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Abstract—In the context of Twitter, social capitalists are
specific users trying to increase their number of followers and
interactions by any means. These users are not healthy for the
Twitter network since they flaw notions of influence and visibility.
Indeed, it has recently been observed that they are real and active
users that can help malicious users such as spammers gaining
influence. Studying their behavior and understanding their po-
sition in Twitter is thus of important interest. A recent work
provided an efficient way to detect social capitalists using two
simple topological measures. Based on this detection method, we
study how social capitalists are distributed over Twitter’s friend-
to-follower network. We are especially interested in analyzing
how they are organized, and how their links spread across the
network. Answering these questions allows to know whether the
social capitalism methods increase the actual visibility on the
service. To that aim, we study the position of social capitalists
on Twitter w.r.t. the community structure of the network. We
base our work on the concept of community role of a node,
which describes its position in a network depending on its
connectivity at the community level. The topological measures
originally defined to characterize these roles consider only some
aspects of community-related connectivity and rely on a set of
empirically fixed thresholds. We first show the limitations of such
measures and then extend and generalize them by considering
new aspects of the community-related connectivity. Moreover, we
use an unsupervised approach to distinguish the roles, in order
to provide more flexibility relatively to the studied system. We
then apply our method to the case of social capitalists and show
that they are highly visible on Twitter, due to the specific roles
they occupy.

I. INTRODUCTION

Context. The last decade has been marked by an increase
in both the number of online social networking services and
the number of users of such services. This observation is
particularly relevant when considering Twitter, which had 200
millions accounts in April 2011 [1] and reached 500 millions
accounts in October 2012 [2]. Twitter is mostly used to share,
seek and debate about information, or to let the world know
about daily events [3]. The amount of information shared on
Twitter is considerable: there are about 1 billion tweets posted
every two and a half days [4]. While focusing on microblog-
ging, Twitter can be considered as a social networking service,
since it includes social features. Indeed, to see the messages
of other users, a Twitter user has to follow them (i.e. make a
subscription). Furthermore, a user can retweet [5] other users’
tweets, for instance when he finds them interesting and wants
to share them with their followers. Besides, users can mention
other users to draw their attention by adding @UserName

in their message. Some Twitter users are trying to use these
particular properties to spread efficiently some information [6].
One of the simplest way to reach this objective is to gain as
many followers as possible, since this gives a higher visibility
to the user’s tweets when using the network search engines [6].

Social capitalists. These specific users are called social cap-
italists. They have been recently observed and studied by
Ghosh et al. [6] in a study related to link-farming in Twitter.
They noticed in particular that users responding the most to
the solicitation of spammers are in fact real, active users. To
increase their number of followers, social capitalists use several
techniques [6], [7], the most common one being to follow a lot
of users regardless of their content, just hoping to be followed
back. Because of this lack of interest in the content produced
by the users they follow, social capitalists are not healthy for a
service such as Twitter. Indeed, this behavior helps spammers
gaining influence [6], and more generally makes the task of
finding relevant information harder for regular users. Studying
their behavior and understanding their position in Twitter is
therefore a very important task to improve the service, since
it can allow designing better search engines or functioning
rules. In a recent work, Dugué and Perez [7] have shown
that social capitalists can be efficiently detected and classified
using two purely topological measures, called overlap [8] and
ratio indices. They provide useful information regarding the
interaction between the set of friends and the set of followers1

of a user, which are supposed to have a large intersection
whenever a user applies social capitalism techniques. In this
work, we rely on this detection method to characterize the
behavior of social capitalists. To better understand how they
are organized, how really visible they are and how their links
spread across the network, we study the positions that social
capitalists occupy in Twitter w.r.t. the community structure of
the network.

Community roles. In its simplest form, the community struc-
ture of a complex network can be defined as a partition of its
node set, each part corresponding to a community. Community
detection methods generally try to perform this partition in
order to obtain densely connected groups of nodes, relatively to
the rest of the network [9]. Hundreds of such algorithms have
been defined in the last ten years, see [10] for a very detailed
review of the domain. The notion of community structure is
particularly interesting because it allows studying the network
at an intermediate level, compared to the more classic global

1For a given user, friends denote the set of users he follows, and followers

the set of users that follow him, as per the official Twitter terminology.



(whole network) and local (node neighborhood) approaches.

The concept of community role is a good illustration of
this characteristic. It consists in describing a node depending
on the position it holds in its own community2. Community
roles were initially introduced by Guimerà and Amaral [11]
to study metabolic networks. After having applied a standard
community detection method, they characterize each node ac-
cording to two ad hoc measures, each one describing a specific
aspect of the community-related connectivity. The node role
is then selected amongst 7 predefined ones by comparing the
two values to some empirically fixed thresholds. Guimerà and
Amaral [11] showed certain systems possess a role invariance
property: when several instances of the system are considered,
nodes are different but roles are similarly distributed. Scripps
et al. [12], apparently unaware of this previous work, later
adopted a similar approach, but this time for influence maxi-
mization and link-based classification purposes. They also use
two measures: first the degree, to assess the intensity of the
general node connectivity, and second an ad hoc measure, to
reflect the number of communities to which it is connected.
They then use arbitrary thresholds to define 4 distinct roles.

Our contribution. In this paper, we study the community roles
of social capitalists within a freely-available Twitter network
provided by Cha et al. [13]. We focus on the concept of
community role as described by Guimerà and Amaral [11],
because it relies more heavily on the community structure.
In a first place, we highlight two important limitations of this
community role approach. We show that the existing measures
do not take into account all aspects of the community-related
external connectivity of a node. Moreover, we object the
assumption of universality of the thresholds applied to the
measures in order to distinguish the different node roles. The
dataset we use constitutes a counter-example showing the
original thresholds are not relevant for all systems. We then
explain how to tackle these limitations. We first introduce
three new measures to characterize the external connectivity
of a node in a more complete and detailed way. We then
describe an unsupervised approach aiming at identifying the
node roles without using fixed thresholds. Finally, we apply
our method on the Twitter network to determine the position
of social capitalists, and show they occupy specific roles in the
network. In particular, most of them are well connected to their
community, and overall a large part of them spread their links
outside their community very efficiently. This gives meaningful
insights regarding the actual visibility of these users. They thus
seem to occupy roles leading to a high visibility in Twitter.

Outline. We first present the concept of social capitalists in
Twitter in more details (Section II). Next, we describe the
method proposed by Guimerà and Amaral [11] to identify
the community roles of nodes (Section III-A) and provide
some elements towards its limitation (Section III-B). We then
describe the solutions we propose to tackle these limitations
(Section III-C) and finally apply our method to study the roles
of social capitalists in Twitter (Section IV).

2Note that the notion of role also appears in works related to block
modeling, but it is not defined in terms of position in a community [11].

II. SOCIAL CAPITALISTS IN TWITTER

Social capitalists have first been highlighted by Ghosh et
al. [6] during a study focused on link-farming and spammers
in Twitter. These specific Twitter users try to increase their
number of followers by any means. To achieve this goal, they
exploit two relatively straightforward principles based on the
reciprocation of the follow link:

- FMIFY (Follow Me and I Follow You): the user
ensures his potential followers that he will follow them
back if they follow him first;

- IFYFM (I Follow You, Follow Me): on the contrary,
the user systematically follows other users, hoping to
be followed back.

In their work, Ghosh et al. [6] noticed that users responding
the most to the solicitations of spammers are real (i.e. neither
bots nor fake accounts), active and even sometimes popular
users, that they called social capitalists. Using this observation,
they constituted a list of 100, 000 social capitalists -namely the
most responsive ones to the solicitations of spammers. Social
capitalists are not healthy for a social networking service,
since their methods to gain visibility and influence are not
based on the production of relevant content and on getting a
higher credibility. From this point of view, their high number
of followers can be considered as undeserved, and biases all
services based on the assumption that visible users produce
or fetch interesting content (e.g. search or recommendation
engines).

Using two purely topological measures (and therefore with-
out considering any content), Dugué and Perez [7] designed a
method to detect and classify efficiently these users. These
measures are based on neighborhood comparisons, namely
between the sets of followers N−(u) (incoming neighbors)
and friends N+(u) (outgoing neighbors) of a user of interest
u. The first is called the overlap index [8], and is used to detect
social capitalists:

O(u) =
|N−(u) ∩N+(u)|

min {|N−(u)|, |N+(u)|}
(1)

Its value ranges from 0 (regular user) to 1 (social capitalist).
The second is the ratio r, and is used to distinguish between
social capitalists using the FMIFY (r ≤ 1) and IFYFM (r >
1) techniques:

r(u) =
|N+(u)|

|N−(u)|
(2)

Dugué and Perez [7] also use a third criterion, the number
of followers, which corresponds to the incoming degree of
the considered node, noted din(u). They define low in-degree
social capitalists as social capitalists having less between 500
10, 000 followers, and high in-degree social capitalists as
the remaining set of social capitalists. The latter users are
considered as successful social capitalists, while the former
ones are more popular. It is interesting to notice that in the
network we consider, most users with more than 10, 000
followers are social capitalists (70%). Moreover, users with
such a number of followers constitute less than 0.1% of the
network, which justifies their popularity.



In the experimental part of this article, we decide to use
this method to identify the social capitalists in the studied data,
instead of the list manually curated by [6]. The reason for this
is that the latter seems less exhaustive since it excludes users
who do not follow spammers, and does not contain spammers
nor bots. Furthermore, some of them have only a few followers,
or only a few reciprocate followers-friends links. Finally, the
method proposed by Dugué and Perez [7] achieved a greater
than 80% accuracy when comparing the social capitalists it
detected with those from the list.

III. IDENTIFYING COMMUNITY ROLES

In order to characterize the roles of nodes in communi-
ties, Guimerà and Amaral [11] defined two complementary
measures which allow them to place each node on a 2D role
space. Then, they proposed various thresholds to discretize this
space, each resulting subspace corresponding to a specific role.
We first present this method, then highlight its limitations, and
finally propose some solutions to these problems.

A. Original approach

Measures. The two measures are related to the internal and
external connectivity of the node with respect to its community.
In other words, they respectively deal with how a node is
connected with other nodes inside and outside of its own
community. The first measure, called within-module degree,
is based on the notion of z-score. Since the z-score will be
used again afterwards, we define it in a generic manner. Let
f(u) be any function defined on the nodes, that is f associates
a numerical value to any node u of the considered graph. The
z-score Zf (u) w.r.t. the community of u is defined by:

Zf (u) =
f(u)− µi(f)

σi(f)
, u ∈ Ci (3)

where Ci stands for a community, and µi(f) and σi(f)
respectively denote the mean and the standard deviation of
f over the nodes belonging to community Ci.

Now, let dint(u) be the internal degree of a node u, i.e.
the number of links u has with nodes belonging to its own
community. Then, the within-module degree of a node u,
denoted z(u) by Guimerà and Amaral [11], corresponds to
the z-score of its internal degree. Note that z evaluates the
connectivity of a node towards its community with respect to
that of the other nodes of the same community.

The second measure, called participation coefficient, is
defined as follows:

P (u) = 1−
∑

i

(di(u)

d(u)

)2

(4)

where d(u) denotes the degree of the node (i.e. the number
of links it has towards other nodes), and di(u) the community
degree of u (i.e. the number of links it has towards nodes
of community Ci). Note that when Ci corresponds to the
community of u, then di(u) = dint(u). Roughly speaking, the
participation coefficient evaluates the connectivity of a node to
the communities. If it is close to 0, then the node is connected
to one community only (likely its own). On the contrary, if
it is close to 1, then the node is uniformly linked to a large
number of communities.

Community Roles. Both measures are used to characterize the
role of a node within its community. Guimerà and Amaral [11]
defined 7 different roles by discretizing the 2D space formed
by z and P . They first used a threshold on the within-module
degree, which allowed them to distinguish hubs (that is, nodes
with z > 2.5) from other nodes (called non-hubs). Such hubs
are considered as highly linked to their community, when
compared to other nodes of the same community. Those two
categories are subdivided thanks to several thresholds defined
on the participation coefficient (by order of increasing P ), as
shown in Table I.

Community role External

Within-Module Degree Participation Coefficient Connectivity

Hub z ≥ 2.5
Provincial P ≤ 0.30 Low

Connector P ∈]0.30; 0.75] Strong

Kinless P > 0.75 Very strong

Non-Hub z < 2.5
Ultra-peripheral P ≤ 0.05 Very low

Peripheral P ∈]0.05; 0.62] Low

Connector P ∈]0.62; 0.80] Strong

Kinless P > 0.80 Very strong

TABLE I. CLASSIFICATION OF ROLES ACCORDING TO THEIR

COMMUNITY-RELATED CONNECTIVITY.

Directed Variants. Many networks representing real-world
systems, such as the Twitter network we study here, are
directed. Of course, it is possible to analyze them through
the undirected method, but this would result in a loss of
information.

Yet, extending these measures is quite straightforward:
the standard way of proceeding consists in distinguishing
incoming and outgoing links. In our case, this results in using
4 measures instead of 2: in- and out- versions of both the
within-module degree and participation coefficient. Let us note
din the in-degree of a node, i.e. the number of incoming links
connected to the node. Then one can consider the internal in-
degree of a node, noted dinint, corresponding to the number
of incoming links the node has inside its community. By
processing the z-score of this value, one can derive the within-
module in-degree, noted zin. Let us note dini the community
in-degree, i.e. the number of incoming links a node has from
nodes in community Ci. We can now define the incoming
participation coefficient, noted P in, by substituting din to d
and dini to di in Equation (4). We similarly define zout and
P out, using the outgoing counterparts dout, doutint and douti . In
the rest of the article, we call this set of measures the directed
variants, by opposition to the original measures of Guimerà
and Amaral [11].

B. Limitations of this approach

As mentioned before, we identify two limitations in the
approach of Guimerà and Amaral [11]. The first concerns the
way the participation coefficient represents the nodes external
connectivity, whereas the second is related to the thresholds
used for the within-module degree.

External Connectivity. We claim that the external connectiv-
ity of a given node, i.e. the way it is connected to communities
other than its own, can be precisely described in three ways:
first, by considering its diversity, i.e. the number of concerned
communities ; second, in terms of intensity, i.e. the number of
external links ; third relatively to its heterogeneity, i.e. the dis-
tribution of external links over communities. The participation



coefficient combines several of these aspects, mainly focusing
on heterogeneity, which lowers its discriminant power. This is
illustrated in Figure 1: the external connectivity of the central
node is very different in each one of the presented situations.
However, P is the same in all cases.

Fig. 1. Each pattern represents a community. In each case, the participation
of the central node is 0.58.

In order to be more illustrative, let us consider two users
from our data, which have the same community role according
to the original measures. We select two nodes both having
a z greater than 2.5 and a P close to 0.25. So according
to Guimerà and Amaral [11] (see Table I), they both are
provincial hubs, and should have a similar behavior w.r.t. the
community structure of the network. However, let us now point
out that the first user is connected to 50 nodes outside its
community, whereas the second one has 200, 000 connections.
This means they actually play different roles in the community
structure, either because the second one is connected to much
more communities than the first one, or because its number of
links towards external communities is much larger than for the
first user. Similar observations can be made for the directed
variants of the participation coefficient. The measures used to
define the external connectivity should take this difference into
account and assign different roles to these nodes.

Fixed Thresholds. As indicated in the supplementary discus-
sion of Guimerà and Amaral [11], the thresholds originally
used to identify the roles were obtained empirically. They
first processed P and z for different types of data: metabolic,
proteome, transportation, collaboration, computer and random
networks. Then, they detected basins of attraction, correspond-
ing to regularities observed over all the studied networks. Each
role mentioned earlier corresponds to one of these basins, and
the thresholds were obtained by estimating their boundaries.

Implicitly, these thresholds are supposed to be universal,
but this can be criticized. First, Guimerà and Amaral [11]
used only one community detection method. A different com-
munity detection method can lead to a different community
structure, and therefore possibly different basins of attraction.
Furthermore, z is not normalized, in the sense it has no fixed
boundaries. There is no guarantee the threshold originally
defined for this measure will stay meaningful on other net-
works. The values obtained for z in our experiments are far
higher for some nodes than the ones observed by Guimerà and
Amaral [11]. We also observe that the proportion of nodes
considered as hubs (i.e. z ≥ 2.5) by Guimerà and Amaral [11]
is much smaller in our network than in the networks they
consider: 0.35% in ours versus 2% in theirs. These thresholds
seem to be at least sensitive either to the size of the data,
the structure of the network, or to the community detection
method.

It is therefore necessary to process new thresholds, more
appropriate to the considered data. However, the method used

by Guimerà and Amaral [11] itself is difficult to apply, because
it requires a lot of data. We now present how to overcome these
limitations.

C. Proposed Approach

Generalized Measures. In place of the single participation
coefficient, we propose 3 new measures aiming at represent-
ing separately the aspects of external connectivity: diversity,
intensity and heterogeneity. Moreover, a fourth measure is used
to describe the internal connectivity.

Because we deal with directed links, each one of these
measures exists in two versions: incoming and outgoing (as
explained in section III-A), resulting in 8 effective measures.
However, for simplicity matters, we ignore link directions
when presenting them in the rest of this section.

All our measures are expressed as z-scores. We know
community sizes are generally power-law distributed, as de-
scribed in [14], which means their sizes are heterogeneous.
Our community-based z-scores (cf. Equation (3)) allows to
normalize the measures relatively to the community size, and
therefore to take this heterogeneity into account.

Diversity. The diversity D(u) evaluates the number of com-
munities to which a node u is connected (other than its own),
w.r.t. the other nodes of its community. This measure does not
take into account the number of links u has to each community.
Let ǫ(u) be the number of external communities to which u
is connected. The diversity is defined as the z-score of ǫ w.r.t.
the community of u. It is thus obtained by substituting ǫ to f
in Equation (3).

External intensity. The external intensity Iext(u) of a node
u measures the amount of links u has towards communities
other than its own, w.r.t. the other nodes of its community.
Let dext(u) be the external degree of u, that is the number of
links u has with nodes belonging to another community than
its own. The external intensity is defined as the z-score of the
external degree, i.e. we obtain it by substituting dext to f in
Equation (3).

Heterogeneity. The heterogeneity H(u) of a node u measures
the variation of the number of links a node u has, from one
community to another. To that aim, we compute the standard
deviation of the number of links u has to each community.
We denote this value by δ(u). The heterogeneity is thus the
z-score of δ w.r.t. the community of u. As previously, it can
be obtained by substituting δ to f in Equation (3).

Internal intensity. In order to represent the internal connec-
tivity of the node u, we use the z measure of Guimerà and
Amaral [11]. Indeed, it is based on the notion of z-score, and is
thus consistent with our other measures. Moreover, we do not
need to add measures such as diversity or heterogeneity, since
we consider one node can belong only to one community. Due
to the symmetry of this measure with the external intensity, we
refer to z as the internal intensity, and denote it by Iint(u).

Unsupervised Role Identification. Our second modification
concerns the way roles are defined. As mentioned before,
the thresholds defined by Guimerà and Amaral [11] are not
necessarily valid for all data. Moreover, our generalization
of the measures invalidates the existing thresholds, since we



have now 8 distinct measures, all different from the original
ones. We could try estimating more appropriate thresholds,
but as explained in section III-B, the method originally used
by Guimerà and Amaral [11] to estimate their thresholds is
impractical. The fact our measures are all z-scores also weak-
ens the possibility to get thresholds applicable to all systems,
which means the estimation process should potentially be
performed again for each studied system.

To overcome these problems, we propose to apply an au-
tomatic method instead, by using unsupervised classification.
First, we process all the measures for the considered data.
Then, a cluster analysis method is applied. Each one of the
clusters identified in the measure space is considered as a
community role. This method is not affected by the number
of measures used, and amounts to adjusting thresholds to the
studied system. If the number of roles is known in advance,
for instance because of some properties of the studied system,
then one can use an appropriate clustering method such as k-
means, which allows specifying the number k of clusters to
find. Otherwise, it is possible to use cluster quality measures to
determine which k is the most appropriate ; or to apply directly
a method able to estimate at the same time the optimal number
of clusters and the clusters themselves.

IV. COMMUNITY ROLES OF SOCIAL CAPITALISTS

A. Data and Tools

We analyze a freely-available anonymized Twitter network,
collected in 2009 by Cha et al. [13]. It contains about 55
million nodes representing Twitter users, and almost 2 billion
directed links corresponding to friend-to-follower relation-
ships. We had to consider the size of these data when selecting
our analysis tools. For community detection, we selected the
Louvain method [15], because it is widespread and proved
to be very efficient when dealing with large networks. We
retrieved the C++ source code published by its authors, and
adapted it in order to optimize the directed version of the
modularity measure, as defined by Leicht and Newman [16].
All the role measures, that is Guimerà and Amaral’s original
measures, their directed variants (section III-A) and our new
measures (section III-C), were computed using the community
structure detected through this means. We also implemented
them in C++, using the same sparse matrix data structure than
the one used in the Louvain method.

All resulting values were normalized, in order to avoid
scale difference problems when conducting the cluster anal-
ysis. Since we do not know the expected number of roles,
the clustering was performed using an open source imple-
mentation of a distributed version of k-means [17]. Indeed,
centralized versions are based on a unique distance matrix,
and turned out to be too demanding in terms of memory.
We applied this algorithm for k ranging from 2 to 15,
and selected the best partition in terms of Davies-Bouldin
index [18]. We selected this index because it is a good
compromise between the reliability of the estimated quality
of the clusters, and the computing time it requires. All pre-
and post-processing scripts related to the cluster analysis
were implemented in R. The whole source code is available
at the following address: https://github.com/CompNet/Orleans
%texttthttps://github.com/CompNet/Orleans.

B. Roles Expected for Social Capitalists

We expect the degree of social capitalists to play an impor-
tant role considering their position (see Section II). High in-
degree social capitalists (namely greater than 10, 000) should
be well connected to their communities -hubs- or to the other
communities -connectors, or both. Being connectors would
indicate they obtained a high visibility on the whole network
and not only in their own communities. Furthermore, because
we take the direction of links into account in our measures,
we expect social capitalists to be discriminated according to
their ratio, i.e. the number of outgoing links divided by the
number of incoming links. We especially expect high in-degree
social capitalists with a small ratio (so-called passive social
capitalists according to [7]) to be highly connected to their
communities and to the rest of the graph. Considering low
degree social capitalists, it is not possible to predict their roles
without any further information. The study will thus be of great
interest to characterize their visibility.

C. Detected Roles

For the sake of completeness, we first used the original
undirected measures of Guimerà and Amaral [11]. We obtained
only 2 roles, each one concerning too many nodes to bring
up any valuable information regarding the studied system.
Since this might be due to the fact these measures ignore link
directions, we then worked with their directed variants (section
III-A), and then with our generalized measures (section III-C).
In both cases we used the unsupervised role identification
method we proposed (section III-C).

Directed Variants. A correlation study shows zout and zin

are slightly correlated (with a correlation coefficient ρ < 0.3),
whereas the correlation is zero for all other pairs of measures.
This seems to confirm the interest of considering link direc-
tions in the role measures. When doing the cluster analysis, the
most separated clusters are obtained for k = 6. An ANOVA
followed by post hoc tests (t-test with Bonferroni’s correction)
showed significant differences exist between all clusters and
for all measures.

An analysis of the distribution of high in-degree social
capitalists in these clusters shows that a few of these users
occupy a connector hub role. This is quite expected as said
in IV-B. However, most of the high degree social capitalists
are considered as non-hubs and peripheral or ultra-peripheral
nodes. More than 60% of the users with a high ratio are
classified as ultra-peripheral nodes for both incoming and
outgoing directions, which is rather surprising since they have
a really high degree. However, they are classified in a cluster
with low z and P (both in- and out- versions). The low z
indicates these users are not much connected to their commu-
nity (relatively to the other nodes of the same community),
and must thus be more connected to other communities. Still,
P does not highlight this aspect of their community-related
connectivity, and they appear as peripheral. This inconsistency
of the detected roles confirms the limitations of P described
in section III-B.

Generalized Measures. Most generalized measures are
slightly correlated, with values ranging from almost 0 to 0.4.
In particular, both versions of the same measure (incoming
vs. outgoing) are only slightly correlated, which is another

https://github.com/CompNet/Orleans


confirmation of the interest of considering link directions.
Only three measures are strongly correlated: internal and
external intensities and heterogeneity (ρ ranging from 0.78 to
0.92). The relation between both intensities seems to indicate
that variations on the total degree globally affect similarly
internal and external degrees. The very strong correlation ob-
served between heterogeneity and intensity means only nodes
with low intensity are homogeneously connected to external
communities, whereas nodes with many links are connected
heterogeneously.

Similarly to the directed measures, the most separated
clusters are obtained with k = 6. These 6 clusters are
given in Table II with their sizes and roles. However, the
correspondance with the original nomenclature is rougher,
since these measures are farther from the original ones. The
average of each measure per cluster is showed in Table III.
Like before, ANOVA and post hoc tests showed significant
differences between all clusters and for all measures. We now
conduct a detailed analysis of the different roles we obtain.

Cluster Size Proportion Role

1 24543667 46.68% Ultra-peripheral non-hubs

2 304 < 0.01% Kinless hubs

3 303674 0.58% Connector hubs

4 11929722 22.69% Incoming Peripheral non-hubs

5 10828599 20.59% Outgoing Peripheral non-hubs

6 4973717 9.46% Connector non-hubs

TABLE II. CLUSTERS DETECTED WITH THE GENERALIZED

MEASURES: SIZES IN TERMS OF NODE COUNT AND PROPORTION OF THE

WHOLE NETWORK, AND ROLES ACCORDING TO THE GUIMERÀ AND

AMARAL [11] NOMENCLATURE.

Cluster 1. Because both internal intensity versions (equivalent
to z) are negative, nodes in this cluster cannot be hubs. The
negative external measures indicate these nodes are not con-
nectors either. We can thus consider them as ultra-peripheral
non-hubs. This cluster is the largest one, with 47% of the
network nodes. This confirms the matching with this role,
whose nodes constitute generally most of the network.

Clusters 4 and 5. Cluster 4 is very similar to Cluster 1.
However, its incoming diversity is 0.69. These nodes are again
peripheral, because the external intensity is negative. Still,
incoming links come from a larger number of communities.
Cluster 5 is also similar to Cluster 1. However, both versions of
diversity are positive for this cluster, with an outgoing diversity
of 0.60. External links are thus connected to a larger number
of communities. Clusters 4 and 5 are the second (23%) and
third (21%) largest ones, respectively. By gathering all the
peripheral and ultra-peripheral nodes, we obtain 91% nodes
of the network.

Cluster 6. The internal intensity is still close to 0 but positive.
Thus, these nodes are non-hubs, even if they are more con-
nected to their community than those of the previous clusters.
Like the other external measures, the external intensity is low
but still positive. These nodes are relatively well-connected
to other communities, and we can therefore consider them as
connectors. Both versions of the diversity are relatively high,
which indicates these nodes are not only more connected to
their community as well as others, but also to a larger number
of distinct communities.

Cluster 3. The high internal intensity allows us to state that

these nodes are hubs. Furthermore, the high external measures
indicate these nodes are connected to a high number of nodes
from a lot of other communities, and thus are connector hubs.
Notice outgoing measures are higher. This cluster represents
only 0.6% of the network, meaning this role is very uncom-
mon.

Cluster 2. This observation is even more valid for Cluster 2,
which represents much less than 1% of the nodes. For this
cluster, all measures are really high. The incoming versions
are always higher than their outgoing counterparts. We call
these users kinless hubs according to Guimerà and Amaral’s
nomenclature.

Cluster I
out

int
I
in

int
D

out
D

in

1 −0.12 −0.03 −0.55 −0.80
2 94.22 311.27 7.18 88.40
3 5.52 1.40 5.60 3.10
4 −0.04 0.00 −0.37 0.69
5 −0.03 −0.01 0.60 0.19
6 0.48 0.12 1.96 1.70

Cluster I
out

ext
I
in

ext
H

out
H

in

1 −0.09 −0.04 −0.12 −0.06
2 113.87 283.79 112.79 285.57
3 5.28 1.43 6.76 2.34
4 −0.07 0.00 −0.10 −0.01
5 −0.03 −0.02 −0.04 −0.02
6 0.35 0.12 0.53 0.19

TABLE III. AVERAGE GENERALIZED MEASURES OBTAINED FOR THE 6
DETECTED CLUSTERS .

It is worth noticing that, whatever the considered measures,
some of the roles defined by Guimerà and Amaral [11] are
not represented in the studied network. This is consistent
with the remarks previously made for other data by Guimerà
and Amaral [11], and confirms the necessity of having an
unsupervised approach to define roles in function of measures.
It is also consistent with the strong correlation observed
between internal and external intensities: missing roles would
be nodes possessing a high internal intensity but a low external
one, or vice-versa. However, those are very infrequent in our
network.

D. Relations between clusters

We now discuss how the nodes are connected depending
on the role they hold. Figure 2 is a simplified representation
of this interconnection pattern.

The outgoing links of ultra-peripheral (Cluster 1) and
peripheral (Clusters 4 and 5) nodes target mainly kinless hubs
(Cluster 2) and connectors (Clusters 3 and 6), representing
74% (Cluster 1), 82% (Cluster 4), and 74% (Cluster 5) of
their connections. These (ultra-)peripheral nodes, which are
the most frequent in the network, thus mainly follow very
connected users, probably the most influent and relevant ones.
This seems consistant: they follow only a few users, and so
choose the most visible ones.

Connector nodes (Clusters 3 and 6) are mainly linked to
other connectors nodes. They have the tightest connection,
since their arcs amounts to a total of 43% of the network
links. This is worth noticing, because these clusters are far
from being the largest ones. They are also largely connected
to the rest of the clusters too, especially with outgoing links.
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Fig. 2. Interconnection between clusters. A vertex i corresponds to Cluster
i from Table II. An arc (i, j) represents the set of links connecting nodes
from Cluster i to nodes from Cluster j. It is labeled with 3 values, each one
describing which proportion of links the arc represents, relatively to 3 distinct
sets: first relatively to all links starting from Cluster i, second relatively to
all links in the whole network, and third relatively to all links ending in
Cluster j. The arc thickness is proportional to the second value. For matters
of readability, arcs representing less than 1% of the network links are not
displayed.

Connectors follow massively users of all clusters, so we
suppose they constitute the backbone of the network.

Kinless hubs (Cluster 2) are massively followed by non-
hubs, representing 38% (Cluster 1), 43% (Cluster 4), 19%
(Cluster 5) and 8% (Cluster 6) of their outgoing links. And
interestingly, the links coming from kinless hubs target the
same clusters: 9% go to Cluster 1, 20% to Cluster 4, 22%
to Cluster 5 and 41% to Cluster 6. This means the most
visible and popular nodes of the network mostly follow and are
followed by much less popular users. One could have expected
the network to be hierarchically organized around roles, with
more peripheral nodes connected to less peripheral nodes. But
this is clearly not the case. First, (ultra-)peripheral nodes are
marginally connected to other nodes holding the same role,
they prefer to follow connectors and/or hubs. Second, kinless
and connector hubs, although well connected to connector non-
hubs, do not have direct links, i.e. these users do not follow
each other.

E. Position of Social Capitalists

As stated previously, we use a list of approximately
160, 000 social capitalists as detected by Dugué and Perez [7].
In the following, we analyze how social capitalists are dis-
tributed amongst the detected roles. As explained section II, we
split social capitalists according to their in-degree (number of
followers). Recall that low in-degree social capitalists have an
in-degree between 500 and 10, 000, and high in-degree social
capitalists an in-degree greater than 10, 000. These social

capitalists are known for having especially well succeeded in
their goal of gaining visibility.

The tables in this section describe how the various types of
social capitalists are distributed over the clusters. In each cell,
the first row is the proportion of social capitalists belonging to
the corresponding cluster, and the second one is the proportion
of cluster nodes which are social capitalists. Values of interest
are indicated in bold and discussed in the text.

Low in-degree social capitalists. Low in-degree social capi-
talists are mostly assigned to three clusters: 3, 5 and 6 (see Ta-
ble IV). Most of them belong to Cluster 6, which contains non-
hub connector nodes. These nodes, which have only slightly
more external connections than the others, are nevertheless
connected to far more communities. Social capitalists in this
cluster seem to have applied a specific strategy consisting in
creating links with many communities. This strategy is still
not completely working, though, as shown by the relatively
low external incoming intensity (meaning they do not have
that many followers).

Nodes from Cluster 3 are connector hubs, who follow more
users than the others. Because IFYFM social capitalists have
a ratio greater than 1 and thus more friends than followers, it
is quite intuitive to observe that they are twice as many than
the other users in this cluster. The high outgoing diversity of
Cluster 3 tells us that these social capitalists follow users from
a large variety of communities, not only theirs (to which they
are well connected). The high external outgoing intensity show
that these users massively engage in the IFYFM process, but
did not yet receive a lot of following back, as shown by their
low external incoming intensity. Finally, roughly 20% of social
capitalists with ratio r < 1 belong to Cluster 5, which contains
non-hub peripheral nodes. This shows that a non-neglictible
share of social capitalists are isolated relatively to both their
community and the other ones.

Ratio Cluster 1 Cluster 2 Cluster 3

r ≤ 1
0.01% 0.00% 23.10%

< 0.01% 0.00% 3.71%

r > 1
0.03% 0.00% 18.78%

< 0.01% 0.00% 6.61%

Ratio Cluster 4 Cluster 5 Cluster 6

r ≤ 1
3.42% 18.28% 55.19%
0.14% 0.08% 0.54%

r > 1
0.48% 14.31% 66.40%

< 0.01% 0.14% 1.43%

TABLE IV. DISTRIBUTION OF LOW IN-DEGREE SOCIAL CAPITALISTS

OVER CLUSTERS OBTAINED FROM THE GENERALIZED MEASURES.

These observations show that most of these users are
deeply engaged in a process of soliciting users from other
communities, not only theirs. Some of them are even massively
following users from a wide diversity of communities. This
tends to show that these users may obtain an actual visibility
across many communities of the network by spreading their
links efficiently.

High in-degree social capitalists. Most of the high in-degree
social capitalists are gathered in Cluster 3 (see Table V),
corresponding to connector hubs. This is consistent with the
fact these users have a high degree. Users of Cluster 3 have a
high outgoing diversity and a high outgoing external intensity:
this shows they practice the IFYFM strategy actively, by



following a lot of users from a wide range of communities.
The rest of these users is contained in Cluster 2. Nodes in
these clusters are kinless hubs and thus can be considered
as successful users. Indeed, they are massively followed by a
very high number of users from an extremely large variety of
communities. Only high-degree social capitalists with a ratio
smaller than 0.7 and a few with a ratio smaller than 1 are
classified in this cluster. This is consistent with the roles one
could expect for social capitalists (section II).

Ratio Cluster 1 Cluster 2 Cluster 3

r ≤ 0.7
0.00% 12.14% 87.29%
0.00% 21.05% 0.15%

0.7 < r ≤ 1
0.00% 1.55% 95.64%
0.00% 7.24% 0.45%

r > 1
0.00% 0.03% 97.99%
0.00% 0.33% 1.22%

Ratio Cluster 4 Cluster 5 Cluster 6

r ≤ 0.7
0.00% 0.00% 0.57%
0.00% 0.00% < 0.01%

0.7 < r ≤ 1
0.00% 0.00% 2.81%
0.00% 0.00% < 0.01%

r > 1
0.00% 0.00% 1.98
0.00% 0.00% < 0.01%

TABLE V. DISTRIBUTION OF HIGH IN-DEGREE SOCIAL CAPITALISTS

OVER CLUSTERS OBTAINED FROM THE GENERALIZED MEASURES.

These observations mean that most of these users are well
connected in their communities but also with the rest of the
network. This shows the efficiency of these users strategies.
Indeed, most of the users are linked to a wide range of
communities, and thus reach a high visibility in a large part
of the network.

V. CONCLUSION

In this article, our goal is to characterize the position of
social capitalists in Twitter. For this purpose, we propose an
extension of the method defined by Guimerà and Amaral [11]
to characterize the community role of nodes in complex
networks. We first define directed variants of the original
measures, and extend them further in order to take into account
the different aspects of node connectivity. Then, we propose
an unsupervised method to determine roles based on these
measures. It has the advantage of being independant from
the studied system. Finally, we apply our tools to a friend-
to-follower Twitter network. We find out the different kinds
of social capitalists occupy very specific roles. Those of low
in-degree are mostly connectors non-hubs. This shows they
are engaged in a process of spreading links across the whole
network, and not only their own community. Those of high in-
degree are classified as kinless or connectors hubs, depending
on their ratio r. This shows the efficiency of their strategies,
which lead to a high visibility for a vast part of the network,
not only for their own community.

The most direct perspective for our work is to assess
its robustness. In particular, it is important to know how
the stability of the detected communities and clusters affects
the identified roles. In this study, the very large size of the
data prevented us to do so: first, it was a strong constraint
when selecting the tools we used for community detection and
cluster analysis, and second it was not possible to repeat these
processing many times to evaluate the stability of their results.

We plan to work on this point by using smaller datasets. On
a related note, we want to apply our method to other systems,
in order to check for its general relevance. The method itself
can also be extended in two ways. First, it would be relatively
straightforward to take link weights into account (although this
was not needed for this work). Second, and more interestingly,
it is also possible to adapt it to overlapping communities (by
opposition to the mutually exclusive communities considered
in this work) in a very natural way, by introducing additional
internal measures symmetrical to the existing external ones.
This could be a very useful modification when studying social
networks, since those are supposed to possess this kind of
community structures, in which a node can belong to several
communities at once [19].

REFERENCES

[1] B. Bosker. (2011) Twitter: We now have over 200 million accounts.
Huffington Post. [Online]. Available: http://www.huffingtonpost.com/
2011/04/28/twitter-number-of-users n 855177.html

[2] R. Holt. (2013) Twitter in numbers. The Telegraph.
[Online]. Available: http://www.telegraph.co.uk/technology/twitter/
9945505/Twitter-in-numbers.html

[3] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter: understand-
ing microblogging usage and communities,” in WebKDD/SNAKDD,
2007, pp. 56–65.

[4] S. Rodgers. (2013, August) Behind the num-
bers: how to understand big moments on Twit-
ter. Twitter. [Online]. Available: https://blog.twitter.com/2013/
behind-the-numbers-how-to-understand-big-moments-on-twitter

[5] B. Suh, L. Hong, P. Pirolli, and E. H. Chi, “Want to be retweeted?
large scale analytics on factors impacting retweet in twitter network,”
in SCA’10, 2010, pp. 177–184.

[6] S. Ghosh, B. Viswanath, F. Kooti, N. Sharma, G. Korlam, F. Ben-
evenuto, N. Ganguly, and K. Gummadi, “Understanding and combating
link farming in the twitter social network,” in WWW, 2012, pp. 61–70.
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