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Abstract

This research is devoted to the robust design of multibody dynamical systems, that is to say to the optimal design

of a multibody system which is carried out using an uncertain computational model. The probabilistic model of

uncertainties is constructed using a probabilistic approach yielding a stochastic differential equation with random

initial conditions. Then the robust design of the multibody system, in presence of uncertainties, is performed using

the least-square method for optimizing the cost function, and the Monte Carlo simulation method as stochastic solver.

The application consists in a simple multibody model of an automotive vehicle crossing a rough road and for which

the suspensions have to be designed in order to optimize the comfort of the passengers.

Keywords: Type your keywords here, separated by semicolons ;

1. Introduction

This paper deals with the robust design of a multibody dynamical system using a computational model for which

some parameters are uncertain. The uncertainties are induced by natural variability or by a lack of knowledge existing

on these parameters. For a multibody system, uncertainties can affect (1) the bodies themselves (inertia properties),

(2) the joints between the bodies, (3) the external forces. If they are not negligible, theses uncertainties have to be

taken into account in order to predict the response of the uncertain multibody system with a good robustness. In the

context of the design of a multibody system, these uncertainties are propagated into the performance function that has

to be optimized. Then the robust design consists in searching the optimal design of the multibody system taking into

account uncertainties, and then allows the robustness of this optimal design o be analyzed with respect to uncertainties.

In the context of multibody dynamics, the parametric probabilistic approach of uncertainties consists in model-

ing the uncertain parameters of the multibody dynamical systems by random variables1,4,10,12,15,18,19,22. Therefore,

the quantities of interest and the performance function become random variables, and a probabilistic robust design

method3,5,7,9,11,13,14,17,25 has to be used.

The first objective of this paper consists in constructing a probabilistic model of uncertainties yielding a stochastic

differential equation with random initial conditions. The second one is related to the robust design of a multibody

system in presence of uncertainties by using the least-square method for constructing the cost function, and the Monte

Carlo simulation method as stochastic solver.
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In Section 2, the nominal model is presented for the rigid multibody system. Then, the stochastic model of uncer-

tainties and the robust design method are presented in Sections 3 and 4. Finally, Section 4 presents an application that

consists in a simple multibody model of an automotive vehicle crossing a rough road, and for which the suspensions

have to be designed in order to optimize the comfort of the passengers9.

2. Nominal model for the rigid multibody dynamical system

The mean model is constructed as follows21,20. Let RBi be one of the rigid bodies, occupying a bounded domain

Ωi with a given geometry. Each rigid body RBi is represented by its mass mi, the position vector ri of its center of

mass, and by the matrix [Ji] of its tensor of inertia defined in the local frame. The multibody dynamical system is

made up of nb rigid bodies and of some ideal joints. The interactions between the rigid bodies are realized by these

ideal joints, but also by springs, dampers, and actuators, which produce forces between the bodies. Let u be the

vector in R
6nb such that u = (r1, ..., rnb

, s1, ..., snb
) in which si = (αi, βi, γi) is the rotation vector. The nc constraints

induced by the joints are given by nc implicit equations which are globally written as ϕ(u, t) = 0. Then the function

{u(t) , ∈ [0 ,T ]} is the solution of the following differential equation

[

[M] [ϕu]T

[

ϕu

]

[0]

] [

ü

λ

]

=

[

q − k

− d
dt
ϕt − [ d

dt
ϕu] u̇

]

, (1)

with the initial conditions

u(0) = u0 , u̇(0) = v0 , (2)

in which [M] is the (6nb×6nb) mass matrix, k(u̇) is the vector of the Coriolis forces, [ϕu(u(t), t)]i j = ∂ϕi(u(t), t)/∂u j(t),

and ϕt = ∂ϕ/∂t. The vector q(u, u̇, t) is constituted of the applied forces and torques induced by springs, dampers,

and actuators. The vector λ(t) is the vector of the Lagrange multipliers.

The performance of the multibody system is measured by a performance function, g(u), with values in R
ng .

3. Stochastic model of uncertainties and robust design

For a multibody system, the possible sources of parametric uncertainties are the following.

(i)- Uncertainties for the spatial mass distribution inside a body. For instance, such a type of uncertainties can be

encountered for a vehicle in which the passengers have a mass and a position that are variable. For each body, this

type of uncertainties yields a random mass, a random position of the center of mass, and a random tensor of inertia.

Consequently, the mass matrix [M] and the Coriolis forces K are random. The probability density functions (pdf) of

these random masses, random positions of the centers of mass, and random tensors of inertia have been constructed1

using the Maximum Entropy Principle, in which a special care has been devoted to the probabilistic modeling of the

random tensor of inertia in following the methodology of the nonparametric probabilistic approach of uncertainties

introduced in23,24 for the construction of random matrices.

(ii)- Uncertainties in the joints. For the ideal joints, the directions and the points defining the joints can be uncertain.

These uncertainties may be due to manufacturing tolerances, or due to the natural wear during the life cycle of the

multibody system. Such uncertainties have to be taken into account in order to ensure a good accuracy for the pre-

diction of the dynamical response of the multibody system. For non-ideal joints the friction coefficients can also be

uncertain. The randomness in the joints between the bodies yields a random constraint vectorΦ in Eq. (1).

(iii)- Uncertainties in internal forces. Concerning internal forces, there may be uncertainties in the constitutive laws

of the multidimensional springs and dampers. In such a case, uncertainties may be taken into account in the param-

eters of the constitutive laws, or directly in the stiffness and damping matrices using the nonparametric probabilistic

approach of uncertainties (see23). The uncertainties in the internal forces induce a random vector Q in Eq. (1).

2



Let x be the vector of the n uncertain parameters of the multibody system. Since the uncertainties in the system

parameters are taken into account using a probabilistic approach, then x is modeled by a random vector X with values

in R
n. Random vector X is written as X = (Xd,X f ) in which Xd is the random vector with values in R

nd of the random

design parameters, and X f is the random vector with values in R
n f of the fixed (but random) system parameters

(we then have n = nd + n f ). A prior probabilistic model of random vector X must be constructed and/or identified

using an adapted methodology24. This prior probabilistic model depends on hyperparameters which are the mean

values and other quantities allowing the statistical fluctuations (level of uncertainties) and the statistical dependencies

between parameters to be controlled (coefficients of variation, correlation matrices, etc). In the context of uncertainty

quantification, two cases can be considered. If experimental data are available, then the hyperparameters of the prior

probabilistic model can be identified solving an inverse statistical problem. If there are no experimental data, then

the mean values are chosen as the nominal values and the other hyperparameters can be considered as sensitivity

parameters in order to analyze the robustness of the responses with respect to the level of uncertainties. In the

context of robust design, the design parameters are chosen as the mean values of the prior probabilistic model of

random design parameters, Xd, while the other hyperparameters of the prior probabilistic model of Xd are treated as

previously explained. In this paper, since no experimental data are available, the design parameters will be the mean

values of Xd and all the other hyperparameters of the prior probabilistic model of X will be either fixed or used as

sensitivity parameters. In this last case, the robustness of the optimal design point can be analyzed with respect to the

level of uncertainties.

Let U = (R1, ...,Rnb
, S1, ..., Snb

) be the R
6 nb -valued stochastic processes indexed by [0,T ], which model the 6 nb

random coordinates. Let Λ be the R
nc -valued stochastic process indexed by [0,T ], which models the nc random

Lagrange multipliers. The deterministic Eq. (1) becomes the following stochastic equation
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, (3)

U(0) = U0 , U̇(0) = v0 , (4)

in which U0 is a given random vector, and v0 is a given deterministic vector. Random Eqs. (3) and (4) are solved using

the Monte Carlo simulation method.

The performance of the stochastic multibody system is measured by the Rng -random variable, G = g(U), which is

assumed to be a second-order random variable.

4. Robust design

As explained in the previous section, the vector-valued design parameter is the vector d = E{Xd} with values in

R
nd , which is the mean vector of the random design parameter Xd with values in R

nd , and where E is the mathematical

expectation. All the other hyperparameters of the probabilistic model of random vector X = (Xd,X f ) are assumed

to be fixed (nevertheless, these other hyperparameters can be used for carrying out a sensitivity analysis of the op-

timal design point with respect to the level of uncertainties). Let Cd ⊆ R
nd be the admissible set for vector d. The

performance random vector, G, depends on d, and is then rewritten as Gd = g(Ud). We obtain a family of random

variables {Gd , d ∈ Cd}. Let G
d
= E{Gd} be the mean value of Gd. Let g∗ be the deterministic target performance

vector associated with performance random vector Gd. The optimal value dopt of vector d is calculated using the least

square method, i.e,

dopt = arg min
d∈Cd

D(d) , (5)

in which the cost functionD(d) is written as

D(d) = E{∥Gd − g∗∥2} = E{∥Gd −G
d
∥2} + ∥g∗ −G

d
∥2 , (6)

which means that the minimization problem defined by Eq. (5) aims at minimizing both (i) the bias between the mean

value of the random performance vector and the deterministic target performance vector and (2) the variance of the
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random performance vector.

For each value of vector d, functionD(d) is estimated using the Monte Carlo simulation method.

5. Application

The application is devoted to the stochastic response of a vehicle (see its scheme in Fig. 1) at constant speed

excited by the ground elevation that is assumed to be a homogeneous random field. Consequently, the imposed vertical

displacement is a stationary stochastic process. The computational model of the multibody system is uncertain, and

its input is a stationary stochastic excitation.

5.1. Definition of the nominal multibody system

The system is made up of 9 rigid bodies: The sprung mass RB1 (the vehicle body), the two front unsprung masses

RB fr
2 , RB fr

3 (front wheels), the two rear unsprung masses RB re
2 , RB re

3 (rear wheels), the two front massless bodies

RB fr
4 , RB fr

5 , the two rear massless bodies RB re
4 , RB re

5 , the two front seats (with passengers) RB fr
6 , RB fr

7 , and the two

rear seats (with passengers) RB re
6 , RB re

7 . The sprung mass RB3 is linked to each seat by four springs and four dampers.

The sprung mass RB3 is linked to each unsprung mass by a spring and a damper. Each unsprung mass is linked to a

massless body by a spring and a damper. Each massless body is linked to the ground by a prismatic joint following

the vertical direction. Let L be the distance between the two axles and let V be the speed of the car. The responses

are analyzed for t in [0 ,T ], in which T = 100 s is the final time. The front imposed displacements are modeled

by independent stationary Gaussian stochastic processes denoted by {t 7→ Z fr
1

(t), t ≥ 0} and {t 7→ Z fr
2

(t), t ≥ 0}. The

corresponding rear imposed displacements stochastic processes are {t 7→ Z re
1

(t), t ≥ 0} and {t 7→ Z re
2

(t), t ≥ 0} such that

(1) for t ∈ [0, L/V[, Z re
1

(t) = 0 and Z re
2

(t) = 0 and (2) for t ∈ [L/V, T ], Z re
1

(t) = Z fr
1

(t − L/V) and Z re
2

(t) = Z fr
2

(t − L/V).

The power spectral density (PSD) functions of stochastic processes Z fr
1

(t) and Z fr
2

(t) are equal, and are plotted in

Figure 1: Nominal multibody system: Schematic front view (left figure), 3D view (right figure).

Fig. 2. This PSD corresponds to a D-class road roughness in the ISO classification8,9. Figure 3 shows a realization

of stochastic process Z fr
1

(t). Let P1 be an observation point belonging to the front-left seat and P2 be an observation

point belonging to the rear-left seat. The PSD function of the random transient vertical acceleration at point P1 and at

point P2 are estimated using the periodogram method16, and are plotted in Fig. 4.

4



10
−2

10
−1

10
0

10
1

10
2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

P
ow

S
pe

c 
(m

2 H
z−

1 )

Figure 2: Power spectral density function of stochastic processes Z fr
1
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Figure 3: Realization of stochastic process Z fr
1

(left figure), and its zoom in [0, 5] s (right figure).

5.2. Probability model of fixed system-parameter uncertainties

In this application, only the fixed system parameters are uncertain, and the design parameters are assumed to be

deterministic. The uncertain fixed parameters of the multibody system are the inertia properties of the sprung mass,

the inertia properties of the seats, the stiffnesses of the unsprung-masses/massless springs, the damping coefficient of

the unsprung-masses/massless dampers. The random inertia properties (random mass, random center of mass, and

random tensor of inertia) are constructed as follows1. The random stiffnesses and the random damping coefficients

are Gamma random variables with coefficient of variation (ratio between the standard deviation and the mean value)

equal to 0.1.

5.3. Robust design

The design parameters are (1) the damping coefficients of the dampers between the sprung mass and the unsprung

masses, which are such that d fr
3
= d fr

4
= d re

3
= d re

4
, and (2) the damping coefficients of the dampers between the sprung

mass and the seats, which are such that d fr
5
= d fr

6
= d re

5
= d re

6
. Therefore, there are nd = 2 design parameters and

d = (d fr
3
, d fr

5
). Its initial value is dinit = (2217, 318) N s m−1.

For a given realization of the random vector X f (modeling the uncertainties for the fixed system parameters), the

performance function is related to the ride comfort index8,9, which is expressed as a function of the PSD functions

of the vertical accelerations at given points (which are stationary stochastic processes due to the stationarity of the

stochastic input). Considering all the possible realizations (following the probability model) of the random vector X f ,
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Figure 4: Power spectral density function of the stationary stochastic acceleration at point P1 (left figure) and at point P2 (right figure).

the ride comfort index, Gd = (G1,d,G2,d), becomes a random vector such that

G1,d =

√

∫ f2

f1

w( f )2 S 1
d
(2π f ) d f ,

G2,d =

√

∫ f2

f1

w( f )2 S 2
d
(2π f ) d f ,

(7)

in which f 7→ S 1
d
(2π f ) and f 7→ S 2

d
(2π f ) are the random PSD functions of the stationary stochastic vertical accelera-

tion at point P1 and at point P2, and where f 7→ w( f ) is the weighting function plotted in Fig. 5.
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Figure 5: Weighting function f 7→ w( f ).

The cost function d 7→ D(d) is plotted in Fig. 6. In this figure, it can be seen that the optimal value is dopt =

(665, 669) N s m−1. The corresponding probability density functions of the random ride comfort indices, G1,dopt and

G2,dopt , are plotted in Fig. 7. The mean values and the variances of G1,dopt and of G2,dopt are reported in Table 1. As

expected, it can be seen in Fig. 7 and in Table 1 that, compared to the initial design configuration, the mean values

and the variances of the random ride comfort indices are lower for the optimal design configuration.
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Figure 7: Solid lines: Probability density functions of G1,dopt (left figure) and G2,dopt (right figure). Dashed lines: Probability density functions of

G1,dinit (left figure) and G2,dinit (right figure).

Initial configuration Optimal configuration

Mean value of G1,d 0.82 m s−2 0.68 m s−2

Mean value of G2,d 0.90 m s−2 0.69 m s−2

Variance of G1,d 1.2 × 10−2 m2 s−4 7.8 × 10−3 m2 s−4

Variance of G2,d 1.7 × 10−2 m2 s−4 9.1 × 10−3 m2 s−4

Table 1: Statistics for G1,dopt and G2,dopt .

6. Conclusions

A methodology has been presented for analyzing the robust design of multibody systems in presence of uncertain-

ties. The uncertainties have been taken into account using a parametric probabilistic approach. The optimal design

parameters have been calculated using the least-square method. The methodology has been validated on a multi-

body system representing an automotive vehicle crossing a rough road. The optimal damping coefficients have been

calculated in order to optimize the ride comfort index.
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