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Single and Multiple Shell Sampling Design in dM RI Using Spherical code and Mixed Integer Linear Programming
Jian Cheny Pew-Thian Yah and Dinggang Shén
"University of North Carolina at Chapel Hill, chapel Hill, NC, United States

Introduction. Sampling scheme is crucial in diffusion MRI data asijigin and reconstruction. A good sampling scheme caairogood reconstruction results with
less number of samples in diffusion g-space. It has beeveshhat for the diffusion data obtained from sirghell (single b value), the uniform sampling scheme has
good performance in a general case because it does noteaagreferred direction. In last decade, two kindsdgbrm single shell sampling schemes are widely used
in diffusion MRI field, i.e. the sphere tessellatiamdaelectrostatic energy minimization introduced inRINby Joned. However sphere tessellation cannot handle
arbitrary number of samples, and electrostatic energymization lacks its physical meaning related to recanttns in dMRI. It is still unclear that why electrogtat
energy matters in diffusion data reconstruction? We tispsamples in sphere have large angular differeratetbat the‘angular resolutiohin reconstruction can be
as large as possible, so mathematically a more natugaiswia define a uniform sampling schemg}{such that the minimal angular difference can be aszlagy
possible, which is essentially the Spherical Code (S6hlenf?. Some optimal configurations for sphese for different numbeiK have been collected in [3].
Although the solutions in [3] can be directly useddMRI, they have two main limitations. 1) They are &imgle sphere, not for multi-shell schemes. 2) For real
applications in dMRI, sometimes we need to find one orraesets of‘uniform” schemes from a given set of sampling scheme, which igltberetized SC problem.

In this paper, we propose a general Mixed Integerdrifgogramming (MILP) framework to desiganiform” sampling schemes for both single and multi-shell dMRI.
Although some recent works proposed to generalizedredtatic energy minimization

method to multi-shell casd, to our knowledgethis paper is the first work to design max min arccoé L|||Tu ) 1)

uniform single/multi-shell sampling scheme using SC fornrat {ull e = !

Theory: Single shell case. Given the numbekK, the SC problem is to find thk max y

samples in single shelluf} such tha the minimal distance is maximized. See Eq (1)). vt

The absolute value is used because in dMRI we wafur¢e the antipodal symmetric - @
constraint Note that the original SC problem assumes the searstaidd is the St. afCCO#(JiTUJ‘ Py- (Zh-h W, Vi>]j

continuous spher€. In dMRI we may need to search the solution from argiset of

samples with sizél. We formulate this problem asmixed integer linear programming d, <y<d,(2K), Zh K, h=01

as Eq (2), whereh; =1 means-th sample is chosemiy, (2K) is the theoretical upper o ub o

bound for X samples given in [1H, is an lower bound which can be chosen by some 3)

} @w ) min arccgsfu, |
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prior knowledge or any feasible solution. M is thefeté#nce between the maximal ma>D<W z m|n arcco$(1SI i
distance and the minimal distance of any two paiandu; , such that the inequality (e
constraint holds if and only if boikth andj-th samples are chosen. This problem can pe

solved by GUROBI or other software. Please note thatdbtained solution of this maxw-—- Zys+ (=w)y,
discretized SC problem can be used as an initializatfche continuous SC problem vl Ny 'S
Any local search method can be used to improve théi@olim the continuous domain. st. arccostu ~_(2h —-h Yisi Vs 4
Theory: Multi-shell case. The above discretized SC method for single shell can|be ~ #(J' ‘ PY— (Zh=h, M Iy @
generalized to multi-shell case, by defining the ¢asttion as Eq. (3), where there arg arccos‘(fu-‘ BY.- (2h,-h, M Vi>j YsVs

i s i !

Nsshells, and every shell h&sdifferent directions from the givert K directions By
considering all directions in different single shellsaawhole shell, we can maximizeg
the angular resolution between shells, thug the compromise weight between th
single shell term and the multi-shell term. Similarly wigh (1), Eq (3) also can be
transformed to a mixed integer linear programming mmbin Eq (4), wheré;.=1 =
means directiony; is chosen bg-th shell. Compared to Eq (2), Eq(4) incorporates some Zmi <1,
constrains to avoid ambiguity between shells. Notedtiabugh the solution of Eq (4)

dlbs—y<dub(2K) IbO—yOSdub ZZK
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is from a given discrete set of directions, it can be used a

an initialization to obtain better solution in contbus Shell 1 (28)| Shell 2 (28)| Shell 3 (28)| Global (84)
multi-shells. The formulation (4) can be also used fpr [4] (search fron&?) 22.2 22.2 22.0 13.2
single shell scheme to separate a given single shell [4] (incremental) 19.2 19.7 19.3 4.7
sampling scheme into several parts, as the tpol MILP (search from 321 directions) 23.8° 23.8° 24.3° 133
subsetpoints in CAMINO [Sjwhich is very slow because| Incremental learning (from 20482 direction 19.2 21.3 21.1° 10.5
the simulated-annealing is usdfl w=1, these separate

parts have no angular exclusion.

Theory: Solve mixed integer linear programming (MILP). Note that although in general the MILP problem is NRihiaican be solved using branch and cut method
to iteratively solve the relaxed LP prograviie use GUROBI® to solve Eq (3) and (4). In our experiments, we fothed GUROBI can solve the proposed MILP
problem efficiently to obtain a feasible solutioné@ss$ than 10 minuteand in some cases it stops with the global solution imib@ites, but in some other cases it may
take a long time to obtain the global solution. ftagtice, we iteratively increase the lower bodndo find a feasible solution obtained in 10 minufdse experiments
showed that the feasible solution in 10 minutes is goodgh.

Theory: Incremental configuration estimation. Similarly with [4], both Eq (1) and Eq (3) can be solved greedily usiogemental strategy. We can first pick one
direction, and then in each step incrementally chtos@ext one direction from the remaining candidatesaximize the cost functions, which is extremely fast.
Experiments. Separation one subset into several subsets. We randomly mixed two uniformly directions, where éadrom sphere tessellation of 81 directions and
the other one is 60 directions in CAMINO based on sdstatic energy minimization. We performed subsetpom@AMINO and Eq (4) wittw=1 to separate the 141
directions into two sets with 60 and 81 directions. £goptained the global solution which is the same agritvend truth within 5 seconds. However after onerhou
the solution by CAMINO still detects 25 wrong direcsomithin the 60 directions.

Experiments. Schemes for multi-shell case. We test the algorithm Eq (4) and its incremental estonat generate multi-shell sampling with 3 shells, 28ctivas
per shell. MILP Eq (4) selects 28x3 directions from 88iform directions of sphere tessellation, and the mergal learning selects them from 20482 directions. The
minimal angles between directions in the results casdem in Table 1. Table 1 also shows the results fromwdgre the result of multi-shell scheme using
electrostatic energy minimization is directly copieohfi the table in [4], and the result of incrementatriéng is from the website of the author of [4]. Indze seen
that our MILP method and its incremental estimatiotaioied larger separation angle for all three singdéishnd the global shell including all directions,

Conclusion: We propose a general mixed integer linear programriiagework to design single/multi-shell sampling schemes for dMiRbutperforms the
stateef-the-art methods in CAMINO and [4]. To our knowledigés the first work in dMRI to design sampling schemes by miing the minimal angle. Please note
that the estimated configurations from discrete set cam®ved by local search in the continuous spher&hnib our future work.

Reference: [1] Jones DK, Optimal strategies for measuring diffusion inarapic systems by magnetic resonance imaging, MRM 199@i2} mathworld.wolfram.com/SphericalCode.html
[3] http://www2.research.att.com/~njas/packingg/Caruyer E, Design of multishell sampling schemes with unifmowerage in diffusion MRI, MRM 2013. [5] Cook PA, Camino:
Open-Source Diffusion-MRI Reconstruction and Processing, I8N2B06 [6] http://www.gurobi.com/
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