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a b s t r a c t

The present work reports on the simulation of two- and three-dimensional constant- and stratified-

density flows involving fixed or moving objects using an immersed-boundary method. The numerical

approach is based on a simple immersed-boundary method in which no explicit Lagrangian marking

of the immersed boundary is used. The solid object is defined by a continuous solid volume fraction

which is updated thanks to the resolution of the Newton’s equations of motion for the immersed object.

As shown on several test cases, this algorithm allows the flow field near the solid boundary to be correctly

captured even though the numerical thickness of the transition region separating the fluid from the

object is within three computational cells approximately. The full set of governing equations is then used

to investigate some fundamental aspects of solid–fluid interaction, including fixed and moving objects in

constant and stratified-density flows. In particular, the method is shown to accurately reproduce the

steady-streaming patterns observed in the near-region of an oscillating sphere, as well as the so-called

Saint Adrew’s cross in the far-field when the sphere oscillates in a rotating stratified fluid. The sedimen-

tation of a particle in a stratified ambient is investigated for particle Reynolds numbers up to Oð103Þ and
the effect of stratification and density ratio is addressed. While the present paper only consider

fluid–solid interaction for a single object, the present approach can be straightforwardly extended to

the case of multiple objects of arbitrary shape moving in a stratified-density flow.

1. Introduction

Solid–fluid interactions are encountered in a large number of

industrial and natural applications, including chemical engineer-

ing, aeronautics, transportations, biomecanics, geophysics and

oceanography, to name but a few. Modeling solid–fluid interaction

is often difficult because of the complexity of the solid shape and

motion in the fluid flow. Reproducing the dynamics of multiple

interacting objects of arbitrary geometry with possible deforma-

tion is made even more challenging if the flow is non-uniform in

composition (multiphase flows), density (compressible or stratified

flows) or temperature (heat transfer, phase change).

Methods for modeling solid–fluid interaction may be divided

within two main groups, depending on the way the solid–fluid

interfaces are described. One group, usually referred to as

‘‘body-fitted grid methods’’ makes use of a structured curvilinear

or unstructured grid to conform the grid to the boundary of the

fluid domain (see e.g. [59,41] for grid generation techniques). In

situations involving complex moving boundaries, one needs to

establish a new body-conformal grid at each time-step which leads

to a substantial computational cost and subsequent slowdown of

the solution procedure. In addition, issues associated with regrid-

ding arise such as grid-quality and grid-interpolation errors.

The second group of methods is referred to as ‘‘fixed-grid meth-

ods’’. These techniques make use of a fixed grid, which eliminates

the need of regridding, while the presence of the solid objects is

taken into account via adequately formulated source terms added

to fluid flow equations. Fixed-grid methods have emerged in recent

years as a viable alternative to body-conformal gridmethods. In this

group, one canmention distributed Lagrangemultiplier with a ficti-

tious-domain (DLM) based methods [23,51,50,65,2], immersed-

boundary method (IBM) [54,20,37,63], lattice Boltzmann method

(LBM) [38], penalty method [36,56] and ghost-fluid method [21]

have been developed and shown to be effective in computing

fluid-particle systems and fluid-structure interaction problems.

The immersed-boundary method was first introduced by Peskin

[53] for computing blood flow in the cardiovascular system. In the
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original method the flow field is described on a fixed Eulerian grid

and the immersed boundary is represented with a set of Lagrang-

ian points on which the no-slip boundary condition is enforced by

adding appropriate boundary forces. The boundary forces which

are singular Dirac functions along the surface in the continuous

equations are described by discrete regularization functions that

smear the forcing effect over the neighboring Eulerian cells (see

e.g. Fig. 2 of [44]). The immersed-boundary method has been

improved since the pioneering work of Peskin and many variants

can be found in the literature ([43,1], see also the reviews of

[34,44]).

While immersed-boundary method has been used in a wide

range of applications (compressible flows, particulate flows,

micro-scale flows, multi-phase flows, conjugate heat transfer, see

e.g. Kang et al. [35] and reference therein), application to stratified

flows has been rare. To our knowledge, the only recently reported

work using a fixed-grid approach computing the motion of rigid

objects in a stratified fluid is that of Doostmohammadi and Ardek-

ani [19] who used a DLM approach to investigate the interaction of

a pair of particles sedimenting in a stratified fluid, using the Bous-

sinesq approximation. Here we present an immersed-boundary

method aimed at describing the motion of multiple objects of arbi-

trary shape in a constant- or stratified-density flow. The specificity

of the present method is that (i) the treatment of the solid–fluid

interaction is simple and easy to implement in the sense that there

is no Lagrangian marking of the immersed boundary nor interpola-

tion needed and (ii) the fluid density can be inhomogeneous, with

no restriction on the density gradient, i.e. the method is applicable

to non-Boussinesq flows. Details of the numerical scheme are

outlined in Section 2 and the method is applied to investigate

solid–fluid interaction in constant and stratified-density flows in

Section 3, in which both forced motion and freely moving rigid

objects are simulated.

2. Governing equations and numerical method

2.1. Governing equations and assumptions for the fluid phase

Assuming a variable-density non-diffusive Newtonian fluid, the

evolution of the flow is then described using the Navier–Stokes

equations, namely

@V

@t
þr � ðV 
 VÞ ¼ gÿ 1

q
rP þ 1

q
r � ½lðrV þrVTÞ� þ f; ð1Þ

r � V ¼ 0: ð2Þ

In (1) and (2), V; P;q and l denote the local velocity, pressure,

density and viscosity of the fluid, respectively, g denotes gravity

and f is a volume force term used to take into account solid–fluid

interaction. The local density of the non-diffusive fluid obeys

@q
@t

þ ðV �rÞq ¼ 0: ð3Þ

The detailed development of 1, 2 in the more general case of

diffusive fluids can be found in Cook and Dimotakis [15]. Here,

we simply set the diffusivity to zero. 1, 2 are written in a general

system of orthogonal curvilinear coordinates. However, in the

present work, only Cartesian or polar systems of coordinates were

used. The reader is referred to Magnaudet et al. [42] for more

details about the resolution of (1) and (2) in the more general sys-

tem of orthogonal curvilinear coordinates.

Eqs. (1)–(3) are enforced throughout the entire domain, includ-

ing the actual fluid domain and the space occupied by the

immersed boundary. In the following, the term f will be formu-

lated such as to represent the action of the immersed solid bound-

aries upon the fluid.

Here, we consider a fluid of variable density for which non-

Boussinesq effects may play a role. In the general case of diffusive

non-Boussinesq fluids there are some fundamental issues with the

proper governing equations to be used. As discussed in Joseph and

Renardy [29] and Chen and Meiburg [13] among others, divergence

effects and Korteweg stresses can potentially be important in

regions of large concentration gradients and need to be taken into

account in physical models. These effects do not need to be

included if one assumes the fluid to be non-diffusive, as in the

present work. Conversely, using a non-diffusive fluid may results

in sharp local density gradients which may cause computational

difficulties, especially in the case of solid objects moving in a strat-

ified fluid [60]. Here, such issues are circumvented by the use of a

numerical scheme specifically designed to handle sharp gradients

for the equation of transport of density, as described in Section 2.3.

2.2. Equations of motion for the solid phase

Let us consider a non-deformable solid object of density qp and

volume #p, the centroid of which being located at xp, moving at lin-

ear and angular velocity up andxp, respectively. Here the index ‘‘p’’

refers to particle label. The local velocity in the object is then

defined by U ¼ up þxp � r; r being the local position relative to

the solid centroid. As will be detailed in the next section, the vol-

ume force f is chosen to ensure V ¼ U in #p (rigid-body motion

throughout the volume of the solid object). Thus, integrating

momentum and kinematic momentum laws for the fluid on #p

gives [63]

d

dt

Z

#p

qVd# ¼ �q#p
dup

dt
¼

Z

Sp

s � ndSþ
Z

#p

qfd#þ �q#pg; ð4Þ

d

dt

Z

#p

qr� Vd# ¼ �q Ip
dxp

dt
¼

Z

Sp

r� ðs � nÞdSþ
Z

#p

qr� fd#; ð5Þ

with s ¼ ÿPIþ lðrV þrVTÞ being the hydrodynamic stress tensor,

Ip the inertia matrix, n the outward-pointing normal vector on the

solid–fluid boundary Sp and �q the averaged fluid density in the vol-

ume occupied by the particle, viz

�q ¼ 1

#p

Z

#p

qd#: ð6Þ

Note that in the case of a constant-density fluid �q ¼ q. The
motion of the solid object can be either externally imposed or dri-

ven by its weight and the fluid forces on its boundary. In the latter

case, it is described by Newton’s equations for linear and angular

momentum of a rigid body, namely

qp#p
dup

dt
¼

Z

Sp

s � ndSþ qp#pg; ð7Þ

Ip
dxp

dt
¼

Z

Sp

r� ðs � nÞdS: ð8Þ

In order to ensure that the fictitious body force f is such that (7)

and (8) are equivalent to (4) and (5), respectively, we obtain the

following equations of motion viz

dup

dt
¼ gÿ 1

ðqp ÿ �qÞ#p

Z

#p

qfd#; ð9Þ

Ip
dxp

dt
¼ ÿ

qp

ðqp ÿ �qÞ

Z

#p

qr� fd#: ð10Þ

2.3. Spatial discretization and time-integration of the full system of

equations

Our computational procedure employs a finite-volume

approach on a staggered grid [31]. The transport equation of the



density (3) is solved by using a modified version of the transport

scheme proposed by Zalesak [67], which belongs to the family of

Flux Corrected Transport schemes [7]. This flux-limiting scheme

combines the use of a low-order and a high-order expression of

the flux to guarantee the positivity and monotonicity of q. This
so-called shock-capturing scheme allows for the computation of

large density gradients present in incompressible non-miscible

flows [6] or non-diffusive miscible flows as in the present work.

The algorithm is not detailed here, as it is extensively described

in the original reference Zalesak [67] as well as in several text-

books. Here we use first- and eight-order approximations for the

low- and high-order fluxes, respectively.

The time integration of momentum equation for the fluid (1)

and (2) and the solid (9) and (10) is performed via a third-order

low-storage Runge–Kutta method for all terms except the viscous

term for which a second-order semi-implicit Crank–Nicolson

scheme is used [55]. Advective and diffusive terms are evaluated

with a second-order centered scheme (see [42] for the details con-

cerning the treatment of advective fluxes and normal stresses). The

incompressibility condition (2) is satisfied through a projection

method. Briefly, the projection method consists in decomposing

the velocity field into two parts, one being a function of an auxil-

iary potential function as (21). Using this decomposition together

with the divergence-free property of the velocity field, one gets a

Poisson pseudo-Eq. (19) for the pressure which becomes a substi-

tute for the incompressibility condition (2). Following and modify-

ing the original proposal of Le and Moin [39], Calmet [9] showed

that the Poisson equation does not need to be solved at each inter-

mediate time step of the Runge–Kutta scheme. Thus it is solved

only once at the end of the complete time step, without altering

the temporal accuracy of the scheme. Note that there is a substan-

tial literature which expands the present choices regarding projec-

tion methods for constant-density flows [8,25, and reference

therein] and more recently for variable-density flows [26]. The

Poisson linear system is solved thanks to a Preconditioned Conju-

gate Gradient method from the PETSc library [4], with a precondi-

tioner using the Block–Jacobi method. Note that computational

time used for the resolution of the Poisson equation in the present

variable-density problem is about 80% of the total computational

time. More details about the numerical procedure used in the case

where there is no immersed object, i.e. f ¼ 0, can be found in

Calmet and Magnaudet [10]. Domain decomposition and

Message-Passing-Interface (MPI) parallelization is performed to

facilitate simulation of large number of computational cells.

2.4. Calculation of the forcing term for the coupling of the solid–fluid

interaction

Recent progress about the computation of solid–fluid interac-

tion have been made within the last decade (see e.g. [34,44] for

comprehensive reviews), leading to several approaches which dif-

fer from the way the forcing term f is evaluated. The direct and

indirect forcing methods have emerged as the most popular vari-

ants in this regard. Besides eliminating the time step restriction,

direct forcing does not require any empirical constants.

In general, the shape of the solid object is complex and the

location of the boundary condition for the velocity is unlikely to

coincide with the grid nodes, so that interpolation techniques are

usually employed to enforce the boundary condition by imposing

constraints on the neighboring grid nodes. Here we adopt another

strategy. We introduce a function a denoted as ‘‘solid volume frac-

tion’’, which is equal to one in cells filled with the solid phase, zero

in cells filled with the fluid phase, and 0 < a < 1 in the region of

the boundary. In practice, the transition region is set-up to be of

one-to-three grid cells approximately [66]. The typical expression

of the forcing term reads

f ¼ a
Uÿ eV
Dt

; ð11Þ

where Dt is the time step used for the time-advancement, U is the

local velocity imposed to the immersed solid object, and eV is a pre-

dictor velocity without considering the immersed object, the calcu-

lation of which depends on the numerical scheme used to solve (1).

The specific definition of f and eV used in the time-marching scheme

of the present work is given in the next section.

Using the solid volume fraction a in (11), which may be viewed

as a smoothing of the immersed boundary, is an alternative way to

using a regularizing function in conjunction with a Lagrangian

marking of the boundary. The latter technique is largely used in

immersed-boundary methods in order to allow for a smooth trans-

fer of momentum from the boundary to the fluid (see e.g. [20,63]).

The advantage of the present choice is that (i) it is simple to imple-

ment, (ii) no interpolation is needed between the Eulerian grid and

possible Lagrangian markers, since no marker are used here, so

that the computational cost is reduced when multiple objects are

simulated, and (iii) the results are in good agreement with respect

to other available higher-order immersed-boundary or boundary-

fitted approaches, as will be shown later.

2.5. Summary of the time-advancement procedure

The detailed time-advancement procedure of the coupled sys-

tem within a time-step is described in the following.

1. At the beginning of the time step, the divergence-free veloc-

ity field Vn, density qn, pressure Pnÿ1=2 in the fluid are known, as

well as the position xn
p , linear velocity un

p and angular velocity

xn
p of the solid.

2. qnþ1 is computed by solving (3), and second-order approxi-

mations of the density field qnþ1=2 at time ðnþ 1=2ÞDt are com-

puted using qnþ1=2 ¼ ðqn þ qnþ1Þ=2, and used to solve the

momentum equation. For clarity qnþ1=2 will be referred to as q.
3. Mixed Runge–Kutta/Crank–Nicolson loop (k ¼ 1;2;3)

3a. Computation of an intermediate velocity field eVk without

considering fluid–solid interaction:

eVk ÿ bVkÿ1

Dt
¼ SM; ð12Þ

with

SM ¼ ckNðbVkÿ1Þ þ fkNðbVkÿ2Þ þ ðak þ bkÞLðbVkÿ1Þ

ÿ ðak þ bkÞ
1

q
rPnÿ1=2 ÿ g

� �
; ð13Þ

where N (resp. L) is a non-linear (resp. linear) operator containing

the advective and viscous terms, ak, bk; ck and fk are the Runge–

Kutta coefficients.

3b. Modification of the velocity field in order to include the con-

tribution of the fluid–solid coupling term f
k
(the calculation of

which does not make use of an internal loop) as,

f
k ¼ a

Ukÿ1 ÿ eVk

Dt
; ð14Þ

bVk ÿ bVkÿ1

Dt
ÿ bkLðbVk ÿ bVkÿ1Þ ¼ SMþ f

k
: ð15Þ

3c. When not externally imposed, calculation of the linear and

angular momentum of the solid object

uk
p ÿ ukÿ1

p

Dt
¼ ðak þ bkÞgÿ q

ðqp ÿ qÞ#p

Z

#p

f
k
d#; ð16Þ

Ip
xk

p ÿxkÿ1
p

Dt
¼ ÿ

qqp

ðqp ÿ qÞ

Z

#p

r� f
k
d#: ð17Þ



3d. When not externally imposed, calculation of the solid posi-

tion (and solid volume fraction) via,

xk
p ÿ xkÿ1

p

Dt
¼ ðak þ bkÞðuk

p þ ukÿ1
p Þ=2: ð18Þ

3e. Computation of Uk ¼ uk
p þxk

p � r.

4. For k ¼ 3; bVnþ1;xnþ1
p ;unþ1

p and xnþ1
p are then obtained. A Pois-

son pseudo-equation is then solved to get the potential auxil-

iary function U
nþ1 as,

r � 1

q
rU

nþ1

� �
¼ 1

Dt
r � bVnþ1: ð19Þ

5. The pressure Pnþ1=2 and the divergence-free velocity Vnþ1 are

then obtained from the potential auxiliary function U
nþ1

Pnþ1=2 ¼ Pnÿ1=2 þU
nþ1; ð20Þ

Vnþ1 ¼ bVnþ1 ÿ Dt

q
rU

nþ1: ð21Þ

6. Return to step 1.

3. Results

In the following section, examples of fluid–solid interaction are

presented in various configurations from static objects in a con-

stant density flow toward objects moving in a stratified flow. We

will focus in the present work on the dynamics of a single spherical

object in a fluid. The general case of multiple interacting objects of

more complex shapes will not be detailed here and is left to future

work.

Let a sphere (or equivalently a cylinder in two dimensions) of

radius R (diameter D), position xp, translational velocity up and

angular velocity xp, surrounded by a fluid of density q and

dynamic viscosity l. We define the solid volume fraction a follow-

ing Yuki et al. [66] viz

aðxÞ ¼ 1

2
1ÿ tanh

kxÿ xpk ÿ R

kgD

� �� �
; ð22Þ

k ¼ jnxj þ jnyj þ jnzj; ð23Þ
g ¼ 0:065ð1ÿ k2Þ þ 0:39; ð24Þ

where n ¼ ðnx;ny;nzÞ is a normal outward unit vector at a surface

element, g is a parameter controlling the ’thickness’ of the transi-

tion region and D is a characteristic grid size (D ¼
ffiffiffi
2

p
Dx when the

grid is uniform). Note that the coefficients used in (24) are 1.3 time

larger than those reported in Yuki et al. [66]. Numerical tests of

moving cylinders at moderate Reynolds number showed that the

present set of coefficient is sufficient to suppress parasitic fluctua-

tions of the forces applied to the objects when the latter cross a

numerical cell (not shown here). A detailed discussion of this point

can be found in Uhlmann [63]. Iso-contours of a as defined in (22)

are shown in Fig. 8a. With the present choices, the transition region

is of three grid cells approximately.

3.1. Constant-density flows

3.1.1. Flow around a cylinder at moderate Reynolds number

In the present section, we consider a fixed cylinder in a uniform

flow for various Reynolds numbers in the range 1 6 Re 6 50. Here,

the Reynolds number is defined as,

Re ¼ qU0D=l; ð25Þ

U0 being the far-upstream velocity. For this range of Reynolds num-

ber, the wake is symmetrical along the mid-plane parallel to the

flow direction x so that only half of the domain can be used. A com-

putational ðx; yÞ-domain of 30D� 12D size with a regular grid is

used, with free-slip boundary conditions on the top and bottom

walls, inflow and outflow conditions along the left and right

boundaries, respectively. The simulations were run from an initial

uniform velocity field until steady state was reached. Several grid

resolutions were used in order to investigate the sensitivity of the

solution to the spatial resolution, namely D=Dx ¼ D=Dy ¼ 5, 10, 20

and 40.

The cylinder drag coefficient obtained with the present method

is plotted in Fig. 1 as a function of the Reynolds number. Here, the

drag coefficient is computed as,

CD ¼ FD

1
2
qU2

0D
; ð26Þ

FD ¼
X3

k¼1

Z

Sp

qfk � exdS; ð27Þ

f
k
being defined in (14) and Sp the circular section of the cylinder.

Very good agreement is found with respect to results obtained from

experiments [62,47] or other numerical approaches [49]. The effect

of the grid resolution is illustrated in Table 1 for Re ¼ 40. Keeping in

mind that the present method does not use any high-order interpo-

lation technique or marking of the boundary, a monotonous order-

one-convergence is observed toward the reference value of Park

et al. [49] (see the inset in Fig. 1). The steady-state vorticity con-

tours and streamlines from the case D=Dx ¼ 40 are shown in

Fig. 2. For comparison the results of Taira and Colonius’s [58]

immersed-boundary method which makes use of Lagrangian mark-

ers to impose the no-slip condition at the cylinder surface, are

reproduced here. The flow profiles are in close agreement with

those reported by these authors. In particular, the wake properties

are compared in Table 2 against previous experimental and numer-

ical studies. Reasonable agreement is also found.
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Fig. 1. Drag coefficient for a cylinder in a uniform flow for 1 6 Re 6 50. Experi-

ments:�, [62];þ, Nishioka and Sato [47]. Numerical simulations:�, Park et al. [49];


, present method (two-dimensional simulations). Present results are shown for a

grid resolution of D=Dx ¼ 20. Inset: Error as a function of spatial resolution for

Re ¼ 40. See Table 1 for details. Dashed line indicates first order convergence.

Table 1

Effect of the grid resolution on the drag coefficient (Re ¼ 40). Here, we take as

reference the results of Park et al. [49] in which a body-fitted C-type grid with 128

grid points along the cylinder surface were used.

D=Dx 5 10 20 40 Park et al. [49]

CD 2.23 1.80 1.64 1.58 1.51

� ¼ CDÿCDref

CDref

47.7% 19.2% 8.6% 4.6% 0



3.1.2. Flow around an airfoil at Re ¼ 2000

We assess in the present section the capability of the present

method to capture the flow field around a non-spherical object

in a regime where the flow is nearly turbulent. Results are com-

pared with those of Hoarau et al. [33] who use a pressure-velocity

based approach employing predictor-corrector pressure scheme on

a conformal orthogonal curvilinear grid. The airfoil is represented

by a cylinder of NACA0012 shape of length ‘. An angle of incidence

of 20° is applied to the static airfoil which is immersed in a con-

stant-density fluid with a far-upstream velocity field U0z; z being

the direction of the flow in the present case. Here, the Reynolds

number defined by U0‘=m is set to 2000.

Part of the numerical setup is displayed in Fig. 3. The simulation

is performed in a two-dimensional domain of height 10:4‘ and

length 10:4‘ and discretized with 1200� 390 grid points. The

spatial resolution is uniform (‘=Dz ¼ ‘=Dx ¼ 125) in the region

0 6 z=‘ 6 9:4 and 1 6 x=‘ 6 4:6 while the step size is varied follow-

ing a geometric progression up to the outer walls elsewhere. Free-

slip conditions are imposed at the top and bottom walls, whereas

inflow and outflow conditions are set at the upstream and down-

stream boundaries, respectively. The tip of the airfoil is located at

a distance of 2‘ from the upstream boundary approximately.

Iso-contours of the instantaneous pressure field in the vicinity

of the airfoil is displayed in Fig. 4 at time tU0=‘ ¼ 14:64 for the

present immersed-boundary method and the approach of Hoarau

et al. [33] using a conformal grid. In both cases, low pressure pat-

terns are visible at the nose of the airfoil as well as in the extrados

region (see the circular pattern at a distance of ‘=3 approximately

from the extrados). The complex pressure distribution, due to the

boundary-layer separation (see e.g. Fig. 3), is similar between the

two methods.

Time-averaged pressure coefficient Cp distribution is plotted in

Fig. 5 for three different time ranges. Here, Cp is computed as

Cp ¼ ðpÿ p1Þ=0:5qU2
0 , where p1 is the free stream pressure and p

is the local pressure at the location of the immersed boundary. In

the present case, we define the location of the immersed boundary

as the location for which a ¼ 0:5. Note that we verified that the

results were independent of the specific choice of a within its

transition region. In all cases, a pronounced pressure plateau is

observed on the upper surface of the airfoil, illustrating the pres-

ence of a separation bubble (see also Fig. 3). Depending on the time

range used for averaging the the pressure coefficient, the length of

the plateau somewhat varies and the pressure distribution is sig-

nificantly different in the vicinity of the trailing edge, exhibiting

alternatively a sharp increase (crosses) or a slight decrease (plus).

In the former case, this can be attributed to the generation of a

Fig. 2. Dimensionless vorticity contours (left) for steady-state flow over a cylinder at Re ¼ 40, where contour levels are set from -3 to 3 in increments of 0.4, and

corresponding streamlines (right). The top and bottom plots are results with the present method (D=Dx ¼ 40, two-dimensional simulation) and those of Taira and Colonius

[58], respectively. Vorticity is scaled by U0=D, and the axis dimensions by D. Note that the streamlines are not at scale between frames (b) and (d).

Table 2

Comparison of experimental and numerical studies of steady-state wake dimensions

and drag coefficient for a flow around a cylinder at Re ¼ 40. l is the length of the

recirculation zone measured from the rear of the sphere, a is the streamwise distance

between the wake vortex core and the rear of the sphere, b is the gap between the

centers of the wake vortices and h is the separation angle measured from the rear of

the sphere.

l=D a=D b=D h (°) CD

Experiments

Coutanceau and Bouard [16] 2.13 0.73 0.59 53.8 –

Tritton [62] – – – – 1.59

Numerical study

Dennis and Chang [18] 2.35 – – 53.8 1.52

Park et al. [49] – – – – 1.51

Linnick and Fasel [40] 2.28 0.72 0.60 53.6 1.54

Taira and Colonius [58] 2.30 0.73 0.60 53.7 1.54

Ardekani et al. [2] 2.23 – – – 1.55

Present method (D=Dx ¼ 40) 2.26 0.71 0.59 54.2 1.58



strong counter-clockwise vortex at the tip of the airfoil, as the one

displayed in Fig. 3, which locally increases the suction, while in the

latter case the observed diminution of suction can be attributed to

the expulsion of the large clockwise vortex forming the separation

bubble, transported downstream the airfoil (not shown here). As

expected, the pressure distribution along the intrados region is less

sensitive to time-averaging. A peak is observed at the leading edge,

the pressure coefficient being of order one, followed by a monoto-

nous decrease of the pressure as one goes from the leading edge

toward the trailing edge. This is in qualitative agreement with

the results of Jones et al. [28] who computed the flow around a

NACA0012 airfoil in a somewhat different configuration, namely

Re ¼ 5� 104 and an angle of incidence of 5°.

3.1.3. Oscillating sphere in a fluid initially at rest

We here consider a sphere undergoing low-amplitude oscilla-

tions at moderate Reynolds number in a constant-density flow ini-

tially at rest. This problem has been considered by Chang and

Maxey [11] who highlighted the role of the Basset history force

in the generation of steady streaming patterns. These authors used

a pseudo-spectral method and obtained a good agreement for the

time-dependent evolution of the drag coefficient compared to

experiments of Odar and Hamilton [48] and the solution obtained

from a force balance between the viscous Stokes drag, the inviscid

added-mass force, and the Basset history force.

An oscillating motion defined by a pulsation r and amplitude A0

is imposed to a sphere of radius R (diameter D) in a fluid initially at

rest. The sphere motion is externally given by the translational

velocity

upðtÞ ¼ U0 sinðrtÞez; ð28Þ

with U0 ¼ A0r. Note that here the motion of the object is imposed

so (16)–(18) need not to be solved. The flow is controlled by two

dimensionless parameters, namely the Reynolds number (as

defined in (25)), and the Strouhal number St ¼ rR=U0. Here we

set Re ¼ 16:7 and St ¼ 0:625, which correspond to oscillations of

amplitude A0 ¼ 0:8D.

The physical domain is a cylinder of height 20D and radius

10D. Due to the axisymmetry of the flow, it is discretized with a

regular two-dimensional 200� 400 grid in the ðr; zÞ-directions
(D=Dr ¼ D=Dz ¼ 20). Free-slip boundary conditions are imposed

on all the walls and on the symmetry axis. Simulation is performed

until the quasi-steady state is reached.

Fig. 6 shows a sequence of vorticity contours over half an

oscillation cycle. The upper (resp. lower) half of each frame is

extracted from Chang and Maxey’s results (resp. present results).

The sequence begins just after the free-stream has reversed

direction and has started to flow from right to left. Good agreement

is observed throughout the whole half-cycle. The temporal evolu-

tion of the drag coefficient is plotted in Fig. 7(a) over an oscillation

cycle. Here, the drag coefficient and the drag force are computed as

follow

CD ¼ FD

1
2
qU2

0pR
2
; ð29Þ

FD ¼ ÿ
X3

k¼1

Z

#p

qfk � ezd#: ð30Þ

Again, agreement is found between our present method, the

pseudo-spectral approach of Chang and Maxey [11], experiments

of Odar and Hamilton [48] and the analytical solution. The relative

Fig. 3. Close-up view of the velocity field around the NACA0012 airfoil at time

tU0=‘ ¼ 14:64. The airfoil, materialized by the iso-value of solid volume fraction

aP 0:1 is immersed in a constant-density fluid of far-upstream velocity U0z. Here,

the simulation is two-dimensional.

Fig. 4. Iso-contours of the instantaneous pressure field in the vicinity of the

NACA0012 airfoil with an incidence angle of 20° and Re ¼ 2000 for (a) the present

method at tU0=‘ ¼ 14:64 and (b) results of Hoarau et al. [33].



error computed from the maximum value of CD at the end of the

second cycle is plotted as a function of spatial resolution and time

step in Fig. 7(b). A close to first- and second-order convergence is

observed in time and space, respectively. Overall, this test shows

that the present method is able to capture reasonably well the flow

field near the immersed boundary when the latter is in motion.

3.1.4. Freely moving sphere in a viscous fluid

In this section, we assess the capability of the present approach

to reproduce the free motion of an object in a constant-density vis-

cous fluid, namely the free fall of a sphere in a liquid at rest. We set

the physical properties of the object and the fluid so the density

ratio is qp=q ¼ 4 and the Archimedes number Ar ¼ qðqp ÿ qÞ
U2

0D
2=l2 ¼ 800 with U0 ¼

ffiffiffiffiffiffi
gD

p
. As shown later, this corresponds

to a Reynolds number, based on the terminal velocity of the sphere,

of Re ¼ qupD=l ¼ 20 approximately.

This academic configuration allow us to compare the temporal

evolution of the particle velocity with analytical solutions as well

as numerical data available in the literature. Here, results are com-

pared to those of a boundary-fitted approach which has been val-

idated in previous papers [45,3]. This method fully resolves the

flow around the falling sphere in the reference frame of the moving

object, thanks to a spherical curvilinear grid which is refined in the

vicinity of the rigid boundary (a close-up view of the correspond-

ing grid is given in Fig. 8(b)). The particle motion is solved via

the Kirchhoff equations of motion. In this method a 88� 34� 66

spherical grid is used and the outer boundary are located at a dis-

tance of 20D from the sphere center.

Here, the simulation is performed on a two-dimensional

axisymmetric ðr; zÞ-domain of 20D� 40D size with 128� 800 grid

points. The spatial resolution is constant along the z-direction

parallel to gravity as well as in the region 0 6 r=D 6 1:5

(D=Dx ¼ 20). For 1:5 6 r=D 6 20, the grid size is varied following

an arithmetic progression up to the outer wall. Free-slip boundary

conditions are imposed at all boundaries. The time-step used for

the simulation is Dt
ffiffiffiffiffiffiffiffiffi
g=D

p
¼ 0:04. Fig. 8a shows the grid used and

iso-contours of the solid volume fraction a defined in (22). The

sphere is initially located at a distance 5R from the upper wall

and the fluid is initially at rest.

One can estimate the initial acceleration of the sphere at early

times, assuming that only the buoyancy force and the added-mass

force are at play. The initial acceleration reads

dup

dt
¼

ðqp ÿ qÞg
qp þ CMq

; ð31Þ

where CM is the added-mass coefficient equal to 1/2 for a sphere.

The sphere reaches a steady state when the drag force balances

the buoyancy force. The corresponding terminal velocity of the

sphere can therefore be written

up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmp ÿmjg
CD

1
2
qpR2

s
; ð32Þ

where mp and m are the mass of the rigid sphere and that of the

fluid contained in an equivalent volume, respectively. CD is the drag

coefficient which can be classically computed using Schiller and

Naumann’s correlation [14]

CD ¼ 24

Re
ð1þ 0:15Re0:687Þ: ð33Þ

Using the definition of the Reynolds number Re ¼ qupD=l
together with (32) and (33), one can calculate the theoretical value

of the terminal velocity of the sphere.

Fig. 9 shows the temporal evolution of the sphere velocity with

the boundary-fitted approach and the present immersed-boundary

method. For comparison, analytical solutions (31) and (32) are also

plotted. Excellent agreement is observed with respect to both the

numerical and analytical solutions. The present method is shown

to satisfactorily reproduce the dynamics of a free-moving object

in a constant-density fluid, from the acceleration phase up to the

steady-state regime.

3.2. Stratified flows

Let us consider the vertical movement of a sphere (of radius R,

diameter D, characteristic velocity U0) initially located at the verti-

cal position z0 in a stratified fluid. The initial stratification distribu-

tion is stable and linear such as

qðx; t ¼ 0Þ ¼ q0 þ
@qe

@z
z; ð34Þ

where @qe

@z
¼ cte is the vertical gradient of the undisturbed density

field, and q0 ¼ qðz0; t ¼ 0Þ is a reference density. The corresponding

hydrostatic pressure pe reads

peðzÞ ¼ ÿ
Z z

qgdz ¼ ÿq0gzþ
1

2

@qe

@z
gzðzÿ 2z0Þ: ð35Þ

Fluid–solid interaction depends on the Froude number

Fr ¼ 2U0=ðNDÞ with N being the Brunt-Väisälä frequency reading

N2 ¼ ÿ g

q0

@qe

@z
: ð36Þ

3.2.1. Oscillating sphere in a rotating stratified fluid

The oscillation of a sphere in a stratified fluid contained in a

cylindrical tank rotating at angular velocity X0 is considered here.

The imposed translational and rotational velocity of the sphere in

polar coordinates reads

upðtÞ ¼ U0 cosðrtÞez; ð37Þ
xpðtÞ ¼ X0ez; ð38Þ

where U0 ¼ A0r, and A0 (resp. r) is the amplitude (resp. pulsation)

of the oscillation.

The oscillations of the sphere in the rotating stratified fluid gen-

erate both internal gravity waves due to density stratification, and

inertial waves due to rotation. The structure, dynamics and inter-

action of these waves depend on the Froude number and the Cori-

olis number here defined by C ¼ 2U0=ðX0DÞ [24]. In particular,

internal gravity and inertial waves may propagate along a specific

direction, the angle / of the conical wave propagation with respect
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Fig. 5. Pressure coefficient Cp distribution along the airfoil extrados (upper curves)

and intrados (lower curves) time-averaged in the range: �;8 6 tU0=‘ 6 13:6;

�;8 6 tU0=‘ 6 9:2;þ;9:2 6 tU0=‘ 6 10:4. Here, xn is the distance from the airfoil

nose.



to horizontal (r; h)-plane obeying the following dispersion relation

[32,17]

r2 ¼ N2 sin
2
/þ 4X2

0 cos
2 /: ð39Þ

Note that the propagating waves only exist for excitation pulsations

in the range 2X0 6 r 6 N. In such a case, the global structure of

waves resembles a cross, often referred to as Saint-Andrew cross,

as evidenced by experimental observations using a Schlieren optical

technique [46,57] in the case of stratified but non-rotating flows.

A three-dimensional simulation is performedwith the following

set of dimensionless parameters, namely Re ¼ q0U0D=l ¼ 100,

Fr ¼ 0:8; C ¼ 3:16 and A0=R ¼ 1. In this peculiar case, non-linear

effects are to be expected [22,64]. The present set of parameters

leads to a theoretical direction of propagation of thewaves obtained

from (39) of / � p=4. The numerical setup is displayed in Fig. 10.

The simulation is performed in a cylindrical computational domain

of height 30D, outer radius 15D and is discretized with 256� 34

�512 grid points in the r; h and z-directions, respectively. The

spatial resolution is uniform along the r- and z-directions (D=Dr ¼
D=Dz ¼ 20) in the region 0 6 r=D 6 12:5 and 2:5 6 z=D 6 27:5

while elsewhere the grid size is varied following a geometric

progression up to the outer walls. No-slip (resp. zero normal gradi-

ent) boundary conditions are imposed at all the rotating walls for

the velocity (resp. density). Note that here and for all the cases with

stratified fluids, no specific boundary condition is imposed to the

density field at the particle surface, since the transport of the den-

sity computed via (3) is performed in the whole computational

domain, including the region occupied by and surrounding the

particle. The specific value of the local fluid density ’inside’ the

region of the particle does not play a role since here the fluid is

non-diffusive. At time t ¼ 0, the sphere is located in the middle of

Fig. 6. Contours of the azimuthal component of vorticity x around the sphere over half an oscillation cycle for Re ¼ 16:7 and St ¼ 0:625. Upper frame: Chang and Maxey’s

[11] simulation; Lower frame: present method (two-dimensional axisymmetric simulation). The time instance of the snapshots are such that rt ¼ /½2p� with (a)

/ ¼ p=16;Dx ¼ 0:2; (b) / ¼ p=4, Dx ¼ 0:4; (c) / ¼ p=2;Dx ¼ 0:6; (d) / ¼ 3p=4;Dx ¼ 0:2; (e) / ¼ 15p=16;Dx ¼ 0:2; (f) / ¼ p, Dx ¼ 0:2. Dotted line: x < 0. Solid line:

x > 0. Long dashed: x ¼ 0. Here, Dx is the vorticity increment between two iso-contours and x is scaled by U0=R.



the computational domain at z ¼ z0, and the whole system fluid-

sphere is in solid-body rotation at angular velocity X0. The sphere

is then set into vertical oscillatory motion according to (37).

Iso-surfaces of density fluctuations dq are displayed in Fig. 11 at

times tðr=2pÞ ¼ 4:7 and 5:2. Note that the vertical location of the

sphere at these time instances is symmetrical with respect to z0.

Here dq is defined as

dq ¼ qðx; tÞ ÿ qðx; t ¼ 0Þ
q0

: ð40Þ

The iso-surfaces of density fluctuations are observed to be cones

whose axis of revolution is parallel to the rotational axis/density

gradient. The density fluctuations distribution mostly remains axi-

symmetric and exhibits a central symmetry with respect to the

averaged location of the sphere. The conical waves stemming from

the generation of the internal gravity/inertia waves extend in the

flow up to a distance of 10D from the sphere, approximately. In

Fig. 12 the corresponding velocity fluctuation field du is plotted

in a chosen vertical mid-plane. Clearly, the flow exhibits a cross-

shape structure, in agreement with experimental observations

[22,52]. For comparison, the theoretical prediction (39) for the

direction of propagation of the waves is plotted in Fig. 12 (dashed

lines). Good agreement is found between the angle obtained with

the present method and the analytical prediction.

The temporal evolution of the drag coefficient, here defined by

CD ¼ 2FD=q0pR
2U2

0, is plotted in Fig. 13. A quasi steady-state regime

is observed to rapidly take place after two periods of oscillations,

the extremal values of CD being close to �4. To our knowledge no

numerical or experimental results on the flow characteristics such

as the drag exerted on the moving sphere can be found in the liter-

ature. However, a crude comparison can be made with results of

Hanazaki et al. [30] who performed numerical simulations, thanks

to a boundary-fitted approach, of the flow around a vertically mov-

ing sphere in a uniformly stratified fluid for a broad range of param-

eters (Re; Fr; Sc), Sc ¼ m=K being the Schmidt number, m the fluid

kinematic viscosity and K the mass diffusivity. In the simulations
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Fig. 7. (a) Time evolution of the drag coefficient CD over an oscillation cycle: (- � - � -), present method; ( ), pseudo-spectral method of Chang and Maxey [11]; (- - - -),

experiments of Odar and Hamilton [48]; (� � � � � �), analytical solution. Here rt ¼ /½2p�. (b) Error computed from the maximum value of CD at the end of the second cycle as a

function of (�) spatial resolution and (�) time step. The reference value of CD used for the spatial and temporal convergence analysis is the one obtained with

(Dx=D ¼ 1:25� 10ÿ2; rDt ¼ 10ÿ2) and (Dx=D ¼ 5� 10ÿ2; rDt ¼ 10ÿ3), respectively. The dashed and solid lines indicate first- and second-order convergence, respectively.

Fig. 8. Close-up view of the grid used for the simulation of the freely-falling sphere with (a) the present method and (b) a body-fitted approach. In the former (resp. latter)

case, the size of the axisymmetric (resp. three-dimensional) grid is 128� ð1Þ � 800 (resp. 88� 34� 66) in the r; h; z(resp. /)-directions, gravity being along z-direction. In (a),

the immersed boundary is materialized by iso-values of the solid volume fraction a ¼ 0:01;0:25;0:5;0:75, and 0.99.
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Fig. 9. Time evolution of the particle velocity: , present method (two-

dimensional axisymmetric simulation); - - - -, boundary-fitted method, � � � � � �,
analytical solutions (31) and (32).



of the above mentioned authors, a constant velocity of the sphere is

imposed and the drag force is measured. Some of their results are

reproduced in Fig. 17 for Re ¼ 200;0:2 < Fr < 200, and Sc ¼ 700.

For Fr ¼ 0:8 (i.e. 1=Fr ¼ 1:25), the expected drag coefficient lies in

the range CD � 3ÿ 4, approximately. This is of the same order of

magnitude as the value of the maximum drag coefficient found in

the present simulation (Fig. 13). It must be stressed that the present

comparison is only qualitative since we simulate the flow of an

oscillating sphere, while Hanazaki et al. [30] compute the flow

around a translating particle. In addition, we set the object and

the fluid to be initially in solid body-rotation while in the simula-

tion of these authors, the fluid is initially at rest.

Contours of the azimuthal component of vorticity in the vicinity

of the sphere are plotted in Fig. 14 over half an oscillation cycle.

Two regions can be identified, namely a far-field region in which

the waves of Saint-Andrew cross-shape are visible via the sharp

transition of the vorticity sign, and a near-field region in which

vorticity is generated at the sphere surface. The near-field region

is observed to extend up to a distance of one diameter away from

the sphere centroid, approximately, in agreement with experimen-

tal observation (Fig. 14(f); [64]). Note that the structure of the

wake is different from the constant-density non-rotating lower

Re-case (see e.g. Fig. 6) indicating a non-negligible influence of

stratification/rotation not only on the far field but also on the local

flow structure around the moving object.

3.2.2. Flow past a sphere dragged vertically in a stratified fluid

Experiments of such flows (see e.g. [46,60]) have shown that the

axisymmetric flow is retained for Reynolds numbers well above

200, which is the upper limit for axisymmetry in homogeneous

flow, because vortex shedding and transition to turbulence can

Fig. 10. Numerical setup with (a) a global view of the sphere within the cylindrical computational domain, and (b) a close-up view of the grid used in the vicinity of the

sphere here materialized by iso-value of the solid volume fraction a ¼ 0:1.

Fig. 11. Iso-surfaces of density fluctuations dq generated by an oscillating sphere in a rotating stratified fluid at (a) tr=ð2pÞ ¼ 4:7 and (b) tr=ð2pÞ ¼ 5:2 for

Re ¼ 100; Fr ¼ 0:8; C ¼ 0:316 and A0=R ¼ 1. Iso-surfaces dq ¼ �1:26� 10ÿ6 are plotted on half the computational domain in order to show the sphere location. Here, the

simulation is three-dimensional.

Fig. 12. Azimuthal component of the velocity fluctuation field du (same parameters

as Fig. 11(b)). The vectors represent the corresponding ðr; zÞ-components of du. The

location of the sphere is materialized by selected iso-values of a. The white dashed

lines correspond to the direction of propagation obtained from (39). Note that the

near flow field of the sphere and color background around the z-axis are not shown

for clarity.



Fig. 13. Time evolution of the drag coefficient CD on a oscillating sphere in a rotating stratified fluid (Re ¼ 100; Fr ¼ 0:8; C ¼ 0:316;A0=R ¼ 1).

Fig. 14. Contours of the azimuthal component of vorticity over half an oscillation cycle in the vicinity of the sphere obtained from the three-dimensional simulation. The time

instances of the snapshots are such that rt ¼ /½2p�with (a) / ¼ 0; (b) / ¼ 4p=13; (c) / ¼ 6p=13; (d) / ¼ 9p=13; (e) / ¼ p. The sphere is materialized by the iso-surface of the

solid volume fraction a ¼ 0:1. (e) Experimental visualization of Chashechkin [12] for Re � 300; Fr � 0:5; C ¼ 0 and A0=R ¼ 1:2.



be inhibited by stratification. Axisymmetric standing vortex usu-

ally found in homogeneous fluids at moderate Reynolds numbers

(25 6 Re 6 200) is completely collapsed by stable stratification,

generating a strong vertical jet. Recently, Torres et al. [60] and

Hanazaki et al. [30] performed numerical simulations thanks to a

boundary-fitted approach using Boussinesq approximation. They

showed that for Re ¼ 200, the complete collapse of the vortex

occurs at Froude number Fr � 19, and the critical Froude number

decreases slowly as Re increases. The Froude number and the

Reynolds number are here defined by Fr ¼ 2U0=ND and

Re ¼ qU0D=l with U0 being the descent velocity of the sphere, N

the Brunt-Väisälä frequency, D the sphere diameter and l the

dynamic viscosity of the fluid.

Two configurations are investigated here, namely ðRe; FrÞ ¼
ð200;2Þ and (200,20). The simulations are performed on the same

two-dimensional axisymmetric domain as in Section 3.1.4 with

twice the resolution (the 20D� 40D ðr; zÞ-domain is discretized

with 256� 1600 grid points) so that there are 40 cells per sphere

diameter. Free-slip and Neumann boundary conditions are

imposed at all boundaries for the velocity and density, respec-

tively. The sphere is initially located at a distance 7R from the

upper wall and the fluid is initially at rest. A t > 0, the sphere is

dragged at an imposed constant velocity U0 in the direction oppo-

site to the density gradient. It should be noted that contrary to the

simulations of Torres et al. [60] and Hanazaki et al. [30], the pres-

ent simulation does not make use of Boussinesq approximation.

We plot in Fig. 15 isopycnals and streamlines in the vicinity of

the sphere for the case ðRe; FrÞ ¼ ð200;20Þ, when the sphere has

crossed a distance of 13D. The figure shows that at this relatively

weak stratification, a standing vortex exists just as in homoge-

neous fluids. This is in line with experimental observations and

the results of Hanazaki et al. [30] for which qualitative agreement

is found (see Fig. 15c). Note that small steps in the density iso-con-

tours can be observed in the region of sharp gradients, separating

the wake of the sphere from the far-field (Fig. 15a). These patterns

are a consequence of the Flux-Corrected-Transport scheme used

for solving the transport equation of density. This family of

shock-capturing scheme contains an anti-diffusive step which

sharpen the density distribution when the typical thickness of

the density gradient is of the grid size. Increasing stratification

causes complete vortex collapse of the wake and the generation

of a long narrow filament or jet. This is illustrated in Fig. 16 when

ðRe; FrÞ ¼ ð200;2Þ. The density and flow structure is well repro-

duced by the present immersed-boundary method. Note that some

cusps can be observed in Fig. 16a at a distance of 3-6D downstream

the rear part of the sphere, in the vicinity of the thin axisymmetric

jet generated in the wake. Similar cusps were observed by Hana-

zaki et al. [30] for similar physical parameters but a much finer res-

olution that the present one (see their Fig. 9a).

We plot in Fig. 17 the time evolution of the drag coefficient. In

order to compare our results with those of Torres et al. [61] and

Hanazaki et al. [30] who solved the equations for the perturbed

density and pressure fields, we remove the contribution of the

unperturbed hydrostatic pressure. To be explicit, the instantaneous

drag coefficient CD is here calculated as,

CD ¼
bFD

1
2
q0U

2
0pR

2
; ð41Þ

bFD ¼ FD ÿ #p
@qe

@z
gðz0 ÿ zpÞ; ð42Þ

with FD ¼ ÿ
R
#p
qfd# being computed the same way as (30) and zp

the local vertical position of the sphere (the detailed derivation of

(42) is given in appendix). We find a very good agreement with

the results reported by Torres et al. [61] and Hanazaki et al. [30]

in the case of zero-to-low stratification (Fr ¼ 20) and reasonable

agreement in the case of moderate-to-large stratification (Fr ¼ 2).

In the latter case, the discrepancy may be due to the fact that in

the present case, the fluid is non-diffusive (Sc � 1) contrary to

the results of these authors for which Sc ¼ 700. In particular, Torres

et al. [60] mention that in the case of non-diffusive fluids, the den-

sity contours accumulate ahead of the particle (see e.g. Fig. 16(a))

and prevent the steady state condition to be reached, as observed

in Fig. 17. We note in passing that the drag coefficient in the

Fr ¼ 2-case is slightly but noticeably increasing with time for both

the present approach and the boundary-fitted method of Torres

Fig. 15. Isopycnals (a) and streamlines (b) when Fr ¼ 20;Re ¼ 200, and Sc � 1 at tU0=R ¼ 52 (the sphere has crossed a distance of 13D). For comparison, results of Hanazaki

et al. [30], obtained for Fr ¼ 20;Re ¼ 200, and Sc ¼ 700 with a boundary-fitted approach are plotted in (c). Here, the simulation is two-dimensional axisymmetric.



et al. [61], at least up to tU0=R < 5. From this time, the drag coeffi-

cient reported by these authors seems to reach a plateau contrary to

our results, however, this plateau is mitigated by an abrupt jump a

time tU0=R � 6.

We also plot in Fig. 17 the error computed from the value of CD

at time tU0=R ¼ 5 as a function of the spatial resolution and the

time step, and find a first- and second-order convergence, respec-

tively, similar to that found in the convergence study performed in

the homogeneous case (see Fig. 7(b)). Note that the observed effec-

tive temporal and spatial order-of-accuracy of the present method

with the IBM treatment and a fluid of variable density is observed

to be somewhat lower than the expected second order-of-accuracy

of the Crank–Nicolson/Runge–Kutta scheme. Firstly, this may be

attributed to the use of the FCT scheme for the transport equation

of the density. In the case of variable density flow with surface

tension effects and no IBM treatment, Bonometti and Magnaudet

[6] found a spatial order-of-accuracy of 1–1.5 approximately, when

using the FCT scheme. Second, recall that the present IBM

treatment does not make use of markers as in Uhlmann [63] or

interpolation operators for the pressure and boundary force as in

Taira and Colonius [58] and is likely to lower the effective order-

of-accuracy. This latter point was recently confirmed by Guy and

Hartenstine [27] who demonstrated that direct forcing IBM were

generally first-order accurate, the order of accuracy being able to

increase up to second-order depending on the local ’smoothness’

of the solution across the immersed boundary.

The distribution of the vertical velocity near the sphere’s equa-

tor is given in Fig. 18(a) for various spatial resolutions and in

Fig. 18(b) for two values of the Froude number, namely Fr ¼ 2

and Fr ¼ 20. We observe that the momentum boundary layer is

roughly independent of the spatial resolution for D=Dr ¼ 40. At

lower spatial resolution the region of influence of the immersed

object is increased as the thickness of the transition region of the

solid volume fraction a is increased. As a consequence, the location

of the maximum velocity is artificially shifted away from the par-

ticle surface. In Fig. 18(b), the present results for D=Dr ¼ 40 are

Fig. 16. Same as Fig. 15 for Fr ¼ 2 and Re ¼ 200.

Fig. 17. Time evolution of the total drag coefficient CD . Present method (Re ¼ 200, Sc � 1): +, Fr ¼ 2; �, Fr ¼ 20. Simulations from the boundary-fitted method of Torres et al.

[61] (Re ¼ 200; Sc ¼ 700): , Fr ¼ 2; - - - -, Fr ¼ 1. The upper and lower triangles indicate the value of CD reported in Fig. 13 of Hanazaki et al. [30] for Fr ¼ 2 and Fr ¼ 20,

respectively. Inset: Error computed from the value of CD at time tU0=R ¼ 5 as a function of (�) spatial resolution and (�) time step. The reference value of CD used for the

spatial and temporal convergence analysis is the one obtained with (Dr=D ¼ 1:25� 10ÿ3
;Dt � U0=D ¼ 2:5� 10ÿ2) and (Dr=D ¼ 2:5� 10ÿ2

;Dt � U0=D ¼ 2:5� 10ÿ4),

respectively. The dashed and solid lines indicate first- and second-order convergence, respectively.



compared to those obtained from the boundary-fitted approach of

Torres et al. [60] who used a much finer grid in the sphere region.

Very good agreement is found for Fr ¼ 20 and a reasonable agree-

ment is observed for Fr ¼ 2, the difference of the maximum veloc-

ity being less than 5%.

3.2.3. Sphere sedimenting in a stratified fluid at Re ¼ Oð103Þ
Here, the sedimentation of a sphere in a linearly stratified vis-

cous fluid, as defined in (34), is considered for two different density

ratios, namely qp=q0 ¼ 4:6 and 6.1, q0 being a reference density

defined by the fluid density at the initial vertical location z0 of

the particle centroid and qp being the density of the particle. We

set the physical properties of the particle and the fluid so the Archi-

medes number is Ar ¼ 2:3� 105 and 3:3� 105, respectively, and

the Froude number Fr ¼ 4:3. For comparison, we also computed

the constant-density case. The simulation is performed in a

three-dimensional domain of 6:3R� 6:3R� 51:5R size with

64� 64� 512 grid points. The spatial resolution is uniform in all

directions corresponding to 20 grid points per particle diameter.

No-slip (resp. Neumann) boundary conditions are imposed at the

top and bottom walls for the velocity (resp. density) while periodic

conditions are set for the lateral walls. Note that other boundary

conditions could have been used, namely free-slip conditions for

the velocity, without changing the results significantly. In the pres-

ent case, using periodic boundary conditions along the side walls

corresponds to simulating the sedimentation of a regular horizon-

tal array of spherical particles in a stratified fluid. The sphere cen-

troid is initially located at a distance of 2:2R from the upper wall

and the fluid is initially at rest.

Note that here the size of the computational domain is rather

small. As a consequence, confinement effects may modify the sed-

imentation velocity of the sphere, and additionally the perturbation

of the density field due to the motion of the sphere may generate

internal waves, the propagation of which being influenced by the

side walls. In addition, recall that the spatial resolution is such that

there are 20 grid points per particle diameter. The convergence

study of Section 3.2.2 suggests that this spatial resolution may be

somewhat low to fully capture the flow near the sphere surface.

Here, however, we are interested in showing the capability of the

present approach to simulate the three-dimensional flow around

a freely-moving object in a stratified fluid, so a moderate size of

the computational domain and spatial resolution were chosen.

Fig. 19 shows the time evolution of the vertical distance crossed

by the sedimenting sphere and the corresponding local particle

Reynolds number in the three configurations considered here

(constant-density flow with qp=q0 ¼ 4:6, stratified flow with

qp=q0 ¼ 4:6 and 6.1). For all cases, the particle quickly accelerates

at early times to reach a particle Reynolds number of about 1300-

1800 (t � 7). Contrary to the constant-density case, the speed of

the particle in the stratified fluid abruptly drops down due to the

enhanced drag stemming from the buoyancy of a tail of light fluid

dragged down by the sphere and the vanishing buoyancy force

which decreases as the particle gets closer to the vertical neutral

buoyancy level zn corresponding to q ¼ qp. It is worth noting that

in the case qp=q0 ¼ 4:6 and Fr ¼ 4:3 the particle speed alternatively

changes sign, leading to slight but noticeable lift-up of the particle

centroid (see Fig. 19 at times t ¼ 25, 33, 55 and 70). The time at

which the particle speed decreases is larger for the particle of larger

density ratio since inertia and buoyancy forces are larger in this

case. As expected, the particle eventually approaches to the level

zn, however, the duration of approach is relatively large since both

the drag force and buoyancy forces are slowly decreasing due to a

slow decrease in local velocity and density contrast, respectively.
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Fig. 18. Distribution of the vertical velocity near the sphere’s equator. (a) Results

obtained with the present method and various spatial resolutions:

�;D=Dr ¼ 10;þ;D=Dr ¼ 20;�;D=Dr ¼ 40; �;D=Dr ¼ 60; , D=Dr ¼ 80. Here,

Re ¼ 200; Sc � 1; Fr ¼ 2 and tU0=R ¼ 5. Inset: close-up view near the velocity

maximum. (b) Present method (Re ¼ 200; Sc � 1; tU0=R ¼ 52;D=Dr ¼ 40):

�; Fr ¼ 20; �; Fr ¼ 2. Simulations from the boundary-fitted method of Torres et al.

[60] for which Re ¼ 200, Sc ¼ 700: , Fr ¼ 20; - � - � -, Fr ¼ 2.
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Fig. 19. Time evolution of (a) the vertical distance crossed by the sedimenting

sphere and (b) local particle Reynolds number: (- - - -), Fr ¼ 1;qp=q ¼ 4:6;

( ), Fr ¼ 4:3, qp=q ¼ 4:6; (� � � � � �), Fr ¼ 4:3, qp=q ¼ 6:1. The dash-dotted lines

indicate the location of the neutral buoyancy level for which q ¼ qp . Here, the

simulation is three-dimensional.



The local flow structure is shown in Fig. 20 for both the con-

stant-density case and the stratified ambient case at qp=q0 ¼ 4:6.

A long wake is generated in the Fr ¼ 1 (constant-density) case

with a recirculation zone of about 2D downstream the sphere. In

contrast, the wake behind the sphere which sediments in the strat-

ified ambient develops only at early times (t 6 7) and quickly col-

lapses. At early times, the structure of the wake is roughly similar

to that reported in Fig. 6c of Bayareh et al. [5] who computed the

motion of a particle at a somewhat larger Froude number, namely

Fr ¼ 11:2. As the wake collapses, a thin upward jet is created and

isopycnals are lifted-up (t ¼ 13), generating internal waves and

local mixing, in agreement with observations [60]. As the particle

slowly goes towards the level zn, internal waves are damped by vis-

cous dissipation.

4. Summary and conclusions

A simple immersed-boundary method has been used for simu-

lating constant- and stratified-density flows past complex moving

boundaries. The method is based on a direct forcing approach in

which the solid objects are represented by a continuous solid

volume fraction. Two- and three-dimensional canonical flows are

simulated and the results are compared with available analytical,

experimental or numerical data in order to show the accuracy of

the current approach. In the configurations considered here, the

present method is capable of accurately describing the flow in

the region close to the immersed boundary even though it does

not make use of any high-order interpolation technique or

Lagrangian marking of the boundary. Simulations are performed

for stratified flows with moving boundaries. The current approach,

which makes use of a shock-capturing scheme for the transport of

density, is observed to describe reasonably well the temporal

variation of the hydrodynamic forces as well as the sharp spatial

gradients of density, despite the somewhat moderate spatial reso-

lution used in the vicinity of the immersed boundary. Here, we

only considered a single object in order to establish the relevancy

of the present approach in academic configurations. It is however

possible to extend the present approach to multiple non-spherical

objects, provided a suitable collision model is implemented. This is

beyond the scope of the present paper, and is left for future work.
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Appendix A

In this appendix, we give details about the derivation of the

drag force (42) used in Section 3.2.2. Here, we assume that the

sphere is dragged at a constant velocity. The drag force acting on

a body of surface Sp and volume #p is
R
Sp
s � ndS with

s ¼ ÿPIþ lðrV þrVTÞ being the hydrodynamic stress tensor

and n the outward pointing vector normal to the sphere surface.

Integrating momentum and kinematic momentum laws (1) and

(a)

(b)

Fig. 20. Three-dimensional simulation of the sedimentation of a sphere at Re ¼ Oð103Þ in (a) a constant-density flow (Fr ¼ 1) and (b) a linearly stratified flow (Fr ¼ 4:6). In

both cases, Ar ¼ 2:3� 105 and qp=q ¼ 4:6. Instantaneous distribution of the vertical velocity field in the range (a) [ÿ3.9 0.5] and (b) [ÿ0.5 2.3], respectively. Isopycnals are

also plotted in frame (b). Here time is scaled by
ffiffiffiffiffiffiffiffiffi
D=g

p
and velocity is scaled by

ffiffiffiffiffiffi
gD

p
.



(2) for the fluid on #p and using the fact that the sphere velocity is

here constant, one can write (see e.g. Eqs. (16)–(18))
Z

Sp

s � ndS ¼ ÿ
Z

#p

qfd#ÿ �q#pg: ð43Þ

Decomposing the pressure field P into two parts, namely an

unperturbed hydrostatic pressure pe and a perturbation, and using

the Boussinesq approximation one can express the total drag force

as
Z

Sp

s � ndS ¼ ÿ
Z

Sp

pendSþ
Z

Sp

ŝ � ndS; ð44Þ

where ŝ include the perturbation pressure and the viscous stress

tensor. Note that bFD ¼
R
Sp
ŝ � ndS is the drag force computed in

Torres et al. [60,61] and Hanazaki et al. [30]. Using the fact that

the hydrostatic pressure pe reads (see Eqs. (16)–(18))

peðzÞ ¼ ÿq0gzþ
1

2

@qe

@z
gzðzÿ 2z0Þ; ð45Þ

one can calculate the first term in the right hand side of (44)

ÿ
Z

Sp

pendS ¼ #p
@qe

@z
gðz0 ÿ zpÞ ÿ q0#pg; ð46Þ

with zp being the local vertical position of the sphere. Eliminating s
in (43) and (44), and using (46), one finds

bFD ¼
Z

Sp

ŝ � ndS

¼ ÿ
Z

#p

qfd#ÿ #p
@qe

@z
gðz0 ÿ zpÞ ÿ ð�qÿ q0Þ#pg: ð47Þ

Finally, the averaged fluid density in the region of the particle �q
at an arbitrary time is in fact that initially located inside the

particle at time t ¼ 0 (for zp ¼ z0). This patch of density has been

transported ’inside’ the dragged particle (see Eq. (3)). Computing

the initial average fluid density �qðt ¼ 0Þ in the region #p of the

particle, one finds �q ¼ q0 leading to

bFD ¼ ÿ
Z

#p

qfd#ÿ #p
@qe

@z
gðz0 ÿ zpÞ: ð48Þ
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