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IN-FIELD CROP ROW
STEREO-RECONSTRUCTION FOR PLANT
PHENOTYPING

Sylvain JAY?, Gilles RABATEL!, Nathalie GORRETTA!

LUMR ITAP, Irstea, 361 rue J.F. Breton, Montpellier, France

Abstract. This article presents a methodology for crop row structure
characterization developed for phenotyping purpose. It is based on 3D
modeling performed using Structure from Motion. The model provides
an accurate crop row reconstruction and serves as a basis to retrieve plant
height and leaf area. To do so, a robust discrimination method using both
color and height information is proposed to separate vegetation from soil.
The point cloud is scaled and the plant surface is approximated by a
triangular mesh. The efficiency of our method was assessed with two data
sets collected in outdoor conditions. Height estimation was extremely
accurate since both average error and error of reference measurement
had the same order of magnitude. Strong correlations and low errors
were also obtained for leaf area estimation. The proposed method thus
provides an interesting tool for phenotyping.

Keywords: In-field phenotyping, 3D modeling, Structure from motion,
Plant/soil discrimination, Plant height retrieval, Leaf area retrieval.

1 Introduction

In a context of a greener and more competitive agriculture, developing efficient
phenotyping methods has become a topic of major interest for plant breeding.
Numerous parameters have to be retrieved, especially those characterizing the
plant structure, such as height or leaf area.

3D reconstruction performed by stereovision-based methods has proven to be an
interesting way to retrieve these structural parameters. In controlled indoor con-
ditions, many solutions have been proposed (Bellasio et al., 2012; Thiagé Santos,
2012; He et al., 2002; Chéné et al., 2012), but unfortunately, most of them are
not adapted to phenotyping (low throughput, dedicated to a single variety, in-
effective under natural light). In outdoor conditions, the reconstruction process
and estimation results can be substantially affected by various phenomena such
as wind or heterogeneous background and lighting. As a matter of fact, only few
authors conducted field studies (Kise and Zhang, 2008; Leemans et al., 2012).
To deal with such conditions, Lati et al. (2013) have recently proposed a novel
approach for the estimation of height, leaf cover area and biomass volume. Their
method can even handle occluded areas to some extent (i.e. overlapped leaves).
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Fig. 1: Framework of the proposed method.

Such 3D-based measurements often necessitate to discriminate plant from back-
ground, since only plant-related information is used to retrieve structural pa-
rameters. Most usual discrimination methods involve thresholding a vegetation
index map obtained from RGB bands (Meyer and Neto, 2008). On the other
hand, Lati et al. (2013) used a hue-invariant transformation that is robust under
natural lighting. However, like every other color-based discrimination method,
this approach fails if the contrast between plants and soil is low, which makes
their 3D-based measurement method ineffective in such cases.

This study proposes a 3D modeling based methodology to characterize crop
rows in outdoor conditions (i.e. to retrieve structure, plant height and leaf area).
Special attention is given to the methodology robustness against heterogeneous
lighting and low vegetation/soil contrast. Moreover, other phenotyping-related
needs (non-destructive, automatic, fast) are considered. We use Structure from
Motion (SfM) to obtain the crop row 3D model, whereas most authors usually
used classical stereovision. Structural parameters are then retrieved from this
model.

This paper is organized as follows. Section 2 presents the proposed approach.
The data sets as well as some details about the implementation of the method
are described in Section 3. Section 4 shows the results of 3D reconstruction,
discrimination and growth parameter retrieval. Lastly, Section 5 draws some
conclusions.

2 Proposed approach

The framework of the proposed method is presented in Fig. 1. A first part is
related to the 3D reconstruction performed using SfM. In a second part, various
post-processing steps are applied to the 3D model in order to retrieve the growth
parameters of interest.

2.1 3D reconstruction

Stereovision allows to retrieve object 3D structure from 2D images acquired from
different view angles. Using SfM, these view angles are obtained by moving a
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Fig. 2: 3D reconstruction steps.

single camera round the object of interest. This motion is either unconstrained
or constrained by a translation stage. In this latter case, the camera is translated
at a given speed and acquires an image at every Ax, where Ax is the baseline.
Therefore, every point of the scene is seen in several images that correspond to
several view angles. Knowing the position of a given point in several images and
successive camera positions, the point position can be estimated by ray intersec-
tion. An advantage of using SfM compared with classical stereovision is that it
does not need any prior camera calibration. Indeed, the high number of images
and use of a unique camera allow to simultaneously estimate camera properties
and 3D model.

The three usual main steps of SfM are described in the following paragraphs.
The first step consists in retrieving and matching similar feature points that
are seen in two overlapping images using the scale-invariant feature transform
(SIFT) (Lowe, 2004). This method has been designed to provide keypoint de-
scriptors that are invariant to scale, rotation, translation and exposure. Examples
of such extracted keypoints obtained for a couple of images are shown in Fig. 2a.
In the second step, these keypoints are used as inputs of an iterative algorithm
that simultaneously estimates their 3D position and the camera internal cali-
bration, position and orientation for every image. At each iteration, an image is
added and a bundle adjustment is performed in order to limit error accumulation
(Hartley and Zisserman, 2004). The computed sparse point cloud (correspond-
ing to keypoint positions) and the camera successive positions are presented in
Fig. 2b.

Lastly, in the third step, a dense point cloud is produced from estimated orien-
tations and positions of the camera. For this purpose, a matching process using
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cross-correlation is implemented. For a given pair of overlapping images, a pixel
in the first image is associated with the pixel that is located on the epipolar
line in the second image and that maximizes the cross-correlation criterion. This
operation is repeated for every couple of images so that the estimated position of
considered point is less sensitive to noise. An example of crop row reconstruction
is shown in Fig. 2c.

2.2 Post-processing

Once the crop row structure has been modeled, various additional processing
steps have to be implemented in order to retrieve growth parameters from the
3D model.

First, the point cloud has to be given an appropriate scale that allows to retrieve
height and area values in SI units (resp. cm and cm?).

Then, an important step is to discriminate soil-related pixels from plant-related
pixels, since only the latter is used to estimate height and leaf area. In order to
increase the class separability obtained when using only color information, we
propose to take into account spatial information as well, and use together the
height H and Excess Green Index (ExG) (Woebbecke et al., 1995). Indeed, the
higher the point, the more likely it belongs to the vegetation class. To do so,
after having estimated the crop row structure, we perform discrimination using a
clustering algorithm with two classes (vegetation and background). Plant height
is finally retrieved by computing the difference between the plant highest height
and the mean ground height.

Concerning leaf area, an additional post-processing step is needed in order to
reconstruct the plant surface. A triangular mesh is produced from the point
cloud and the leaf area is then approximated by summing every polygon area.

3 Materials ans methods

3.1 Data

We assessed the efficiency of our method with two data sets collected in outdoor
conditions. Different sensors, acquisition means, lighting conditions and crop row
structures were considered.

The first data set comprised images acquired with a digital single-lens reflex
(DSLR) camera (Canon 500D). Four plant species or varieties were imaged in
order to deal with different plant structures: sunflowers (Helianthus annuus),
Savoy cabbages (Brassica oleracea var. sabauda), cauliflowers (Brassica oleracea
var. botrytis) and Brussels sprouts (Brassica oleracea var. gemmifera). The cam-
era was looking towards nadir and images were acquired approximately every
10 cm by manually moving the camera at about 1 m above the ground level
(depending on plant height).

The second data set was collected in sugar beet (Beta Vulgaris) fields in Vimy
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Fig. 3: Becam phenotyping platform.

Table 1: Height (H) and leaf area (LA) ranges for the two data sets (min-max).

Data set 1 Data set 2
Sunflower|Savoy cabbage|Cauliflower|Brussels sprout|Sugar beet
H (cm) 15-65 10-17 19.5-22.5 11.5-17.5 X
LA (cm?)| 27-1201 99-331 360-538 80-573 378-622

(northern France) within the framework of AKER project!. Two sugar beet va-
rieties subjected to four different nitrogen applications were imaged. To do so,
a digital CCD camera was mounted on the translation stage of the Becam phe-
notyping platform? (Benet and Humbert, 2009) (see Fig. 3). The camera was
looking towards nadir at 1.20 m above the ground level and acquired images
every 4 cm along the crop row so that every point in the scene was imaged from
a dozen view angles.

For both data sets, a tape measure was disposed into the scene before acquiring
images. This allows to scale the 3D model and obtain measurements in centime-
ters and square centimeters.

Reference height measurement was performed manually by measuring the dis-
tance between the mean ground level and the plant highest point. To perform
reference leaf area measurement, limbs were harvested, disposed on blank sheets
and flattened with a pane of glass before scanning. Leaf-related pixels were then
extracted by image processing. Finally, leaf area in cm? was obtained from leaf
area in pixels using pixel size calibration. In the second data set, only one mean
measurement of leaf area (carried out on four to six plants) was available for
each row.

Height and leaf area ranges for the two data sets are reported in Tab. 1.

! AKER is a project funded by the French National Research Agency and partly
devoted to sugar beet phenotyping

2 The Becam phenotyping platform was developed by Irstea for plant counting and
belongs to the French Sugar Beet Technical Institute (ITB).
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(a) RGB images. (b) Estimated 3D model.

Fig. 4: Savoy cabbage row reconstruction performed with 38 images.

3.2 Implementation

Regarding 3D reconstruction, SfM was implemented with MicMac, a digital sur-
face model freeware developed by IGN (2007). Section 2.1 only describes an
overview of the main steps performed by MicMac. For more information, the
reader can refer to the associated documentation (IGN, 2007).

Regarding post-processing steps, scaling was done thanks to a reference object
disposed in the scene (see the yellow tape measure in Fig. 2). Discrimination
was performed using H and ExG with the k-means (KM) clustering algorithm
(Lloyd, 1982) implemented with two classes. Lastly, plant surface was approxi-
mated using the ball-pivoting algorithm (Bernardini et al., 1999) implemented
in Meshlab.

In order to assess height and leaf area estimation results, we used the coefficient
of determination (R?), root mean square error (RMSE) and mean absolute er-
ror (MAE). In particular, RMSE and MAE have been defined by Willmott and
Matsuura (2005).

4 Results and discussion

4.1 3D reconstruction

An example of reconstruction built from the first data set is presented in Fig. 4
(Savoy cabbages). Sugar beet row reconstruction obtained from the second data
set is shown in Fig. 2c. In every case, SfM gave an accurate crop row 3D model.
Moreover, this method was robust against acquisition means and sensor quality,
which were different within the two data sets. In the first data set, the transla-
tion motion was performed manually, moving the camera horizontally above the
ground level. As a result, the camera altitude, view angle and baseline between
two successive positions differed from an image to another. However, this does
not affect the reconstruction process, which makes the method flexible and easy
to implement (no need for a specific imaging setup).
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Fig. 5: Example of low-contrasted scene.

In the second data set, good reconstruction results were obtained even though
the sensor quality was lower.

Reconstruction was performed with a 3.60 GHz processor and 4 GB of RAM.
Overall processing time was comprised between 30 seconds and 60 seconds per
image, depending on the crop row structure complexity and the number of im-
ages.

4.2 Discrimination vegetation/soil

The interest of using height for discrimination is illustrated in Fig. 5. In the RGB
image shown in Fig. 5a, both sunflower and background have similar ExG values.
Moreover, the background is heterogeneous so the ExG range is wide (between
0 and 0.8). In this case, color is not a relevant parameter to discriminate both
classes since there is only one mode on the green histogram in Fig. 5b. On the
other hand, at least two distinct modes are seen on the red histogram showing
the height distribution. In fact, there are one main cluster for the background
and one or more clusters for the plant. This scatter plot shows that height
information can remove ambiguity occurring when using color only.

4.3 Plant height estimation

Fig. 6 shows the results of height estimation performed on the first data set.
Estimated values are plotted against actual values for every studied species.
We obtained a strong linear correlation and low average errors between estimated
and actual values (R? = 0.99, RMSE = 1.1 cm, MAE = 0.85 cm). RMSE and
measurement error (due to rough ground, moving leaves, etc) had the same
order of magnitude, which demonstrates that crop row 3D models give extremely
accurate estimates of plant height. Moreover, Fig. 6 shows that the proposed
method obtained similar R?, RMSE and MAE for every species, thus proving
that the method can handle various crop structures.
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Fig. 7: Leaf area estimation results obtained with the first data set.

4.4 Leaf area estimation

For the first data set, in Fig. 7, estimated leaf areas are plotted against actual
leaf areas for every species. We also obtained a strong linear correlation and low
average errors between estimated and actual values (R? = 0.94, RMSE = 85 cm?,
MAE = 59 cm?). It shows the potential of our method for leaf area estimation
in outdoor conditions. Estimation results were good for every single species.
Relative MAE were 12% for sunflower and Brussels sprout, 16% for cauliflower,
and 21% for Savoy cabbage. These figures prove that performance remained
stable for the considered plant structures.

For the second data set, leaf area estimation results are shown in Fig. 8. For each
row, the actual mean value is compared with the mean value estimated with the
proposed approach. Sample means and standard deviations (shown with error
bars) were computed from four to six plants.

The estimated mean leaf areas were close to the actual mean leaf areas. Indeed,
RMSE and MAE computed with these mean values were 66 cm? and 45 cm?
respectively (i.e. 13% and 9% resp.). The actual mean leaf areas were in the
intervals specified by sample standard deviations except for row 6. In this latter
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Fig. 8: Leaf area estimation results obtained with the second data set. The errors
bars are the sample standards deviations computed from four to six plants.

case, results were probably less accurate because of many overlapped leaves that
were not handled by the proposed method.

5 Conclusions

This study presents a methodology to retrieve crop row 3D structure, plant
height and leaf area. It has been designed in order to fulfill phenotyping-related
needs to some extent (non-destructive, automatic, robust, fast). The crop row 3D
structure is retrieved by SfM using images acquired by a single moving camera.
Various post-processing methods are then implemented to estimate plant height
and leaf area. In particular, we propose a plant/soil discrimination method that
is robust in outdoor conditions. This method provided good results for various
crop structures, lighting conditions, sensors and image acquisition means.
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