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1.1. Community Detection
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A very active sector 

concentrated on detection task

What about community 

interpretation?



1.2. Community Characterization

Novel Problem
• Community = group of nodes with common properties

• Node description

• Topology (via network)

• Relational Information

• Attributes

• Individual Information

• Community = group of nodes with common behaviors

• Temporal evolution of the descriptions
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Interpreting communities in a systematic way by

considering common changes on the node descriptions

over the time



2. Problem Definition

• Identifying the discriminant features of the nodes

of each community

• 1. What are the features?

• Encoding all the information describing the evolution of

each node from each community in a complete and

compact way

• 2. How to measure their typicality?

• Choosing objective criteria to measure the power of

representation of each sequence

• Informative

• Prevalent

• Distinctive
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2.1. Sequence Mining

• Finding correlated elements in an ordered set of elements 

• Given a set of sequences, finding the complete set of 

frequent sub-sequences
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• A sequence <(ef)(ab)(df)cb> is an ordered set of 

itemsets.

• α = <(ab)c> is a sub-sequence of  β= 

<a(abc)(ac)d(cf)>

• Given support threshold minsup = 2/4, <(ab)c> is a frequent sequence

• A sequence is closed if there is no other super-sequence of it with the same

support

A sequence database

SID Sequences

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>



2.2. Representing Dynamic Attributed Networks
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Items: Node descriptors with their values  

{a=1,a=2,a=3,a=4,a=5,a=6}

Node Sequence: u(n1)=<(a=2)(a=2)(a=6)>

Node Sequence concatenation:  

u(n1) ●C(n1) = <(a=2)(a=2)(a=6)(C1)>Time Slice 2

Time Slice 3

C1

C1

C1

C2

C2

C2

Node Sequence Database 

N1 <(a=2)(a=2)(a=6)(C1)>

N2 <(a=3)(a=4)(a=1)(C1)>

N3 <(a=1)(a=3)(a=4)(C1)>

N4 <(a=4)(a=2)(a=4)(C2)>

N5 <(a=2)(a=5)(a=6)(C2)>

N6 <(a=1)(a=3)(a=3)(C2)>

N7 <(a=4)(a=5)(a=5)(C2)>



2.2. Representing Dynamic Attributed Networks
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Choosing Criteria

▪ Prevalent: Frequent sequences for minsup

▪ Informative: Closed sequences

▪ What about distinctiveness?

▪ Emerging Sequences

▪ Growth rate of s relatively to a community C is

▪ Gr(s,C) = sup(s,C)/(sup(s)-sup(s,C))

▪ e.g., Gr(<(a=2)(a=2)>,C1)= ∞



3. Method
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• Step1. Community Detection

• Step2. Mining Closed Frequent Emerging sequences

• Step3. Selecting characteristic patterns and finding 

outliers



3.1. Community Detection

• Creating aggregated network

• Detecting communities by considering link weights

• Louvain Method [Blondel et al. 2008, JSTAT Mech]
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3.2. Mining Closed Frequent Emerging 

Sequences

•Creating sequence database

• Attributes

• 5 topological measures

• internal degree, local transitivity, within module 

degree, participation coefficient and embeddedness

•Mining Closed Frequent Sequences

• CloSpan [Yan et al. 2003,SDM] with minsup

•Calculating emergence

• PostProcessing [Plantevit and Cremilleux 2009, IDA]
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3.3. Selecting characteristic patterns and 

finding outliers
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The most 

supported 

sequences

The most 

emerging 

sequences

Supplementary 

sequences

Outliers Outliers

Supports

Supports



4. Empirical Results

• DBLP Dynamic Attributed Network

• Nodes=researchers

• Links=co-authorship

• 10 time slice from 1990 to 2012 

• Attributes : 

• Publication number in 43 journal/conferences

• Total conference publication number

• Total journal publication number

• Focus : Communities containing >40 nodes
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4. Empirical Results

I- The most supported

• The majority of the nodes of each community has a non-

hub community role
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Philip S. Yu,Jiawei Han,Beng C. Ooi

Hans-Peter Kriegel



4. Empirical Results

II- The most emerging
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Representation of Community 45

<(VLDB publication number=3)

(having few connections and community non-hub)> 

Gr. rate = 6.40 et sup=0.30

<(community non-hub and total conference publication 

number between 1 and 5) (community non-hub, 

embedded to its community  and ICDE  publication 

number =3)>

Gr. rate = 2.30 et sup=0.30

Anastasia Ailamaki

Ingmar Weber



4. Empirical Results

• Both topology and attributes support the interpretation 

process 

• Main theme of communities  

• Relations of nodes

• Three types of outliers

• Different theme

• Changing theme

• Rising actors
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5. Conclusion & Perspectives

• Novel problem : community characterization 

• Considering dynamic community detection

• Considering constraints on sequential patterns

• Patterns including information both on topology and on attributes

• Application on different networks from different domains
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Questions
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Discrétisation 

Descripteurs Ranges

Dégrée [0;3]

Non populaire

]3;10]

Peu populaire

]10;30]

Populaire

]30; ∞[

Très populaire

Transitivité [0;0.35] ]0.35;0.5] ]0.5;0.7] ]0.7;1.0]

Dégrée interne 

normalisé 

]-∞;2.5]

non-hub

communautaire

]2.5, ∞[

Hub communautaire

Coefficient de 

Participation 

[0;0.05]

Ultra Périphaire

]0.05;0.6]

Périphaire

]0.6;0.8]

Connecteur

]0.8;1.0]

Kinless

Enchaissement [0;0.3]

Peu appartenance

]0.3;0.7]

Appartenance

]0.7;1.0]

Très haute 

appartenance

Conf./Journal Pub. 1 2 3 4 [5; ∞[

Total 

Conf./Journal Pub.

[0;5[ [5;10[ [10;20[ [20;50[ [50; ∞[
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3. Résultats

II- Les plus emergents
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Représentation de la communauté 45 p.r.a graph global 

pondère

<(nombre de publication VLDB=3)

(avoir peu de voisins et être non-hub communautaire)> 

Gr. rate = 6.40 et sup=0.30

<(être non-hub communautaire et nombre de 

publication conférence total entre 1 et 5) (être non-hub 

communautaire, bien appartenir a sa communauté et 

nombre de publication ICDE  =3)>

Gr. rate = 2.30 et sup=0.30

Anastasia Ailamaki

Ingmar Weber


