...,X§7,X§8,],Ag,ﬁTeg,¢,0,2,2,ZiA3).



Table 1. Comparative results for Filtering. (x) denotes optimal values.

Y-Gcc & cost-regular| cost-regularCount
Instance || 1] x| J] || DJ| UB Time (s.) ﬁbackilacks Time (s.)guﬁbacktracks
inst_01_07 28 2 (3000* 14 1559 0.2 342
inst_01_11 44 2 |1500* 20.9 14113 6.7 6 002
inst_01_14 56 2 (2500* 380.1 193 156 122.6 63 395
inst_02_07 49 3 |1100* >5400 — 3303.1 2891874
inst_02_14 98 3 | 100* 73.6 24100 120.2 16 587
inst_02_21 147 3 | 100* 4886.7 1216 908 940.5 107612

Property 5 (filtering). Let M={Q,X,,q0,F} be a DFA, v; € X, [; (resp.
u;) the upper (resp. lower) bound for v;, ¢ a violation structure and Z a cost-
variable. cost-regularCount(X, M, T, , P, vj, lj, u;, Z) is domain consistent iff
for every arc a = (X;,v) € U; there exists an s-t path in G”(V,,®) of cost p s.t.
min(D,) < p < max(D,).

Proof. If a transition associated to arc (qfk,qﬂ'k/) uses vj;, then k'=k + 1 else

k'=k. An s-t path using a violation arc in U; corresponds to a solution with a
shortage or an excess for value v; and the cost to pay is reported on this violation
arc. As transition costs are reported on their associated arcs in U;, the cost of
an s-t path A using a violation arc in U, corresponds exactly to Preg (A, v5).

Worst case time complexity: O(n?/2 x |Q| x | X]) as for regularCount.

Table 1 compares the efficiency of cost-regularCount filtering vs separate fil-
terings in terms of computing times and number of backtracks. Experiments have
been performed on small or medium NRPs instances using Depth First Branch
and Bound and run on a 2.8 Ghz P4 processor. cost-regularCount filtering
always performs better than separate filterings except for inst_02_14 which is
an instance easy to solve where filtering is not so crucial. The extra-cost comes
from the fact that the complexity of cost-regularCount is slightly higher than
those of cost-regular and Y-gcc.

6 Variable Neighborhood Search

A great variety of approaches that have been proposed for solving NRPs are
either ad’hoc OR methods (including preprocessing steps to reduce the problem
size), or local search methods combining OR techniques to find an initial solution.
NRPs seem to be well suited for defining large-scale neighborhoods (2-opt, swap
and interchange of large portions of nurse plannings, ...).

Variable Neighborhood Search (VNS) [22] is a metaheuristic which systemat-
ically exploits the idea of large neighborhood change, both in descent to local
minima and in escape from the valleys which contain them. Variable Neighbor-
hood Decomposition Search (VNDS) [12] extends basic VNS within a successive



Algorithm 1. Pseudo-code for VNS/LDS+CP.

function VNS/LDS+CP(X,C, kinit, kmaz, Omaz)
begin

s < genInitialSol(X)

k — kinit

while (k < kmaz) A (not timeout) do
Xunaffected — Hneighbor (Nk7 5)

A — s\{(zi = a) s.t. ©i € Xunafrected}
s« NaryLDS(A, Xynaf fected, Omaz; V(5), 8)
if V(s') < V(s) then

s« s

k‘_kinit
| elsek+—k+1

return s
end

approximations method. For a solution of size n, all but k variables are fixed,
and VNDS solves a sub-problem in the space of the k£ unfixed variables.

VNS/LDS+CP. [18] is a generic local search method based on VNDS [12].
Neighborhoods are obtained by unfixing a part of the current solution according
to a neighborhood heuristic. Then the exploration of the search space related
to the unfixed part of the current solution is performed by a partial tree search
(LDS, [13]) with CP in order to benefit from the efficiency of global constraints
filtering (See Algorithm 1). However, as the size of neighborhoods can quickly
grow, the exploration of (very) larger neighborhoods may require a too expensive
effort. That is why, in order to efficiently explore parts of the search space, LDS
is used.

LDS+CP: Our variable ordering for LDS is Dom/Deg and our value ordering
selects the value which leads to the lowest increase of the violation cost. CP is
performed using soft global constraints filtering.

Neighborhood Heuristics. A lot of soft global constraints are stated over the
whole planning of a nurse. So, all variables related to a nurse planning will be
together unassigned. k£ will represent the number of nurse plannings to be unas-
signed (and not the number of variables as depicted in general Algorithm 1). In
order to show the interest of soft global constraints filtering, only two ”basic”
heuristics have been considered: (i) rand which randomly selects a nurse plan-
ning, and (ii) maxV which selects the nurse planning having the highest violation
cost.

7 Experimental Results

We performed experimentations over different instances we selected in order to
be representative of the diversity and the size of NRPs. For each instance, we
always compare with the best method for solving it [14]. As experiments



have been run on various machines, we will report, for each instance, the original
CPU time and the processor. For all instances, except the first three ones where
the processor is unknown (they are noted in italic Table 1.), CPU times will be
normalised! and denoted CPUN. Some methods include a pre-treatment.
As CPU times for this step are not given in papers, reported CPU times concern
in fact the second step. Finally, reported CPU times for our method always
include the computing time for obtaining the initial solution.

Experimental Protocol. Each instance has been solved by VNS/LDS+CP,
with a discrepancy varying from 6,,;,=3 t0 0a2=8. kmsn has been set to 2 and
kmaz t0 66% of the total number of nurses. Timeout has been set according to
the size of each instance. For the rand heuristic, a set of 10 runs per instance has
been performed. VNS/LDS+CP has been implemented in C++. Experiments
have been performed under Linux on a 2.8 Ghz P4 processor, with 1GB RAM.

Comparisons with ad’hoc Methods. Heuristic maxV, which is better in-
formed that rand, provides the best performances except for instances LLR and
Azaiez.

A) Ozkarahan instance [24]: we find the optimum in less than 1s. using maxV.

B) MILLAR instance: (2 methods)
B1) Network programming [21]: All feasible weekly shift patterns of length at
most 4 days are generated. An ILP model is defined and solved using CPLEX.
B2) TS+B&B [15]: Nurse constraints are used to produce all feasible shift pat-
terns for the whole scheduling period for each nurse (independently from shift
constraints). Best combinations of these shift patterns are found using mathe-
matical programming and Tabu Search.

With B1, a solution of cost 2.550 is found after 500 s. on an IBM
RISC6000/340. With B2, a solution of cost 0 is obtained in 1 s. on a 1Ghz
Intel P3 processor. We find the optimum in less than 1 s. using maxV.

C) Musa instance [23]: A solution of cost 199 is found in 28 s. on UNIVAC-1100.
We find the optimum (cost 175) in 39 s. using maxV.

D) LLR instance: A hybrid AI approach (TS+CP), which combines CP tech-
niques and Tabu Search is used in [17]. A solution of cost 366 is found after
96 s. on a PC/P-545MHz (CPUN 16 s.). With rand, we obtain (on average) a
solution of cost 319 after 265 s. The best solution (over the 10 runs) has a cost
314 (79 s.). The first solution (cost 363) is obtained in less than 1 s. Using maxV,
a solution of cost 326 is found in 186 s.

FE) BCV-5.4.1 instance: (3 methods). All the results are obtained on a same
machine (2.66GHz Intel P4 processor). Hybrid Tabu search [4] is the best of
the 3 methods for this instance. VDS [6] finds the optimum after 135 s. (CPUN
128 s.). In [3], a solution of cost 200 is found after 16 s. (CPUN 15 s.). With maxV,
we obtain the optimum after 180 s.

! For a machine  times slower than ours, reported CPU times will be divided by «.



Table 2. Comparative results. (x) denotes optimal values.

Instances ||1] x |J| || D||[Best Ub Ad’hoc methods VNS/LDS+CP
Algo. Cost Time(s)|Cost Time(s)
Ozkarahan | 14x7 | 3 | 0 [24] - - 0 1
Millar §x14 | 3| o | Network 2550 500 ) 1
TS+B&B 0 1
Musa 11x14 2 175* [23] 199 28 175 39
LLR 26x7 4 301* TS+CP 366 16 314 79
g+ |[Hybrid TS 48 5
BCV-5.4.1 4x28 5 VvDS 48 128 48 180
[3] 200 15
Azaiez 13x28 | 3 0* (0,1)-LGP 0 150 0 233
GPOST 8x28 | 3| 3° | 2-Phase 3 14 8 234
Valouxis 16x28 4 20" VDS 120 4200 160 3780
s | 25x30 | 4| 6 |TS4B&B 6 11060 63 671

F) Azaiez instance: An optimal solution is provided with the (0,1)-LGP method
[2] after 600 s. on a PC/P-700MHz (CPUN 150 s.). rand (resp. maxV) finds the
optimum in 233 s. (resp. 1.050 s.).

G) GPOST instance is solved using a 2 steps method [14]. First, all feasible sched-
ules are enumerated for each nurse. Then, the final schedule is generated using
CPLEX. An optimal solution of cost 3 is found in 8 s. on a 2.83GHz Intel Core2
Duo processor (CPUN 14 s.) without taking into account the time used in the first
step [14]. We find a solution of cost 8 in 234 s. using maxV.

H) Valouxis instance [32]: In [6], Variable Depth Search (VDS) obtains a so-
lution of cost 120 (6 workstretches of length 3) after 2.993 s. on a 2.66GHz
Intel Core2 Duo processor (CPUN 4.200 s.). We obtain a solution of cost 160 (8
workstretches of length 3) after 3.780 s. using maxV.

I) Tkegami-3shift-DATA1 instance: Experiments have been performed on a
PENTIUM3-1Ghz. TS+B&B [15] finds a solution of cost 10 after 543 mns (CPUN
194 mns) with a timeout of 24h and a solution of cost 6 after 5.783 mns (CPUN
1.851 mns) with a timeout of 100h. maxV provides a solution of cost 63 (where
all unsatisfied constraints are of weight 1) after 671 s. with a timeout of 1h.

Contrary to other instances, nurse constraints are hard and shift constraints are
soft for Tkegami. So our neighborhood heuristics which unassign whole nurse
plannings are irrelevant. If the timeout is increased, the solution quality is im-
proved but it is not enough to bring the optimum. As it is more efficient to
unassign variables related to soft constraints than hard ones, one may consider
that basic heuristics unassigning shift constraints would be efficient. But it is



not the case as it is very difficult to obtain a first solution: nurses constraints
are larger than soft ones and more difficult to satisfy.

Conclusions. For each instance, we have compared our method with the best
ad’hoc method for solving it [14]. Despite its genericity and flexibility, our
method has obtained: (i) solutions of better quality and better computing times
for Ozkarahan, Millar, Musa and LLR, (ii) solutions of equal quality with com-
puting times close to those for BCV541 and Azaiez, (iii) very promising solution
quality on large scale instances as GPOST and Valouxis.

8 Conclusion

In this paper, we have shown how NRPs can be modelled in a concise and elegant
way using soft global constraints. For each instance, we have compared quality of
solutions and computing times for our method with the best known method for
solving it. Experimentations show that, despite its genericity and flexibility, our
method provides excellent results on small and middle size problems and very
promizing results on large scale problems. For large instances or very specific
ones like Tkegami, performances of our method could be greatly improved by
using neighborhood heuristics especially designed for NRPs. In order to reduce
the lack of communication between soft global constraints, it would be interesting
to extend arc consistency for soft binary constraints [9,8].
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