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Abstract—The problem of Canonical Polyadic (CP) decom-
position of semi-nonnegative semi-symmetric three-way arrays
is often encountered in Independent Component Analysis (ICA),
where the cumulant of a nonnegative mixing process is frequently
involved, such as the Magnetic Resonance Spectroscopy (MRS).
We propose a new method, called JD+

QR, to solve such a problem.
The nonnegativity constraint is imposed by means of a square
change of variable. Then the high-dimensional optimization
problem is decomposed into several sequential rational subprob-
lems using QR matrix factorization. A numerical experiment
on simulated arrays emphasizes its good performance. A BSS
application on MRS data confirms the validity and improvement
of the proposed method.

I. INTRODUCTION AND PROBLEM FORMULATION

Canonical Polyadic (CP) decomposition of a multi-way ar-

ray [1]–[3] plays an important role in Blind Source Separation

(BSS), particularly in Independent Component Analysis (ICA)

[4]. In this paper, we consider the following semi-nonnegative

semi-symmetric CP decomposition problem:

Problem 1. The semi-nonnegative semi-symmetric CP decom-

position of a 3-way array C ∈ ❘N×N×K , is the minimal linear

combination of rank-1 3-way arrays that yields C exactly:

C =
∑P

p=1 ap ◦ ap ◦ dp (1)

subject to A = [a1, · · · ,aP ] ∈ ❘
N×P having nonnegative

components, where ◦ denotes the outer product. A and D =
[d1, · · · ,dP ] ∈ ❘

K×P are called the loading matrices of C.

P is then the rank of C.

The decomposition is considered to be essentially unique when

the uniqueness is guaranteed up to scaling and permutation in-

determinacies. This problem is often encountered in ICA when

a nonnegative mixing matrix is considered. For example, in

Magnetic Resonance Spectroscopy (MRS), the mixing matrix

contains the positive concentrations of the source metabolites.

Then the 3-way array built by stacking the matrix slices of a

cumulant is both nonnegative and symmetric in two modes.

Equation (1) can also be described by using the frontal slices

of C: C(k) = C:,:,k = AD(k)AT, ∀ k ∈ {1, 2, · · · ,K}, where

D(k) ∈ ❘P×P is a diagonal matrix whose diagonal contains

the elements of the k-th row of D, and C(k) ∈❘N×N is the

k-th frontal slice C. In this paper, we focus on computing

the square matrix A, where N = P . In order to compute

A, we can resort to solve the following nonnegative Joint

Diagonalization by Congruence (JDC) problem:

Problem 2. Given a 3-way array C ∈ ❘
N×N×K with K

symmetric frontal slices C(k) ∈ ❘
N×N , find a matrix A ∈

❘
N×N and K diagonal matrices D(k) ∈ ❘N×N such that:

∀ k ∈ {1, 2, · · · ,K}, C(k) = AD(k)AT (2)

subject to A having nonnegative components.

Many existing CP algorithms handle the symmetry and the

nonnegativity separately, such as in [5]–[7]. Several methods

consider the combination of both constrains [8], [9], but they

aim at solving different problems rather than problem 1. Only

a few methods were proposed to solve the nonnegative JDC

problem [10], [11]. In this paper, we propose a new algorithm,

called JD+
QR, based on minimizing the following indirect least

square criterion [6], [12]:

J1(A) =
∑K

k=1 ‖ off(A
−1C(k)A−T)‖2F (3)

where off(.) vanishes the diagonal components of the input

matrix, the superscript −T denotes the inverse of the transposed

matrix, and ‖.‖F computes the Frobenius norm. The nonneg-

ativity constraint is imposed by means of a square change of

variable. The QR matrix factorization of the Hadamard square

root of A decomposes the high-dimensional optimization

problem into a sequential rational subproblems. In addition,

the rotation matrix and the unit triangular matrix of the QR

factorization have unit determinants, therefore the resulting

matrix A is nonsingular. A numerical experiment on simulated

arrays emphasizes its good performance. A BSS application

on MRS data confirms the validity and improvement of the

proposed method.

II. THE JD+
QR METHOD

In order to avoid the inverse of A in cost function (3),

let us consider the following assumptions: i) A ∈ ❘
N×N
+

is nonsingular; ii) D ∈ ❘
K×N is nonsingular and does not

contain zero entries. Then each frontal slice of C is nonsingular

and its inverse can be expressed as follows:

(C(k))−1 = A−T(D(k))−1A−1 (4)

In practice, only the sufficiently well-conditioned matrix C(k)

is chosen when its condition number is below a predefined



threshold. We use C(k,−1) to denote (C(k))−1 for simplicity.

Equation (4) shows that C(k,−1) is jointly diagonalizable by

A. Then A can be estimated by minimizing the following

modified criterion of (3) directly:

J2(A) =
∑K

k=1 ‖ off(A
TC(k,−1)A)‖2F (5)

The nonnegativity constraint on A can be imposed by a square

change of variable: A=B⊡B=B⊡2, where B∈❘N×N and

where ⊡ denotes Hadamard product [13], [14]. Then we can

find A∈❘N×N
+ by estimating B∈❘N×N , such that A=B⊡2,

and B is the global minimum of the following cost function:

J2(B) =
∑K

k=1 ‖ off
(

(B⊡2)TC(k,−1)B⊡2
)

‖2F (6)

Now let us recall the following definitions and lemmas:

Definition 1. A unit upper triangular matrix is an upper

triangular matrix whose main diagonal entries are 1.

Definition 2. An elementary upper triangular matrix

R(i,j)(ri,j) is equal to an identity matrix except the (i, j)-th
entry, which is equal to ri,j .

Definition 3. A Givens rotation matrix Q(i,j)(θi,j) is equal

to an identity matrix except the (i, i)-th, (j, j)-th, (i, j)-th
and (j, i)-th entries, which are equal to cos(θi,j), cos(θi,j),
− sin(θi,j) and sin(θi,j), respectively.

Lemma 1. Any (N × N) unit upper triangular matrix can

be factorized as a product of N(N − 1)/2 elementary upper

triangular matrices.

Lemma 2. Any (N×N) orthonormal matrix can be factorized

as a product of, at most, N(N−1)/2 Givens rotation matrices.

For any nonsingular matrix B ∈ ❘
N×N , the QR matrix

factorization decomposes it as B=QRΛ, where Q ∈ ❘N×N

is a orthonormal matrix, R ∈ ❘N×N is a unit upper triangular

matrix, and Λ ∈ ❘N×N is a diagonal matrix. Due to the in-

determinacies of the CP decomposition, the matrix B solving

(6) can be chosen as B = QR without loss of generality.

Moreover, lemma 1 and lemma 2 yield that B can be written

as a product of the following matrices:

B =

N
∏

i=1

N
∏

j=i+1

Q(i,j)(θi,j)

N
∏

i=1

N
∏

j=i+1

R(i,j)(ri,j) (7)

As a consequence, the minimization of (6) with respect to B

is converted to the estimation of N(N − 1) parameters: θi,j
and ri,j . We propose a Jacobi-like procedure, called JD+

QR, in

order to compute these parameters sequentially.

A. Minimization with respect to Q(i,j)(θi,j)

Let Ã and B̃ denote the current estimate of A and B

before estimating Q(i,j)(θi,j), respectively. Let Ã(new) and

B̃(new) stand for Ã and B̃ updated by Q(i,j)(θi,j), respectively.

Furthermore, the update of B̃ is defined as follows:

B̃(new) = B̃Q(i,j)(θi,j) (8)

In order to compute θi,j , the natural way is to minimize

criterion (6) with respect to θi,j by replacing matrix B̃ by

B̃(new). For the sake of convenience, we denote J2(θi,j)

instead of J2(B̃
(new)). J2(θi,j) can be expressed as follows:

J2(θi,j)=
∑K

k=1

∥

∥off
{

[(B̃(new))⊡2]TC(k,−1)[(B̃(new))⊡2]
}∥

∥

2

F

(9)

The Hadamard square of B̃(new) in (9) can be written as a

function of θi,j as follows:

(B̃(new))⊡2=B̃⊡2(Q(i,j)(θi,j))
⊡2+sin(2θ)(b̃i⊡ b̃j)(e

T

i −eTj )
(10)

where b̃i denotes the i-th column of B̃, and ei is the i-th
column of the identity matrix I ∈ ❘N×N . Inserting (10) into

the cost function (9), we obtain:

J2(θi,j) =
∑K

k=1

∥

∥ off
(

C̃(k,new)
)∥

∥

2

F

=
∑K

k=1

∥

∥ off
(

[(Q(i,j)(θi,j))
⊡2]TC̃(k)(Q(i,j)(θi,j))

⊡2

+ sin(2θ)[(Q(i,j)(θi,j))
⊡2]Tc̃(k,1)(eTi − eTj )

+ sin(2θ)(ei − ej)c̃
(k,2)(Q(i,j)(θi,j))

⊡2

+ sin2(2θ)c̃(k,3)(ei − ej)(e
T

i − eTj )
)∥

∥

2

F

(11)

where C̃(k) = ÃTC(k,−1)Ã, c̃(k,1) = ÃTC(k,−1)(b̃i ⊡ b̃j),
c̃(k,2)=(c̃(k,1))T and c̃(k,3)=(b̃i ⊡ b̃j)

TC(k,−1)(b̃i ⊡ b̃j) are a

matrix, a column vector, a row vector and a scalar of constant

values, respectively. (11) shows that just the i-th and j-th

columns and rows of C̃(k,new) involve the parameter θi,j . It is

noteworthy that the (i, j)-th and (j, i)-th elements are twice

affected by the transformation. Inspired by [12], we propose

to minimize the sum of the squares of the (i, j)-th entries of

the K symmetric matrices C̃(k,new), instead of minimizing all

the off-diagonal entries. This simplified minimization criterion

is denoted by J̃2(θi,j). The (i, j)-th element of C̃(k,new) can

be expressed as a function of θi,j as follows:

C̃
(k,new)
i,j = − sin2(2θi,j)c̃

(k,3)

+ sin2(θi,j)(C̃
(k)
i,i cos2(θi,j) + C̃

(k)
j,i sin2(θi,j))

+ cos2(θi,j)(C̃
(k)
i,j cos2(θi,j) + C̃

(k)
j,j sin2(θi,j))

+ sin(2θi,j)(c̃
(k,1)
i cos2(θi,j) + c̃

(k,1)
j sin2(θi,j))

− sin(2θi,j)(c̃
(k,2)
j cos2(θi,j) + c̃

(k,2)
i sin2(θi,j))

(12)

where C̃
(k)
i,j is the (i, j)-th element of C̃(k) and c̃

(k,q)
i is the

i-th element of vector c̃(k,q) with q ∈ {1, 2}. By using the

Weierstrass change of variable: ti,j=tan(θi,j), the expression

of (12) can be rewritten as follows:

C̃
(k,new)
i,j =

f
(k)
4 t4i,j+f

(k)
3 t3i,j+f

(k)
2 t2i,j+f

(k)
1 ti,j+f

(k)
0

(1 + t2i,j)
2

(13)

where f
(k)
4 = C̃

(k)
j,i , f

(k)
3 = −2c̃

(k,1)
i , f

(k)
2 = C̃

(k)
i,i + C̃

(k)
j,j +

2c̃
(k,2)
j − 4c̃(k,3), f

(k)
1 = 2c̃

(k,2)
i − c̃

(k,1)
j and f

(k)
0 = C̃

(k)
j,j .

Equation (13) shows that the sum of the squares of C̃
(k,new)
i,j ,

is a rational function in ti,j , namely J̃2(ti,j), where the degrees

of the numerator and the denominator are 8 and 8, respectively.

The global minimum ti,j can be obtained by computing the

roots of its derivative and selecting the one yielding the

smallest value of J̃2(ti,j). Once ti,j is obtained, θi,j can be

computed by θi,j = arctan(ti,j). Then B̃ is updated by (8)

and Ã is updated by computing (B̃(new))⊡2.



B. Minimization with respect to R(i,j)(ri,j)

Let Ã and B̃ continue to denote the current estimate of A

and B before estimating R(i,j)(ri,j), respectively. The update

of B̃, denoted by B̃(new), is defined as follows:

B̃(new) = B̃R(i,j)(ri,j) (14)

By replacing matrix B̃ by B̃(new) into criterion (6), the

criterion J2(ri,j) can be expressed as follows:

J2(ri,j)=
∑K

k=1

∥

∥off
{

[(B̃(new))⊡2]TC(k,−1)[(B̃(new))⊡2]
}∥

∥

2

F

(15)

The Hadamard square of B̃(new) in (15) can be expressed as

a function of ri,j as follows:

(B̃(new))⊡2 = B̃⊡2R(i,j)(r2i,j) + 2 ri,j(b̃i ⊡ b̃j)e
T

j (16)

where b̃i denotes the i-th column of B̃, and ej is the j-th

column of the identity matrix I ∈ ❘N×N . Inserting (16) into

the cost function (15), we have:

J2(ri,j)=
∑K

k=1 ‖ off
(

C̃(k,new)
)

‖2F

=
∑K

k=1

∥

∥off
(

R(i,j)(r2i,j)
TC̃(k)R(i,j)(r2i,j)+r2i,j c̃

(k,3)eje
T

j

+ri,jR
(i,j)(r2i,j)

Tc̃(k,1)eTj +ri,jej c̃
(k,2)R(i,j)(r2i,j)

)
∥

∥

2

F
(17)

where C̃(k) = ÃTC(k,−1)Ã, c̃(k,1) =2ÃTC(k,−1)(b̃i ⊡ b̃j),
c̃(k,2)=(c̃(k,1))T and c̃(k,3) = 4 (b̃i⊡b̃j)

TC(k,−1)(b̃i⊡b̃j) are

a matrix, a column vector, a row vector and a scalar of constant

values, respectively. (17) shows that just the j-th column

and row of C̃(k,new) involve the parameter ri,j . Therefore,

the minimization of the cost function (17) is equivalent to

minimizing the sum of the squares of the j-th columns of

all the symmetric matrices C̃(k,new) except their (j, j)-th
elements. These elements can be expressed by a polynomial

function of degree 2 in ri,j as follows, for every n value

different of j:

C̃
(k,new)
n,j = C̃

(k)
n,i r

2
i,j + c̃(k,1)n ri,j + C̃

(k)
n,j (18)

where C̃
(k)
n,i is the (n, i)-th component of C̃(k), and c̃

(k,1)
n is

the n-th element of c̃(k,1). Then the cost function (17), which

is the total sum of squares of (18), is a polynomial function of

degree 4 in ri,j . The global minimum ri,j is one of the roots

of its derivative, which yields the smallest value of (17). Once

the optimal ri,j is computed, B̃ is updated by (14) and Ã is

updated by computing (B̃(new))⊡2.

The processing of all the N(N − 1) parameters θi,j and

ri,j , is called a QR sweep. The proposed JD+
QR algorithm is

comprised of several QR sweeps in order to guarantee the

convergence. In ICA, when a non-square matrix A ∈ ❘N×P
+

with N >P is encountered, we can compress it by a matrix

W ∈ ❘
N×P
+ such that the resulting matrix Ā = W TA

is a nonnegative square matrix [15]. It is noteworthy that

the proposed algorithm is different from the two published

nonnegative JDC methods, which are based on the LU matrix

factorization [10], [11]. We use QR factorization in this paper.

The method in [10] estimates B and D(k) alternately, and its

performance is sensitive to the initialization. The algorithm in

[11] needs to compute the inverse of A in all the N(N−1)
Jacobi-like iterations, leading to a high numerical complexity.

III. SIMULATION RESULTS

In this section, the proposed JD+
QR algorithm is compared

with several existing JDC methods and BSS algorithms. The

performance is measured in terms of the error between the true

matrix A and its estimate Ã, as well as the source s and its

estimate s̃ when a BSS context is considered. The following

scale-invariant and permutation-blind distance is chosen as the

preferred measure:

α(A, Ã) = (1/N )
∑N

n=1 min(n,n′)∈I2
n

d(an, ãn′) (19)

where an and ãn′ are the n-th column of A and the n′-

th column of Ã, respectively. I2n is defined recursively by

I21 = {1,· · ·, N} × {1,· · ·, N}, and I2n+1 = I2n−J2
n, where

J2
n = argmin(n,n′)∈I2

n

d(an, ãn′). In addition, d(an, ãn′) is

defined as the pseudo-distance between two vectors [4]:

d(an, ãn′) = 1− ‖aT

n ãn′‖2/(‖an‖
2‖ãn′‖2) (20)

The smaller the value of (19) is, the better estimation of A is

achieved.

A. Simulated semi-nonnegative semi-symmetric arrays

In this part, JD+
QR is compared with two classic JDC meth-

ods, namely ACDC [5] and FFDIAG [6], and one nonnegative

JDC method ACDC+
LU [10] with simulated semi-nonnegative

semi-symmetric 3-way arrays C. C ∈ ❘
3×3×5 is generated

randomly according to equation (2). The loading matrices

A and D are randomly drawn from a uniform distribution

between 0 and 1. The pure array C is perturbed by a semi-

symmetric residual noise array V . The loading matrices of

V obey the zero-mean unit-variance Gaussian distribution.

The resulting noisy 3-way array can be written by CN =
C/‖C‖F + σNV/‖V‖F , where σN is a scalar controlling the

noise level. Then the Signal-to-Noise Ratio (SNR) is defined

by SNR=−20 log10 (σN ). All the algorithms stop either when

the relative error of the corresponding criterion between two

successive sweeps is less than 10−5 or when the number of

sweeps exceeds 200. We repeat the experiment with SNR

ranging from −10 dB to 30 dB with 500 Monte Carlo trials.

Figure 1 shows the average curves of α(A, Ã) of all the

three algorithms as a function of SNR. It shows that ACDC

performs better than FFDIAG under higher SNR levels. The

nonnegativity constraint obviously helps ACDC+
LU and JD+

QR

to outperform the classic ones. The proposed JD+
QR algorithm

maintains the best estimation accuracy, especially for the lower

SNR levels.

B. BSS application on MRS data

In this section, the BSS performance of JD+
QR is compared

with an effective ICA method CoM2 [16] and a Nonnegative

Matrix Factorization (NMF) method based on alternating Non-

Negativity Least Squares (NNLS) [17], through an experiment

carried out on simulated MRS data. Two metabolites, namely

the Choline and Myo-inositol, serve as source signals s1(f)
and s2(f). 32 observations are generated according to the

noisy linear mixing model x(f)=As(f)+ν(f), where ν(f)
is an additive white Gaussian noise. A ∈ ❘32×2

+ is similarly

generated as in the previous section. For an ICA method based
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on JD+
QR, namely JD+

QR-ICA, {x(f)} is compressed by means

of a matrix W ∈❘32×2
+ computed using the method proposed

in [15], such that the number of observations is reduced to

2. The 3-way array C is built by stacking four 4-th order

cumulant matrix slices. We repeat the experiment with SNR

ranging from 0 dB to 50 dB with 200 Monte Carlo trials. The

average curves of the estimating error α({s(f)}T, {s̃(f)}T) of

all the three methods as a function of SNR are shown in figure

2. It shows that the proposed JD+
QR-ICA algorithm maintains

competitive advantages when SNR ≥ 5 dB. Figure 3 shows

the separation results of all the methods with a SNR of 10
dB for one typical realization. Regarding CoM2 and NMF,

there are some obvious disturbances presented in the estimated

metabolites. As far as JD+
QR-ICA is concerned, the estimated

source metabolites are quasi-perfect.

IV. CONCLUSION

In this paper, we have addressed the problem of the CP

decomposition of semi-nonnegative semi-symmetric 3-way

arrays. We proposed a method, called JD+
QR, based on the QR

factorization of the Hadamard square root of the nonnegative

loading matrix. A numerical experiment on simulated arrays

highlights its advantage. A BSS application on MRS signals

also demonstrates the interest of the proposed method.
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