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Abstract. In diffusion MRI (dMRI), determining an appropriate sampling

scheme is crucial for acquiring the maximal amount of information for data re-

construction and analysis using the minimal amount of time. For single-shell ac-

quisition, uniform sampling without directional preference is usually favored. To

achieve this, a commonly used approach is the Electrostatic Energy Minimiza-

tion (EEM) method introduced in dMRI by Jones et al. However, the electrostatic

energy formulation in EEM is not directly related to the goal of optimal sampling-

scheme design, i.e., achieving large angular separation between sampling points.

A mathematically more natural approach is to consider the Spherical Code (SC)

formulation, which aims to achieve uniform sampling by maximizing the mini-

mal angular difference between sampling points on the unit sphere. Although SC

is well studied in the mathematical literature, its current formulation is limited

to a single shell and is not applicable to multiple shells. Moreover, SC, or more

precisely continuous SC (CSC), currently can only be applied on the continuous

unit sphere and hence cannot be used in situations where one or several subsets

of sampling points need to be determined from an existing sampling scheme. In

this case, discrete SC (DSC) is required. In this paper, we propose novel DSC

and CSC methods for designing uniform single-/multi-shell sampling schemes.

The DSC and CSC formulations are solved respectively by Mixed Integer Linear

Programming (MILP) and a gradient descent approach. A fast greedy incremen-

tal solution is also provided for both DSC and CSC. To our knowledge, this is the

first work to use SC formulation for designing sampling schemes in dMRI. Ex-

perimental results indicate that our methods obtain larger angular separation and

better rotational invariance than the generalized EEM (gEEM) method currently

used in the Human Connectome Project (HCP).

1 Introduction

Diffusion MRI (dMRI) is a unique technique for exploring the underlying tissue prop-

erties of white matter in the human brain. A central problem in dMRI is to reconstruct

the MR signal attenuation ❊✭q✮ from a limited number of measurements in the q-space

and to estimate some meaningful quantities such as the Ensemble Average Propagator

(EAP) and the Orientation Distribution Function (ODF). An effective q-space sampling

scheme is critical for the acquisition of maximum information with minimum time cost.

Since white matter fascicles traverse the brain in a wide range of directions, a uniform

sampling scheme with no directional preference is often preferred [1].
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In the last decade, two approaches have been widely used for designing sampling

schemes for single-shell acquisition. The first approach involves tessellation of a unit

sphere using basic shapes such as the icosahedron. Using such a spherical tessellation

approach, however, one is unable to generate a sampling scheme with an arbitrary num-

ber of sample points. The second approach is the Electrostatic Energy Minimization

(EEM) method, which was introduced in dMRI by Jones et al. [1]. Some best known

solutions to the EEM problem have been collected in CAMINO [2]. EEM was also

recently generalized for multi-shell sampling [3,4] with staggered samples in different

shells and has been adopted in the Human Connectome Project (HCP) [5]. However, the

electrostatic energy formulation in EEM is not directly related to the goal of sampling

scheme design, which is to maximize the angular separation between sampling points,

and it is still unknown why electrostatic energy matters in dMRI reconstruction.

A good sampling scheme should have large angular separation such that the recon-

struction has large angular resolution and good rotational invariance. Thus a mathemati-

cally more natural way for sampling scheme design is to maximize the minimal angular

difference between sampling points, i.e., covering radius, on a unit sphere. Determining

such point configuration is essentially the Spherical Code (SC) problem1, and there are

a collection of best known solutions for the SC problem in ❙✷ [6] 2. Although SC is well

studied in the mathematical literature, its current formulation is limited to a single shell

and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC

(CSC), currently can only be applied on the continuous unit sphere and hence cannot

be used in situations where several subsets of sampling points need to be determined

from an existing sampling scheme. In this case, discrete SC (DSC) is required, where

the solution space is discrete and determined by a set of predetermined sampling points.

In this paper, we propose novel CSC and DSC methods for designing single-/multi-

shell sampling schemes. We propose a greedy incremental estimation for rapid genera-

tion of solutions to the DSC and CSC problems, a Mixed Integer Linear Programming

(MILP) method to solve the DSC problem, and a Riemannian gradient descent method

to solve the CSC problem. Experimental results indicate that the proposed methods

are capable of yielding larger covering radius and better rotational invariance than the

state-of-the-art generalized EEM (gEEM) method currently used in the HCP [4,5].

2 Designing Sampling Scheme Using Spherical Code

2.1 Discrete Spherical Code (DSC) and Continuous Spherical Code (CSC)

For single-shell sampling, the SC problem is to determine a set of ❑ points ❢✉✐❣
❑
✐❂✶

such that the minimal distance between these points is maximized, i.e.,

♠❛①
❢✉✐✷❉❣❑✐❂✶

❞✭❢✉✐❣
❑
✐❂✶✮❀ ❞✭❢✉✐❣

❑
✐❂✶✮ ❂ ♠✐♥

✐✻❂❥
❛r❝❝♦s ❥✉❚✐ ✉❥ ❥❀ (1)

where ❞✭❢✉✐❣
❑
✐❂✶✮ is the minimal angular distance, or called covering radius, of point

set ❢✉✐❣
❑
✐❂✶, and ❉ ✒ ❙

✷ is the solution domain. If ❉ ❂ ❙
✷, Eq. (1) is a CSC problem

1 http://mathworld.wolfram.com/SphericalCode.html
2 http://neilsloane.com/grass/dim3/

http://mathworld.wolfram.com/SphericalCode.html
http://neilsloane.com/grass/dim3/
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for selecting ❑ points from throughout the unit sphere ❙✷. If ❉ ❂ ❢✉♥❣
◆
♥❂✶, a set of

◆ predetermined points on ❙✷, then Eq. (1) is a DSC problem for selecting ❑ from

◆ points. We use the absolute value of ✉❚✐ ✉❥ in Eq. (1) because antipodal symmetric

samples have the same role in diffusion MRI data reconstruction. Note that the original

SC in mathematics only means CSC, while in this paper it is the first time that we

propose both CSC and DSC and generalize them for multi-shell case for designing

sampling scheme in dMRI.

For multi-shell sampling, the SC problem is to find a set of points ❢✉s❀✐❣ by solving

♠❛①
❢✉s❀✐✷❉❣

✇❙�✶
❙❳

s❂✶

❞✭❢✉s❀✐❣
❑s

✐❂✶✮ ✰ ✭✶� ✇✮❞✭❢✉s❀✐❣✐❂✶❀✿✿✿❀❑s❀s❂✶❀✿✿✿❀❙✮❀ (2)

where ✉s❀✐ is the ✐-th point on the s-th shell, ❙ is the number of shells, ❑s is the

number of points on the s-th shell, and ✇ is a weighting factor for balancing two terms.

In Eq. (2), the first term is the mean covering radius of the ❙ shells, and the second term

is the covering radius for a combined shell containing all points from the ❙ shells. Due

to the second term, the estimated samples in different shell are staggered.

2.2 Greedy Incremental Solver

Similarly to EEM [7] and gEEM [3,4], we propose a greedy solver for incremental

estimation of sampling schemes. Incremental estimation can be applied for both Eq. (1)

and Eq. (2) when solving a DSC problem, i.e., when ❉ ❂ ❢✉✐❣
◆
✐❂✶. In step ❦, we

estimate one point ✉ ✷ ❉ that maximizes the cost function based on the ❦ � ✶ points

estimated in previous iterations. This incremental estimation technique can be applied

to generate an approximate solution to a CSC problem, i.e., ❉ ❂ ❙
✷, by approximating

❙
✷ using a large number of uniformly distributed points. In practice, ✷✵✹✽✶ points from

a 7 order tessellation of the icosahedron are used. Incremental estimation can generate

reasonable solutions in seconds.

2.3 DSC via Mixed Integer Linear Programming (MILP)

Instead of incrementally estimating samples one by one, Mixed Integer Linear Pro-
gramming (MILP) can be used to estimate samples simultaneously. For ❉ ❂ ❢✉♥❣

◆
♥❂✶,

Eq. (1) can be solved using MILP in Eq. (3a) as follows:

♠❛①
②❀❢❤✐❣

◆
✐❂✶

② (3a)

s.t. ❛r❝❝♦s✭❥✉❚✐ ✉❥ ❥✮ ✕ ② � ✭✷� ❤✐ � ❤❥✮▼❀ ✽✐ ❃ ❥ (3b)

❞LB ✔ ② ✔ ❞UB✭✷❑✮ (3c)

◆❳
✐❂✶

❤✐ ❂ ❑❀ ❤✐ ❂ ✵❀ ✶❀ ✽✐ (3d)

where ❤✐ ❂ ✶ indicates that ✉✐ is selected as one of the ❑ points, ❞LB is the lower
bound of the covering radius, which can be set to 0 or the covering radius from an
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existing sampling scheme, ❞UB✭✷❑✮ ❂ ❛r❝❝♦s

r
✹� ❝s❝✷

✏
✙❑

✻✭❑�✶✮

✑
is the theoretical

upper bound of the covering radius for ✷❑ points on ❙✷ [8], and ▼ is the difference
between the maximal and minimal distances of any two points ✉✐❀✉❥ ✷ ❉, ✐ ✻❂ ❥. Note
that 1) after solving MILP, the solution of ②, denoted as ②✄, is the covering radius of the
selected ❑ samples; 2) the constraint in Eq. (3b) only takes effect when ❤✐ ❂ ❤❥ ❂ ✶,
and is automatically satisfied when ❤✐ ❂ ✵ or ❤❥ ❂ ✵, because the chosen ▼ is large

enough such that ❛r❝❝♦s✭❥✉❚✐ ✉❥ ❥✮ ✕ ✵ ✕ ②✄ � ✭✷ � ❤✐ � ❤❥✮▼ when ❤✐ ✰ ❤❥ ✔ ✶.
Similarly, Eq. (2) can be solved using MILP in Eq. (4a) as follows:

♠❛①
❢②s❣❀❢❤s❀✐❣

✇❙
�✶

❙❳
s❂✶

②s ✰ ✭✶� ✇✮②✵ (4a)

s.t. ❛r❝❝♦s✭❥✉❚✐ ✉❥ ❥✮ ✕ ②s � ✭✷� ❤s❀✐ � ❤s❀❥✮▼❀ ✽s❀ ✐ ❃ ❥ (4b)

❛r❝❝♦s✭❥✉❚✐ ✉❥ ❥✮ ✕ ②✵ � ✭✷� ❤s❀✐ � ❤s✵❀❥✮▼❀ ✽s❀ s✵❀ ✐ ❃ ❥ (4c)

❞LB❀s ✔ ②s ✔ ❞UB✭✷❑s✮❀ ✽s❀ ❞LB❀✵ ✔ ②✵ ✔ ❞UB✭✷
❙❳
✐❂✶

❑s✮ (4d)

◆❳
✐❂✶

❤s❀✐ ❂ ❑s❀ ✽s❀
❙❳
s❂✶

❤s❀✐ ✔ ✶❀ ✽✐❀ ❤s❀✐ ❂ ✵❀ ✶❀ ✽✐❀ s (4e)

where ❤s❀✐ ❂ ✶ indicates that ✉✐ is selected as one of the ❑s points on the s-th shell,

❞LB❀s and ❞UB✭✷❑s✮ are the lower and upper bounds of the covering radius on the s-th

shell, and ❞LB❀✵ and ❞UB✭✷
P❙

✐❂✶❑s✮ are the lower and upper bounds for the combined

shell with all points. Constraints in Eq. (4b) and Eq. (4c) are respectively for the first

and second terms in Eq. (4a).
P❙

s❂✶ ❤s❀✐ ✔ ✶ makes ✉✐ to be selected at most one shell

such that the estimated samples are staggered in different shells.

MILP problem can be solved using branch and bound method which iteratively

solves the relaxed LP program. In our implementation, we solve Eq. (3a) and Eq. (4a)

using GUROBI [9], which can obtain the global solution or at least a reasonable solution

within minutes for DSC. In practice, we progressively increase the lower bound ❞LB

based on the solutions estimated in previous iterations to find a better feasible solution

within 10 minutes which is good enough in experiments.

2.4 CSC via Riemannian Gradient Descent

When ❉ ❂ ❙
✷, Eq. (1) can be solved using a Riemannian gradient descent method. For

each iteration, we detect the pairs of points ❢✭✉♣✵ ❀✉♣✶✮❣ whose angular differences are
equal to the minimal angular difference computed from all point pairs. Noting that the
Euclidean gradient of function ❞✭❢✉❥❣

❑
❥❂✶✮ is

❅❞✭❢✉❥❣
❑
❥❂✶✮

❅✉✐
❂

✽❃❃❃❁
❃❃❃✿

�
P

♣✶

✶q
✶�✭✉❚♣✵

✉♣✶
✮✷

sign✭✉❚♣✵✉♣✶✮✉♣✶ if ✐ ❂ ♣✵

�
P

♣✵

✶q
✶�✭✉❚♣✵

✉♣✶✮✷
sign✭✉❚♣✵✉♣✶✮✉♣✵ if ✐ ❂ ♣✶

✵ if ✐ ✻✷ ❢♣✵❀ ♣✶❣

(5)

the Riemannian gradient for ✉✐ can be computed as [10]

r✉✐
❞✭❢✉❥❣✮ ❂

❅❞✭❢✉❥❣✮

❅✉✐
�

✒
✉
❚
✐

❅❞✭❢✉❥❣✮

❅✉✐

✓
✉✐✿ (6)
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Algorithm 1: CSC via Riemannian Gradient Descent

Input: Initialization ❢✉s❀✐❣
❑s
✐❂✶, s ❂ ✶❀ ✿✿✿❀ ❙.

Output: Refined ❢✉s❀✐❣
❑s
✐❂✶, s ❂ ✶❀ ✿✿✿❀ ❙.

❦ ❂ ✵, t✵ ❂ ✵✿✶, determine the set of point pairs P ✭❦✮ ❂ ❢✭✉♣s✵ ❀✉♣s✶✮❣
❙
s❂✵ that have

minimal distances in ❙ ✰ ✶ shells;

repeat

Record: P
✭❦✮
✵ ✥ P ✭❦✮;

repeat

Calculate Riemannian gradient vs❀✐❀ ✽s❀ ✐, using point-pair set P
✭❦✮
✵ and Eq. (6) ;

if ✽s❀ ✐, ❦vs❀✐❦ ✔ ✎ then break;

Choose step size t ✷ ✭✵❀ t✵❪ via inexact line search;

✉
✭❦✰✶✮
s❀✐ ❂ Exp

✉

✭❦✮
s❀✐

✏
t

vs❀✐

♠❛①s❀✐❢❦vs❀✐❦❣

✑
, ✽s❀ ✐ ;

Detect updated set P ✭❦✰✶✮ based on ❢✉
✭❦✰✶✮
s❀✐ ❣;

if P ✭❦✰✶✮ ✻✒ P
✭❦✮
✵ then P

✭❦✮
✵ ✥ P

✭❦✮
✵ ❬ P ✭❦✰✶✮;

until P ✭❦✰✶✮ ✒ P
✭❦✮
✵ ;

❦ ✥ ❦ ✰ ✶;

until Cost function does not change;

Then the gradient descent update is performed using

✉
✭❦✰✶✮
✐ ❂ Exp

✉

✭❦✮
✐

✒
t

r✉✐❞✭❢✉❥❣✮

♠❛①✐❢❦r✉✐❞✭❢✉❥❣✮❦❣

✓
❀ Exp

✉
✭v✮ ❂ ✉ ❝♦s ❦v❦✰

v

❦v❦
s✐♥ ❦v❦❀ (7)

where the largest norm of gradient vectors is used for normalization of all gradient

vectors, Exp
✉
✭v✮ is the exponential map [10] that maps the gradient vector v from the

tangent space of the unit sphere at ✉ to the unit sphere itself. Note that Riemannian

gradient descent is performed on all ❢✉✐❣
❑
✐❂✶ simultaneously. For the multi-shell case,

point pairs ❢✭✉♣s✵ ❀✉♣s✶✮❣ with minimal distances are detected from all ❙ shells and the

combined shell with all points. Then similar gradient descent is performed, taking the

gradient of Eq. (4a) as a summation of gradients from ❙ ✰ ✶ shells.

One important issue of the proposed Riemannian gradient descent method is that,

after each gradient descent, the set of point pairs ❢✭✉♣s✵ ❀✉♣s✶✮❣ with minimal distances

may change, and the cost function and its gradient, which depends on these pairs, may

also change. To solve this issue, in each iteration, we compare the updated set of point

pairs with the previous pair set before the one step gradient descent, and if the updated

pair set has some new pairs which are not in the previous pair set, then we re-perform

the gradient descent using the joint set of these two sets. See Algorithm 1 for imple-

mentation details. The algorithm is efficient and converges in seconds.

Since the optimization problem is highly non-convex, a good initialization is impor-

tant for a good solution. Initialization can be set as a set of random points, the solution

given by incremental estimation, or the solution given by MILP. Note that when using

MILP for the initialization, solving the CSC becomes slow when a large number of

points are involved. In practice, we apply MILP to ✸✷✶ points obtained from spheri-

cal tessellation and use the MILP solution as the initialization of the gradient descent

method for CSC.
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Table 1. Covering radii of multi-shell sampling schemes with number of samples ✷✽✂✸
and ✾✵ ✂ ✸ generated by various methods. Note that gEEM results for ✾✵ ✂ ✸ are not

available in [4], and EEM results from CAMINO are individually for each single shell

(the scheme with ✷✼✵ samples is not available).

Shell 1 (28) Shell 2 (28) Shell 3 (28) Combined (✷✽✂ ✸)

gEEM [4] ✷✷✿✷✍ ✷✷✿✷✍ ✷✷✿✵✍ ✶✸✿✷✍

Incr. gEEM [4] ✶✾✿✷✍ ✶✾✿✼✍ ✶✾✿✸✍ ✹✿✼✍

Incr. CSC (◆ ❂ ✷✵✹✽✶) ✷✶✿✸✍ ✶✾✿✸✍ ✷✶✿✶✍ ✶✵✿✺✍

MILP (◆ ❂ ✸✷✶) ✷✸✿✽✍ ✷✸✿✽✍ ✷✹✿✸✍ ✶✸✿✸✍

Incr. CSC + Grad. Desc. ✷✹✿✸✍ ✷✸✿✺✍ ✷✹✿✷✍ ✶✵✿✾✍

MILP + Grad. Desc. 25.7✍ 25.7✍ 25.4✍ 13.6✍

EEM (CAMINO) [1,2] ✷✺✿✼✍ ✷✺✿✼✍ ✷✺✿✼✍ ✶✺✿✻✍

Shell 1 (90) Shell 2 (90) Shell 3 (90) Combined (✾✵✂ ✸)

Incr. gEEM [4] ✶✵✿✽✍ ✶✵✿✸✍ ✶✵✿✺✍ ✷✿✹✍

Incr. CSC (◆ ❂ ✷✵✹✽✶) ✶✵✿✹✍ ✾✿✼✍ ✶✵✿✹✍ ✹✿✻✍

MILP (◆ ❂ ✸✷✶) ✶✸✿✸✍ ✶✸✿✺✍ ✶✸✿✸✍ 7.9✍

Incr. CSC + Grad. Desc. ✶✸✿✵✍ ✶✸✿✺✍ ✶✷✿✽✍ ✺✿✷✍

MILP + Grad. Desc. 14.6✍ 15.0✍ 14.8✍ ✼✿✺✍

EEM (CAMINO) [1,2] ✶✺✿✶✍ ✶✺✿✶✍ ✶✺✿✶✍ -

3 Experiments

Separation of Sampling Schemes. We evaluated the effectiveness of the proposed

multi-shell MILP-based DSC method in Eq. (4a) with ✇ ❂ ✶, by gauging whether it

can separate points on a set of samples into several subsets, keeping the points in each

subset as uniform as possible. We used the subsetpoints program in CAMINO

[1,2] for comparison, which performs the same task by using simulated annealing. For

this evaluation, we randomly mixed two sets of uniform points, one set consisting of ✽✶
points generated by spherical tessellation and the other set consisting of ✻✵ points from

CAMINO generated by EEM. Separation of these ✶✹✶ points into subsets respectively

with 81 and 60 samples should ideally give results that match the original uniform point

sets. Our method, which uses MILP, gave results that exactly match the original point

sets within 5 seconds. subsetpoints in CAMINO saves the result every hour when

it runs. It gave two incorrect points in each subset after running for 2 hours, 7 incorrect

points after 8 hours, and the correct result after 9 hours. Although the correct result had

been obtained, the program continued to run for hours until the simulated annealing

temperature was finally small enough.

Multi-Shell Angular Separation. We evaluated the effectiveness of the proposed

multi-shell DSC (MILP) and CSC (incremental estimation) methods in generating a

three shell sampling scheme, each shell consisting of❑ sampling points. We tested two

cases:❑ ❂ ✷✽ and❑ ❂ ✾✵. These two cases were used such that we could compare our

results with those given by gEEM and incremental gEEM [4]; results for ✷✽ points per

shell were reported in [4] and results for ✾✵ points per shell were utilized in the HCP.

MILP was used to select ❑ ✂ ✸ points from ✸✷✶ points given by spherical tessellation.

In incremental CSC, the selection was carried out using ✷✵✹✽✶ uniformly distributed
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Incr. gEEM (✹✿✼✍) Incr. CSC (✶✵✿✺✍) MILP + Grad. Desc. (13.6✍)

Fig. 1. Multi-shell sampling schemes with ✷✽ ✂ ✸ samples generated by three meth-

ods and their combined covering radii showed in Table 1. The colors differentiate the

sampling points from the three shells.

points. Gradient descent was then used to refine these results. In Table 1, the cover-

ing radii, i.e., the minimal angular differences, of these results were compared with

those given by gEEM and incremental gEEM [4]. The multi-shell results of gEEM with

❑ ❂ ✷✽ were extracted from [4]. The results of incremental gEEM with ❑ ❂ ✷✽❀ ✾✵,

which have been used in HCP, were obtained from the website 3 created for [4]. The

covering radii for single-shell results given by EEM in CAMINO are shown for ref-

erence. Fig. 1 visualizes the results with ❑ ❂ ✷✽ generated by incremental gEEM,

incremental CSC, and gradient descent with MILP initialization. Table 1 and Fig. 1

demonstrate clearly that the proposed MILP method and incremental CSC estimation

yield larger covering radii than gEEM and incremental gEEM in all three shells and

the combined shell containing all points. The proposed gradient descent method with

MILP initialization yields the best angular separation in the multi-shell case, and its re-

sults are comparable with the single-shell results given by EEM in CAMINO, although

the optimization was done with respect to all shells.

Rotational Invariance in Reconstruction. We tested the multi-shell sampling schemes

with ✷✽ ✂ ✸ samples in Table 1 on whether they give consistent reconstruction re-

sults for the synthetic signals generated by rotated models. A mixture of tensor model

was used: ❊✭q✉✮ ❂ ✵✿✺ ❡①♣✭�q✷✉❚❉✶✉✮ ✰ ✵✿✺ ❡①♣✭�q✷✉❚❉✷✉✮, where ❜ ❂ q✷ ❂
✶✵✵✵❀ ✷✵✵✵❀ ✸✵✵✵ s❂mm✷, and the two tensors ❉✶, ❉✷ have the same eigenvalues

❬✶✿✼❀ ✵✿✷❀ ✵✿✷❪ ✂ ✶✵�✸ mm✷❂s and have a crossing angle of ✻✵✍. This signal generation

is repeated ✷✵✹✽✶ times by rotating the model according to ✷✵✹✽✶ uniformly distributed

directions generated by spherical tessellation. We performed Spherical Polar Fourier

Imaging (SPFI) with spherical order ✻ and radial order ✷ [11] to estimate the EAP pro-

files with radius of ✶✺✖m, detected the peaks of the EAP profiles, and compared the

detected peaks with the ground-truth fiber directions in these ✷✵✹✽✶ tests. The means

and standard deviations are shown in Table 2. Note that we have omitted the results

for gEEM because the algorithm is not publicly available. It is clear from the table that

the proposed methods yield significantly lower mean angular differences (paired t-test,

♣ ❁ ✵✿✵✵✶) with lower standard deviations than incremental gEEM. Similar to Table 1,

gradient descent with MILP initialization gives the best result.

3 http://www.emmanuelcaruyer.com/q-space-sampling.php

http://www.emmanuelcaruyer.com/q-space-sampling.php
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Table 2. Angular differences between estimated and ground-truth fiber directions for

the sampling schemes generated by different methods.

Incr. CSC Incr. CSC + Grad. Desc. MILP MILP + Grad. Desc. Incr. gEEM

Angular
✶✿✹✹✍ ✝ ✵✿✻✾✍ ✶✿✹✵✍ ✝ ✵✿✻✾✍ ✶✿✸✵✍ ✝ ✵✿✻✽✍ 1.29✍ ✝ 0.68✍ ✶✿✼✷✍ ✝ ✵✿✼✾✍

Difference

4 Conclusion

To our knowledge, this is the first work on designing single-/multi-shell sampling

schemes using continuous spherical code (CSC) and discrete spherical code (DSC) for-

mulations. We propose an incremental estimation method for both CSC and DSC, a

mixed-integer linear programming (MILP) method for DSC, and a Riemannian gradi-

ent descent method for CSC. The experimental results showed that, compared with the

gEEM method and its incremental variant that has been used in the HCP, the sampling

schemes by the proposed gradient descent with MILP initialization and incremental

CSC yield larger covering radius and better rotation invariance.
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