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ABSTRACT

Recently, the processing of non-sinusoidal signals, onddex-
tures, has become an important topic in various areas. largen
the transformation is done by the phase vocoder techni@iese

the phase vocoder technique is based on a sinusoidal mtslel, i

performance is not satisfying when applied to transforrmsgldax-
tures. The following article investigates into the problesing as
example the most basic non-sinusoidal sounds, that are Bigjs

nals. We demonstrate the problems that arise when timelstret
ing noise with the phase vocoder, provide a description ofeso
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posed a parametrized model, adapted from [8] and which chara
terizes target sound texture with high order statistics @rdela-
tion between subband envelopes. An algorithm is proposédsin
article to convert Gaussian noise into different targetitess.

To manipulate sounds, such as time stretching or transposi-

tion, using phase vocodet[1]I[2Z]I[3] is a common approactaseh
vocoder could stretch a signal while preserving it's enpeland
naturality of transient[11][[12]([13]. With phase vocodene
could perform a large factor stretching which still yieldeatural
result. While the theory basis of phase vocoder works welsfo

nusoidal signal, it's not suitable for sound textures. Bisesof the
constraint of phase continuity could no longer be used inese
output phases. To stretch a sound texture with phase voamuker
must maintain perceptive important properties of the textlur-
ing the stretching.

In this article, we try to resolve the properties being cleghg
during the transformation. In order to aim the phenomenon ap
peared during the process, the time stretching of white Sans
noise is used. Since Gaussian noise exploits independéonny a
both time and frequency axes, it introduces no extra depeyde
In present time, there exist many algorithms that have been d O the analysis frames. With this simplified case, we fourad itfs
veloped to achieve high quality transformation of soundsese ~ Crucial to compensate the change of temporal correlatiomglu
state-of-the-art algorithms mainly focused on sinuscsdainds[1] the time stretchlng transformatlon. A prlmlt[ve algorithsngiven
[2] [8] [Z]. Such as instruments and tonal sounds. While the tO correct the distortion of temporal correfation. . .
properties of sinusoidal sounds are well-researchedge lelass The paper is organized as follows: section 1 describesquisvi
of sounds cannot be dealed with the way dealing with sinasoid Works on the sound texture parametrization and the issuesian
sounds. These sounds often driven by a stochastic procesy. T tered when applying phase vocoder to sound texture. Segtion
often calledsound textures. lists the perceptually important statistical propertiesaund tex-

Sound textures are common in the environment. They could betures. Section 3 formulates the time stretching procedtte w
either natural of artificial. For example, the sounds of wihaiv- phase vocoder and correct the result with iterative apjesc
ing and rain dropping are natural textures, and the noisevic: S_ectlon 4 condut_:ts an experiment of the correction. Sedion
and the sound of train passing are artificial. Although tiseme gives the conclusion and future prospective.
clear definition of sound textuf€[5], this class of soundsmex-
ploits certain stable structure over a time period. Thecttine can
be described by a series of statistic properties. Thereoane slif-
ferent approaches dealing with sound textures. For exar@plat-
Arnaud[5] proposed an analysis/synthesis scheme whidcdbas
atomic features in sound textures, Hahna[6] used randahsize
nusoids to synthesize stochastic noises. Schiwarz[7] pezpa
descriptor-driven, corpus-based approach to synthesiredstex-
tures. But to enable the further analysis, synthesis andpulan
tion of sound textures, a parametrized modeling which dessa
texture with a set of statistical properties is desired.tlately,
some previous works on parametrization has been done for im-
age textures, Portilla[8] proposed a texture model basethen
statistics of wavelet coefficients. Bruna[9] proposed a nawelet
transform which provides a better view for textures whilptoa
ing high-order statistics. For sound textures, McDerrid@ftjpro-

relevant statistical properties of the time frequency espntation
of noise and introduce an algorithm that allows to presenesd
statistical properties when time stretching noise with phase
vocoder. The resulting algorithm significantly improves ther-
ceptual quality of the time stretched noise signals andetbes it
is seen as a promising first step towards an algorithm fostoan
mation of sound textures.

1. INTRODUCTION

2. PROPERTIESOF SOUND TEXTURES

According to Julesz’s conjecture[14] and portilla’s w@k[ the
perceptually important properties of a texture can be dwsdrin
statistical features. In Mcdermott’s wark[10], it suggetitat the
perceptually important properties of sound texture coddbim-
marized in three categoriesmarginal statistics, frequency corre-
lation andtemporal correlation. These properties are further de-
scribed in the following subsections:

2.1. Marginal Statistics

Marginal statistics are the statistical moments of the tspkcoef-
ficients in different time points or different subbands. Wigb the

DAFX-1


file:www.ircam.fr
mailto:wliao@ircam.fr
http://scream.csie.ncku.edu.tw/
mailto:alvinsu@mail.ncku.edu.tw

Proc. of the 15™ Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

usage of higher orders are possible, the first four momeatssad
to form the marginal statistics in common caseés [8].

2.2. Frequency Correlation

In general, frequency correlation means the cross-cdioal&e-
tween different frequency components. These componentbea
simply coefficients, subbands, or features of subbandsxam-
ple, the envelope of cochlear bands[15]I[10]. Moreover[1@i] [
each subband is further filtered by a modulation filterbank,the
cross-correlation of the modulation bands are evaluated.

2.3. Temporal Correlation

Temporal correlation refers to the autocorrelation of adiency
component along time axis. It can be the autocorrelationTéfis
coefficients[16] or the autocorrelation of a temporal featut is
also the most important property when performing time shieig
by phase vocoder. The detail is described in sefion 3.

3. TIME STRETCHING GAUSSIAN NOISES

To investigate the problem encountered during the stnegchf
Gaussian by the phase vocoder, the formulation of phasedeoco
must be described. The transformation procedure of phaseieo
consists of analysis, modification and resyntheésis[[i1]B2] The
analysis step first applies STFT to the input signal, theoceed
modification in the spectral domain, and last, the resyighiss

—j2mnky
N

Csahr)satha) = Y s(m)w(n — a)e

n

*Z s(n)w(n — B)e —PR

n

(4)

The equation in[{4) can be used to calculate the correlation i
both time and frequency directions. Let the term§ln (4) Heroa
vectors, replace the window functiam(n — 1) by w;, ande ™ i
by €%, @) can be rearranged into the summation of element-wise
product(Hadamard product) of outer product matrices:

(s wo-eh)(s - ws - e)T (5)
—T
> st waw - eiel? (6)

Equation [[6) consists of three parts, the outer produc, of
shifted outer product ofv, and the outer product betwe«a{;‘JJ1
ande}?. In fact, the latter two terms form the shape of a Gabor
filter[I9]. The correlation respect to a direction is equabpply
the corresponding Gabor filter to the outer product matrix. of

Csa(k1),55 (k)

Since the stretching is done by moving the center of analy-
sis frames to new positions, their relative distances ireteme
changed. Therefore the temporal correlation between Hrads
would no longer correct. It can be seen frdrh (6) moving the po

done by inverse STFT and overlap-and-add. Assuming a givensition of frames affects only the second temmn,w}. Assumings

input signals, along with a window functionv and the size of
Fourier transformV. Then the analysis fram&; which centered
at time pointl can be written as:

—j2nnk
N

Su(k) = s(n)w(n — e

During the transformation, the coefficients$fmay be mod-
ified as well as the centering positiérmight be moved[[17]13]
[I1]. If f(1) is the function of the modified center 6§, then the

resynthesis procedure can be written as:

- 3504

2n w(n — f(D)s'(n)
o w(n = f(1)

If inconsistency happens between overlapping frarfiés,ut3) o
puts the signal with the least square error respect to thregmond-
ing analysis frame$118]. If we stretch a Gaussian nakd3Land
assign the phase of each frame as the way processing sialisoid
signal, one would find that the noise component disappeared i
the resynthesized signal. In fact, short distorted sirdssuiill be
perceived in the resynthesized signal. In this case, theephad
the time position of analysis frames are modified during time t
stretching transformation. While the amplitude of the Gioefts
is unmodified, the marginal statistics of analysis framesaia
the same. Therefore, the possible variation of correldi&tween
STFT coefficients is investigated.

@)

2wnk

)

8(n) = @)

The correlation between two STFT coefficients in the analysi
frames is the inner product between one coefficient and ttre co
plex conjugate of the other. By usirg (1), the correlation is
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is time-invariant and independentdg Ls is the Iength ofs. The
estimated temporal correlation of STFT coefficients can hittem
as the form of complex autocorrelation function in time:

As(k,0) = Ls - 3 Elss" ek @)

The autocorrelation of analysis frameslIh (7) shouldiRérk, dl)
after time stretching. As one could see, even lias no innate
autocorrelation £[ss”] = 1), there still exists autocorrelation be-
tween the coefficients of STFT frames at the same bin indeichwh
is induced bywawg. Originally, the autocorrelation introduced
by the analysis window would be canceled after resynthéis.
since the position of analysis frames are moved, the caatiell
fails. Fig[d shows the difference of autocorrelation fimetof a
Gaussian noise before and after a time stretching of factaiti2
an ordinary phase vocoder. Also, in Elg.1, the autocoiieas
not exactly stretched by twice in time. This is because thesgh
compensation in phase vocoder cannot fix the autocorrelafia
noise correctly.

] - wow/

To compensate the change of correlation, the coefficients of
S;(k) must be altered to make their autocorrelation approaches
As(k,dl). The optimization which proposed inl[8] is applied. Let
T(l") = As(k,dl) and the maximum lag i&, we could have:

1T(1) — As(k, )| (8)

X

— As(k, 1)) (si—1(k) + siti(k)) (9)

L
= 2

.

83, Xl:

Apply the gradient projection mentioned iiri [8], we could &éav
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Figure 1: The change of temporal correlation before(thiakds
line) and after(thin dotted line) phase vocoder stretcliing=
64, —11.6 < timelag < 11.6)

SE) = silk)+ SO E)s) (si1(k) + sea(K)) (10)
1
si(k) = si(k)® h(i,k) (11)

h(i, k) in (@) is a zero-phase filter function with length
There areN/2 different filters for bin indices betweeh N/2,
while the other half are the complex conjugates. At last, & u
the algorithm in[[20] to solve the coefficients of the filters.

4. EXPERIMENT

To verify the result of section 3, an experiment is conducted
this experiment, we perform the time stretching on a randem g
erated Gaussian noise. Since the marginal statistics audrap
correlation are unaffected by time stretching, only thepgeral
correlation has to be corrected after the transformatidme first
step is the ordinary phase vocoder analysidas (1). Therothe f
lowing step corrects temporal correlation for each fregyerins
respecting to the stretch factor. The resynthesis is doff@a$he
estimation of target autocorrelation follovig (7), afgss’] is re-

placed byo?I due to the nature of Gaussian noise. The detaile

configuration is listed below:

e original signal : Gaussian noise (1 sec).
sampling rate : 44.1khz

e stretching factor : 3.0

e hop size of input frame : 16

e size of Fourier transform : 256

e maximum lag of correlation : 64

The error of temporal correlation for each frequency birobefind
after correction is shown in F[g.2. In most of the frequeniyshp
the error is lower than 48dB, through a better correction staly

exist. The spectrogram of the Gaussian noise is shown iBlFig.

In the spectrogram of 'stretched w/o correction’, the ep@fthe
spectrogram is not uniformly distributed. Both frequenoynpo-

A possible reason is that the phase coherence is not coedider
the correction of temporal correlation. If so, certain domst has
to be applied to the correction mechanism.

Error of Correlation(dB)

Frequency Bin

Figure 2: The error of temporal correlation before(solite)i and
after(dotted line) the correction.
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Figure 3: The spectrogram of original signal, stretched g0
rection, stretched with correction

5. CONCLUSION

With a proper parametrized model and proper modificatioasph
vocoder could be applied to non-sinusoidal signals. In pais

nents and the gaps between them tend to persist longer in timeper, we investigated the variation of temporal correlatioming

thus making the sound more sinusoidal and resulting pexoksv
artifacts such as short pitches. After the correction idiagpthe
intensity of short sinusoids are mitigated, thus reducheydrfe-

the time stretching process on a Gaussian noise by phasdemco
From this simplified case, we found that the variation willays
in place regardless the innate correlation of the signatoAthe

facts. The sound files could be found énl[21]. The difference variation in the temporal correlation is perceptually figant.

between the sounds is perceivable, but still not perfecis frtay
due to the temporal correlation was distorted after thentb®gis.

Therefore, to achieve a successful time stretching, it cessary
to correct temporal correlation respect to the stretchéogofr and
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analysis window. The temporal correlation function can be o
tained by estimation under different stretch ratio. Cuttyerthe
correction procedure is done iteratively, but it's likelyat there
exists a non-iterative solution. However, this correctitmes not
include the correction of correlation induced by the sigteg|f
and the correction of correlation is not perfect. The digtg¥rom

(13]

(14]

the streching of Gaussian could be served as the basis ofajene [15]

sound texture transformation. This could lead to varioyslieg-
tions like non-uniform stretching, texture morphing andapaet-
ric texture synthesizing. The future work includes considgthe
general sound texture and seek an efficient mechanism tectorr
statistical properties during the transformation by phasmder.
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