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Abstract—Many methods have beenproposed to detect
communities, not only in plain, but also in attributed, directed or
even dynamic complex networks. In its simplest form, a
community structur e takes the form of apartition of the node set.
From the modeling point of view, to be of some utility, this
partition must then be characterized relatively to the properties
of the studied system. However, if most of the existing works
focus on defining methods for the detection of communities, only
very few try to tackle thisinterpretation problem. Moreover, the
existing approaches are limited either in the type of data they
handle, or by the nature of the results they output. In this work,
we propose a method to efficiently support such a
characterization task. We first define a seguence-based
representation of networks, combining temporal infor mation,
topological measures, and nodal attributes. We then describe
how to identify the most emerging sequential patterns of this
dataset, and use them to characterize the communities. We also
show how to detect unusual behavior in a community, and
highlight outliers. Finally, as an illustration, we apply our
method to a network of scientific collaborations.

Keywords. Dynamic Networks, Nodal Attributes, Community
Detection, Community Interpretation, Topological M easures,
Emerging Sequence Mining

I. INTRODUCTION

Complex networks have become very popular as amodelﬁ*%]1

which is densely interconnected relatively to the rest of the
network[2].However, in the literature, this notion is
formalized in many different ways[3]. There are actually
hundreds of algorithms for detecting community structures
characterized by the use of different formal definitions of
what a community is, and/or relying on different processes
Among the principles these approaches are based upon, one
can cite: modularityoptimization, similarity matrix clustering,
data compression, statistical significance, information
diffusion, clique percolation, etc. (c.f. [3]for a detailed review).
Most of the existing methods deal with plain complex
networks, but new methods were gradually introduced to
handle richer networks: first link directions and weights, then
time, and more recently node attrib(ites].

Although the algorithms differ in terms of nature of the
detected communities, algorithmic complexity, result quality
and other aspects[3], their output can always be basically
described as a list of node groups. More specifically, in the
case of mutually exclusive communities, it is a partition of the
set of nodes. From an applicative point of view, the question
is then to make sense of these groups relatively to the studied
system. In other terms, for the community structure to be
useful, it is necessary to interpret the detected
communities.This problem is extremely important from the
user’s perspective. And yet, almost all works in the field

tool during the last decade, because they help to beffbicommunity detection concern the definition of detection

understand the intrinsic lawsand dynamics of complé®Ols, and their evaluation in terms of performance. Only a
systems. A typical plain network contains only nodes aN§'Y fewlworks try to tac_k!e the problem of characterizing and
links between them, but it is possible to enrich it with differefitterpreting the communities. .
types of data: link orientation and/or weight, temporal Authors historically interpreted their data manually[9,
dimension, attributes describingthe nodes or links, etc. TARlbut this somewhat subjective approach does not scale well
flexibility allowed to use complex networks to study reaQn large networks. More recently, several authors used
world systems in many fields: sociology, physics, genetid§pological measures to characterize community structures. |
computer, etc.[1] [11],LanC|ch|net_tet al visually examine the distribution of
The complex nature of the modeled systems leads to #@n€ community-based topological measures,both at local
presence of non-trivial topological properties in thand intermediary levels. Their goal is to understand the
corresponding networks. Among them, theommunity 9eneral shape of communities belonging to networks
structure is one of the most common and most studieflodeling various types of real-world systemi[12],
Intuitively, we can define @ommunityas a group of nodes Leskoveet. alpropose to study the community structure as a



whole, by considering it at various scales, thanks to a gloloalrespond to nodes with a specific role in the community, or
measure called conductance. These two studies are interestingde located aitsfringe. We illustrate our proposal on a
because they try to describe the community structure of pldynamic co-authorship network extracted from DBLP.
networks. However, it should be noted the resulting Our first contribution is to consider community
observations are quite general, in the sense communities & acterization as a specific problem, distinct from
studied and characterized collectively, to identify trends incammunity detection. In particular, it should be independent
network[12], or even a collection of networks[11]. from the method used to detect communities, rely on an easily

In order to characterize each community individually, sonmeplicable systematic approach, and be as automated as
authors take advantage of the information conveyed by nogaksible. Our second contribution is the introduction of a new
attribute, when it is available. In [13], the authors proposerepresentation of dynamic attributed networks. It takes the
statistical method to characterize the communities in termsfofm of a database containing sequences of node topological
the over-expressed attributes found in the elements of theasures, attributes and community information, for several
community. In[14], authors interpret the communities of time slices. Such sequences were used for the representation
social attributed network. They use statistical regression asfchatural data before[16], but not for the netwox®sr third
discriminant correspondence analysis to identify the masintribution is the definition of a method taking advantage of
characteristic attributes of each community.Both studies dnés representation to extract sequential patterns able to
valuable, however they do not take advantage of the availatiaracterize the communities. Finally, our last contribution is
topological measures to enhance the interpretation processto illustrate our method by applying it to a real-world network.

As mentioned before, there are methods taking advantagdhe rest of this article is organized as follows. In sedfipn
of both relational (structure) and individual (attributesye give the preliminary definitions needed to describe our
information to detect communities. It seems natural toethod. In sectiofll, we specify the problem and explain in
suppose the results they output can be used for interpretatletail our interpretation method. In sectidh we present our
purposes. For example, in [5], the authors interpret thgperimental results obtained on the DBLP data. Section V
communities in terms of the attributes used during tliéscuss our work and presents its possible extensions.
detection process; and in [15], the authors identify the top
attributes for each identified community. However, the Il. PRELIMINARY DEFINITIONS
problem with these community detection-based method is thatn this section, we first define different network-related
the notion of community is often defined procedurally, i.€oncepts needed to introduce our methatk also describe
simply as the output of the detection method, without atiye topological measures we use in our experiment.
further formalization. It is consequently not clear how i
structure and attributes affect the detection, and hence fhelNetwork and Community Structure
interpretation process. All these methods additionally rely onWe define a dynamicnetworkG = ( Gy, ..., Gg) as a
the implicit assumption of community homophily. In othesequence of chronologically ordered time slices. Eile
words, communities are supposed to be groups of nodes tsdite corresponds to a separated subnet@Wpi <t < 9),
densely interconnected and similar in terms of attributes. Which represents the connections between the nodes for a
our knowledge, no study has ever shown this feature wggen time interval. Moreover, the networks we consider
present in all systems, or even in all the communities ofaeattributed meaning their nodes are described by some
given network. It is therefore doubtful those methods airedividual attributes We therefore note a time sliGe =
general enough to be applied to any type of network. (V,E,, A), whereV is the set of nodeg, € V x V is the set

In this work, we sehe interpretation problem asof links and4 is the set of node attributes. In what we call
independent from the approach used for community detectiadynamicattributed networkthe node and attribute sets are
and we try to propose a method allowing to tackle thiee same at each time slice, whereas the link repartition and
limitations of the existing approacheBased on the attribute values can chang#&/e note|V| = n the number of
observation that attributes allow to improve the interpretationdes.We only deal with undirected graphs,so we consider all
of communities, we propose to enhance it further Ipairs(w,v) to be unordered. We also define the following
considering temporal information, in addition to structure argijacency functiorf,:
attributes. Moreover, to obtain intelligible results, we want to .
explicitly identify which parts of the structural information are f.(w,v) = {1 if (w,v) € E, (1)
relevant to the interpretation process. For this matter, we 0if (w,v) € E,
detect common changes in topological features and attribitgeref, (w, v)directly depends on the presence (valjieor
values over time periods, in dynamic attributed networkghsence (valu@) of a link between nodes andv at timet.
More precisely, we aim at finding the most representative\ye define he global weighted networlg = (V,€)
emerging sequential patterns for each community. Theg&ociated to a dynamic netwatksiits integration over time.
patterns can then be used for both characterizing e link set ofg contains all links appearing through time
community, and |den.t|fy outliers, i.e. node with non-standagd_ UY_, E,, whereas the node set is the same tharg for
behavior. The emergingpatterns represent the general trend;ofa it is fixed We define a weight functiofi summingf,

nodes in the considered community, whereas the outliers g3 time- the weight of a linkw, v)fromé is definedas



The participation coefficient introduced in the same
fw,v) = Z fi(w,v) ) study[17], is based on the notion ofommunity
1<t<8 degreél; (v) = |[N,(v) n C.|, which represents the number of
A community structureof a network is a partition of its links a nodev has with nodes belonging to communly.
node set, and each part of this partition is called a communlfigidentally, one can see the internal degree is a specific case
Here, we work with a static community struct@ref G, so a ©f community degree, for whicfy. = C(v). This measure is
partition ofV, and we note the communiti€s (1 < ¢ < 2), formally defined as:
for N distinct communities. Moreover, we defia€v), the
function associating a nodeto its community inG. The P(w)=1- Z (
community sizeof a given communityC. is |C.|, i.e. the ==
number of nodes it contains.

d; (v))z )

d.(v)

wherelisthe number of communities i Pcharacterizes the
B. Topological Measures distribution of the neighbors of a node over all communities.

A topological measureuantifies the structural properties'vIore precisely, it measures the heterogeneity of this

of the network or its components. Here, we focus on ﬂ\gés.tribution.. lt. gets close td if all the ngighbgrs are
nodal measures: internal degree, local transitivity, withHP'formIy distributed among all the communities and they

module degree, participation coefficient and embeddedne¥: all gathered in the same community.

We process each of these measures for each node, and at Jﬁe embeddednesepresents the proportion of neighbors

a . ; . ;
time slice. The degree and local transitivity are both Iocoj a hode belonging to its own commumty[ll]. Unl.|ke thg
measures, whereasthe othersare community-related. within module degree, the embeddedness is normalized with

We first note N,(v) ={we€V:(v,w)€E,} the respect to the node, and not the community.

neighborhoodof nodev at timet, i.e. the set of nodes di"t (v)

connected tw in G,. Thedegreed, (v) = |N,(v)| of a node is e.(v) = (6)
o . ! ; . d.(v)

the cardinality of its neighborhood, i.e. its number of S ]

neighbors, at time slice A node descriptoriseither any of these five topologic

We define theénternal neighborhoodf a nodev at timet  Measures explained above, arnode attributefromd . Let

as the subset of its neighborhood located in its communiBy= (D1, Dz, ..., D} be the set of all descriptors. Each
N/™(v) = N,(w) N C(v) . The internal degreedi™ (v) = escriptor fromD can take one of several discrete values,

[N ()| is defined similarly to the degree, as the cardinalif§ffined in itsdomaird; (1 < i < k).
of the internal neighborhood, i.e. the number of neighbors the lIl. CHARACTERIZATION METHOD

nodev has in its community at time o .
Thelocal transitivitycorresponds to the ratio of existing tg We break down the problem obmmunity interpretatian

: ; . . two  sub-problems:1) findingan  appropriate  way

possible triangles containingn G ofrepresentingacommunity and 2) taking advantage of this
_ aw) €E:q €N AwWENWI 4 representation to identify the community mesiracteristic
() = d,(w)(d,(v) —1)/2 (3) features. We solve the first sub-problemby representing a
L community as a set of sequences describing the evolution of
In thlsratlo,_ the numerator corr_esponds to the observl nodes. This encoding allows handling attributed dynamic
number of Imks betwe_en the ne!ghborsmf whereas _the networks, via their nodes topological measures and attributes.
denomm_atpr is the maximum possﬂ;lg nu_mber of _Sl_JCh IInkS'For the second sub-problem, we mine this set to identify
The within module degreandparticipation coeﬁlplen are sequential patterns fitting several criteria.

two measures propo;ed by Amaral&G_wmera[l?]to The process we propose includesteps. The first is to
characfcerlze_ the community role of r_10des. Within module identify a reference community structure, as explained in
degreeis defined as the-score of the internal degree: subsection A. In the second step, we search for

it (v) —(d{l"‘,C(v)) emergingsequential patterns and gxtract the qorrespondi_ng
(4) supporting nodes for each community. We explain the details

a(d;'"t,C(v)) of this process in subsectionBinally, the third step is to

. choose the most representative patterns to characterize the
Here,Bando denote the mean and standard deviatiod{6f communities according to various criteria that we explain in
over all nodes belonging t6(v), respectively.lt expressessubsection C.
how much a node is well connected to other nodes in its ) -
community, relatively to this community. In[17], the authorsA- Step 1. Detecting Communities
distinguish nodes depending on whether theis above or  To detect how nodes evolve in terms of community
below a limit of2.5. If z, > 2.5, the node is considered to be anembership, we need first a reference community structure. It
community hub, because it is significantly more connectedwould be possible to apply a dynamic method; however this
its community than the other members of the same communiggults in complications due to the merging, splitting,
If z < 2.5, the node is said to be a community non-hub. disappearing and appearing of communities through time. For

z,(v) =



this reason, in this fist version of our tool, we decided to useted 8 = «. An example of such relation for Fig. sli
only static communities. We detected them the global ((a = 4)(d = 1)) =2 ((a = 4)).
weighted networ§ described in subsectidrA. Note that a  Thenode sequencga nodevis a specific type of sequence
similar approximation appears in [18].To perform thaoted u(v) = ((l;q, ..., Lx1) - (g, .., Lg)) Wherel,, is the
detection, we apply the Louvain[9]algorithm, which is atwdtem containing the value of descrip®yfor v at timet. A
phase hierarchical agglomerative approach. During the firgide sequence(v) includesd itemsets, i.e. it represents all
phase, the algorithm applies a greedy optimization to identifshe slices. Each one of these itemsets containsk all
the communities. During the second phase, it builds a neéascriptor values for the considered node at the considered
network whose nodes are the communities found during ti@e. In other words,u(v) contains all the available
first phase. Then, the process is repeated again iteratively. descriptor-related data for node These tuples will be used
B. Step 2: Mining Emerging Sequences later to constitute the database analyzed by our method.As an
' ' example, the node sequence for ndde the networkfFig.
We want to characterize each community according to e ((q = 2,d = 1)(a = 2,d = 1)(a = 6,d = 2)).
common evolution of the descriptors of its nodes over time.The set okupporting node®(s) of a sequence is defined
For this purpose, we need to identify series of descriplds(s) = {v € V:u(v) = s}. The supportof a sequence,
values which appear often in the same community and OX8L)(s) = |S(s)|/n , is the proportion of nodes, § whose
several time slices. This is precisely the goal of sequentiglye sequences are super-sequenee Similarly, The set of
pattern mining methods. Here, we describe the principle tr@)’pporting nodes(s, C,) of a sequence inC, is defined as

rely upon, and how we take advantage of it. ) S(s,C.) ={v eC,:u(v) 2 s} and thesupportof a sequence
We present an example netwariigure 1to illustrate our ; * - communityC, , Sup(s,C.) = IS(s, CHI/IC,| , is the

method and the concepitsrelies upon.lt hagnodes whose proportion of nodes iff,, whose node sequences are super-

mte_Lconnectl_ons dchangehove(;tlmehshces.IThere IIS Onej'quuence of .Given a minimum support threshold noted
attributeaassigned to each node, whose valuecan also evo lehsup, a frequent sequential pattern (FS3 a sequence

through time. For the sake of simplicity, we only one : ,
topological measure: the degree. Whose support is greater or equal rong,, . A closed

frequent sequential pattefCFS) is a FS which has no super-
g=4 sequence possessing the same support.
In this study, we used the algorith@oSpatfil9] to find
out all possible CFS for a givenin,,, . It has two steps. At
the first step, CloSpan creates the candidate set, which is a
super-set of closed frequent sequences, and stores the
elements intoa so-called prefix sequence latticeAt the
second step, the algorithm prunesthis lattice, in order to
eliminate non-closed sequences. This pruning technique relies
onthe fast subsumption checking method introduced by
. Zaki[20]. This technigue manages a hash table in which the
t=3 hash keys of a sequence is the sum of allstqaence ID’s
supportings that sequence.
CloSpanis an efficient algorithm, which can mine long
sequences in practical time for real-world data. It outputs both
Let us first define the concepts necessary to the descripigg sequences and their supports, but not the supporting node
of the method itself. Antem(D;,x) € D X D;is a couple sets, so an additional processing is required to identify them.In
constituted of a descriptdr; and a valuer from its domain our case, we want to characterize communities in terms of
D;. The set of all items is notédThe set of all possible itemsCFS. Thus, we need to identify, for each community, its most
for the example network fromFig. lis{a =1,a =2,a = representative sequential pattern(s). For this purpose, we turn
3,a=4,a=5a=6d=1d=2,d=3,d=4}, wherea to the notion okemerging patterpi.e. a pattern more frequent
is the only considered attribute antl is the degree. in a part of the nodes than in the rest of it. The emergence of a
Anitemsehis any subset af. For exampleh = {a =1,d = patterns relatively to a communityC. is measuredby its
4}is an itemset for our example networkejuence = growth rategivenin Equation(7).
(hq, ..., hy,) is a chronologically ordered list of itemsets. The
: ; . ) . Sup(s, C.)
sizen of sequencea is the number of itemsets it contains. For Gr(s,C) = ——— (7
example{{a = 1,d = 2}{a = 3,d = 3}) is a sequence of size Sup(s, C.)
2 extracted from the network described in Fig. 1.A sequenceHere(; is the complement d.inV, i.e.C, = V \ C,. The
a ={ay,..,ag) is a sub-sequenceof another sequencegrowth rate is the ratio of the supportsah C, to the support
B =(by,...,b,) iff 3iy,iy,...,i5 such thatl <i; <i, <--< of s in C, .Therfore, a value larger thah meanss is
ig<vanda; €b;,a, Sby,..,az3 € bz . This is noted particularly frequent (i.e. emerging) th, when compared to
a £ B. It is also said thaf is asuper-sequenoé , which is the rest of the network. We consider that the higher the growth

a=

Fig. 1. Example Dynamic Network with 3 time slices, 7 nodes aatirbute



rate, and the more representative the sequender 1. The intersection of the patterns supporting nodes sets
communityC,. must be miniral

In order to calculate the growth rate, it would be necessary 2. The union of these supporting nodes sets must be
to search CFS in all communities separately, which can be a maximal (if possible: the whole community);
costly operation. However, a more efficient method was 3. The number of patterns must be miaim
proposed in[21] to handle the case where classes are assignddhus, the problem that we want to solve is to find the
to item sequences. Our communities can be consideredmasimal number of patterns whose supporting nodes sets
classes, which is why the method is also relevant to our cdstersections is minial while their union is maximl. Note
It is based on a modification of the analyzed data. First, letthat, in any case, we consider the patterns with the highest
notea ¢ C the concatenation of a sequence: {a,,..,az) growth rate as the most emerging one, and search for
and a symbof, such thatr « C = (ay, ..., a, {C}). Instead of additional ones to finish the coverage. In order to solve our

working on a sequence database constitutedtaples of the Problem, we select iteratively the most distant patterns, in

_ terms of supporting node set. We use Jaccard’s
form (v, , wWe use a databasd = (v, C , - ;
.(v. u(v)) ) (v u(v) (v)) coefficient[22]as a distance measure between the node sets. In
containing each nodes , its node sequence(v) and

communityC(v). Note that(v) » C(v) = (hy, .., by, {C@)}). case of equality, the growth rate is considered as a secondary

where h, is the itemset ofi(v) at timet. After havin criterion. This iteration continues until it converges

identifi Elth f ¢ v b I.' CloS aMg Besides considering patterns according to their growth rate,
identined the frequent sequences by applying &05p 10 \ve also consider them according to their support, as a
the patterns concerning a community of intei®@stan be

' . ; X complementary analysis. For a given community, it is likely
obtained simply by selecting all the C.FS ending WithThe the highest supported patterns already include the majority of
support of such CFS (of the forsre C,) in M corresponds to

. the nodes. So, unlike for growth rate-based patterns, it might
the support one would have obtaqu on th(nT non—concaten@.}gp be necessary to apply the process designed to identify
database. Thus, all the necessary information to cald@ate,qgitional patterns. However, this cannot be guaranteed, since
is provided when applying CloSpan6. _ it depends on the considered network, attributes and
Processing the growth rate of all CFS relatively to afnological measures. Supports are directly produced by

communities then requires separating the CFS dependingc§8span, so in order to select the highest supported patterns,
how they end: we group together patterns related to th_e SqRSjust need to analyze each pattern in each community.
community, and also those not related to any community. Lélgnce the most characteristic patterns of a community have
us noter the number of CFS typically found for a communityyeen identified (the most emerging one with its supplementary
as well as those found for the whole network. Indeed, Hgierns, and the one with highest support), it is possible to
order of magnitude of these quantities is approximately {]ge them to detect anomalies, i.e. nodes not following those

same. Then, we process each one ofrtpatterns found in patterns. Lek; (C,) be the set of supporting nodes of patfern

each one of thé communities. For such a pattern, we retrievg ; .

. . ’ . in_communityC,, and (C.) = U; K (C.)the supportin

its support and that of the corresponding community-less Ye ( C_) Ujer,.f _J( c) PP g
nodes forall representative patterns in the same community.

pattern, as outputted by CloSpan.

Once the emerging CFS are identified for a community, \J er:ovéisdeggf ;lgﬁ;r\:\zralig()dis ff;nf;t\iI\féCC);fetrze Sﬁtese
extract their supporting nodes, which are not direct 9 y rep p :

outputted by CloSpan. To extract the supporting node gtdes are different in the sense they do not follow the general

S(s, C,), for some specific pattemand communityC,, we rends of their communities. We detect anomalies

use a naive approach consisting in accesathand selectin automatically when finding representative patterns.
bp 9 3 9 " The overall complexity of our method includes calculating
the nodes whose sequences are the super sequences of

all topological measures, creating a global weighted network,

C. Step 3: SelectingSequential Patterns and Identifying ~ applying the Louvain algorithm to detect the communities
Anomalies applying the CloSpan algorithm to identify the patterns

After the emergingpatterns are identified for a giV(_}g,)]rocessing their growth rates, and finally selecting the most

community, together with their support, growth rate ar{&presentative onesA!'r_]o_ng the considgred topologica_l
supporting nodes, we need to select the most representd&z /szures, the wansitivity has the highest complexity
ones, in order to characterize the considered community. 6), forl links and time slices.The processing of the
give more attention to the most emerging pattern, the. global weighted network is i0(1?6). According to their
onewhose growth rate is the highest. However, there is fi§§pective authors, Louvain is @i(n log n)[23]and CloSpan
guarantee for this pattern to cover a sufficient part of tHeO(n*)[24], wheren is the number of nodes. However, the
community. And indeed, in practice it appears to be t@@erations with the highest complexitiesare the processing of
opposite. It is thus needed to identify other complementdRg growth rateand the selection of the most representative
patterns, allowing us to obtain a more complete coverageséfiuence, which areboth @(Ar?), wherelandr are the

the community. Intuitively, we want to find a small number glumbers of communities and of detected sequences
patterns, such that they cover a significant part of thespectively.By definition, we have< n, and in practiceris
community, and are different in terms of supporting nodeggnerally much larger thanMoreover, the number of time
This amounts to defining the following constraints: slices@ is smaller than botl andr by several orders of



magnitude. Considering all simplifications and negligibleommunity hub as a node whose internal degree is well above
terms, we geta total complexity 6{Ar?). In other words, the the average internal degree of its community[17]. Thus, the
processing time mainly depends on the number détected pattern means that the majority of the nodes are not

communities and sequences found in the data. particularly well-connected to their communities. Although
this type of pattern appears in all communities, we can make a
IV. RESULTS distinction in considering the size of the sequence.

We now present the results obtained on real-world data. Wen Table |, we list the size of the most supported sequential
selected the dynamic co-authorship network from[25)atterns with, for each one, its community label, community
extracted from the DBLP database. Each one of2th&s Size and support. The communities whose sizes are between
nodes represents an author. 39 and45 (i.e. #40, 55 and 77) have long sequen&?3 &nd

Two nodes are connected if the corresponding authdrsesp.). Especially, the supports of communifigsand77
published an article together. Each time slice corresponds footh reach the maximal valug This means in these
period of five years. There are totallg time slices ranging communities, there is no remarkable hub author for a long
from 1990 to 2012.The consecutive periods have a three yigae, or even if they appear sometime, they disappear very
overlap for the sake of stability. For each author, at each tigugckly. This observation is particularly interesting, and
slice, the database provides the number of publicationd inreflects the absence of a community leader who would
conferences and journals. We use this information to defigigucture the community through its many connections.

43 corresponding node attributes, and we add two more: thé=or community #115, the size of the sequenck Bnd its
total number of conference and journal publications. Finalpupport is alsd. This means all the nodes which create this
we have a total od5 attributes. Our descriptors are theseommunity had the role of non-hub together once, but for the
attributes and the topological measures described rést of the time slices, they at leastk the hub roleonce. For
subsectionl-A. communities #38, 40 and 75, the support is less than we

The topological measures are discretized differentlgan say there is at least one hub, different from the rest of
depending on their nature. For node degree, we use itseommunity and probably leading For communities #38,
thresholds3, 10 and30. For transitivity, which is defined for 40 and 75, the support is less than 1, meaning that an
[0; 1], they are.35, 0.5, and0.7. For embeddedness, whichoverwhelming majority of nodes plays the role of non-hub for
is also defined fof0; 1], the intervals aré.3 and0.7.These long periods; however a small number of nodes take the place
intervals were determined to take into account distributions@fhub possibly intermittently.
these measures on the set of nodes and time slices: different TABLE Il
thresholds correspond to areas of low density. For Guimera et MOST SUPPORTED SEQUENCE SIZE FOR EACH COMMUNITY
Amaral measures, we use the thresholds originally defined

in[17], i.e.,2.5 for z et0.05, 0.6, and0.8 for P. The threshold Commuity | Commuity | Sequence | Support
used for z distinguishes community hufis> 2.5) and ID Size Sze| Value
community non-hubgz < 2.5). For the conference/journal 38 335 2 0.99
publications, we consider the valug,3,4and> 5. For 40 43 8 0.97
total journal or conference publications, we use the intervals 42 109 S 1.00
of 5,10,20 and50. These ranges are determined according to 45 227 3 1.00
our knowledge of the domain. 55 39 7 1.00

After having applied Louvain, we fouri®7 communities 61 204 3 1.00
in the global weighted network, for a modularity0c§9. This 75 140 4 0.99
value tells us that global weighted network is clearlymodular. ” 41 7 1.00
We discarded 96 of the communities, because 86 111 3 1.00
theycontainonly one node. Amongst the remaining ohes 98 113 5 1.00
contain more tham0 nodes; the largest one havisgs nodes. 106 134 ) 1.00
We then seardd the sequential patterns for these 115 125 1 1.00
communities only, fora minimum suppoxf0.02. We could 125 79 3 1.00

not execute the CloSpan algorithm for the smallest minimum

supports, because of memory limitations. For eachWeidentifiedthe authors who do not follow the most
communities whose size is larger theh we find more than supported patterns for these 3 communities. For community
5000 patterns. Most of these patterns include only topologicg&B8, Philip S. YuJiawei HanandBeng Chin Oaire different

measures. from their communities. As expected, these nodes have a
remarkably high number of connections within their
A. Most Supported Patterns communities, and the represented authors actually have

The most supported patterns are always a sequencdeatiership roles in their fields. Further analysis of the data
z < 2.5 for all communities, with changing sizes. This mearaso shows that they publish a total of more th@mrticles
the majority of the nodes for each community have the rolepgdr time slice. In addition, they never took the non-hub role.
non-hub. As a remiret, Amaral&Guimera define a Anomalies for communities #40 and 75 are respectidelys-



Peter Kriegel and Divesh SrivastavaHere also, they are publisted at least onceinPODS, which is a behavior
important authors in their community. Their sequenceggnificantly different from the rest of the network. There are
confirm that they are productive and do not take the non-hitsupplementary patterns to cover the rest of the community.
role during all time slices. These patterns refer to non-hub and peripheral nodes whose
) transitivity is very high, which means authors from this
B. Most Emerging Patterns community tend to work in subgroups. The anomalies are
For communities whose sizes are between 39 and 45, weNiteghui Li, Feifei Li, AbdullahMueenwho never published in
not find any emerging pattern containing a conference PODS. The most emerging pattern of community 106 is
journal. The most emerging patterns have a maljrawth <(Z<2.5) (Z<2.5) (Z<2.5) (Z<2.5) (Z<2.5) ( PART. COEFF
rate of 1.79, which means there is no very distinetiv0.05-0.6 KDD PUB. 1)> with growth rate 2.87 and 0.40. This
sequential pattern for these communities. For the majority gfttern refers to non-hub nodes staying non-hub for a while,
the large communities, the most emerging pattern includethan becoming peripheral nodes and publishing once in KDD.
specific conference or journal, which can be interpreted This evolution reflects a change in the community
terms of maintheme of the community. connectivity: nodes are at first loosely connected to other
The other descriptors constituting the pattern ardes in their own community, this overall internal
topological measures. As the most supported patterns, the itemnectivity improves, while the external connectivity (i.e.
z < 2.5 appears the most often amongthe detected pattefimks with other communities) tend to become more
However, these most emerging patterns do not cover tieterogeneous. There are 4 supplementary patterns to cover
majority of nodes. That is why, as we explained in subsectite whole community. The supplementary patterns refer to the
[l1-C, we loolked for additional sequential patterns whilenodes with ultra-peripheral role, whose connections ar
minimizing the intersection of their supporting nodes with thesually insidetheir own community. Two anomalies of this
previously chosen ones. These patterns generally consist@hmunity areStan Matwinwho is publishing in KDD more
topological measures and do not have a very high growth rab@n one article routinely for every time slice,whilenot taking
In the following part, we focus on the communities leading the non-hub role, andua-Jun Zengnvho never publishes in
the most interesting results. For each of them, we describeKI¥D. In fact, Hua-Jun Zengwhile he does not produce any
most emerging pattern and present the anomalies. Epablication for the first 5 time slices, becomes very productive
pattern is formally represented in brackets, as a sequenceftdrwards.
itemsets which are represented between parentheses. The most emerging pattern of community #45 is <(VLDB
For community #1, the most emerging pattern is < (ICMLPUB. 3)( DEGREE 3-10 Z<2.5 )> with growth rate 6.40 and
PUB. NUM=1) (DEGREE 3-10 Z<2.5)>, with growth ratesupport 0.30. This sequence tells us that theagésnarkable
3.52 and support 0.30. This pattern refers to the authors vgnoup of authors who published 3 times in the VLDB
published once in ICML, then had adegree betwakand10 conference,before seingtheir degree reach a valuebetween 3
and became non-hubs. We extract 7 supplementary patterrsnid 10 and holding a non-hub role. There are 6 more
cover all the nodes ghiscommunity. Some of the interestingsequential patterns that we have found to cover the rest of the
ones are<(Z<2.5)( Z<2.5)( Z<2.5 CONF. PUB 1-5)(AAAtommunity. One of them is<( Z<2.5CONF. PUB 1-5)( Z<2.5
PUB 1)> with growth rate.69 and supporf.30,and<(PART. EMBED 0.3-0.7 ICDE PUB. 1 )>with growth rate 2.30 and
COEFF 0.05-0.6 CIKM PUB. 1)> with growth eat.40 and support 0.30. This pattern covers the non-hub nodes who
support0.30. The former pattern refers to nodes that stay ngmdblished between 1 and 5 tigi@ aconference, followed by
hub for a while, and then publish in conferences, befdpeing non-hub and having some connections outside of their
publishing inAAAI while losing their status of non-hub community and publishing once in ICDE. The anomalies are
(without massively becoming hubs). The latter has rogmar Weber Anastasia Ailamakvho do not have any
temporal dimension, but it shows the existence of nodasblication for the first 7time slices, while they both become
publishing in CIKM while having a peripheral position in thanore and more productive for the last 3time slices. Their
community, i.e. being significantly connected to othgyublication number increases fast.
communities. The anomalies of this community #&lex . .
AlvesFreitas Claire Cardie Edwin P. D. Pedndu Among C: Final Observations
these authorflex AlvesFreitasloesnot have any publication ~To summarize our observations, the most emerging patterns
for the first 8 time slices,beforehe starts publishing veify almost all communities usually include being non-hub and
efficiently in various conferences otherthan ICML or AAAhaving a small number of publications in various journals or
and journals. This can be interpreted as a Junior searct@iference. Depending on the conferences or journals
progressively maturing. For the other two authors, whigopearing in these patterns, it is possible to deduce the main
Claire CardigoublishesnICML during thefirst 6 time slices at theme of these communities. For some communities, however,
least once routinelyEdwin P. D. Pednautiever published in the emerging sequential patterns are purely topological (no
not only ICML but also AAAI or CIKM. attributes). We can then assume that the members of these
The pattern <( PODS PUB 1)> is the most emergingongiammunities do not publish in a sufficiently homogeneous
community #75. Its growth rate is 3.59 and its support is 0.4ay so thait can appear under the form of patterns, which is
This pattern shows that 40% of the authors of this communitgelf a characteristic of the community. Another reason may
simply be that the community members are connected to each



other for different reasons than a common research theme {gege many nodes whose behavior was not typical of their
geographic or logistic constraints), in which case those do wommunity. Such queries could be used to studythemin
appear in the attributes selected for our study. Regardingher details,and better understand how they are different.
anomalies, one can distinguish different types of profiles.
Some seem tocorrespond to authors whose main theme is REFERENCES
different from that of the community in which they werél] M. E. J. Newman, "The Structure and Function ofrptex Networks,"
placed. In some cases, we found out the authors had clegrly/AM Review, vol. 45, pp. 167-256, 2003. .

d to a different theme. or iust started working in a giv . Girvan and M. E. J. Newman, "Community structunesbcial and
move » Or' ) d working gIVen pislogical networks,” PNAS, vol. 99, pp. 7821-7826, 2002
theme. They may also be authors active in another fiefg],s. Fortunato, "Community detection in graphs," Phy&eports, vol. 486
including conferences and journals not part of those used inpp. 75-174,2010. N _
th ta W nsider here. Another profile is that of juni8} Y- Tian, R. A. Hankins, and J. M. Patel, "Efficieaggregation for graph

€ dai € C?] sidered be € f 0 ble' Ii.o € Sd at ot ju {.&summarization," in ACM SIGMOD 2008, pp. 567-580.

res?"f‘rc er, W _Ose number ol pubficatons an CommquyY. Zhou, H. Cheng, and J. Yu, "Graph clusterifgased on
position evolvjointly.These authors do not seem very active in structural/attribute similarities,” Proc. VLDB Endowalv2, pp. 718-729,
their field in the first time slices. However, their number of 2009.

inati i i i T 18] J. Sese, M. Seki, and M. Fukuzaki, "Mining netvgorkith shared items,"
publication and importance in their community increase witfl in 19th ACM CIKM, 2010, pp. 1681-1684.

time. [7] A. Silva, J. Wagner Meira, and M. J. Zaki, "Miniradtribute-structure
correlated patterns in large attributed graphst PYLDB Endow., vol. 5,
V. CONCLUSIONS pp. 466-477, 2012.

In this work, we tackled the problem of the characterizatié] Y- Ruan. D. Fuhry, and S. Parthasarathy, "Efficiemmmunity detection
L . . in large networks using content and links," in 22nd WW2813, pp.
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We proposed a new representation of the information enco@®d,. Blondel, J.-L. Guillaume, R. Lambiotte, and Eefebvre, "Fast
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; ; ; ; P10008, 2008.
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used this representation to perform a search O enorks.” Physical Review E, vol. 69, p. 066133, 2004.

emergingsequential patterns. Each community could then[f®@A. Lancichinetti, M. Kivela, J. Saramaki, and. SFortunato,
characterized by its most distinctive patterns. We aiek t  "Characterizing the Community Structure of Complexviteks,” PLoS
; NE, vol. 5, p. €11976, 2010.
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or others changing research theme. in Computational Social Networks, 2012, pp. 81-113.
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