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Abstract. Edge states are one important ingredient to understand transport

properties of graphene nanoribbons. We study experimentally the existence and

the internal structure of edge states under uniaxial strain of the three main edges:

zigzag, bearded, and armchair. The experiments are performed on artificial microwave

graphene flakes, where the wavefunctions are obtained by direct imaging. We show

that uniaxial strain can be used to manipulate the edge states: A single parameter

controls their existence and their spatial extension into the ribbon. By combining tight-

binding approach and topological arguments, we provide accurate description of our

experimental findings. A new type of zero-energy states appearing at the intersection

of two edges, namely corner states, are also observed and discussed.
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1. Introduction

Edge states play an essential role in condensed matter physics for both fundamental

aspects and electronic transport applications. Recently, due to their immunity against

disorder or impurities (absence of backscattering), topologically protected edge states

have raised interest in quantum spin Hall systems [1, 2, 3] as well as in topological

insulators [4, 5]. Edge states have been first predicted in graphene ribbons [6, 7, 8] and

later observed along “zigzag” edges [9, 10]. Although not strictly speaking topologically

protected, edge states in graphene possess a topological origin coined by the Zak phase

and remain robust against weak chiral symmetry perturbations [11, 12].

These peculiar features are due to the multicomponent (spinorial) structure of the

wavefunction. While for scalar wavefunctions (like for free particles in a box), hard

wall boundary conditions impose the vanishing of the wavefunction at the edges, for a

two-component wavefunction only one component has to vanish, leaving the possibility

of a finite amplitude for the other component. In graphene, the two components are

simply the amplitudes of the wavefunction on each of the two atoms of the bipartite

honeycomb lattice.

The richness of edge-state physics is not limited to condensed matter. Any

finite system characterized by multi-component wavefunctions can constitute a good

candidate. Over the past few years, pertinent realizations of artificial graphene have

emerged in various contexts such as 2D electron gases in molecular assemblies [13] or in

nanopatterned semiconductors [14], ultracold atoms in optical lattices [15], polaritons

in semiconductor microcavities [16] as well as light and microwaves in photonic

crystals [17, 18, 19, 20] (see [21] for a recent review). The main advantages of these

analogue systems lie in their high tunability and the control of their lattice properties.

The synthetic honeycomb lattices offer the possibility to investigate phenomena that

are hardly reachable in genuine graphene, and more particularly those appearing at the

edges. For instance, edge states at bearded terminations (not stable in real graphene)

have been first observed in photonic lattices [22]. As pointed out in [23, 24], the

manipulation and control of edge states may lead to promising photonic applications.

Moreover, graphene band structure, and consequently transport properties, can be

engineered via lattice strain [25, 26, 27, 28, 29]. While not observable in the realm

of genuine graphene, bandgap opening and associated topological phase transition, in

uniaxial strain honeycomb structures, as well as pseudo-magnetic field creation via

inhomogeneous strain, have been observed in various artificial systems [13, 15, 17, 20, 30].

In this paper, we propose an experimental manipulation of edge state properties

by controlling a uniaxial strain. We use a photonic implementation of honeycomb

lattice in the microwave regime [20, 31]. Fig. 1(a) shows a realization of an artificial

graphene ribbon exhibiting the three usual types of edges, namely zigzag, bearded and

armchair. The sites of the lattice are occupied by dielectric microwave resonators with

a cylindrical shape (diameter of 8 mm, height of 5 mm). The resonance frequency of an

isolated resonator ν0 is around 6.65GHz and corresponds to the on-site energy of atoms
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Figure 1. (a) Picture of an unstrained artificial graphene ribbon with zigzag, bearded

and armchair edges. The lattice constant is 15 mm. (b) Corresponding experimental

density of states (DOS). The arrow indicates the zero-modes appearing at the Dirac

frequency νD.

in a tight-binding (TB) model. The dielectric cylinders are coupled by an evanescent

magnetic field, so that the wave propagation between the resonators is well described by

a tight-binding-like hopping term. Each resonator is mainly coupled to its three nearest

neighbors. The coupling strength t between two resonators depends on their separation

d and varies from t = 0.05GHz to t = 0.3GHz when d varies from 15 to 11mm. Via a

reflection measurement, we have access, at each site, to the local density of states and

to the wavefunction intensity associated to each eigenfrequency. The density of states

(DOS) is obtained by averaging the local density of states over all resonator positions.

The experimental setup and the tight-binding description of the microwave artificial

graphene are detailed in [31].

The paper is organized as follows. In Section 2, we first focus on zigzag and

bearded boundary geometries. We show experimentally how uniaxial strain acts as

a switch between zigzag and bearded edge states. Based on a tight-binding analysis, a

diagram of existence of edge states is theoretically proposed. We recall in Section 3 the

topological origin of the three types of considered edge states, namely zigzag, bearded

and armchair. A geometrical analysis in the k-space allows to predict the presence

of edge states and their evolution under strain. Section 4 is dedicated to armchair

geometries. A quantitative experimental and theoretical analysis is done. The existence

of a new type of states, appearing at the intersection of two type of edges, namely corner

states, is eventually discussed.

2. Zigzag and bearded edges in honeycomb lattice under uniaxial strain

The lattice presented in Fig. 1(a) exhibits three different edges: Armchair, zigzag

and bearded. We will consider ribbons uniaxially strained along one lattice axis

(horizontal direction in Figs 2 and 6) where the strain changes one of the three nearest-

neighbor couplings only. The modified coupling is denoted by t′ and the anisotropy

parameter by β = t′/t. Armchair edges are along the strain axis and consequently
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Figure 2. (top row). Experimental zero-mode intensities for β ranging from 0.4

to 2.5. The anisotropy axis is horizontal. Bearded and zigzag edges are displayed on

the same lattice (respectively at the left and the right). (bottom row). Normalized

intensities integrated over vertical lines. Green (resp. red) areas indicate qualitatively

the bearded (resp. zigzag) zero-mode extension.

will not support any edge state whatever the anisotropy as will be discussed in Sec. 3.

Fig. 1(b) shows a typical DOS measured in an unstrained ribbon, i.e. β = 1. The

Dirac frequency νD is obtained by following the procedure described in Ref. [31] and

defines the frequency origin. The peak observed at the origin corresponds to “zero-

energy” modes in the condensed-matter context, we will call them “zero-modes” in

the following. Experimentally, we can extract the intensity distributions by means

of reflection measurements (see [31] for details). Fig. 2 shows the intensities of the

wavefunctions associated to zero-modes for different values of β: The zero-modes are

all located along edges. In case of the unstrained lattice β = 1, Fig. 2(b), the intensity

is clearly distributed along both zigzag and bearded boundaries. Then, the anisotropy

parameter β controls the relative weight between the two types of zero-modes. For

β = 0.4 [Fig. 2(a)], bearded edges are dominant whereas they are totally absent

for β = 2.5 where only the zigzag edge is illuminated [Fig. 2(d)]. For intermediate

anisotropy [β = 1.5, Fig. 2(c)], both edge types are excited, with an opposite relative

strength compared to the β = 1 case.

To go beyond this qualitative discussion, we propose in the following part a

theoretical description by means of a tight-binding model. Although both zigzag and

bearded edges are built experimentally on the same ribbon sample, we will consider

theoretically two independent semi-infinite lattices. We demonstrated in a previous

work the validity of the TB model to describe our artificial graphene realization [31].

Here, to address the issue of edge states, we will restrict the TB model to first nearest

neighbor couplings. Let us first consider a zigzag edge [Fig. 3(a)]. The A−B unit cell,

appropriated to describe such an edge, is represented by the dashed box. The edge is
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built by translating the dimer with vectors ma2 (m integer). According to the Bloch

theorem, an additional phase eimk is acquired after m translations. Here, k ≡
√
3k‖a,

where a is the lattice spacing and k‖ is the 1D wave vector pertaining to the edge.

The 1D Brillouin zone (BZ) is defined by k‖ ∈
[

−π/
√
3a, π/

√
3a
]

corresponding to

k ∈ [−π, π]. For a given m, the bulk sites correspond to translations of the dimer with

vectors −na1 (n positive integer). The presence of the edge breaks the translation

symmetry and the Bloch theorem does not apply anymore. We label the site positions

with the index n from n = 0 (edge) to n = N →∞ (bulk) [see Fig. 3(a)].

Taking into account only nearest-neighbor couplings, each sublattice gives a tight-

binding recurrence equation which defines the zero-modes [8]:
∑

i tiAi = 0 and
∑

i tiBi = 0, where i counts the three nearest-neighbors of a given B-site and A-

site, respectively, ti the corresponding coupling strength, and Ai and Bi denoting the

amplitudes at the corresponding sites. In Fig. 3(a), the missing column of sites nearest to

the edge belongs to the A sublattice: A−1 ≡ 0. Thus, for zigzag edge, the tight-binding

recurrence equation

βAn + (1 + eik)An+1 = 0 (1)

implies that all A-sites are identically null. For the B-sites, amplitudes of zero-modes

fulfill the following condition:

βBn+1 + (1 + e−ik)Bn = 0 . (2)

The amplitudes Bn decay as

|Bn|2 =
(

2

β
cos

k

2

)2n

≡ e−n/ξzz , (3)

which defines a localisation length ξzz(k, β) plotted with a red colorscale in Fig. 3(c).

The zigzag edge states exist when

|k| > 2 arccos
β

2
. (4)

Conversely, for the bearded edges, sketched in Fig. 3(b), all B-sites are identically null.

For the A sites, the recurrence relation is the same as above (Eq. 1) and the non-

vanishing amplitudes An decay as

|An|2 =
(

2

β
cos

k

2

)−2n

≡ e−n/ξbd (5)

and

|k| < 2 arccos
β

2
. (6)

From Eqs (4) and (6), we obtain the existence diagram of edge states depicted in

Fig. 3(c). The red and green color scales give respectively the spatial extension of zigzag

and bearded edge states extracted from Eqs. (3) and (5). For β = 1, the diagram shows

that zigzag zero-modes occupy 1/3 of the 1D Brillouin zone whereas the proportion is

2/3 for the bearded states [6, 7, 8, 12]. Thus, the TB prediction for the ratio between
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Figure 3. Schematic representation of a semi-infinite lattices with zigzag [(a), red]

and bearded [(b), green] edge along the ‖ axis. The anisotropy axis is horizontal, here

along the ⊥ axis. The corresponding coupling strength is denoted t′. An and Bn are

the wavefunction amplitudes in the two sublattices. k is the 1D Bloch wavevector (see

text for details). (c) Zigzag – bearded edge states existence diagram for various k

and β. The colormap corresponds to the inverse localization length in the zigzag (red,

1/ξzz) and bearded (green, 1/ξbd) cases, the darker the color, the stronger the states

are localized. The dashed lines correspond to the values of β used in the experiments.

number of bearded and zigzag states is 2. The diagram also shows that the zero-modes

are more localized along zigzag edges than along bearded edges.

The square dots in Fig. 2 (bottom row) represent normalized measured intensities

integrated over vertical lines of resonators. Green and red zones are used as a

guide for the eyes and indicate the bulk extension of the bearded and zigzag zero-

modes, respectively. The total intensity in each zone is proportional to the number of

corresponding zero-modes [31]. For β = 1, the measured ratio is 2.3 in close agreement

with the expected value and the bearded edge states have indeed a larger extension.

For β = 0.4, we observe a majority of strongly localized bearded edge states and only a

few extended zigzag zero-modes. For β = 1.5, both edge states are equally present, the

zigzag ones being slightly more localized. Finally, for β = 2.5, only zigzag zero-modes

exist (the intensity along the bearded edge is strictly zero) with a larger extension

compared to the previous case. These observations are in good accordance with the

features depicted in the diagram of Fig 3(c) and demonstrate that the anisotropy

parameter allows for an accurate manipulation of edges states.

In the next section, we propose a topological argument, first presented in [11, 12],

to address the existence of zero-modes, not only for bearded and zigzag but also for

armchair edges.
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Figure 4. Stream and density plots of the phase φ(k‖, k⊥) in reciprocal space, for

the three edges (zigzag, bearded and armchai) and for various deformations (see the

sketches in Figs 3 and 7). The first 2D (bulk) BZ is indicated by a white contour. The

red dots are the positions of the Dirac points. The first 1D BZ associated to the (‖)
and (⊥) directions are shown by solid and dashed black lines, respectively. For a given

k‖, the existence of edge states is related to the winding of the phase along the k⊥
direction in the BZ: there are edge states when the total rotation of the phase is 2π as

seen in the shaded areas [Z(k‖) = π]. There are no edge states otherwise [Z(k‖) = 0].

3. Zak phase

A simple geometrical way to describe the existence of edge states is to relate their

existence to a topological quantity which is a 1D winding number called the Zak
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armchair

Figure 5. Stream and density plots of the phase φ(k‖, k⊥) in reciprocal space, for

the armchair edge and a deformation parallel to the edge. Marker and line legends are

the same as in Fig. 4. The Zak phase is 0 everywhere, confirming the absence of edge

state in this case.

phase [32]. The spectrum of an infinite ribbon of finite width containing M dimers

A−B consists in 2M one-dimensional bands ǫj(k‖). Therefore for each wave vector k‖,

there are 2M states. Among these 2M states, two zero-modes may be localized along the

edges. We recall below the relation between their existence and the Zak phase [11, 12].

Starting from the infinite unstrained system, in the (A,B) basis, the effective Hamil-

tonian has the general form

Hk = −t
(

0 f ∗(k)

f(k) 0

)

, (7)

where the function f(k) describes the coupling between atoms of one sublattice with

the three nearest neighbors belonging to the other sublattice (see for instance Ref. [33]).

The wavefunctions have the form

ψk(r) =
1√
2

(

±1
eiφ(k)

)

eik·r, (8)

where φ(k) = arg[f(k)] and ± corresponds to positive and negative energies. The

winding of the relative phase φ(k) in the reciprocal space has quite interesting properties.

First of all, as seen on Fig. 4, around each Dirac point, the phase rotates by ±2π. The
circulation of φ(k) along a surrounding closed path is quantized: the Berry phase is

defined by 1/2
∮

dk∇kφ(k) = ±π [34]. Our purpose here is to stress that the winding

of the φ(k) phase in reciprocal space carries an additional information related to the

existence of edge states. Let us consider a ribbon geometry and define the directions

parallel (‖) and perpendicular (⊥) to the ribbon length. For a ribbon of finite width

containingM dimers, the perpendicular wavevector of a bulk state k⊥ is quantized. For a
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two-component wavefunction, the quantization condition reads k⊥(M+1)a−φ(k) = κπ

with κ = 1, · · · ,M [12, 35]. This equation has M or (M − 1) roots depending on the

winding of the phase under variation of k⊥. When only (M − 1) solutions exist, the

missing solution corresponds to an edge state. More precisely one has the correspondence

Z(k‖) =
{

π ←→ edge states

0 ←→ no edge states
,

where the Zak phase Z(k‖) is the phase accumulated in the first 1D Brillouin zone along

the k⊥ direction:

Z(k‖) =
1

2

∫

BZ

dk⊥
∂φ(k‖, k⊥)

∂k⊥
. (9)

Therefore existence of edge states may be read immediately from a plot of the phase

φ(k‖, k⊥) as plotted in Fig. 4. For a given k‖, if the rotation of the phase is 2π, there is

an edge state, if the total rotation is 0, there is no edge state. The function φ(k) depends

on the boundary. For a given type of edge, the ribbon is constructed by the translations

of an elementary dimer [dotted box in Figs 3(a), 3(b), and 7(a)], so that the writing of

the bulk Hamiltonian has a form which depends on the considered edge [11, 12].

Let us consider first the zigzag edge. The function f(k) reads in this case

f zz(k) = 1 + βeik·a1 + eik·a2 = 1 + βei(
√
3

2
k‖− 3

2
k⊥)a + ei

√
3k‖a , (10)

where the two elementary vectors a1 and a2 are shown on Fig. 3(a). Similarly,

the functions f(k) for the bearded [Fig. 3(b)] and armchair [Fig. 7(a)] cases read,

respectively

fbd(k) = β + eik·a1 + eik·a2 = β + ei(
√
3

2
k‖+

3

2
k⊥)a + ei(−

√
3

2
k‖+

3

2
k⊥)a , (11)

f ac(k) = 1 + βeik·a1 + eik·a2 = 1 + βei(
3

2
k‖−

√
3

2
k⊥)a + ei(

3

2
k‖+

√
3

2
k⊥)a . (12)

Fig. 4 shows φ(k) for the different edges and for various deformations characterized by

the parameter β. With increasing distortion, the density of edge states increases in the

zigzag case, while it decreases in the bearded case as indicated by the red and green

zone, respectively. In the armchair case, while there are no edge states in the undistorted

lattice [6, 7, 8], they appear in the presence of a distortion which is not parallel to the

edge. If the distortion is along the edge, the function f(k) reads f ac(k) = β+eik·a1+eik·a2

instead of (12). The corresponding plot of φ(k‖, k⊥) is shown on Fig. 5 and we see that

Z(k‖) = 0 everywhere, as all lines of phase jumps are parallel to k⊥, confirming the

absence of edge states in this case. A thorough experimental investigation of armchair

zero-modes is presented in the following section.

4. Study of armchair edges in honeycomb lattice under uniaxial strain

In previous work, we addressed the issue of topological phase transition in strained

artificial graphene and incidentally observed armchair edge states [20]. Here, we perform

a quantitative study on ribbons with only armchair edges where the anisotropy axis is
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Figure 6. Experimental armchair zero-mode intensities for β ranging from 0.4 to

3.5. (a) β < 1. (b) β = 1, no edge states. (c – f) β > 1. Insets in (a) and (f) emphasize

the switch between the two triangular sublattice excitation.

along their widths. Fig. 6 shows the zero-modes for β ranging from 0.4 to 3.5. It is

worth noting that no zero-modes appear on armchair edges along the anisotropy axis

whatever the value of β. Moreover, for the case β = 1, the ribbon does not support any

armchair edge states. These features were already observed with an hexagonal flake in

Ref. [20] and are in accordance with the Zak phase analysis developed in Sec. 3. For

β 6= 1, zero-modes along the two oblique edges are clearly present. Two main features

have to be stressed: (i) Edge states live only on one of the two triangular sub-lattices.

The excited sub-lattice depends whether β is less or larger than 1, as seen in Fig. 6(a)

and Fig. 6(c-f), respectively. The switch between the two sub-lattices is clearly visible

in the insets. (ii) The zero-mode localization length along the edges depends on the

anisotropy and, for β > 1, decreases with β.

To understand the observations (i) and (ii), we propose a tight-binding analysis

comparable to what has been reported in Sec. 2. Let us consider a semi-infinite

honeycomb lattice with armchair edge [Fig. 7(a)]. The appropriate A−B unit cell

is represented by the dashed box. Now, the armchair edge is built by translating the

dimer with vectors m (a1 + a2) (m integer). Here, k ≡ 3k‖a, where a is the lattice

spacing and k‖ is the 1D wave vector pertaining to the armchair edge. The 1D Brillouin

zone is defined by k‖ ∈
[−π
3a
, π
3a

]

corresponding to k ∈ [−π, π]. The bulk lattice is

built by translating the dimer with vectors n a2 (n positive integer). The tight-binding
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Figure 7. (a) Schematic representation of a semi-infinite lattice with armchair edge

along the ‖ axis. The anisotropy axis is horizontal, the corresponding coupling strength

is denoted t′. An and Bn are the wavefunction amplitudes in the two sublattices. k is

the Bloch wavevector (see text for details). (b) Armchair edge states existence diagram

for various k and β. The colormap corresponds to the inverse localization length 1/ξac.

Light (resp. dark) colors means delocalized (resp. localized) state. The white area

means no edge states. For β > 1, only B-sites are excited. For β < 1, only A-sites are

excited.

recurrence equations for zero-modes read [see Fig. 7(a)]:

An+2 + An+1 + βAne
ik = 0 , (13)

Bn+1 +Bn + βBn+2e
−ik = 0 . (14)

According to Eq. (13), for β > 1, the amplitude increases with n so that A-sites cannot

support any edge states, we have An ≡ 0, ∀n. Inversely, for β < 1, Eq. (14) implies

Bn ≡ 0. Here, we have provided a simple explanation of the switching mechanism

experimentally observed and described above.

For β > 1, with B0 = 1 as initial condition and B1 = −eik/β to ensure Bi<0 ≡ 0, the

intensities on B-sites are given by

|Bn|2 = |λrn− + µrn+|2 ≡ e−n/ξac , (15)

with

r± =
−1±

√

1− 4βe−ik

2βe−ik
, (16)

λ = µ∗ =
B0r+ − B1

r+ − r−
. (17)

For |r+| < |r−| < 1, we obtain decaying solutions with

|k| < arccos

[

β

2
(3− β2)

]

. (18)
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(a) (b)

exp. theo.

Figure 8. Experimental (a) and theoretical (b) armchair zero-mode intensity profiles

for β ranging from 0.4 to 3.5. For β < 1 (resp. β > 1), A (resp. B) sites are considered.

The diagram of existence of armchair edge states, defined by condition (18), is plotted

in Fig. 7(b). The blue color scale gives the transverse spatial extension of the armchair

zero-modes extracted from Eq. (15). First, as pointed out in Section 3 and observed in

Fig. 6(b) armchair edges along the parallel axis do not support any edge states for β = 1.

Then, we see that their existence is not related to the topological transition observed

in Ref. [20]: zero-modes appear as soon as β 6= 1. In the case β = 0.4, A-sites support

zero-modes occupying a limited range of k, as given by Eq. (18), almost half of them

being well localized (dark blue colors in the diagram). For 1 < β < βc = 2, the edge

states supported by the B-sites are still belonging to a finite range of k and are mainly

delocalized (light blue colors in the diagram), as observed in the Fig. 6(b) and (c).

For β > 2, zero-modes run over the full 1D Brillouin zone and their localization lengths

decrease with β. To be more quantitative, we plotted in Fig. 8 the intensities of Bn (resp.

An), for β > 1 (resp. β < 1) and n ranging from 0 to 5. Fig. 8(a) shows the experimental

profiles extracted from Fig. 6 by integrating over vertical lines of sites. Fig. 8(b) depicts

the intensities calculated from Eqs. (15 – 17) with an integration of k over all possible

values defined by Eq. (18). For β = 2.5 (green diamonds) and β = 3.5 (red triangles),

the agreement is very good. For β = 0.4 (blue circles) and β = 1.8 (orange squares), the

difference between measured and calculated profiles is more important. To explain these

discrepancies, it is worth mentioning that for β > βc zero-modes actually appear in the

bandgap and are therefore clearly isolated in the DOS. When β < βc, bulk states are

very close to the Dirac point and spoil the zero-mode intensity extraction. Moreover,

the calculations are performed with semi-infinite lattices whereas experiments use finite

ribbons. Consequently, in the experiments, we have to take into account a discrete

sampling of the 1D Brillouin zone, the precise k-values depending on the ribbon length.

Thus, the discrete sum of such zero-modes having different localization lengths can lead

to a larger overall extension compared to the continuous case. Here again, β stands

as control parameter allowing notably to switch edge states from one sublattice to the
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Figure 9. (a) Armchair zero-mode amplitude components for β < 1 and k = 0. The

wavefunction is non-zero only on A-sites (empty circles). m indicates the A-row index.

The anisotropy axis is vertical, thick lines represent the corresponding coupling. (b)

Zero-mode amplitude components for β > 2 and k = 0 appearing at the intersection

of two zigzag edges.

other.

To conclude this section, we would like to raise the existence of a new type of

zero-modes in finite size systems located at the intersection of two edges, namely

corner states. The comparison between Fig. 6(a) and 6(f) clearly underlines that

the distribution of the zero-mode along the parallel edge is homogeneous for β = 3.5

(i.e. all edge B-sites are illuminated) whereas the intensity decreases from the top-right

corner for β = 0.4. Once more, a tight-binding analysis for zero-modes allows to obtain

non-homogeneous edge states. In Fig. 9(a), we build for β < 1 the amplitude of a

k = 0 edge state and obtain a decaying solution. Along the oblique edge, the amplitude

reads Am = mβm−1, m being the A-row index. Since localized edge states exist only for

small k-values [dark blue zone in Fig. 7(b)], this k = 0 decaying solution dominates the

overall intensity distribution. On the contrary, for β = 3.5, such decaying solutions may

also exist for k = 0 but are compensated by uniform solutions associated with larger

k-values, thus leading to an homogeneous overall intensity distribution.

One could expect that corner states exist for various type of edge intersections. For

example, Fig. 9(b) indicates a corner state generated at the intersection of zigzag edges

for β > 2. The hierarchy of its amplitudes follows the rules of a Pascal triangle. The

same hierarchy can be observed in Fig. 2(d) along the direction going diagonally from

the corner along a zigzag axis to the bulk. Corner states present strong similarities with

zero-modes associated to localized impurities in anisotropic graphene [36] and will be

the subject of further studies.

5. Conclusion

We have studied edge states in artificial microwave graphene ribbons under uniaxial

strain. By directly imaging the zero-modes, we have shown how the anisotropy

parameter allows to create and manipulate edge states. Based on a nearest-neighbor
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tight-binding analysis and supported by topological arguments (Zak phase), we have

drawn diagrams of existence and localization length variation for zigzag, bearded and

armchair edge states in remarkable agreement with experiments. Our results show also

that higher order nearest-neighbor couplings, inherently present in the experiments [31],

have no significant impact on the edge states. We also discuss the existence of a new

type of zero-modes at the intersection of two type of edges, namely the corner states

whose study is left for a future work.
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