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§ Université de Rennes 1, LTSI, Rennes, F-35000, France;

¶ INRIA, Centre Inria Rennes - Bretagne Atlantique, France.

ABSTRACT

Identifying the location and spatial extent of several highly

correlated and simultaneously active brain sources from elec-

troencephalographic (EEG) recordings and extracting the cor-

responding brain signals is a challenging problem. In a recent

comparison of source imaging techniques, the VB-SCCD

algorithm, which exploits the sparsity of the variational map

of the sources, proved to be a promising approach. In this

paper, we propose several ways to improve this method. In

order to adjust the size of the estimated sources, we add a reg-

ularization term that imposes sparsity in the original source

domain. Furthermore, we demonstrate the application of

ADMM, which permits to efficiently solve the optimization

problem. Finally, we also consider the exploitation of the

temporal structure of the data by employing L1,2-norm regu-

larization. The performance of the resulting algorithm, called

L1,2-SVB-SCCD, is evaluated based on realistic simulations

in comparison to VB-SCCD and several state-of-the-art tech-

niques for extended source localization.

Index Terms— EEG, extended source localization,

ADMM, sparsity

1. INTRODUCTION

Over the last decades, a large number of methods have

been proposed to reconstruct the electric activity everywhere

within the brain based on surface electroencephalographic

(EEG) measurements (see e.g. [1] and references therein).

This process is generally referred to as source imaging and

permits to identify the brain regions which are involved in

generating characteristic activity patterns such as epileptic
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spikes, which is of clinical importance. However, in order

to delineate the seizure onset zone in epileptic patients, it

is not only important to localize the foci of the epilepto-

genic sources, but also to identify their spatial extent. This is

particularly challenging in the context of several highly cor-

related, simultaneously active source regions corresponding

to epileptic activity that spreads from one region to another.

In a recent comparison of different source imaging algo-

rithms [1], the VB-SCCD algorithm [2] showed a good per-

formance for the localization of extended sources. Moreover,

it permits to simultaneously localize several highly correlated

active source regions, which is problematic with other ex-

tended source localization methods such as STWV-DA [1]

and 4-ExSo-MUSIC [3]. Therefore, VB-SCCD is one of the

most promising approaches for the identification of multiple

active brain regions in the context of propagation phenom-

ena. However, the algorithm shows some difficulties in sepa-

rating close sources and tends to combine them into one large

source. Furthermore, the implementation of VB-SCCD using

Second Order Cone Programming (SOCP) [4] as proposed in

[2] leads to a high computational complexity, which practi-

cally forbids the application of the method for large numbers

of time samples.

In this paper, we improve on these points by proposing

a new source imaging algorithm, subsequently referred to

as sparse VB-SCCD (SVB-SCCD), which includes an addi-

tional L1-norm regularization term. Such an approach, also

known as sparse Total Variation (sparse TV) regularization

[5], TV-L1 regularization [6] or fused LASSO [7], has previ-

ously been used in image processing [8] and fMRI prediction

[5, 6], where it has been shown to lead to robust solutions,

but is new in the field of brain source imaging. Note though

that the combination of sparsity in the original source domain

and in a transformed domain that is different from the total

variation has been explored in [9] for MEG source imag-

ing. As shown in this paper, the SVB-SCCD method permits

to obtain more focal source estimates than VB-SCCD and

achieves the separation of even close sources. Furthermore,



we demonstrate the use of a different optimization technique,

called Alternating Direction Method of Multipliers (ADMM)

[10], which is much faster than SOCP. This gain on compu-

tational complexity enables us to apply the algorithm to large

time intervals and to reconstruct the source signals. It also

makes it possible to take into account the temporal structure

of the data by employing an L1,2-norm regularization as first

suggested in [11], leading to more robust source estimates.

The superior performance of the resulting L1,2-SVB-SCCD

algorithm in comparison to VB-SCCD, STWV-DA, 4-ExSo-

MUSIC, and cLORETA [12] is demonstrated by means of

computer simulations, which are conducted in the context of

a realistic head model and highly correlated extended sources

emitting epileptic spike activity.

2. DATA MODEL AND PROBLEM FORMULATION

The electric potential at the surface of the scalp is character-

ized by the superposition of signals originating from all over

the brain. As most of these signals are generated by pyrami-

dal cells located in the gray matter, for modeling purposes,

we define a source space that consists of D dipoles located

on the cortical surface with a fixed orientation perpendicular

to this surface (see also [13]). More particularly, the dipoles

are positioned at the centroids of the triangles of a cortical

surface mesh. The EEG measurements X ∈ R
N×T recorded

with N sensors for T time samples can then be modeled as a

weighted sum of the dipole signals. The weights depend on

the propagation effects within the head volume conductor and

are summarized in the so-called lead field matrix G ∈ R
N×D,

which can be computed numerically using boundary element

methods (BEM) [14]. Distinguishing two types of cerebral

activity, the signals of interest (e.g., epileptic activity) and the

background activity of the brain, characterized by the matri-

ces S ∈ R
D×T and Sb ∈ R

D×T , respectively, this leads to

the following data model:

X = GS+GSb

= GS+N. (1)

The objective of source imaging algorithms consists in esti-

mating the signal matrix S from the measurements X. As the

number of dipoles (D ∼ 10000) is generally much larger than

the number of sensors (N ∼ 100), this is an ill-posed prob-

lem, which requires additional assumptions to regularize the

solution. In this paper, we consider several approaches based

on sparsity, which are described in the next section.

3. SOURCE LOCALIZATION AND EXTRACTION

3.1. VB-SCCD

The VB-SCCD algorithm [2] assumes a piece-wise constant

spatial source distribution, which is achieved by imposing

sparsity on the variational map of the sources. The latter can

be computed by applying a linear transform, characterized by

the matrix V, to the source distribution, which is equivalent to

computing the total variation on the discretized cortical sur-

face. The elements Vp,d of V, p = 1, . . . , P , d = 1, . . . , D,

where P is the number of edges of the triangular grid, are

given by:

Vp,d =







1 if d = dp,1
−1 if d = dp,2
0 otherwise

(2)

where dp,1 and dp,2 are the indices of the dipoles sharing the

p-th edge. Thus, VS describes the differences in amplitude

between adjacent dipoles. This gives rise to the VB-SCCD

cost function, which is minimized with respect to the signal

matrix S
1:

min
S

1

2
||X−GS||2F + λ||VS||1. (3)

The regularization parameter λ balances between the recon-

struction error and the constraint, corresponding to the first

and second term in (3), respectively. As suggested in [2], this

parameter may be adjusted according to the acceptable upper

limit for the reconstruction error, which depends on the noise

level.

3.2. SVB-SCCD

In practice, it is reasonable to assume that only a small num-

ber of the source dipoles contribute to the signals of interest.

Hence, we introduce an additional regularization term in (3)

that imposes sparsity in the original source domain, leading

to the following optimization problem which is equivalent to

the sparse TV [5] or fused LASSO [7] approach:

min
S

1

2
||X−GS||2F + λ(||VS||1 + α||S||1). (4)

This approach does not only permit us to adjust the size of

the reconstructed source regions by varying the new regu-

larization parameter α, but also prevents the estimated sig-

nal vector from being amplitude-biased, which is a problem

that frequently arises using the VB-SCCD algorithm. Setting

α = 1 leads to very focal source estimates, whereas small α
only avoid the amplitude bias, but do not influence the size

of the reconstructed source regions. In our experience, rea-

sonable results can be achieved for 0.01 ≤ α ≤ 1. As for

VB-SCCD, the regularization parameter λ regulates the im-

pact of the source priors and is tuned depending on the noise

level.

3.3. Exploitation of temporal structure

The VB-SCCD and SVB-SCCD algorithms as described

in the previous sections consider each time sample indepen-

1Please note that we use a different formulation of the optimization prob-

lem than employed in [2], but which leads to equivalent results for an appro-

priate value of the regularization parameter λ. Furthermore, the optimization

problem was originally stated for only one time sample.



dently and thus do not take into account the temporal structure

of the data. However, it can be expected that in the consid-

ered time interval, the active source regions stay the same.

This hypothesis can be enforced by replacing the L1-norm

in the above equations by the L1,2-norm, which is defined as

follows: ||S||1,2 =
∑D

d=1

∑T

t=1
S2
d,t. This permits to obtain

more robust source estimates. The resulting source localiza-

tion approach is subsequently called L1,2-SVB-SCCD.

3.4. Optimization using ADMM

The optimization problems of the three different algorithms,

VB-SCCD, SVB-SCCD, and L1,2-SVB-SCCD, can be rewrit-

ten in a generalized, constrained optimization framework with

latent variables Y and Z:

min
S

1

2
||X−GS||2F + λ(f(Y) + αf(Z))

s. t. Y = VS, Z = S. (5)

Here, f represents the regularizing function that is either the

L1 norm (for SVB-SCCD) or the L1,2-norm (for L1,2-SVB-

SCCD). Note that the VB-SCCD optimization problem can

be regarded as a special case of (5) where α = 0. Prob-

lem (5) can be solved using ADMM [10], which is a sim-

ple and efficient algorithm for constrained convex optimiza-

tion. It is based on the idea of alternatingly updating the vari-

ables S ∈ R
D×T , Y ∈ R

P×T , and Z ∈ R
D×T in the aug-

mented Lagrangian of (5), as well as computing alternating

updates of the scaled Lagrangian multipliers U ∈ R
P×T and

W ∈ R
D×T . After initialization (for example, by setting all

variables to zero), at the k-th iteration, the following update

rules can be derived:

S
(k+1) = P

−1
[

G
T
X+ ρVT(Y(k) −U

(k)) + ρ(Z(k) −W
(k))

]

with P = G
T
G+ ρ(VT

V + I)

Y
(k+1) = proxf,λ/ρ

(

VS
(k+1) +U

(k)
)

Z
(k+1) = proxf,λα/ρ

(

S
(k+1) +W

(k)
)

U
(k+1) = U

(k) +VS
(k+1) −Y

(k+1)

W
(k+1) = W

(k) + S
(k+1) − Z

(k+1)

where ρ > 0 denotes the penalty parameter introduced in

the augmented Lagrangian (see [10]). Please note that in

practice, the computation of the inverse of the large matrix

P ∈ R
D×D should be avoided, for example, by resorting to

inversion lemma and matrix decompositions (such as the QR-

decomposition) which can be computed efficiently. The up-

dates of Y and Z are formulated using the proximity operator,

which is given by:

proxf,β(Y) = argmin
X

1

2
||Y −X||2F + βf(X). (6)

Solutions to (6) for f corresponding to the L1-norm or the

L1,2-norm of X can be found in [15]. The algorithm is

stopped after convergence or a maximal number of iterations

is reached.

4. SIMULATIONS

In this section, we compare the performance of SVB-SCCD,

VB-SCCD, L1,2-SVB-SCCD, L1,2-VB-SCCD, STWV-DA,

4-ExSo-MUSIC, and cLORETA based on computer simula-

tions. To this end, EEG data is generated for N = 91 elec-

trodes using a realistic head model with three compartments

that represent the brain, the skull, and the scalp. The source

space consists of D = 19626 dipoles corresponding to the

triangles of the cortical surface mesh with orientations per-

pendicular to the cortical surface. A BEM method 2 is used

to compute the lead field matrix. We considered three source

regions, in the following referred to as patches, each of which

is composed of 100 adjacent dipoles. The first patch was at-

tributed an epileptic spike signal comprising T = 200 time

samples (at 256 Hz sampling frequency) that was segmented

from stereotactic EEG (SEEG) recordings of a patient suffer-

ing from epilepsy. We then generated 100 different realiza-

tions of this signal, one for each patch dipole, by introduc-

ing small variations in amplitude and delay. Assuming that

the other patches were activated due to a propagation of the

epileptic activity of the first patch, we used the same signals

for the dipoles of the second and third patch, but introduced

a delay of 4 to 24 ms depending on the distance to the first

patch. All source dipoles that do not belong to a patch were at-

tributed Gaussian background activity with an amplitude that

was adjusted to the amplitude of the SEEG signals between

epileptic spikes, thus leading to realistic Signal to Noise Ratio

(SNR) such that ||GS||2F/||N||2F ≈ 1.

The EEG data were spatially prewhitened before apply-

ing the source localization algorithms. For both VB-SCCD

and SVB-SCCD, the regularization parameter λ was adjusted

such that the reconstruction error lies within a confidence in-

terval of 95 to 99 % of the noise power. In the case of SVB-

SCCD, we used a fixed parameter α = 0.67 because we found

that this leads to reasonable results for the considered sce-

narios. For VB-SCCD, SVB-SCCD, and cLORETA, which

provide one source estimate per time sample, we determined

the active patches by thresholding the source estimates at the

data sample of maximal power, corresponding to the maxi-

mum of the epileptic spike. For each identified source region,

comprised of adjacent dipoles, we then computed the aver-

age of the time signals of all involved source dipoles in order

to obtain one estimated time signal per patch. For 4-ExSo-

MUSIC, an estimate of the patch signals was computed as

Ŝp = H
+
X. Here, H+ denotes the pseudoinverse of the

spatial mixing matrix H ∈ R
N×R whose r-th column corre-

sponds to the sum of the lead field vectors associated to the

dipoles belonging to the r-th estimated patch. No further pro-

cessing was necessary in case of STWV-DA, as this algorithm

already provides a time signal for each estimated extended

source at its output.

The performance of the source localization was assessed

2ASA, ANT, Enschede, Netherlands
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Fig. 1. ROC curves for (left) scenario 1 (SupFr, InfFr, SupOcc), (middle) scenario 2 (SupOcc, InfPa, InfFr), and (right) scenario

3 (SupOcc, MidTe, OccTe).

using the Dipole Localization Error (DLE) and the Receiver

Operating Characteristic (ROC) curves, which evaluate the

True Positive Fraction (TPF) as a function of the False Pos-

itive Fraction (FPF). If I and Î denote the original and es-

timated sets of indices of all dipoles belonging to an active

patch, J represents the set of all dipoles belonging to the

source space, Q and Q̂ are the numbers of original and es-

timated active dipoles, and rk denotes the position of the k-th

source dipole, then the DLE, TPF and FPF are defined as:

DLE =
1

2Q

∑

k∈I

min
ℓ∈Î

||rk − rℓ||+
1

2Q̂

∑

ℓ∈Î

min
k∈I

||rk − rℓ||

TPF =
#(I ∩ Î)

#I
; FPF =

#Î −#(I ∩ Î)

#J −#I
.

We use the notation #I for the cardinality of the set I.

The quality of the extracted signals is evaluated by calcu-

lating the correlation coefficients between the estimated patch

signal and the averaged signal of all dipoles belonging to a

patch. We then computed the mean of the correlation coeffi-

cients for all patches.

We simulated three different scenarios with patches of dif-

ferent distances. The first scenario comprised three patches of

medium to large distance, located in the superior frontal gyrus

(patch SupFr), the inferior frontal gyrus (patch InfFr), and the

superior occipital gyrus (SupOcc). The second scenario in-

cluded two close patches, positioned in the superior occipital

and the inferior parietal gyri (patches SupOcc and InfPa),

with the third patch in the inferior frontal gyrus (patch InfFr).

In the third scenario, we considered three close patches, lo-

cated in the inferior parietal gyrus (patch InfPa), the mid

temporal gyrus (patch MidTe), and the occipital temporal

gyrus (patch OccTe). The performance achieved with the dif-

ferent source imaging algorithms in terms of DLE and signal

correlation coefficient for the three scenarios, averaged over

30 realizations with different patch signals and background

activity, is summarized in Table 1. The corresponding ROC

curves are shown in Figure 1. Both the ROC curves and

the DLE values show that the VB-SCCD and SVB-SCCD

type algorithms clearly outperform the other extended source

DLE in cm corr. coeff. in %

scenario 1 2 3 1 2 3

VB-SCCD 0.99 2.57 9.73 94.9 92.5 78.5

SVB-SCCD 0.94 1.05 3.81 95.5 94.9 89.3

L1,2-VB-SCCD 0.97 1.09 10.8 97.9 97.5 77.9

L1,2-SVB-SCCD 1.03 1.06 2.24 98.5 98.3 96.6

STWV-DA 10.4 12.3 18.7 65.1 80.1 83.6

4-ExSo-MUSIC 35.3 9.78 9.74 81.0 80.4 74.8

cLORETA 8.69 4.35 13.1 82.5 90.4 45.7

Table 1. Performance of source imaging algorithms in terms

of DLE and signal correlation for scenario 1 (SupFr, InfFr,

SupOcc), scenario 2 (SupOcc, InfPa, InfFr), and scenario 3

(SupOcc, MidTe, OccTe).

localization approaches for the considered multi-patch sce-

narios. The use of the additional L1-norm regularization term

in the SVB-SCCD approach turns out to be insignificant in

the case of three patches with medium distance (scenario

SupFr, InfFr, SupOcc), as SVB-SCCD and VB-SCCD ex-

hibited a comparable performance in this case. However,

for two close patches (scenario SupOcc, InfPa, InfFr), one

can observe a slight improvement of the DLE obtained with

SVB-SCCD compared to VB-SCCD, and for three close

patches, the SVB-SCCD approach clearly leads to better

results than VB-SCCD. This can also be seen in Figure 2,

where we illustrate an example of the source imaging results

obtained with the different methods for the scenario with the

three close patches InfPa, MidTe, and OccTe. Obviously,

the SVB-SCCD approach provides a better separation of the

sources than the VB-SCCD approach. Furthermore, Figure 2

visualizes the difficulties encountered with the other extended

source localization methods. While the cLORETA solution

exhibits high dipole amplitudes at the three patch locations,

it does not correctly recover the patches’ extents. STWV-

DA finds only two patches, one of which is dislocated and

deformed compared to the original patch, whereas 4-ExSo-

MUSIC identifies only one patch of overestimated extent.

The exploitation of the temporal structure of the data in the

VB-SCCD and SVB-SCCD algorithms hardly has an impact

on the source localization results of scenarios 1 and 2, but



Fig. 2. Source imaging results obtained with the different

tested algorithms.

for SVB-SCCD, it yields more robust solutions in the case of

three close patches (cf. DLE for scenario 3). Furthermore, it

leads to a better performance in terms of source extraction as

demonstrated by the obtained signal correlation coefficients.

For fixed parameters, the CPU runtimes of the different

algorithms are roughly comparable, except for cLORETA,

which is faster 3.

5. CONCLUSIONS

In this paper, we have analyzed two extensions of the VB-

SCCD algorithm. Following the fused LASSO approach, we

have included an additional, sparsity-inducing regularization

term, which permits to obtain a better separation of close

sources. Furthermore, we have taken into account the tem-

poral structure of the data, which leads to an increased per-

formance in terms of signal extraction. Finally, we have illus-

trated the use of an efficient algorithm, ADMM, to solve the

L1,2-SVB-SCCD optimization problem in a much faster way

3Please note that the CPU times required for the constructions of the

Lapacian matrix for cLORETA and of a dictionary of potential sources for

STWV-DA and ExSo-MUSIC have not been considered in this analysis.

than the previously employed SOCP algorithm. The superior

performance of the proposed approach in comparison to the

classic VB-SCCD algorithm as well as other state-of-the-art

methods for extended source localization has been demon-

strated by means of realistic computer simulations.
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norm estimates for the M/EEG inverse problem using accel-

erated gradient methods,” Physics in Medicine and Biology,

vol. 57, pp. 1937–1961, 2012.


