
HAL Id: hal-01011990
https://hal.science/hal-01011990v1

Submitted on 25 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-Tolerance Mechanisms for Permanent Failures in a
Coherent Shared-Memory Many-Core Architecture

César Fuguet, Alain Greiner

To cite this version:
César Fuguet, Alain Greiner. Fault-Tolerance Mechanisms for Permanent Failures in a Coherent
Shared-Memory Many-Core Architecture. Colloque GDR SoC-SiP, Jun 2014, Paris, France. 2014.
�hal-01011990�

https://hal.science/hal-01011990v1
https://hal.archives-ouvertes.fr


Fault-Tolerance Mechanisms for Permanent Failures in a Coherent

Shared-Memory Many-Core Architecture

César Fuguet, Alain Greiner
Sorbonne Universités, UPMC Univ Paris 06

CNRS UMR 7606, LIP6, F-75005, Paris, France

{cesar.fuguet-tortolero, alain.greiner}@lip6.fr

...

...

...

...

...

MEMC

(L2)

P0

(L1)

DMA

XICU

IO

DMA

XICU

DMA

XICU

DMA

XICU

IO

L1-L2 INTERCONNECT

L3L3L3L3

XRAM XRAM

IO

 BRIDGE

IO

 BRIDGE

MEMC

(L2)

MEMC

(L2)

MEMC

(L2)

P0

(L1)

P0

(L1)

P0

(L1)

P1

(L1)

P2

(L1)

P3

(L1)

P1

(L1)

P2

(L1)

P3

(L1)

P1

(L1)

P2

(L1)

P3

(L1)

P1

(L1)

P2

(L1)

P3

(L1)

2D DSPIN

3D DSPIN

3D DSPIN

Figure 1. TSAR Networks-on-Chip

I. PROBLEM DEFINITION

The reliability in nowadays integrated circuits

is rapidly decreasing as a consequence of the

exponential augmentation on the transistor density

which increases the probability of faults [1]. As a

consequence, there is a diminution in both manu-

facturing yield and life-time (faster wear-out).

Therefore, the introduction of fault-tolerant

mechanisms for allowing circuits to continue to

work in the presence of permanents failures has

become a primary necessity.

A. Many-core architectures

A many-core architecture exploits thread level

parallelism through hundreds or thousands of cores.

To increase memory bandwidth, these architectures

are usually organized in several clusters, intercon-

nected through one or several Network-on-Chip

(NoC). Each cluster contains generally several pro-

cessing cores and a local physical memory.

As many-core architectures are inherently redun-

dant, we can imagine various degraded operation

modes where, e.g., faulty cores or faulty memory

banks are deactivated and only functional cores

and physical memory banks are exploited by the

operating system.

B. TSAR architecture

The TSAR architecture (Tera-Scale Architecture)

[2] is a coherent shared memory many-core archi-

tecture jointly designed by BULL, LIP6 and CEA-

LETI in the framework of the European CATRENE

SHARP project. It implements a physical address

space of 1 Terabyte (40 bits addresses) and the

00 10 20 30

01 11 21 31

32221202

03 13 23 33

Coherence (M2P)

Direct (CMD)

Coherence (P2M)

Direct (RSP)

XICU

DMA
P0

L1 cache

P3

L1 cache

Memory

Cache

Local Interconnect (x5)

CLACK

M2P

P2M

RSP

CMD

Coherence (CLACK)

Figure 2. TSAR L1-L2 Network-on-Chip

cores are MIPS32 processors supporting a 4 Gi-

gabyte (32 bits) virtual address space.

This architecture supports up to 4096 cores and

it is organized as a mesh of clusters containing

4 cores per cluster. TSAR implements 3 levels of

cache memory using 3 levels of NoC interconnects

(see figure 1) with a 3D stacking technology for

the L3 cache. An external interconnect for IO

peripherals is accessible through IO bridges placed

in specific clusters (see figure 2).

In TSAR, the memory is physically distributed

as every L2 cache manages an exclusive segment

of the physical address space, defined by the most

significant bits of the physical address. The cache

coherence between L1 and L2 caches is guaranteed

by hardware using a cache coherence protocol

called Distributed Hybrid Cache Coherence Proto-

col (DHCCP).

II. PROPOSAL

In this section, we describe our proposed “On the

field” Detection, De-activation and Reconfiguration

(ODDR) solution for permanent failure recovery.

As the probability of faults increases with the

silicon area, the footprint of the fault tolerance

mechanisms should be small.

The ODDR mechanism exploits the intrinsic re-

dundancy in many-core architectures, using the pro-

cessor cores as test generators, test analyzers and

reconfiguration drivers. Fault-recovery is achieved

by means of software procedures executed in a

distributed and cooperative manner by all processor

cores during the bootstrapping process (boot), at

each system’s power-on.



The Operating System (OS) is only launched

when the ODDR boot-loader completed the detec-

tion, deactivation and reconfiguration of the hard-

ware platform. The OS is always executed on reli-

able hardware components because the faulty ones

have been isolated during reconfiguration. In order

to allow “on the field” dynamic reconfiguration, this

firmware is stored in distributed on-chip Read-Only

Memorys (ROMs) (one ROM per cluster).

A. General ODDR strategy

Any reconfiguration based fault-tolerance mech-

anism can be divided in four steps (as ex-

plained in [3]): fault-detection, fault-location, fault-

containment and fault-recovery. The strategy pro-

posed in this work provides solutions for the fault-

location, fault-containment and fault-recovery parts

of the reconfiguration process. The fault-detection

uses existing Built-in Self Test (BIST) solutions for

embedded memory banks, processor cores and NoC

components.

Our strategy can be divided in two sequentially-

executed stages: NoC Self-Test and Distributed

Fault Location and Reconfiguration.

B. NoC Self-Test

During this stage, a fully distributed, hardware

BIST is used to deactivate all faulty routers, and/or

all inter-routers communication channels in the var-

ious NoCs of the TSAR architecture, as described

in [4]. This BIST mechanism is implemented in

the routers, and executed in parallel to detect faulty

channels/routers in a 2D-mesh NoC. When a fault

is detected, the faulty channel/router is deactivated

and behaves as a “black-hole”, i.e. it consumes

every incoming packet and do not produce any

outgoing packet.

C. Distributed Fault Location and Reconfiguration

The distributed firmware is executed in parallel

by all processor cores during boot. The goal is to

locate faulty cores, faulty memory banks and faulty

routers, to build a global map of the operational

platform, and to configure the various NoC routing

functions, depending on the actual NoC topology,

as it can now exist holes in the 2D Mesh or 3D

Mesh. The different stages of this procedure are

shown in figure 6.

The first step is to build a software configuration

bus providing a reliable communication infrastruc-

ture in form of a spanning tree containing all

functional (usable) clusters. The root of this tree

is necessarily one of the two clusters containing an

IO Bridge, and this communication infrastructure

uses only software mailboxes supporting point-to-

point, bi-directionnal communication between two

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Figure 3. FFST example

neighbour clusters in the mesh. This software-based

infrastructure is called Fault-Free Spanning Tree

(FFST). An example of FFST is shown in figure 3

where the router associated to cluster (2,1) is faulty,

and the root is cluster (0,0).

The FFST is built in a bottom-up way in three

sub-stages for improving fault-containment: Intra-

Cluster, Inter-Cluster and FFST construction.

During Intra-Cluster stage, all processor cores in

a given cluster execute in parallel a Software-based

Self Test (SBST) as the one defined in [5] for fault-

detection. After this, each core performs a mutual-

test with all other cores in the same cluster (to avoid

that a faulty core self-diagnoses as functional). To

finish, a local leader is chosen among functional

cores to represent the cluster in next stages. A

cluster can participate in the FFST construction if

it contains at least two functional cores (otherwise,

mutual-test is not possible).

During Inter-Cluster stage, the local leader of

each cluster performs a mutual-test with the four

neighbor clusters (North, South, East, West in 2D

mesh), as shown in figure 4 in order to check

black-holes in the NoC, and to check which neigh-

bor clusters have passed the intra-cluster test. De-

tection of black-holes or dead clusters needs a

hardware watchdog timer in each processor core:

if a software command/response transaction does

not complete, the watchdog timer will trigger a

software catchable exception, that will allow the

core to diagnose the corresponding neighbour as

non reachable.

During the FFST construction stage, the IO clus-

ter playing the role of global leader starts the propa-

gation of specific messages to functional neighbors

(which recursively do the same), to finally build in a

cooperative and distributed manner the FFST. From

this point, it becomes possible to build a global

map of all functional (non faulty) components in

the platform.



(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Figure 4. Inter-Cluster Stage

D. NoC Reconfiguration

In the NoC reconfiguration stage, the global

leader must first compute a modified dead-lock

free and live-lock free deterministic global routing

function for NoCs containing black-holes, because

simple X-first routing function cannot be used. For

this, we can use the algorithm proposed in [6],

possibly extended to handle 3D mesh topologies.

Finally, the global leader can use the FFST to

write into the software addressable configuration

registers contained in the routers to store the proper

configuration and activate the various NoCs.

The configuration bus provided by the FFST

infrastructure can be useful for other types of recon-

figuration: As mentioned before, the TSAR archi-

tecture implements a physically distributed address

space, where each cluster controls one segment

(typically one Gigabyte per cluster), hence, if a

cluster is unreachable, the corresponding physical

memory becomes unusable for the OS. Fortunately,

in TSAR, all clusters can communicate through

several physically independent networks (L1-to-L2,

L2-to-L3, XRAM). In case of a unreachable cluster,

we can use the L2-to-L3 and XRAM NoCs to

reach the memory segment of this cluster. This re-

quires another reconfiguration of the global routing

function to reallocate the corresponding segment

to a neighbor functional cluster. An example of

such segment migration is shown in figure 5 where

the middle cluster is lost, but the corresponding

physical memory segment is allocated to the first

cluster.

E. Operating System (OS) loading

After the various NoCs have been configured, the

OS can be loaded for normal operation. However,

OS itself must be configured depending on the

operational hardware architecture. As the number

of processors or physical memory banks can change

because of failures, the firmware must provide

a description of the actual hardware organization

before launching the OS.

...

...

...

...

...

L2-L3 INTERCONNECT

L1-L2 INTERCONNECT

MEMC
(L2)

P3
(L1)

P2
(L1)

P1
(L1)

P0
(L1)

DMA

XICU

IO BRIDGE

L
O

C
A

L
 IN

T
E
R

C
O

N
N

E
C

T

MEMC
(L2)

P3
(L1)

P2
(L1)

P1
(L1)

P0
(L1)

DMA

XICU

IO BRIDGE

L
O

C
A

L
 IN

T
E
R

C
O

N
N

E
C

T

MEMC
(L2)

P3
(L1)

P2
(L1)

P1
(L1)

P0
(L1)

DMA

XICU

L
O

C
A

L
 IN

T
E
R

C
O

N
N

E
C

T

L3L3L3L3

XRAM INTERCONNECT

XRAM XRAM

MEMC
(L2)

P3
(L1)

P2
(L1)

P1
(L1)

P0
(L1)

DMA

XICU

L
O

C
A

L
 IN

T
E
R

C
O

N
N

E
C

T

IOIO

Figure 5. Physical Segment Recovery Example

Inter-Cluster 

Mutual Test

Fault location in 

NoC

NoC 

Reconfiguration

Load Operating 

System

Fault-Free 

Spanning Tree 

Faulty Core? Yes Core Self-

Deactivation

Faulty Core? Yes Core Self-

Deactivation

Cores Software-

Based Self-Test 

All Processor Cores

Intra-Cluster 

Cores Mutual-Test

No

No

Figure 6. ODDR Strategy Stages

III. EXPERIMENTATION ENVIRONMENT

The experimentation environment used for vali-

dation of the proposed strategy relies on SystemC

virtual prototyping. It will consist in a SystemC

Cycle-Accurate Bit-Accurate (CABA) simulator of

the TSAR architecture. This simulator will be de-

veloped using the library of SystemC components

SoCLib [7] (which provides various components

such as memories, interconnects, processors and

others) and the TSAR specific SystemC library

(containing especially the cache controllers).

The distributed firmware will be mapped in the

ROMs and executed on the virtual prototype to

evaluate the performance cost of the proposed

ODDR strategy, depending on the number of faulty

components.



IV. CONCLUSIONS

This work proposes an “On the field” fault-

tolerance strategy for many-core processors allow-

ing self-healing against permanent faults and there-

fore, increasing manufacturing yield and lifetime.

To minimize the fault-tolerance mechanisms

footprint, we describe a robust distributed fault-

tolerance strategy based on reutilization of pro-

cessor cores as test generators, test analyzers and

reconfiguration drivers through the execution of

embedded software procedures at every processor

power-on or reset to accomplish the “On the field”

dynamic reconfiguration requirement. Execution is

performed in a distributed and cooperative manner

by all cores in order to reduce reconfiguration

procedure time and also to increase processor ro-

bustness as the strategy avoids depending on a

single core for achieving reconfiguration.

REFERENCES

[1] ITRS (International Technology Roadmap for

Semiconductors), http://www.itrs.net. I

[2] TSAR (Tera-Scale Architecture),

https://www-soc.lip6.fr/trac/tsar. I-B

[3] B. Johnson, “Fault-Tolerant Microprocessor-

Based Systems,” IEEE Micro, vol. 4, no. 6, pp.

6–21, Dec. 1984. II-A

[4] Z. Zhang, A. Greiner, and M. Benabdenbi,

“Fully distributed initialization procedure for

a 2D-Mesh NoC, including off-line BIST and

partial deactivation of faulty components,” in

2010 IEEE 16th International On-Line Testing

Symposium. IEEE, Jul. 2010, pp. 194–196.

II-B

[5] N. Kranitis, S. Member, and A. Paschalis,

“Software-Based Self-Testing of Embedded

Processors,” IEEE TRANSACTIONS ON COM-

PUTERS, vol. 54, no. 4, pp. 461–475, 2005.

II-C

[6] Z. Zhang, A. Greiner, and S. Taktak, “A Re-

configurable Routing Algorithm for a Fault-

Tolerant,” pp. 441–446, 2008. II-D

[7] SoCLib, http://www.soclib.fr. III

http://www.itrs.net
https://www-soc.lip6.fr/trac/tsar
http://www.soclib.fr

	Problem definition
	Many-core architectures
	TSAR architecture

	Proposal
	General ODDR strategy
	NoC Self-Test
	Distributed Fault Location and Reconfiguration
	NoC Reconfiguration
	Operating System (OS) loading

	Experimentation environment
	Conclusions

