N

N
N

HAL

open science

Softening Gcec and Regular with preferences

Jean-Philippe Metivier, Patrice Boizumault, Samir Loudni

» To cite this version:

Jean-Philippe Metivier, Patrice Boizumault, Samir Loudni. Softening Gcc and Regular with pref-
erences. 24th annual ACM Symposium on Applied Computing (SAC’09), Mar 2009, University of

Hawaii at Manoa, USA, United States. pp.1392-1396. hal-01015040

HAL Id: hal-01015040
https://hal.science/hal-01015040

Submitted on 25 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01015040
https://hal.archives-ouvertes.fr

Softening Gcc and Regular with preferences

Jean-Philippe Métivier

Patrice Boizumault

Samir Loudni

GREYC (UMR 6072) — University of Caen
Campus Coéte de Nacre
Bd du Maréchal juin - BP 5186
14032 Caen CEDEX — France

{imetivie,patrice.boizumault}@info.unicaen.fr loudni@iutc3.unicaen.fr

ABSTRACT

In this paper, we present the soft global constraints ¥-gcc
and Y-regular which are the soft versions with preferences
of well-known global constraints Gcc and Regular. For each
of them, we introduce a new violation based semantic which
takes into account preferences and propose algorithms to
enforce hyperarc consistency in polynomial time, making
use of flow theory.

1. INTRODUCTION

Many real-life problems are over-constrained since there
exists no solution satisfying all the constraints. In this situ-
ation, it is natural to allow certain constraints, the soft ones,
to be violated.

Soft versions of some well-known global constraints, such
AllDifferent, Gec and Regular have been recently intro-
duced [8, 9]. But these soft global constraints do not take
into account preferences.

When expressing preferences, each constraint has a weight
reflecting its importance (amount of violation or ”cost to
pay” if the constraint is not satisfied). For an instantiation,
the amount of violation is the sum of the weights of all un-
satisfied constraints. A first softening of a global constraint
with preferences has been proposed for A11Different in [3].

In this paper, we present the soft global constraints ¥-gcc
and ¥-regular which are the soft versions, with preferences,
of the global constraints Gcc and Regular. For each of these
two constraints, we introduce a new violation based seman-
tic which takes into account preferences between violations
and propose algorithms to enforce hyperarc consistency in
polynomial time, making use of flow theory.

In Section 2, we introduce our decomposition based seman-
tic of violation for ¥-gcc and show how hyperarc consis-
tency can be enforced in polynomial time. In Section 3, we
present our value based semantic of violation for ¥-regular,
and show how hyperarc consistency can be enforced in poly-
nomial time thanks to path computations in directed graph.
Finally, we conclude and draw some future works.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii,U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

2. SOFT GLOBAL CONSTRAINT X-GCC

2.1 The Global Cardinality Constraint

JC. Régin has introduced in [5] the Global Cardinality
Constraint (Gec). This constraint defined on a set of n
variables specifies, for each value in the union of theirs do-
mains (Doms), bounds on the maximal (u;) and minimal
(I;) number of times values v; can occur in a solution.

DEFINITION 1. (Gee, [5]) Let X be a set of n variables
and D; be the domain of the variable X;, let Doms=U;cx D;.
Let l;,u; € N with I;<u; for all v;€Doms.

Gee(X,l,u) = {(vy,...,0n) € D1 X...X Dy, s.t.Vv; € Doms,
L <IH{Xi e X | X =v;} <y}

THEOREM 1 ([5]). Gee(X,1,u) is hyperarc consistent iff
there exits a feasible s—t flow of value n (where n=|X|) in
the network N={V, A} with:

V=X UDomsU {s,t}

A=A UAx UA;

A= {(s, X)) |1 € {1,...,n},

Ax ={(Xi,v;) |v; € Diyi € {1,...,n}},
A = {(vjvt) | vj € D0m5}7

demand and capacity functions:

Va € As, d(a) =1 and c(a) =1

Va € Ax, d(a) =0 and c(a) =1

Va € A, d(a) =1; and c(a) = u;

Consistency-check can be performed in O(n x m) (where
m =| Al). To maintain hyperarc consistency, all arcs (and
then values) which do not belong to any feasible flow are
removed thanks to computation of strongly connected com-
ponents in O(n+m) (see [7] for more details).

ExAMPLE 1. Consider the following CSP:

D1 = Dg = {1,2},D3 = {1},D4 = {2}, and D5 = {2,3}

Gcc([Xl, Xa, X3, X4, Xs], [1, 1, O], [2, 2, 1])
The network associated to this Gee constraint is described in
Figure 1. (1,2,1,2,3) and (2,1,1,2,3) are the two solutions
of this CSP.

2.2 Decomposition Based Semantic for >-GCC

2.2.1 Gcce as a meta-constraint

Gee can be considered as a meta-constraint and decom-
posed into a set of atleast constraints enforcing the lower
bound for each v;€Doms, and a set of atmost constraints
enforcing the upper bound for each v;€ Doms.

Figure 1: Network representation for the Gcc con-
straint presented in Example 1, bold arcs represent
a feasible flow of value 5.

DEFINITION 2 ([2]). Let v; € Doms, let l; and u; their
lower and upper bounds,

atleast(X,v;, ;) = [{Xi € X | Xs =v}| =1
atmost(X,vj,u;) = [{X; € X | Xi =v;}| <y

Then, Gec can be defined as follows:

Gee(X,l,u) = /\ (atleast(X,v;,l;)Aatmost(X, vj,u;))

v; € Doms

2.2.2 Decomposition Based Semantic

To each value v;€Doms, we associate a shortage func-
tion (s(X,v;)) measuring the number of missing assignments
of v; to satisfy atleast(X,v;,l;), and an excess function
(e(X,v;)) measuring the number of assignments of v; in ex-
cess to satisfy atmost (X, v;,u;) [9]:

s(X,v;) = max(0,l; — [{Xi | Xi = v;}])
e(X,v) = maz(0,[{Xi | Xi = v;}| — uy)

To express preferences on the minimal/maximal require-
ments on each value v;, we associate to each I; (resp. uj)
a weight ¢3"'°**" (resp. ¢$"™°") denoting the amount of
violation to pay if the requirement is not satisfied. We can
define the violation cost of the constraint atleast(X,v;,1;)

as follows:
weight(atleast(X,v;,1;)) = """ x (X, v;)

And respectively for the constraint atmost (X, v;, u;):

weight(atmost (X, vj,u;)) = ¢§"" x e(X, v;)

Let Cgec be the decomposition of a Gcec constraint into a
set of atleast and atmost constraints. The decomposi-
tion based semantic 4. computes the weighted sum of
atleast(X,v;,l;) and atmost (X, v;, u;) constraints in Caec
that are violated.

DEFINITION 3. (Decomposition Based Violation Measure)

pace(X) = Y @f X s(X,05) 4+ 5T X e(X ;)

v; €Doms

DEFINITION 4. (Consistency of Y-gcc) Let z be a cost
variable with domain D., Y-gcc(X,l,u,z, llgec) s hyper-
arc consistent iff there exists a complete instanciation A s.t.
taec(A) < maz(D,).

Employee | Shifts

Mick M Shifts | Bounds Costs

John M l u Soatleast goatmost
James M, A M 1 2 4 2

Patty M, A A 3 4 1 2

Julia M N 2 2 3 4

Helen AN

Table 2: Bounds and costs
Table 1: Availabilities

2.2.3 Example

Consider the following planning problem that consists in
building timetables for a group of six employees over a pe-
riod of a week (more precisely from Monday to Thursday).
There are three basic shifts in a day, namely Morning (M),
Afternoon (A) and Night (N).

Each shift requires a minimal number of employees to be
operational, and a maximal number of employees to be prof-
itable (see Table 2). Each employee provides the set of its
availabilities (see Table 1).

This problem can be easily modeled as a CSP: to each
employee i, we associate a variable X; whose domain D;
contains the shift requests of employee i; bounds on shift
requirements can be expressed using a Gce constraint.

D1=D2={M}, D3=Ds={M, A}, Ds ={M}, De={A, N}
GCC([AX—L)(—2,)(—3,)(—4,)(—5,)(—6]7 [1,3,2], [2,47 2])

But, shift requests of employees are frequently too restric-
tive in order to get a solution. The violation of the mini-
mal/maximal requirements for a shift may not have the same
importance w.r.t. to the profits. In fact, for a Morning shift,
it is more important to respect its lower bound (I;) rather
than its upper bound (u;), since any violation of [; may have
a great impact on the other shifts (i.e., the production may
be delayed). In contrast, for a Night shift, one prefers to
respect its upper bound (u;) rather than its lower bound
because having one more worker could be considered as too
expensive. Table 2 summarizes, for each shift, the values of
l; and w; and their violation costs.

This over-constrained problem can be now expressed as a
CSP with preferences (on shift requirements) using a X-gcc
constraint.

Dy =Dy;={M},D3=Dy={M, A},Ds={M},Ds={A, N}
D, =[0..6)%-gcc([X1, X2, X3, X4, X5, X6],[1,3,2],[2,4, 2], 2, fgec)-

The solution (M,M,A,A,M,N), whose violation cost is
equal to 1xp4imest 41 xp4tleast 1] xpatleast —9 4 4—6, satis-
fies the X-gcc as its cost is less or equal to maz(D,) =6.
Figure 2 shows the network associated to this example.

2.3 Network Representation for >-GCC

As for Gee, ¥-gcc can be modeled by a network. From the
initial network A associated to Gcc (see Section 2.1), WJ.
van Hoeve and al. have defined the network N, f+ associated
to soft-gcc [9]. Violation arcs are added in order to model
shortage and excess functions:

e Shortage violation arcs, Asportage=1{(8,v;) | v;€Doms},
are used to model atleast(X,v;,l;) constraints. For
each shortage violation arc a=(s, v;), its demand d(a)=0,
its capacity c(a)=l;, and its weight w(a)=1.

o Excess violations arcs, Aeczcess={(vj,t) | v;€EDoms},
are used to model atmost(X,v;,u;) constraints. For

Figure 2: Network representation for the ¥-gcc pre-
sented in section 2.2.3, bold arcs represent a maxi-
mal flow of weight 6.

each excess violation arc a = (v;, t), its demand d(a)=0,
its capacity c(a) = oo, and its weight w(a) = 1.

Now, we can define the network Ny associated to a Y-gcc
constraint. For the decomposition based semantic intro-
duced in Section 2.2.2, the cost associated to the violation
of a lower bound (I;) is not necessarily the same to the one
associated to the violation of an upper bound (u;):

e Let v; € Doms, and ¢}"'“**" be the weight associated
to the violation of the lower bound I; for v;. For each
shortage violation arc a = (s, v;), its demand d(a) = 0,
its capacity c(a) = l;, and its weight w(a) = @§*'e**

e Let v; € Doms, and """ be the weight associated
to the violation of the upper bound u; for v;. For each
excess violation arc a = (vj,t), its demand d(a) = 0,

its capacity c(a) = oo, and its weight w(a) = ¢§""*"

2.4 Consistency-Check

Let z be a cost variable that represents the allowed amount
of violation of a ¥-gcc constraint. To check the consistency
of a ¥-gcc constraint we use the following corollary:

COROLLARY 1. The constraint Y-gcc(X,l,u, 2, fidec) 18
hyperarc consistent if and only if there exists an integer s—t
flow f of value n in Ny with weight(f) < max(D.).

PROOF. To an integer s—t flow f of value n in N we asso-
ciate the assignment X; = v; for all arcs a = (X;,v;) € Ax
with f(a) = 1. By construction, the cost function measures
the decomposition based violation cost. []

Consistency-Check can be performed thanks to a Ford &
Fulkerson algorithm in O(maz(n, . l;) x (m+nx

log(n))) [1].

2.5 Maintaining hyperarc consistency

To maintain hyperarc consistency, we use the following
corollary:

v; € Doms

COROLLARY 2. The constraint ¥ -gcc is hyperarc consis-
tent if and only if for every arc a € Ax there exists an
integer s—t flow f of value maz(n, ZUjEDams l;) in N with
f(a) =1 and weight(f) < maz(D.).

Algorithm 1: Filtering algorithm for 2-GCC.
Compute f a minimal weight flow of value
maz(n, Y, poms i)
min(D.) «— weight(f)
if D, = 0 then

| return inconsistent
else

foreach vertex ve N’ the residual graph do
weight(s—wv) < mininal distance from s to v

| weight(v—t) < mininal distance from v to ¢

foreach X;cX do
foreach v;€D; do
if (Xi,v;) € Athen
wp — weight(t — X;) + weight(v; — t)
if weight(f)+wp > max(D.) then
| Remove v; from D;

| if D; = 0 then return inconsistent

L return consistent

Figure 3: DFA associated to the timetabling

The ¥-gcc of Example 2 can be made hyperarc consistent
by removing value M from D3 and D4 and value A from Dsg.

We can use the same technique as cost-gcc [6] to compute
the weight of a flow using a specific arc.

For each arc (X;,v;), we compute the weight of rerouting
the flow in order to use this arc thanks to the search of
the minimal weighted cycle (v;—t—s—X;—wv;). Then, we
add this weight to the initial flow. If this sum is greater
than max(D.), we have to remove the value v; from D; (see
Algorithm 1).

Complexity of the filtering is O((n+d) x (m+nxlog(n))).

3. A SOFT REGULAR: X-REGULAR
3.1 The Regular Constraint

3.1.1 Definition and Example

Let M = (Q, X%, 4, qo, F) be a deterministic finite automa-
ton (DFA) where Q a finite set of states, X an alphabet, § a
transition function defined on @Q x ¥ — @, qo the initial state
and F' C @ the set of final states. Given an input word, the
automaton starts in the initial state qo and processes the
word one symbol at a time, applying the transition function
0 at each step. The word is accepted if and only if the last
state reached belongs to F. All words accepted by a DFA
belong to the language recognized by the DFA noted L(M).

For the automaton described in Figure 3, words AAM A
and NNN belong to L(M) but it is not the case for NNAN.

The Regular constraint states that a word, represented by
a sequence of n variables X1, Xs, ..., X, has to be accepted
by a given DFA.

DEFINITION 5. (Regular [4]) Let M = (Q,%,6, qo, F) be

a DFA and X = X1, Xo,...
with respective domains D1, Da, . ..,

Regular(X,M)={(v1,...

, Xn be a sequence of n variables
D, CX. Then

3.1.2 Graph associated to a Regular constraint
Regular can be modeled with a directed graph.

THEOREM 2. ([4]) Let M = (Q,%,8,q0,F) be a DFA.
A constraint Regular(X, M) is hyperarc consistent iff there
exists an s—t path in the graph G = {V, A} defined as follows:

V=ViUWU---UV, U{s,t}
where Vs ={q;, | ¢ € Q} fori=1,...,n+1

and A=A, UA UAU---UA, UA;

where

As ={(s,q)}

Ai = {(gh Z Yv;) | v; € Dy, 6(qr,vy) = @i} fori=1...n
A ={(gi"",t) | qn € F)}

3.1.3 Consistency-Check

The Consistency-Check can be efficiently performed by
computing an s—t path thanks to a breadth-first search in
O(m), where m is the number of arcs in G (with m<nx|
QIXIZ]).

3.1.4 Filtering

Filtering can be performed in two steps [4]:

1. For each vertex (different from the target t) with no
outgoing arc, all incoming arcs are removed. For each
vertex (different from the sink s) with no incoming arc,
all outgoing arcs are removed.

2. If there exists no arc (g, qli ,v;) between ¢, and q”l,

then value v; can be removed from domain D;.

So, filtering consists in checking each arc and it can be
performed in O(m).

3.2 Distance Based Semantic for >-REGULAR

In this section, we introduce a new value based seman-
tic taking into account the distance between expected and
unexpected values for a transition.

DEFINITION 6. (Ezpected value) Value v € ¥ is said to
be expected for a couple of states (qr,q) if and only if there
ezists a transition from state qi to state q; using symbol v;.
EV(qr,qi) = {v € £ | d(gr,v) = @} will denote the set of
ezpected values for (qr,qi) -

DEFINITION 7. (Distance) Let (qk, q) be a couple of states,
value v; € EV (qr, qi) and value v; € X.

o distance(vj,vi) =0 if vi € EV (qk, q)
i ifvi € X\ EV(qe,q1)
where each ; ; corresponds to the cost for having performed

a transition from qi to q using an unexpected value v; in-
stead of expected value v;.

o distance(vj,v;) =

Between two words, the value based distance, V(W,, Wy),
is the sum of the distances between their corresponding sym-
bols. The value based distance between a word and a lan-
guage is the minimal value based distance between the word
and any word of the language.

,’Un) S D1><. . .XDn | (’Ul,. . .,’Un) GL(M)}

o o @ @ ®
@\ wm
@ND

“‘*®
v*o i
>

Figure 4: Graph for Y-regular(X, M, piya,2) with M
the DFA presented in Figure 3. Dashed arcs repre-
sent a M« A move, Dotted one a M+ N move and
mixed ones a A—~Nmove. Bold arcs represent the
solution (A, M, A, M) of cost 1.

DEFINITION 8. (Value Based Semantic Measure) For a
Y-regular(X, M, z, ivar) constraint, the value based viola-
tion measure is defined as:

Hval (X) = manEL(M)V(X, W)

DEFINITION 9. (Consistency of Y-regular) Let z be a
cost variable with domain D, Y-regular(X, M, z, tival) 1
consistent iff there exists a complete instiation A such that
Hval (A) g ma:c(Dz).

3.3 Graph Representation for »-regular

A Y-regular constraint can be modeled as a graph Gs.
Let G be the valued graph associated to a Regular constraint
(see 3.1.2). For each layer i, and each couple of states (qx,)
linked by at least one transition, Aix; = {(qkh,q/"",v) |
v € D; \ EV(qj,q/t")} denotes the set of v1olat10n arcs
associated to unexpected values for (g, q:). Each viola-
tion arc (qk,ql”l, v) of each A; x is added to G. Let v; in
EV(q}, ”1) the valuation of (g}, ql”l, v) is distance(vj,v),
in order that transitions performed using unexpected values
induce extra-cost.

COROLLARY 3. Let z be a cost variable with domain D, a
constraint X-regular(X, M, z, ivar) is hyperarc consistent
if and only if there exists an s—t path p in Gx such that
weight(p) < maz(D>).

ProOF. To an s—t path in Gs;, we associate, to each vari-
able X; a value v; for all arc (qk,ql”l) using the value v;
such that (qi,q}“,vj) belongs to p. By construction, the
weight of p corresponds exactly to the value based measure

of violation. [J

Consider Figure 4 where M is the DFA depicted in Figure

3, X = {X1, X2, X5, Xu}, D1 = {A,N}, D2 = {M, A, N},

= {M, A}, Dy = {M, N}. Violation arcs are added in
dashed, dotted and mixed.

3.4 A timetabling example

Consider again the previous timetabling problem. The
consecutive shifts of an employee have to respect the follow-
ing rules:

e Rule 1: If an N shift is assigned to an employee for
a particular day, this shift must be assigned to this
employee for all the week.

Cost | M A N
M - 1 4
A 1 - 2
N 4 2 -

Table 3: Shift moves and their costs.
Xi Xo X3 X

O~@-, @
@ FR,0 @
(O EONE)
@ @D
@ @ @ @0

Figure 5: Filtered Network for
Y-regular(X, M, pival,z2) in Figure 4 with the fil-
tered domains D1 = {A}, D = D3 = {A, M} and
Dy = {M}.

e Rule 2: An employee having an A shift on Monday
must have at least an M shift over the week. More-
over, an A shift must be assigned to this employee on
Thursday.

These planning rules can be modeled as a DFA (see Figure
3) and can be expressed using a Regular constraint. The
language recognized by the DFA is NN* for Rule 1 and
AA*MM*AA* for Rule 2.

As shift requests make the problem over-constrained, we
have to soften the Regular constraint with preferences (i.e.
Y-regular) in order to get an acceptable solution. For an
employee and a particular day, moving from one shift to an-
other one will be allowed, but it will introduce a cost/weight
relative to the non-respect of the two planning rules. For in-
stance, moving an employee from M to N has a high cost
compared to moving an employee from A to N. Moving an
employee from M to A induces a low cost. Table 3 summa-
rizes the cost of each move.

Y-regular enables to express and quantify the violation
of planning rules. Figure 4 shows its associated network.

3.5 Maintaining Hyperarc consistency
Filtering can be performed in three steps (see Figure 5):

e For each vertex with no outgoing arc, all incoming arcs
are removed. For each vertex with no incoming arc, all
outgoing arcs are removed.

e For each remaining arc a in the network, if there does
not exist an s—t path using a with a weight lower or
equal to max(D,), then arc a is removed.

e As for the second step of Regular’s filtering algorithm,
for all k£ and [if a value v; does not appear in at least
one arc between ¢i and ql”l, then v; can be removed
from domain D;.

For an acyclic graph, computing a shortest path having
a particular arc can be performed in O(m). If we use the
same path computation as cost-gcc [6], filtering can be
performed in O(m).

Algorithm 2: Filtering algorithm of 2-REGULAR

foreach verter v€Gs, do
weight(s—wv) « minimal distance from s to v.
weight(t — v) < minimal distance from ¢ to v (by
reversing arcs).

min(D.) «— weight(s—t)
if D, = (0 then
| return inconsistent
else
foreach X; € X do
foreach a € A in layer A; with a = (u,v) do
wp—weight(s—u)tweight(a)tweight(v—t)
L if wp>maz(D;) then remove a
update Dx;
if Dx, = (0 then return inconsistent

L return consistent

4. CONCLUSIONS

In this paper we have presented the soft global constraints
Y-gcc and ¥-regular which are the soft versions with pref-
erences of the global constraints Gecc and Regular. For each
of these two constraints, we have introduced a new viola-
tion semantic and proposed algorithms to enforce hyper-arc
consistency in polynomial time, thanks to a network mod-
elisation and flow algorithms.

In future works we want to improved ¥-gcc by using the
matching based modeling proposed by A. Zanarini and al.
in [11]. Many problems involve several global constraints
which share a subset of variables. In this case, we want to
study whether these interactions between global constraints
can be used to compute better lower bounds.

S. REFERENCES

[1] L.R. Ford and D.R. Fulkerson. Flow in Networks.
Princeton University Press, 1962.

[2] P. Van Hentenryck, H. Simonis, and M. Dincbas.
Constraint satisfaction using constraint logic programming.
Artif. Intell., 58(1-3):113-159, 1992.

[3] J.P. Métivier, P. Boizumault, and S. Loudni.
3-AllDifferent: Softening alldifferent in weighted csps. In
ICTAI (1), pages 223-230. IEEE Computer Society, 2007.

[4] G. Pesant. A regular language membership constraint for
finite sequences of variables. In Wallace [10], pages 482-495.

[5] J.C. Régin. Generalized arc consistency for global
cardinality constraint. In AAAI/IAAI Vol. 1, pages
209-215, 1996.

[6] J.C. Régin. Arc consistency for global cardinality
constraints with costs. In J. Jaffar, editor, CP, volume
LNCS 1713, pages 390-404. Springer, 1999.

[7] R.E. Tarjan. Depth-first search and linear graph
algorithms. SIAM J. Comput., 1(2):146-160, 1972.

[8] W.J. van Hoeve. A hyper-arc consistency algorithm for the
soft alldifferent constraint. In Wallace [10], pages 679-689.

[9] W.J. van Hoeve, G. Pesant, and L.M. Rousseau. On global
warming: Flow-based soft global constraints. J. Heuristics,
12(4-5):347-373, 2006.

[10] M. Wallace, editor. CP 2004, volume LNCS 3258. Springer,
2004.

[11] A. Zanarini, M. Milano, and G. Pesant. Improved algorithm
for the soft global cardinality constraint. In J. Christopher
Beck and Barbara M. Smith, editors, CPAIOR, volume
3990 of LNCS, pages 288-299. Springer, 2006.

	ACTI-METIVIER-2009-1-p1
	ACTI-METIVIER-2009-1-p2
	ACTI-METIVIER-2009-1-p3
	ACTI-METIVIER-2009-1-p4
	ACTI-METIVIER-2009-1-p5

