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ABSTRACT

Sound textures are often noisy and chaotic. The processing of

these sounds must be based on the statistics of its corresponding

time-frequency representation. In order to transform sound tex-

tures with existing mechanisms, a statistical model based on the

STFT representation is favored. In this article, the relation be-

tween statistics of a sound texture and its time-frequency repre-

sentation is explored. We proposed an algorithm to extract and

modify the statistical properties of a sound texture based on its

STFT representation. It allows us to extract the statistical model

of a sound texture and resynthesise the sound texture after modi-

fications have been made. It could also be used to generate new

samples of the sound texture from a given sample. The results of

the experiment show that the algorithm is capable of generating

high quality sounds from an extracted model. This result could

serve as a basis for transformations like morphing or high-level

control of sound textures.

1. INTRODUCTION

Environmental sounds such as wind, rain or crowd noises are com-

mon in our daily life. In contrast to instrumental sounds, these

sounds are often inharmonic, chaotic and possess stronger noise

components. They are often known as sound textures.

Recently, sound texture processing has become more impor-

tant in the entertainment industry and various other areas. High

quality sound texture transformations are essential for work in these

fields. State-of-the-art algorithms are capable of achieving high-

quality transformations with sinusoidal sounds[1] [2] [3] [4], while

preserving the envelope and naturality of transients [5] [6] [7].

However, these algorithms yield less satisfying results when ap-

plied to sound textures. The underlying reason is that sound tex-

tures do not fit the common assumptions of most state-of-the-art

algorithms, such as harmonicity and sinusoidality.

Sound textures are often driven by a stochastic process. They

usually exhibit some type of structure over a moderate time pe-

riod. Julesz’s conjecture[8] and [9] suggests that the structure can

usually be described by a series of statistical properties. More-

over, in [10] and [11], it is stated that humans distinguish be-

tween sound textures based on their statistical properties. Based on

these assumptions, it is possible to establish a parametrized model

which describes a sound texture using a set of statistical properties.

This model will allow the analysis, synthesis and transformation of

sound textures.

There are several previous works on sound textures. Saint-

Arnaud[12] proposed an analysis/synthesis scheme based on mod-

eling the atomic events in sound textures. In [13], stochastic noises

are synthesized with randomized sinusoids. Schwarz[14] proposed

a descriptor-driven, corpus-based approach to synthesize sound

textures. In addition, several parametric models have been pro-

posed for image textures. For example, Portilla[9] proposed a tex-

ture model based on the statistics of wavelet coefficients. Bruna[15]

proposed a new wavelet transform which provides a better view of

textures while capturing high-order statistics. For sound textures,

McDermott[10] proposed a parametrized model, adapted from [9],

which characterizes target sound textures with high order statistics

and correlation between subband envelopes. In his article, statisti-

cal properties are applied to Gaussian noises to generate different

sound textures.

A common approach of signal processing is to use the STFT

(Short Time Fourier Transform) representation. The idea is to use

STFT to obtain the time-frequency representation of the signal and

apply the transformation. However, conventional transformation

techniques, such as phase vocoder, cannot be applied to sound

textures[16]. To apply transformations to a sound texture over its

STFT representation, a statistical model based on the signal’s time-

frequency representation is required. Also, establishing a model

based on the STFT representation can allow us to utilize existing

efficient implementations of DFT.

In this article, we would like to propose a model which can

be used to analyse and synthesise sound textures. It’s based on

the statistics of time-frequency representations of sound textures.

From the model, one could generate new samples of the input tex-

ture. It could serve as a basis for high-level transformations of

sound textures. An experiment has been conducted to investigate

the quality of sound generated from the model.

The paper is organized as follows: The first section describes

the present state of sound texture processing and the importance

of establishing a statistical model. The second section discusses

perceptually important statistics of sound textures and the set of

properties to be used in the model. The third section describes the

process of modeling a sample texture and resynthesising it with
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the resulting model. The fourth section is an experiment of texture

generation with the model. The fifth section are the conclusion and

future works.

2. SOUND TEXTURE STATISTICS

Mcdermott’s work[10] suggests that a proper model of a sound

texture is composed of the statistical properties of individual sub-

band signals. These subband signals can be formed from the time-

frequency representation of the original signal. Furthermore, from

his experiment, we know that the perceptually important statistical

properties can be summarized into three categories : Subband Mo-

ments, Temporal Correlation and Spectral Correlation.

Subband Moments

Subband moments are the statistical moments of the spectral

coefficients of subbands. They describe the shape of the histogram

of a subband signal.

Temporal Correlation

Temporal correlation refers to the autocorrelation of a subband

signal. It can be characterized by the autocorrelation function.

Spectral Correlation

Spectral correlation means the cross-correlation between dif-

ferent subband signals.

While the autocorrelation function and cross-correlation char-

acterize the horizontal and vertical relationships in the time-frequency

representation, slant relationships should also be considered. This

can be characterized by the delayed cross-correlation, which is the

cross-correlation function. As such, the three categories could be

summarized in two, where moments characterize the property of

one subband signal, and correlation functions characterize the re-

lationships between subband signals in all directions.

Here, the proposed model uses STFT as the underlying time-

frequency representation. Each bin of the STFT representation is

treated as a single subband, and the coefficients of each subband

form the subband signal. Since humans mainly perceive envelope

statistics[10], the statistics of the subband signals and their en-

velopes are both included. In order to establish a model which con-

tains all the statistics from the categories described above, the fol-

lowing statistics are included: the first four subband moments, the

auto-correlation function of each subband, and the cross-correlation

function of each pair of subbands.

3. MODELING SOUND TEXTURES

In this section we describe the proposed modeling mechanism.

The first subsection describes the process by which we extracts

the model from a given sound texture. The second subsection de-

scribes how to apply the model to a STFT representation and the

steps to follow to resynthesize sounds.

3.1. Model Extraction

Assume a given input signal x, along with a window function w,

hop size h and the size of Fourier transform N . Applying STFT to

the signal will obtain the analysis frames. The analysis frame Xl

which is centered at time point l is:

Xl(k) =
∑

t

x(t)w(t− lh)e
−j2πtk

N (1)

These analysis frames Xl form the STFT representation. Thus,

the subband signals are formed as:

Sk(n) = Xn(k)e
j2πlhk

N (2)

In (2), a demodulation term is applied to remove the carrier

frequency in each subband. The carrier frequency is introduced by

the STFT and will affect the evaluation of correlation functions.

Next, we extract the envelope E of the subband signal, which can

be done by any envelope extraction algorithm. One could also use

the amplitude of the subband signal for simplicity.

Ek(n) = envelope(Sk(n)) (3)

At last, statistics are evaluated for every Sk and Ek. Here, only

the moments of the envelopes Ek are evaluated. This is because

currently we have not yet found a proper way to define complex

moments for the proposed model. Finally, the extracted model Φ
of the input texture can be written as:

Φ ≡ {AS , CSS ,ME , AE , CEE} (4)

ASk
(l) = {

∑

t

Sk(t)Sk(t+ l)} (5)

CSxSy (l) = {
∑

t

Sx(t)Sy(t+ l)} (6)

MEk
= {µ1(Ek), µ2(Ek), η(Ek), κ(Ek)} (7)

AEk
(l) = {

∑

t

Ek(t)Ek(t+ l)} (8)

CExEy (l) = {
∑

t

Ex(t)Ey(t+ l)} (9)

In (4), A denotes the autocorrelation function, C denotes the

cross-correlation function and M denotes the first four moments,

namely mean, variance, skewness and kurtosis. Where mean and

variance are central moments, skewness and kurtosis are normal-

ized central moments. After the model has been extracted, cer-

tain transformations could be applied to it. For example, time-

stretching is equal to stretching the autocorrelation and cross-correlation

functions.

3.2. Texture Resynthesis

Sound textures can be generated from the model extracted in the

previous subsection. The idea is to apply the statistical proper-

ties to a randomized STFT representation. Usually, it requires im-

mense iterative computation to estimate the output signal. How-

ever, this can be avoided by utilizing the relationship between the

correlation and the spectrum.

3.2.1. Applying autocorrelation

To apply the autocorrelation functions, we could use the Wiener-

Khinchin theorem. It suggests that the amplitude spectrum of a

signal is also the spectrum of its auto-correlation function.

F(As) = F(s(t) ∗ s(−t)) = |F(s)|2 (10)
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That is, we can assign any autocorrelation function to a sub-

band signal by constraining its amplitude spectrum. To avoid cir-

cular aliasing, a Fourier transform with twice the length of the au-

tocorrelation function is used when calculating the spectrum of

the subband signal. This introduces a windowing effect to the sig-

nal. We use Griffin Lim’s[17] technique to re-establish the window

shape after the inversion.

3.2.2. Applying cross-correlation

The cross-correlation functions can be dealt with in a similar fash-

ion. Here we introduce an extension of (10), the cross-correlation

theorem:

F(Cx,y) = F(x(t) ∗ y(−t))

= F(x(t))F(y(t))

= |X(k)||Y (k)|ej(θ(X(k))−θ(Y (k)))
(11)

Equation (11) can be rewritten as:

θ(
F(Cx,y)

|X(k)||Y (k)|
) = θ(X(k))− θ(Y (k)) (12)

Since we already constrained the amplitude spectrum by (10),

we could control the cross-correlation function between x and y by

adjusting their phase differences without affecting the autocorrela-

tion functions. To establish full cross-correlation across all sub-

band signals, choose one subband signal as the starting point, ini-

tialize phases for the spectrum of the chosen subband signal, assign

phases to neighboring subbbands with the phase differences ex-

tracted from the original input texture, as in (12). Here we choose

the zeroth bin ,S0, as the starting point. Since S0 is real, the

phase of it’s spectrum must be Hermitian, that is, θ(FS0(k)) =
−θ(FS0(−k)).

3.2.3. Applying Moments

The moments only apply to envelopes. Since mean and variance

are already contained in the autocorrelation function, the remain-

ing moments are the skewness and kurtosis. A gradient descent

algorithm is used to apply the skewness and kurtosis, the detail of

which can be found in [9]. The following formula is used to apply

the moments to a signal x:

x
′ = x+ γ

∂f(x)

∂x
(13)

The target signal x′ can be obtained by solving γ with respect to

f(x′) = t. If there is no real root for γ, a real-value approximation

which is closest to the target value will be chosen. In (13), f is

either skewness or kurtosis, where
∂f(x)
∂x

is the derivative of the

moment function respected to x, and t is the target value of the

desired moment. For skewness η and kurtosis κ, their derivatives

with respect to x are:

∂η(x)

∂x
≡ x ◦ x− µ

1/2
2 (x)η(x)− µ2(x) (14)

∂κ(x)

∂x
≡ x ◦ x ◦ x− µ2(x)κ(x)x− µ3(x) (15)

With the gradient descent algorithm, we could apply the mo-

ments to the subband signals. Unfortunately, the gradient descent

algorithm would change the correlation functions of the subband

signals, so, an iterative approach is used to generate the target

STFT representation.

The whole resynthesis step is depicted in fig.1. It begins with

a randomly initialized STFT representation. Next, the STFT rep-

resentation is decomposed into the envelope part and the remain-

ing part. Envelope statistics {AE , CEE ,ME} are applied by the

methods described in previous sections. Then, reconstruct the

STFT representation by combining the modified envelope and the

remaining part, and apply the subband signal statistics {AS , CSS}
accordingly. If the iteration has converged or reached maximum

iteration number, output the STFT representation, otherwise, re-

peat the iteration process. At last, apply the remodulation, inverse

STFT and overlap-add to generate the resynthesized signal x̃:

x
′(n) =

∑

k

Sk(l)e
j2πk(n−lh)

N

x̃(n) =

∑
n w(n− lh)x′(n)∑

w2(n− lh)
(16)

Figure 1: The flow diagram of the resynthesis procedure

4. EXPERIMENT

To demonstrate the texture sound generated from the model, we

used some texture samples from [10]. Statistical models were ex-

tracted from the samples of sound textures, then new samples were

regenerated from the model. To generate a texture longer than the

original, the model is used twice and connected with overlap-and-

add. The discontinuation between generated blocks will be han-

dled in the future. The detailed configuration is listed below:

• number of samples : 6

• original signal : 16bit mono wav, 5-7 secs

• sampling rate : 20khz

• hop size of input frame : 16 samples

• size of Fourier transform : 256, hanning window

• generated sample length : 10-14 secs (2 times long)
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(a) Bubbling Water

(b) Insects In A Swamp

(c) Heavy Rain Falling And Dripping

(d) Bees

The generated sound samples can be found in [18]. From the

quality of generated sounds, we could see the proposed model is

capable of capturing most of the perceptually important features.

However, the iterative process is not guaranteed to converge to a

good solution, as the case of fig.2f. It may require more constraints

to improve the quality of the click sounds.

5. CONCLUSION

In this paper, we proposed a parametric statistical model based on

the STFT representation. It can be used to analyse and synthe-

sise sound textures and generate high quality sounds. Since it’s

based on the STFT, it could benefit from many existing related

implementations. Possible applications of this model are time-

stretching, texture morphing and providing high-level control of

sound textures. Integrating the model with the phase vocoder could

also be a future goal. The future works seek a way to apply all the

(e) Wind Whistling

(f) Rustling Papers

Figure 2: The spectrograms of original(left) and generated(right)

textures.

statistics at once (eliminating the iterative process), connect the

model with semantic controls and investigate an efficient way to

apply only specific parts of correlation functions.
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