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Abstract—Many methods have beenproposed to detect 
communities, not only in plain, but also in attributed, directed or 
even dynamic complex networks. In its simplest form, a 
community structure takes the form of apartition of the node set. 
From the modeling point of view, to be of some utility, this 
partition must then be characterized relatively to the properties 
of the studied system. However, if most of the existing works 
focus on defining methods for the detection of communities, only 
very few try to tackle this interpretation problem. Moreover, the 
existing approaches are limited either in the type of data they 
handle, or by the nature of the results they output. In this work, 
we propose a method to efficiently support such a 
characterization task. We first define a sequence-based 
representation of networks, combining temporal information, 
topological measures, and nodal attributes. We then describe 
how to identify the most emerging sequential patterns of this 
dataset, and use them to characterize the communities. We also 
show how to detect unusual behavior in a community, and 
highlight outliers. Finally, as an illustration, we apply our 
method to a network of scientific collaborations. 
 
Keywords: Dynamic Networks, Nodal Attributes, Community 
Detection, Community Interpretation, Topological Measures, 
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I. INTRODUCTION 

Complex networks have become very popular as amodeling 
tool during the last decade, because they help to better 
understand the intrinsic lawsand dynamics of complex 
systems. A typical plain network contains only nodes and 
links between them, but it is possible to enrich it with different 
types of data: link orientation and/or weight, temporal 
dimension, attributes describingthe nodes or links, etc. This 
flexibility allowed to use complex networks to study real-
world systems in many fields: sociology, physics, genetics, 
computer, etc.[1].  

The complex nature of the modeled systems leads to the 
presence of non-trivial topological properties in the 
corresponding networks. Among them, the community 
structure is one of the most common and most studied. 
Intuitively, we can define a community as a group of nodes 

which is densely interconnected relatively to the rest of the 
network[2].However, in the literature, this notion is 
formalized in many different ways[3]. There are actually 
hundreds of algorithms for detecting community structures, 
characterized by the use of different formal definitions of 
what a community is, and/or relying on different processes. 
Among the principles these approaches are based upon, one 
can cite: modularityoptimization, similarity matrix clustering, 
data compression, statistical significance, information 
diffusion, clique percolation, etc. (c.f. [3]for a detailed review). 
Most of the existing methods deal with plain complex 
networks, but new methods were gradually introduced to 
handle richer networks: first link directions and weights, then 
time, and more recently node attributes[4-8]. 

Although the algorithms differ in terms of nature of the 
detected communities, algorithmic complexity, result quality 
and other aspects[3], their output can always be basically 
described as a list of node groups. More specifically, in the 
case of mutually exclusive communities, it is a partition of the 
set of nodes. From an applicative point of view, the question 
is then to make sense of these groups relatively to the studied 
system. In other terms, for the community structure to be 
useful, it is necessary to interpret the detected 
communities.This problem is extremely important from the 
end user’s perspective. And yet, almost all works in the field 
of community detection concern the definition of detection 
tools, and their evaluation in terms of performance. Only a 
very few works try to tackle the problem of characterizing and 
interpreting the communities. 

Authors historically interpreted their data manually[9, 
10]but this somewhat subjective approach does not scale well 
on large networks. More recently, several authors used 
topological measures to characterize community structures. In 
[11],Lancichinettiet al. visually examine the distribution of 
some community-based topological measures,both at local 
and intermediary levels. Their goal is to understand the 
general shape of communities belonging to networks 
modeling various types of real-world systems. In[12], 
Leskovecet. alpropose to study the community structure as a 



whole, by considering it at various scales, thanks to a global 
measure called conductance. These two studies are interesting, 
because they try to describe the community structure of plain 
networks. However, it should be noted the resulting 
observations are quite general, in the sense communities are 
studied and characterized collectively, to identify trends in a 
network[12], or even a collection of networks[11]. 

In order to characterize each community individually, some 
authors take advantage of the information conveyed by nodal 
attribute, when it is available. In [13], the authors propose a 
statistical method to characterize the communities in terms of 
the over-expressed attributes found in the elements of the 
community. In[14], authors interpret the communities of a 
social attributed network. They use statistical regression and 
discriminant correspondence analysis to identify the most 
characteristic attributes of each community.Both studies are 
valuable, however they do not take advantage of the available 
topological measures to enhance the interpretation process. 

As mentioned before, there are methods taking advantage 
of both relational (structure) and individual (attributes) 
information to detect communities. It seems natural to 
suppose the results they output can be used for interpretation 
purposes. For example, in [5], the authors interpret the 
communities in terms of the attributes used during the 
detection process; and in [15], the authors identify the top 
attributes for each identified community. However, the 
problem with these community detection-based method is that 
the notion of community is often defined procedurally, i.e. 
simply as the output of the detection method, without any 
further formalization. It is consequently not clear how 
structure and attributes affect the detection, and hence the 
interpretation process. All these methods additionally rely on 
the implicit assumption of community homophily. In other 
words, communities are supposed to be groups of nodes both 
densely interconnected and similar in terms of attributes. To 
our knowledge, no study has ever shown this feature was 
present in all systems, or even in all the communities of a 
given network. It is therefore doubtful those methods are 
general enough to be applied to any type of network. 

In this work, we seethe interpretation problem as 
independent from the approach used for community detection, 
and we try to propose a method allowing to tackle the 
limitations of the existing approaches. Based on the 
observation that attributes allow to improve the interpretation 
of communities, we propose to enhance it further by 
considering temporal information, in addition to structure and 
attributes. Moreover, to obtain intelligible results, we want to 
explicitly identify which parts of the structural information are 
relevant to the interpretation process. For this matter, we 
detect common changes in topological features and attribute 
values over time periods, in dynamic attributed networks. 
More precisely, we aim at finding the most representative 
emerging sequential patterns for each community. These 
patterns can then be used for both characterizing the 
community, and identify outliers, i.e. node with non-standard 
behavior. The emergingpatterns represent the general trend of 
nodes in the considered community, whereas the outliers can 

correspond to nodes with a specific role in the community, or 
node located at itsfringe. We illustrate our proposal on a 
dynamic co-authorship network extracted from DBLP.  

Our first contribution is to consider community 
characterization as a specific problem, distinct from 
community detection. In particular, it should be independent 
from the method used to detect communities, rely on an easily 
replicable systematic approach, and be as automated as 
possible. Our second contribution is the introduction of a new 
representation of dynamic attributed networks. It takes the 
form of a database containing sequences of node topological 
measures, attributes and community information, for several 
time slices. Such sequences were used for the representation 
of natural data before[16], but not for the networks. Our third 
contribution is the definition of a method taking advantage of 
this representation to extract sequential patterns able to 
characterize the communities. Finally, our last contribution is 
to illustrate our method by applying it to a real-world network.  

The rest of this article is organized as follows. In section II , 
we give the preliminary definitions needed to describe our 
method. In section III , we specify the problem and explain in 
detail our interpretation method. In section IV, we present our 
experimental results obtained on the DBLP data. Section V 
discuss our work and presents its possible extensions. 

II. PRELIMINARY DEFINITI ONS 

In this section, we first define different network-related 
concepts needed to introduce our method. We also describe 
the topological measures we use in our experiment.  

A. Network and Community Structure 

We define a dynamicnetwork� =   �1 ,… ,  ��   as a 
sequence of chronologically ordered time slices. Each time 
slice corresponds to a separated subnetwork�ݐ  (1  ݐ  �), 
which represents the connections between the nodes for a 
given time interval. Moreover, the networks we consider 
areattributed, meaning their nodes are described by some 
individual attributes. We therefore note a time slice�ݐ ݐܧ,� = ,� , where � is the set of nodes, ݐܧ ⊆ � × � is the set 
of links and � is the set of node attributes. In what we call 
adynamicattributed network, the node and attribute sets are 
the same at each time slice, whereas the link repartition and 
attribute values can change. We note  � = ݊ the number of 
nodes.We only deal with undirected graphs,so we consider all 
pairs  ݓ,  to be unordered. We also define the following  ݒ
adjacency function ݂ݐ : 

,ݓ ݐ݂ = ݒ ,ݓ  ݂݅ 1  א ݒ ݐܧ
,ݓ  ݂݅ 0 ב ݒ ݐܧ   (1) 

where݂ ,ݓ ݐ  directly depends on the presence (value 1) or ݒ
absence (value 0) of a link between nodes ݓ and ݒ at time ݐ.  

We define the global weighted network� =  �,ℰ  
associated to a dynamic network �as its integration over time. 
The link set of �  contains all links appearing through time ℰ = 1=ݐ�ݐܧ  , whereas the node set is the same than for � , 
since it is fixed. We define a weight function ݂ summing ݂ݐ  
over time: the weight of a link  ݓ,  :fromℰ is defined as ݒ



,ݓ ݂ = ݒ ,ݓ ݐ݂   ݒ
1ݐ�  (2) 

A community structure of a network is a partition of its 
node set, and each part of this partition is called a community. 
Here, we work with a static community structure �of �, so a 
partition of �, and we note the communities ܿܥ  (1  ܿ  �), 
for ܰ  distinct communities. Moreover, we define ݒ ܥ , the 
function associating a node ݒ  to its community in � . The 
community size of a given community ܿܥ is  ܿܥ  , i.e. the 
number of nodes it contains. 

B. Topological Measures 

A topological measure quantifies the structural properties 
of the network or its components. Here, we focus on five 
nodal measures: internal degree, local transitivity, within 
module degree, participation coefficient and embeddedness. 
We process each of these measures for each node, and at each 
time slice. The degree and local transitivity are both local 
measures, whereasthe othersare community-related. 

We first note ܰݒ ݐ = ݓ  א �: א ݓ,ݒ   the  ݐܧ
neighborhood of node ݒ  at time ݐ , i.e. the set of nodes 
connected to ݒ in �ݐ . The degree ݀ = ݒ ݐ  of a node is   ݒ ݐܰ 
the cardinality of its neighborhood, i.e. its number of 
neighbors, at time slice ݐ.  

We define the internal neighborhood of a node ݒ at time ݐ 
as the subset of its neighborhood located in its community: ݅ܰݐ ݐ݊ = ݒ  ∩ ݒ ݐܰ ݀ The internal degree . ݒ ܥ ݐ݊ݐ݅ ݐܰ݅ = ݒ  ݐ݊  is defined similarly to the degree, as the cardinality   ݒ 
of the internal neighborhood, i.e. the number of neighbors the 
node ݒ has in its community at time ݐ.  

The local transitivitycorresponds to the ratio of existing to 
possible triangles containing ݒin �ݐ : 

= ݒ ݐܶ  
א ݓ,ݍ    ݐܧ : ݍ א ∧  ݒ ݐܰ ݓ  א − ݒ ݐ݀  ݒ ݐ݀   ݒ ݐܰ 1 2  (3) 

In thisratio, the numerator corresponds to the observed 
number of links between the neighbors of ݒ , whereas the 
denominator is the maximum possible number of such links.  

The within module degree and participation coefficient are 
two measures proposed by Amaral&Guimerà[17]to 
characterize the community role of nodes. The within module 
degree is defined as the �-score of the internal degree: 

= ݒ ݐ�
ݐ݊ݐ݅݀ − ݒ  µ ݀݅ݐ݊ݐ �  ݒ ܥ, ݐ݊ݐ݅݀   (4)   ݒ ܥ,

Here, µand � denote the mean and standard deviation of ݀݅ݐ݊ݐ  
over all nodes belonging to ݒ ܥ , respectively.It expresses 
how much a node is well connected to other nodes in its 
community, relatively to this community. In[17], the authors 
distinguish nodes depending on whether their �ݐ  is above or 
below a limit of 2.5. If �ݐ  2.5, the node is considered to be a 
community hub, because it is significantly more connected to 
its community than the other members of the same community. 
If � < 2.5, the node is said to be a community non-hub.  

The participation coefficient, introduced in the same 
study[17], is based on the notion of community 
degree݀ ݐܿ = ݒ  ∩ ݒ ݐܰ   which represents the number of , ܿܥ
links a node ݒ  has with nodes belonging to community ܿܥ . 
Incidentally, one can see the internal degree is a specific case 
of community degree, for which ܿܥ =  This measure is . ݒ ܥ
formally defined as: 

= ݒ ݐܲ 1 − ݐܿ݀   2  ݒ ݐ݀ ݒ 

1ܿ�  (5) 

where�isthe number of communities in �. ܲ characterizes the 
distribution of the neighbors of a node over all communities. 
More precisely, it measures the heterogeneity of this 
distribution. It gets close to 1  if all the neighbors are 
uniformly distributed among all the communities and 0 if they 
are all gathered in the same community. 

The embeddedness represents the proportion of neighbors 
of a node belonging to its own community[11]. Unlike the 
within module degree, the embeddedness is normalized with 
respect to the node, and not the community. ݁ݒ ݐ =

ݐ݊ݐ݅݀  (6)  ݒ ݐ݀ ݒ 

A node descriptor iseither any of these five topological 
measures explained above, or a node attributefrom� . Let ܦ = 1ܦ  2ܦ, ,…  be the set of all descriptors. Each  ݇ܦ,
descriptor from ܦ  can take one of several discrete values, 
defined in its domain�݅  (1  ݅  ݇). 

III.  CHARACTERIZATION METHOD 

We break down the problem of community interpretationin 
two sub-problems:1) findingan appropriate way 
ofrepresenting acommunity, and 2) taking advantage of this 
representation to identify the community most characteristic 
features. We solve the first sub-problemby representing a 
community as a set of sequences describing the evolution of 
its nodes. This encoding allows handling attributed dynamic 
networks, via their nodes topological measures and attributes. 
For the second sub-problem, we mine this set to identify 
sequential patterns fitting several criteria. 

The process we propose includes 3 steps. The first is to 
identify a reference community structure, as explained in 
subsection A. In the second step, we search for 
emergingsequential patterns and extract the corresponding 
supporting nodes for each community. We explain the details 
of this process in subsectionB. Finally, the third step is to 
choose the most representative patterns to characterize the 
communities according to various criteria that we explain in 
subsection C. 

A. Step 1: Detecting Communities 

To detect how nodes evolve in terms of community 
membership, we need first a reference community structure. It 
would be possible to apply a dynamic method; however this 
results in complications due to the merging, splitting, 
disappearing and appearing of communities through time. For 



this reason, in this fist version of our tool, we decided to use 
only static communities. We detected them on the global 
weighted network� described in subsectionII -A. Note that a 
similar approximation appears in [18].To perform the 
detection, we apply the Louvain[9]algorithm, which is atwo-
phase hierarchical agglomerative approach. During the first 
phase, the algorithm applies a greedy optimization to identify 
the communities. During the second phase, it builds a new 
network whose nodes are the communities found during the 
first phase. Then, the process is repeated again iteratively. 

B. Step 2: Mining Emerging Sequences 

We want to characterize each community according to the 
common evolution of the descriptors of its nodes over time. 
For this purpose, we need to identify series of descriptor 
values which appear often in the same community and over 
several time slices. This is precisely the goal of sequential 
pattern mining methods. Here, we describe the principle they 
rely upon, and how we take advantage of it. 

We present an example network inFigure 1to illustrate our 
method and the concepts it relies upon.It has 7nodes whose 
interconnections change over 3 time slices. There is one 
attribute ܽ assigned to each node, whose valuecan also evolve 
through time. For the sake of simplicity, we only one 
topological measure: the degree. 

 
Fig. 1. Example Dynamic Network with 3 time slices, 7 nodes and 1 attribute 

Let us first define the concepts necessary to the description 
of the method itself. An item ݅ܦ , א ݔ ܦ × �i is a couple 
constituted of a descriptor ݅ܦ  and a value ݔ from its domain �i. The set of all items is noted �. The set of all possible items 
for the example network fromFig. 1is =  ܽ = 1, ܽ = 2,ܽ =

3, ܽ = 4, ܽ = 5, ܽ = 6,݀ = 1,݀ = 2,݀ = 3,݀ = 4 , where ܽ  
is the only considered attribute and ݀  is the degree. 
Anitemset݄ is any subset of �. For example, ݄ =  ܽ = 1,݀ =

4 is an itemset for our example network.Asequenceݏ = ݄1 ,… , ݄݉   is a chronologically ordered list of itemsets. The 
size݉  of sequence ݏ is the number of itemsets it contains. For 
example,  ܽ = 1,݀ = 2  ܽ = 3,݀ = 3   is a sequence of size 
2 extracted from the network described in Fig. 1.A sequence ߙ =  ܽ1 ,… , ܽµ  is a sub-sequence of another sequence ߚ =  ܾ1,… , ܾ�   iff ∃݅1 , ݅2,… , ݅µ  such that 1  ݅1 < ݅2 < ⋯ <݅µ  � and ܽ1 ⊆ ܾ݅1 , ܽ2 ⊆ ܾ݅2 ,… , ܽµ ⊆ ܾ݅µ . This is noted ߙ َ  which is ,ߙ is a super-sequenceof ߚ It is also said that .ߚ

noted ߚ ُ ߙ . An example of such relation for Fig. 1is   ܽ = 4  ݀ = 1  ُ   ܽ = 4  . 
The node sequence ofa node ݒis a specific type of sequence 

noted ݒ ݑ =   ݈11 ,… , ݈݇1 …  ݈1� ,… , ݈݇�    where݈݅ݐ  is the 
item containing the value of descriptor ݅ܦ  for ݒ at time ݐ. A 
node sequence ݒ ݑ  includes � itemsets, i.e. it represents all 
time slices. Each one of these itemsets contains all ݇ 
descriptor values for the considered node at the considered 
time. In other words, ݒ ݑ  contains all the available 
descriptor-related data for node ݒ. These tuples will be used 
later to constitute the database analyzed by our method.As an 
example, the node sequence for node 1 in the networkofFig. 
1is   ܽ = 2,݀ = 1  ܽ = 2,݀ = 1  ܽ = 6,݀ = 2  . 

The set of supporting nodesܵ ݏ  of a sequence ݏ is defined 
as ܵ = ݏ  ݒ  א �: ُ ݒ ݑ = ݏ ݑܵ ,ݏ The support of a sequence . ݏ   is the proportion of nodes, in �, whose ,  ݊  ݏ ܵ 
node sequences are super-sequence of ݏ. Similarly, The set of 
supporting nodesܵ ܿܥ,ݏ  of a sequence ݏ inܿܥ  is defined as ܵ ܿܥ,ݏ = ݒ  א ܿܥ ُ ݒ ݑ:  and the support of a sequence  ݏ 
in a community ܿܥ = ܿܥ,ݏ ݑܵ , ܿܥ|  ܿܥ,ݏ ܵ  | , is the 
proportion of nodes in ܿܥ , whose node sequences are super-
sequence of ݏ .Given a minimum support threshold noted ݉݅݊ݑݏ , a frequent sequential pattern (FS) is a sequence 
whose support is greater or equal to ݉݅݊ݑݏ . A closed 
frequent sequential pattern (CFS) is a FS which has no super-
sequence possessing the same support.  

In this study, we used the algorithm CloSpan[19] to find 
out all possible CFS for a given ݉݅݊ݑݏ . It has two steps. At 
the first step, CloSpan creates the candidate set, which is a 
super-set of closed frequent sequences, and stores the 
elements into a so-called prefix sequence lattice. At the 
second step, the algorithm prunesthis lattice, in order to 
eliminate non-closed sequences. This pruning technique relies 
onthe fast subsumption checking method introduced by 
Zaki[20]. This technique manages a hash table in which the 
hash keys of a sequence is the sum of all the sequence ID’s  
supportings that sequence.  

CloSpanis an efficient algorithm, which can mine long 
sequences in practical time for real-world data. It outputs both 
the sequences and their supports, but not the supporting node 
sets, so an additional processing is required to identify them.In 
our case, we want to characterize communities in terms of 
CFS. Thus, we need to identify, for each community, its most 
representative sequential pattern(s). For this purpose, we turn 
to the notion of emerging pattern, i.e. a pattern more frequent 
in a part of the nodes than in the rest of it. The emergence of a 
pattern ݏ  relatively to a community ܿܥ  is measuredby its 
growth rate given in Equation(7). �ܿܥ,ݏ ݎ =

 (7)     ܿܥ,ݏ ݑܵ ܿܥ,ݏ ݑܵ

Here ܿܥ    is the complement of ܿܥ in �, i.e. ܿܥ   = � ∖ ܿܥ . The 
growth rate is the ratio of the support of ݏ in ܿܥ  to the support 
of ݏ  in ܿܥ   .Therfore, a value larger than 1  means ݏ  is 
particularly frequent (i.e. emerging) in ܿܥ , when compared to 
the rest of the network. We consider that the higher the growth 
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rate, and the more representative the sequence ݏ for 
community ܿܥ .  

In order to calculate the growth rate, it would be necessary 
to search CFS in all communities separately, which can be a 
costly operation. However, a more efficient method was 
proposed in[21] to handle the case where classes are assigned 
to item sequences. Our communities can be considered as 
classes, which is why the method is also relevant to our case. 
It is based on a modification of the analyzed data. First, let us 
note ߙ • ܥ  the concatenation of a sequence ߙ =   ܽ1 ,… , ܽµ  
and a symbol ܥ, such that ߙ • ܥ =  ܽ1,… , ܽµ,  Instead of .  ܥ 
working on a sequence database constituted of ݊ tuples of the 
form  ݒ ݑ,ݒ  , we use a database ℳ = • ݒ ݑ,ݒ   ,  ݒ ܥ
containing each node ݒ , its node sequence ݒ ݑ  and 
community ݒ ܥ . Note that ݒ ݑ • = ݒ ܥ  ݄1 ,… , ݄� ,  ,   ݒ ܥ 
where ݄ ݐ  is the itemset of ݒ ݑ  at time ݐ . After having 
identified the frequent sequences by applying CloSpan to ℳ, 
the patterns concerning a community of interest ܿܥ  can be 
obtained simply by selecting all the CFS ending with ܿܥ . The 
support of such CFS (of the form ݏ • ܿܥ ) in ℳ corresponds to 
the support one would have obtained on the non-concatenated 
database. Thus, all the necessary information to calculate �ݎ 
is provided when applying CloSpan to ℳ.  

Processing the growth rate of all CFS relatively to all 
communities then requires separating the CFS depending on 
how they end: we group together patterns related to the same 
community, and also those not related to any community. Let 
us note ݎ the number of CFS typically found for a community, 
as well as those found for the whole network. Indeed, the 
order of magnitude of these quantities is approximately the 
same. Then, we process each one of the ݎ patterns found in 
each one of the � communities. For such a pattern, we retrieve 
its support and that of the corresponding community-less 
pattern, as outputted by CloSpan.  

Once the emerging CFS are identified for a community, we 
extract their supporting nodes, which are not directly 
outputted by CloSpan. To extract the supporting node set ܵ ܿܥ,ݏ , for some specific pattern ݏ and community ܿܥ , we 
use a naive approach consisting in accessing ℳ and selecting 
the nodes whose sequences are the super sequences of ݏ. 
C. Step 3: SelectingSequential Patterns and Identifying 

Anomalies 

After the emergingpatterns are identified for a given 
community, together with their support, growth rate and 
supporting nodes, we need to select the most representative 
ones, in order to characterize the considered community. We 
give more attention to the most emerging pattern, i.e. the 
onewhose growth rate is the highest. However, there is no 
guarantee for this pattern to cover a sufficient part of the 
community. And indeed, in practice it appears to be the 
opposite. It is thus needed to identify other complementary 
patterns, allowing us to obtain a more complete coverage of 
the community. Intuitively, we want to find a small number of 
patterns, such that they cover a significant part of the 
community, and are different in terms of supporting nodes. 
This amounts to defining the following constraints: 

1. The intersection of the patterns supporting nodes sets 
must be minimal; 
2. The union of these supporting nodes sets must be 
maximal (if possible: the whole community); 
3. The number of patterns must be minimal.  

Thus, the problem that we want to solve is to find the 
minimal number of patterns whose supporting nodes sets 
intersections is minimal while their union is maximal. Note 
that, in any case, we consider the patterns with the highest 
growth rate as the most emerging one, and search for 
additional ones to finish the coverage. In order to solve our 
problem, we select iteratively the most distant patterns, in 
terms of supporting node set. We use Jaccard’s 
coefficient[22]as a distance measure between the node sets. In 
case of equality, the growth rate is considered as a secondary 
criterion. This iteration continues until it converges.  

Besides considering patterns according to their growth rate, 
we also consider them according to their support, as a 
complementary analysis. For a given community, it is likely 
the highest supported patterns already include the majority of 
the nodes. So, unlike for growth rate-based patterns, it might 
not be necessary to apply the process designed to identify 
additional patterns. However, this cannot be guaranteed, since 
it depends on the considered network, attributes and 
topological measures. Supports are directly produced by 
CloSpan, so in order to select the highest supported patterns, 
we just need to analyze each pattern in each community.  

Once the most characteristic patterns of a community have 
been identified (the most emerging one with its supplementary 
patterns, and the one with highest support), it is possible to 
use them to detect anomalies, i.e. nodes not following those 
patterns. Let�݆  ݆ be the set of supporting nodes of pattern  ܿܥ 
in communityܿܥ , and� ܿܥ =  �݆  the supporting ݂,..,1 א݆ ܿܥ 
nodes forall representative patterns in the same community. 
Then we define the anomaly nodes setܧ =  as the set ܿܥ �\ܿܥ
of nodes not following any representative pattern. These 
nodes are different in the sense they do not follow the general 
trends of their communities. We detect anomalies 
automatically when finding representative patterns. 

The overall complexity of our method includes calculating 
all topological measures, creating a global weighted network, 
applying the Louvain algorithm to detect the communities, 
applying the CloSpan algorithm to identify the patterns, 
processing their growth rates, and finally selecting the most 
representative ones. Among the considered topological 
measures, the transitivity has the highest complexity: ܱ ݈3 2 � , for݈ links and�  time slices.The processing of the 
global weighted network is in ܱ ݈2� . According to their 
respective authors, Louvain is in ܱ ݊ ݈݃ ݊ [23]and CloSpan 
in ܱ ݊2 [24], where ݊  is the number of nodes. However, the 
operations with the highest complexitiesare the processing of 
the growth rateand the selection of the most representative 
sequence, which areboth in ܱ �2ݎ , where �and ݎ  are the 
numbers of communities and of detected sequences, 
respectively.By definition, we have �  ݊, and in practice, ݎis 
generally much larger than ݊.Moreover, the number of time 
slices �  is smaller than both ݊ and ݎ  by several orders of 



magnitude. Considering all simplifications and negligible 
terms, we geta total complexity of ܱ �2ݎ . In other words, the 
processing time mainly depends on the number of 
communities and sequences found in the data. 

IV.  RESULTS 

We now present the results obtained on real-world data. We 
selected the dynamic co-authorship network from[25], 
extracted from the DBLP database. Each one of the 2145 
nodes represents an author. 

 Two nodes are connected if the corresponding authors 
published an article together. Each time slice corresponds to a 
period of five years. There are totally 10 time slices ranging 
from 1990 to 2012.The consecutive periods have a three year 
overlap for the sake of stability. For each author, at each time 
slice, the database provides the number of publications in 43 
conferences and journals. We use this information to define 
43 corresponding node attributes, and we add two more: the 
total number of conference and journal publications. Finally 
we have a total of 45  attributes. Our descriptors are these 
attributes and the topological measures described in 
subsection II -A.  

The topological measures are discretized differently, 
depending on their nature. For node degree, we use the 
thresholds 3, 10 and 30. For transitivity, which is defined for  0; 1 , they are 0.35, 0.5, and 0.7. For embeddedness, which 
is also defined for  0; 1 , the intervals are 0.3 and 0.7.These 
intervals were determined to take into account distributions of 
these measures on the set of nodes and time slices: different 
thresholds correspond to areas of low density. For Guimerà et 
Amaral measures, we use the thresholds originally defined 
in[17], i.e., 2.5 for z et 0.05, 0.6, and 0.8 for P. The threshold 
used for z distinguishes community hubs  � > 2.5  and 
community non-hubs  �  2.5 . For the conference/journal 
publications, we consider the values 1, 2, 3, 4 and > 5 . For 
total journal or conference publications, we use the intervals 
of 5,10,20 and 50. These ranges are determined according to 
our knowledge of the domain. 

After having applied Louvain, we found 127 communities 
in the global weighted network, for a modularity of 0.59. This 
value tells us that global weighted network is clearlymodular. 
We discarded 96  of the communities, because 
theycontainonly one node. Amongst the remaining ones, 17 
contain more than 10 nodes; the largest one having 335 nodes. 
We then searched the sequential patterns for these 
communities only, for a minimum supportof0.02. We could 
not execute the CloSpan algorithm for the smallest minimum 
supports, because of memory limitations. For each 
communities whose size is larger than 40, we find more than 
5000 patterns. Most of these patterns include only topological 
measures.  

A. Most Supported Patterns 

The most supported patterns are always a sequence of � <  2.5 for all communities, with changing sizes. This means 
the majority of the nodes for each community have the role of 
non-hub. As a reminder, Amaral&Guimerà define a 

community hub as a node whose internal degree is well above 
the average internal degree of its community[17]. Thus, the 
detected pattern means that the majority of the nodes are not 
particularly well-connected to their communities. Although 
this type of pattern appears in all communities, we can make a 
distinction in considering the size of the sequence. 

In Table I, we list the size of the most supported sequential 
patterns with, for each one, its community label, community 
size and support. The communities whose sizes are between 
39 and 45 (i.e. #40, 55 and 77) have long sequences (8, 7 and 
7 resp.). Especially, the supports of communities 55 and 77 
both reach the maximal value 1. This means in these 
communities, there is no remarkable hub author for a long 
time, or even if they appear sometime, they disappear very 
quickly. This observation is particularly interesting, and 
reflects the absence of a community leader who would 
structure the community through its many connections.  

For community #115, the size of the sequence is 1, and its 
support is also 1. This means all the nodes which create this 
community had the role of non-hub together once, but for the 
rest of the time slices, they at least took the hub roleonce. For 
communities #38, 40 and 75, the support is less than 1, so we 
can say there is at least one hub, different from the rest of 
itscommunity, and probably leadingit. For communities #38, 
40 and 75, the support is less than 1, meaning that an 
overwhelming majority of nodes plays the role of non-hub for 
long periods; however a small number of nodes take the place 
of hub possibly intermittently.  

TABLE II  
MOST SUPPORTED SEQUENCE SIZE FOR EACH COMMUNITY 

Commuity 

ID  
Commuity 

Size 

Sequence 

Size 

Support  
Value 

38 335 2 0.99 
40 43 8 0.97 
42 109 5 1.00 
45 227 3 1.00 
55 39 7 1.00 
61 204 3 1.00 
75 140 4 0.99 
77 41 7 1.00 
86 111 3 1.00 
98 113 5 1.00 

106 134 5 1.00 
115 125 1 1.00 
125 79 3 1.00 

 
Weidentifiedthe authors who do not follow the most 

supported patterns for these 3 communities. For community 
#38, Philip S. Yu, Jiawei Han and Beng Chin Ooiare different 
from their communities. As expected, these nodes have a 
remarkably high number of connections within their 
communities, and the represented authors actually have 
leadership roles in their fields. Further analysis of the data 
also shows that they publish a total of more than 10 articles 
per time slice. In addition, they never took the non-hub role. 
Anomalies for communities #40 and 75 are respectively Hans-



Peter Kriegel and Divesh Srivastava. Here also, they are 
important authors in their community. Their sequences 
confirm that they are productive and do not take the non-hub 
role during all time slices. 

B. Most Emerging Patterns 

For communities whose sizes are between 39 and 45, we do 
not find any emerging pattern containing a conference or 
journal. The most emerging patterns have a maximalgrowth 
rate of 1.79 , which means there is no very distinctive 
sequential pattern for these communities. For the majority of 
the large communities, the most emerging pattern includes a 
specific conference or journal, which can be interpreted in 
terms of maintheme of the community.  

The other descriptors constituting the pattern are 
topological measures. As the most supported patterns, the item � < 2.5 appears the most often amongthe detected patterns. 
However, these most emerging patterns do not cover the 
majority of nodes. That is why, as we explained in subsection 
III -C, we looked for additional sequential patterns while 
minimizing the intersection of their supporting nodes with the 
previously chosen ones. These patterns generally consist of 
topological measures and do not have a very high growth rate. 
In the following part, we focus on the communities leading to 
the most interesting results. For each of them, we describe the 
most emerging pattern and present the anomalies. Each 
pattern is formally represented in brackets, as a sequence of 
itemsets which are represented between parentheses. 

For community #61, the most emerging pattern is < (ICML 
PUB. NUM=1) (DEGREE 3-10 Z<2.5)>, with growth rate 
3.52 and support 0.30. This pattern refers to the authors who 
published once in ICML, then had adegree between 3 and 10 
and became non-hubs. We extract 7 supplementary patterns to 
cover all the nodes of thiscommunity. Some of the interesting 
ones are<(Z<2.5)( Z<2.5)( Z<2.5 CONF. PUB 1-5)(AAAI 
PUB 1)> with growth rate1.69 and support 0.30,and<(PART. 
COEFF 0.05-0.6 CIKM PUB. 1)> with growth rate 1.40 and 
support 0.30. The former pattern refers to nodes that stay non-
hub for a while, and then publish in conferences, before 
publishing inAAAI while losing their status of non-hub 
(without massively becoming hubs). The latter has no 
temporal dimension, but it shows the existence of nodes 
publishing in CIKM while having a peripheral position in the 
community, i.e. being significantly connected to other 
communities. The anomalies of this community are Alex 
AlvesFreitas, Claire Cardie ,Edwin P. D. Pednault. Among 
these authors Alex AlvesFreitas does not have any publication 
for the first 8 time slices,beforehe starts publishing very 
efficiently in various conferences otherthan ICML or AAAI 
and journals. This can be interpreted as a Junior searcher 
progressively maturing. For the other two authors, while 
Claire Cardiepublishes inICML during thefirst 6 time slices at 
least once routinely, Edwin P. D. Pednaultnever published in 
not only ICML but also AAAI or CIKM.  

The pattern <( PODS PUB 1)> is the most emergingonein 
community #75. Its growth rate is 3.59 and its support is 0.40. 
This pattern shows that 40% of the authors of this community 

published at least once inPODS, which is a behavior 
significantly different from the rest of the network. There are 
4 supplementary patterns to cover the rest of the community. 
These patterns refer to non-hub and peripheral nodes whose 
transitivity is very high, which means authors from this 
community tend to work in subgroups. The anomalies are 
Ninghui Li, Feifei Li, AbdullahMueen who never published in 
PODS. The most emerging pattern of community 106 is 
<(Z<2.5) (Z<2.5) (Z<2.5) (Z<2.5) (Z<2.5) ( PART. COEFF 
0.05-0.6 KDD PUB. 1)> with growth rate 2.87 and 0.40. This 
pattern refers to non-hub nodes staying non-hub for a while, 
then becoming peripheral nodes and publishing once in KDD. 
This evolution reflects a change in the community 
connectivity: nodes are at first loosely connected to other 
nodes in their own community, this overall internal 
connectivity improves, while the external connectivity (i.e. 
links with other communities) tend to become more 
heterogeneous. There are 4 supplementary patterns to cover 
the whole community. The supplementary patterns refer to the 
nodes with ultra-peripheral role, whose connections are 
usually insidetheir own community. Two anomalies of this 
community are Stan Matwin who is publishing in KDD more 
than one article routinely for every time slice,whilenot taking 
the non-hub role, and Hua-Jun Zeng who never publishes in 
KDD. In fact, Hua-Jun Zeng, while he does not produce any 
publication for the first 5 time slices, becomes very productive 
afterwards.  

The most emerging pattern of community #45 is <(VLDB 
PUB. 3)( DEGREE 3-10 Z<2.5 )> with growth rate 6.40 and 
support 0.30. This sequence tells us that there is a remarkable 
group of authors who published 3 times in the VLDB 
conference,before seingtheir degree reach a valuebetween 3 
and 10 and holding a non-hub role. There are 6 more 
sequential patterns that we have found to cover the rest of the 
community. One of them is<( Z<2.5CONF. PUB 1-5)( Z<2.5 
EMBED 0.3-0.7 ICDE PUB. 1 )>with growth rate 2.30 and 
support 0.30. This pattern covers the non-hub nodes who 
published between 1 and 5 times in aconference, followed by 
being non-hub and having some connections outside of their 
community and publishing once in ICDE. The anomalies are 
Ingmar Weber, Anastasia Ailamakiwho do not have any 
publication for the first 7time slices, while they both become 
more and more productive for the last 3time slices. Their 
publication number increases fast.  

C. Final Observations 

To summarize our observations, the most emerging patterns 
in almost all communities usually include being non-hub and 
having a small number of publications in various journals or 
conference. Depending on the conferences or journals 
appearing in these patterns, it is possible to deduce the main 
theme of these communities. For some communities, however, 
the emerging sequential patterns are purely topological (no 
attributes). We can then assume that the members of these 
communities do not publish in a sufficiently homogeneous 
way so that it can appear under the form of patterns, which is 
itself a characteristic of the community. Another reason may 
simply be that the community members are connected to each 



other for different reasons than a common research theme (e.g. 
geographic or logistic constraints), in which case those do not 
appear in the attributes selected for our study. Regarding 
anomalies, one can distinguish different types of profiles. 
Some seem tocorrespond to authors whose main theme is 
different from that of the community in which they were 
placed. In some cases, we found out the authors had clearly 
moved to a different theme, or just started working in a given 
theme. They may also be authors active in another field, 
including conferences and journals not part of those used in 
the data we considered here. Another profile is that of junior 
researcher, whose number of publications and community 
position evolvjointly.These authors do not seem very active in 
their field in the first time slices. However, their number of 
publication and importance in their community increase with 
time. 

V. CONCLUSIONS 

In this work, we tackled the problem of the characterization 
of communities in dynamic and attributed complex networks. 
We proposed a new representation of the information encoded 
in the network to store the topological information, the node 
attributes and the temporal dimension simultaneously. We 
used this representation to perform a search of 
emergingsequential patterns. Each community could then be 
characterized by its most distinctive patterns. We also took 
advantage of patterns to detect and characterize anomaly 
nodes in each community. We applied our method to a 
scientific collaboration network constructed from the public 
database DBLP. The results showed that our method is able to 
characterize the communities,in particular their research topic. 
The anomaly nodes we identified correspond to different types 
of profiles, such as community leaders, emerging researchers, 
or others changing research theme. 

To our knowledge, this is the first formulation of the 
characterization of communities as a problem of data mining. 
Our goal was to overcome the limitations of the few existing 
studies[11, 13, 14] by proposing a systematic approach, taking 
into account the topologic structure, the nodal attributes and 
time. The representation of data we use has not been applied 
to the treatment of graphs before. The proposed process to 
extract the most relevant patterns based on a sequential pattern 
under constraint is original and we showed the consistency of 
interpretations with an application on a real-world network. 

To limit the complexity of this first approach, we 
deliberately limited our analysis method by not considering 
the evolution of communities over time. In future works, we 
plan to take advantage of such communities, by inserting the 
appropriate information in the database used for the search 
patterns. We also plan to apply our method of analysis to other 
types of networks to explore its characterization capabilities. 
As another perspective, we can better use our representations 
of dynamic attributed network. Here we are only interested in 
mining emergingsequences. However, our data representation 
of the network can also be used to handle queriesconcerning 
the nodes,expressed in terms of topological measures or 
attributes. For instance, in our experiment, we saw that there 

were many nodes whose behavior was not typical of their 
community. Such queries could be used to studythemin 
further details,and better understand how they are different. 
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