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Abstract

The localization of brain sources based on EEG measurements is a topic that has attracted

a lot of attention in the last decades and many different source localization algorithms

have been proposed. However, their performance is limited in the case of several simulta-

neously active brain regions and low signal-to-noise ratios. To overcome these problems,

tensor-based preprocessing can be applied, which consists in constructing a space-time-

frequency (STF) or space-time-wave-vector (STWV) tensor and decomposing it using the

Canonical Polyadic (CP) decomposition. In this paper, we present a new algorithm for

the accurate localization of extended sources based on the results of the tensor decom-

position. Furthermore, we conduct a detailed study of the tensor-based preprocessing

methods, including an analysis of their theoretical foundation, their computational com-

plexity, and their performance for realistic simulated data in comparison to conventional

source localization algorithms such as sLORETA, cortical LORETA (cLORETA), and

4-ExSo-MUSIC. Our objective consists, on the one hand, in demonstrating the gain in

performance that can be achieved by tensor-based preprocessing, and, on the other hand,

in pointing out the limits and drawbacks of this method. Finally, we validate the STF

and STWV techniques on real measurements to demonstrate their usefulness for practical

∗Corresponding author: LTSI, Campus de Beaulieu, Universite de Rennes 1, 263 Avenue du General
Leclerc - CS 74205 - 35042 Rennes Cedex, France, Tel: (33) – 2 23 23 50 58

Email address: laurent.albera@univ-rennes1.fr (I. Merlet)

Preprint submitted to Neuroimage June 24, 2014



applications.

Keywords: EEG, Tensor decomposition, Space-Time-Frequency analysis,

Space-Time-Wave-Vector analysis, Distributed source localization

1. Introduction

In the context of drug-resistant partial epilepsy, scalp Electroencephalographic (EEG)

recordings constitute the first step in the pre-surgical evaluation of patients, and can be

used to delineate the regions from where epileptic paroxysms arise. To this end, source

localization algorithms have been applied to interictal spikes that can be frequently ob-

served on the scalp with a high Signal-to-Noise-Ratio (SNR) compared to ictal discharges

(Ebersole, 2000; Merlet, 2001; Michel et al., 2004; Gavaret et al., 2006; Plummer et al.,

2008). A number of techniques for the localization of several equivalent dipoles each of

which models an entire active brain region have been proposed (see Grech et al. (2008) for

a review). To accurately localize extended sources, for which the equivalent dipole model

is not appropriate, one can further resort to a multipole source model as suggested in

(Jerbi et al., 2004). Now, if both the localization of the distributed sources and their spa-

tial extent need to be identified such as in the context of drug-resistant partial epilepsy,

a distributed source model can be employed where each source is characterized by a

large number of dipoles and a complex geometry. The determination of these distributed

sources constitutes an ill-posed problem for which various types of methods based on

different assumptions on the source activity have been developed. One class of methods

which is referred to as minimum norm solutions comprising techniques like the original

minimum norm method introduced in (Hämäläinen and Ilmoniemi, 1984), LORETA (low

resolution brain electromagnetic tomography) (Pascual-Marqui et al., 1994), LAURA (lo-

cal autoregressive average) (De Peralta Menendez et al., 2004), sLORETA (standardized

low resolution brain electromagnetic tomography) (Pascual-Marqui, 2002), and dSPM

(dynamic statistical parametric mapping) (Dale et al., 2000) reconstructs the source ac-

tivity at every point of a given grid in a tomographic way based on constraints such as,

for example, maximal smoothness in the case of LORETA. However, these methods are

reported to yield blurred results (Xu et al., 2007). Several techniques have been devel-

oped to improve the spatial resolution of the minimum norm solutions, but they tend to

result in too sparse source estimates (Xu et al., 2007). Moreover, except for sLORETA,
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the minimum norm solutions are biased (for a single dipole) even in the absence of noise

(Sekihara et al., 2005). A comparison of several distributed source localization meth-

ods including minimum norm and maximum entropy of the mean (MEM) approaches on

realistic simulated data of extended epileptic sources can be found in (Grova et al., 2006).

Another source localization approach includes statistical techniques such as MUSIC-

like methods (Mosher et al., 1992; Mosher and Leahy, 1999; Albera et al., 2008). The

proposed algorithms in this field are generally conceived for equivalent dipole localiza-

tion. However, recently, the 2q-ExSo-MUSIC (2q-th order extended source multiple sig-

nal classification) algorithm (Birot et al., 2011) has been developed for the localization of

distributed sources that summarize a large number of dipoles with highly synchronized

activities. This model describes well the epileptic paroxysms that are observable by EEG

measurements and that often involve large cortical regions as has been shown by several

studies (Cosandier-Rimélé et al., 2008; Gavaret et al., 2006; Tao et al., 2005; Merlet and

Gotman, 1999; Ebersole, 1997). Similarly, studies with simultaneous electrocorticogra-

phy (ECoG) and magnetoencephalography (MEG) recordings (Mikuni et al., 1997; Oishi

et al., 2002; Shigeto et al., 2002) have demonstrated that a certain cortical area needs

to be active in order to observe epileptic spikes at the surface MEG sensors. From an

ensemble of circular-shaped source regions (or “disks”), that comprises the entire cortex,

2q-ExSo-MUSIC selects the disks which optimize a metric computed from the 2q-th order

signal subspace of the data. Yet this method makes it difficult and computationally very

demanding to localize several correlated, simultaneously active source regions, which we

subsequently refer to as patches.

To simplify the problem of localizing several potentially correlated patches in the

presence of background activity, it is desirable to apply a preprocessing technique to the

measurement data that separates the simultaneously active source regions into different

components and reduces the noise. In the past, several authors have studied the appli-

cation of the Canonical Polyadic (CP) decomposition to Space-Time-Frequency (STF)-

transformed EEG data, which is obtained by computing a wavelet transform (Miwakeichi

et al., 2004; Morup et al., 2006; De Vos et al., 2007a,b; Deburchgraeve et al., 2009) or

the Wigner-Ville distribution (Weis et al., 2009) over the time dimension of the mea-

surements. Under certain conditions on the signals, this method provides separate space,

time, and frequency characteristics for each source region and therefore allows us to treat
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each patch individually in the the next steps.

In (Becker et al., 2010, 2012), we have introduced an alternative method, which is

based on a local spatial Fourier transform of the EEG measurements. This leads to a

Space-Time-Wave-Vector (STWV) tensor, that can also be decomposed using the CP

model. An advantage of this approach compared to the STF analysis consists in its

robustness to correlated source activities. This is of particular interest when patches

with identical, but shortly delayed, source activities have to be identified, i.e., in the

context of interictal spikes when spreading of epileptic spikes is suspected between two

regions. Furthermore, we have addressed the topic of extended source localization after

the tensor-based preprocessing by proposing the Binary Coefficient Matching Pursuit

(BCMP) algorithm (Becker et al., 2012). This technique iteratively selects dipoles from a

predefined grid to model a larger source region. It was shown to accurately recover sources

of some extent in the context of a spherical head model and of simplistic simulated EEG

signals.

The next step in the validation process of these tensor methods and in particular of

the STWV analysis consists in evaluating the algorithms on more realistic simulated data

and in testing them on real EEG measurements, which is one of the objectives of the

present paper. Additionally, we analyze the theoretical basis of the tensor-based methods

to understand the underlying mechanisms and conditions that are necessary for the STF

and STWV techniques to work. To our knowledge, this has not been studied yet.

In order to demonstrate the interest of tensor-based preprocessing for extended source

localization applications, we conduct an extensive analysis of the performance of the

tensor-based methods in comparison to conventional methods, both in terms of computa-

tional complexity and source localization accuracy. The latter is examined using realistic

simulated data that is generated for a realistic head model and extended sources whose

signals are modeled with a physiologically relevant model (Cosandier-Rimélé et al., 2007).

Since the BCMP algorithm fails to accurately recover the patches of the realistic model,

we propose a new algorithm for extended source localization which we refer to as the

disk algorithm (DA). This method uses an optimization strategy that is inspired by the

ExSo-MUSIC source localization procedure (Birot et al., 2011), but is based on a differ-

ent metric for the disk selection since it identifies the disks that best describe the spatial

characteristics of only one source or one part of a source. Furthermore, we compare the
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performance of this algorithm to that of 4-ExSo-MUSIC as a representative of subspace-

based approaches for extended source localization and sLORETA and cortical LORETA

(cLORETA) as representatives of the family of minimum norm solutions. We study the

influence of the patch size and of the SNR related to the patch anatomical location and

determine the limits of the examined methods regarding the localization of deep and

closely-spaced patches.

Finally, we apply the different source localization methods to actual EEG interictal

spikes, obtained from a patient with frontal lobe epilepsy, and compare the results to the

epileptogenic brain regions involved during interictal spikes as identified from intracerebral

stereotactic electroencephalography (SEEG) recordings of the same patient.

This paper is organized as follows: in Section 2, we present the data model on which

the examined methods are based and review the concept of tensor-based preprocessing as

well as of the STF and STWV analyses. Furthermore, we describe the newly proposed

disk algorithm as well as the other examined extended source localization algorithms

and analyze their computational complexity. Finally, we provide information about the

simulation setup. Section 3 then presents the results of the conducted simulation study

and the analysis of actual EEG data. A discussion of the results and their interpretation

is given in Section 4, which concludes the paper. A theoretical analysis of the STF and

STWV methods and sufficient conditions under which these methods yield exact results

are made available in the online supplementary material.

The following notation is used throughout the paper: bold italic uppercase letters

denote tensors, e.g., T , bold uppercase letters denote matrices, e.g., A, bold lowercase

letters denote column vectors, e.g., a, and plain font denotes scalars, e.g., Xi,j,k, Ti,j or

ai. Moreover, (·)T denotes a transposition and (·)+ stands for the Moore-Penrose pseudo-

inverse.

2. Methods

2.1. Data model

It is generally admitted that the electrical activity that can be observed at the surface

of the scalp originates mostly from pyramidal cells that are located in the gray matter.

These cells are arranged in parallel and exhibit an orientation that is perpendicular to the

cortex. In order to obtain a signal of sufficient amplitude to be measurable at the surface
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of the scalp, a certain number of simultaneously active neuronal populations is required.

These populations can be modeled by a grid of dipole sources located at the surface of

the cortex (Dale and Sereno, 1993). The electric potential data that is recorded at the Nr

electrodes of an EEG sensor array for Nt time samples then constitutes the superposition

of all dipole signals contained in the signal matrix S ∈ R
Nd×Nt that are transmitted to

the surface of the scalp and some instrumentation noise Xi:

X̃ = GS+Xi (1)

where G ∈ R
Nr×Nd is the lead field matrix that describes the propagation in the head

volume conductor and depends on spatial parameters of the head, such as the geometry

of the brain, skull, and scalp as well as their conductivities, and Nd denotes the number

of grid dipoles. For a given head model and source space, the lead field matrix can be

computed numerically (see also Section 2.5.1).

In the context of epilepsy, the regions of interest can be modeled by extended sources

that can be described as the union of (one or) several non-necessarily contiguous areas of

the cortex (so-called patches) with highly correlated source activities (Cosandier-Rimélé

et al., 2007; Birot et al., 2011). Assuming that artifacts have already been removed from

the data as can be achieved by methods as described, for instance, in (Comon and Jutten,

2010; Albera et al., 2012), all dipoles that do not belong to an extended source can be

considered to emit background activity. Consequently, in order to distinguish between

the extended sources, that we are looking for, and the noisy background activity, we can

rewrite the data model (1) in the following way:

X̃ =
R
∑

r=1

∑

kr∈Ωr

gkrs
T
kr +

∑

l /∈∪R
r=1

Ωr

gls
T
l +Xi (2)

X̃ = X+Xb +Xi = X+N. (3)

Here Ωr is the set of indices of the dipoles that belong to the r-th extended source, gk

is the lead field vector of the k-th dipole, and sk is the associated signal vector that

corresponds to the k-th row vector of S. The matrix X comprises the data generated by

the signals of interest whereas the noise matrix N summarizes background activity Xb

and instrumentation noise Xi.

As the activity is highly synchronized within one extended source, we can assume that

all signals emitted by dipoles of the same extended source are quasi-equal, i.e., skr ≈ sr.
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Consequently, we can approximate the data matrix by

X̃ ≈

R
∑

r=1

hrs
T
r +N = HS+N (4)

where the spatial mixing vector hr of the patch r corresponds to the linear combination

of the lead field vectors of all active grid dipoles:

hr =
∑

kr∈Ωr

gkr = Gcr (5)

which can also be written as the product of the lead field matrix G and a coefficient

vector cr whose k-th element, k = 1, . . . , Nd, is given by

ck,r =







1 if k ∈ Ωr

0 otherwise.

2.2. Tensor-based preprocessing

To separate several simultaneously active patches and to reduce the background ac-

tivity, tensor-based preprocessing can be applied. The idea of this method consists in

exploiting the structure of three-way data which is obtained by applying a transform to

the two-dimensional measurements. Under the hypothesis that the resulting data, which

depends on three variables, is trilinear, the tensor can be decomposed in a unique way

(under mild conditions) up to scale and permutation ambiguities into separate character-

istics for each variable with the help of the CP decomposition (also sometimes referred to

as Parallel Factor Analysis (PARAFAC)). It is thus possible to get an accurate estimate

of the spatial mixing matrix or the signal matrix without imposing statistical constraints

on sources (unlike Independent Component Analysis (ICA) (Comon and Jutten, 2010)),

which may be physiologically difficult to justify.

2.2.1. CP decomposition

Each element of a third order tensor X of size I × J ×K can be written in the form:

Xi,j,k =
P
∑

p=1

ai,pbj,pck,p (6)

which is generally called a polyadic decomposition of the tensor X. If P is the smallest

integer for which equality (6) holds, P corresponds to the rank of the tensor. In this case,

the trilinear representation (6) is referred to as the canonical polyadic (CP) decomposition
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of the tensor X (Comon et al., 2009). The variables ai,p, bj,p, and ck,p are elements

of three matrices A ∈ C
I×P , B ∈ C

J×P , and C ∈ C
K×P , respectively, called loading

matrices. There is almost surely a finite number of decompositions of the tensor X into

the three loading matrices A, B and C, up to scale and permutation indeterminacies,

if P < IJK
I+J+K−2

(Comon et al., 2009); tighter bounds also give sufficient conditions for

uniqueness such as the condition based on Kruskal rank that has been derived in (Kruskal,

1977; Sidiropoulos and Bro, 2000).

The CP decomposition can be computed using Alternating Least Squares (ALS) (Bro,

1998), efficient gradient-based algorithms (Phan et al., 2013; Sorber et al., 2013), or semi-

algebraic methods as presented in (Luciani and Albera, 2011; Römer and Haardt, 2008,

2013). Because of its good performance and robustness to collinear factors, overestima-

tion of the number of CP components, and initialization, we employ the DIAG (Direct

Algorithm for canonical polyadic decomposition) algorithm (Luciani and Albera, 2011,

2014).

To get a 3-dimensional data tensor which can be treated by the CP decomposition,

one can either compute a transform over time of the electric potential measurements,

which leads to the STF analysis, or a transform over space, yielding STWV data. These

methods will be described in the subsequent sections.

2.2.2. STF analysis

An often used technique for the time-frequency analysis of EEG data consists in apply-

ing a wavelet transform to the time signals {x(r, t)} of the different channels (Miwakeichi

et al., 2004; Morup et al., 2006; De Vos et al., 2007a,b; Deburchgraeve et al., 2009). The

resulting three-way data can then be stored into the data tensor

W (r, t, f) =

∫ ∞

−∞

x(r, τ)ψ(a, τ, t)dτ . (7)

The frequency f can be estimated from the scale a of the wavelet ψ(a, τ, t) by f = fc/(aT )

where fc is the center frequency of the wavelet and T is the interval between time samples.

In order to decompose the tensor W using the CP decomposition, we assume that for

each extended source, the time and frequency variables separate, leading to a trilinear

tensor. This is approximately the case under the hypothesis of oscillatory signals. The
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tensor can then be decomposed as:

W (ri, tj, fk) ≈
R
∑

p=1

a(ri; p)b(tj; p)c(fk; p) (8)

where ri, tj, and fk represent the sampled space, time, and frequency variables and a(ri; p),

b(tj; p), and c(fk; p) denote elements of the loading matrices A, B, and C indicating the

space, time, and frequency characteristics, respectively. The number of components R

corresponds to the number of extended sources.

The loading matrix A containing the spatial characteristics generally constitutes a

good estimate for the spatial mixing matrix H.

2.2.3. STWV analysis

If a local spatial Fourier transform is calculated within a certain region on the scalp,

selected by the spherical window function w(r′ − r) centered at sensor position r (see

Section 2.5.2 for more details), the STWV tensor

F (r, t,k) =

∫ ∞

−∞

w(r′ − r)x(r′, t)ejk
T
r
′

dr′ (9)

is obtained (Becker et al., 2012). Here, the third variable k is the wave vector.

Under the assumption that the space and wave vector variables separate for each

extended source, which is approximately the case for superficial sources, the tensor F can

be approximated by the CP model and be decomposed into space, time, and wave vector

characteristics a(ri; p), b(tj; p), and c(kl; p):

F (ri, tj,kl) ≈
R
∑

p=1

a(ri; p)b(tj; p)c(kl; p). (10)

In the case of the STWV analysis, the temporal characteristics Ŝ = B constitute a

good approximation of the signal matrix S. An estimate Ĥ for the lead field matrix H

can thus be obtained from the pseudo-inverse Ŝ+ of the estimated signal matrix Ŝ and

the data matrix X:

Ĥ = XŜ+. (11)

2.2.4. Trilinear approximation

Even though the STF analysis has been widely used, up to now only intuitive condi-

tions such as oscillatory signals that presumably lead to trilinear data have been provided.
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But no theoretical validation that justifies the application of the CP decomposition to the

STF data tensor has been performed and the mechanisms underlying the STF method

are still insufficiently explored. The same is true for the STWV technique. Therefore, we

have analyzed what happens when applying the DIAG algorithm to STF or STWV data,

that are not exactly trilinear, and have clarified under which conditions this procedure

yields exact results. For the interested reader, our findings are made available in the

online supplementary material and discussed with respect to the results obtained for two

scenarios that are considered in Section 3.2.

2.3. Extended source localization

Based on Equation (5), the objective of extended source localization consists in recov-

ering the coefficient vectors cr, r = 1, . . . , R, for all patches. This can be achieved based on

an estimate Ĥ =
[

ĥ1, . . . , ĥR

]

of the spatial mixing matrix H, which permits to identify

the grid dipoles for each patch separately. In principle, any localization algorithm that

acts on a vector of spatial measurements can be employed to this end. Here, we introduce

the disk algorithm (DA) that uses an optimization strategy inspired by the ExSo-MUSIC

approach (Birot et al., 2011) but with a different metric built from the spatial mixing

matrix estimated by the STF or STWV analysis. In addition, we consider surface grid

based versions of the sLORETA (Pascual-Marqui, 2002) and LORETA (Pascual-Marqui

et al., 1994) algorithms, which belong to the class of minimum norm estimates, also called

generalized inverse solutions, and which are applied to a data vector x̃. Furthermore, we

employ a statistical subspace-based approach, 4-ExSo-MUSIC (Birot et al., 2011), that is

applied to the data matrix X̃. The sLORETA, cLORETA, and 4-ExSo-MUSIC methods

are used as references to evaluate the results of the tensor-based DA. Subsequently, we

give a short description of the proposed source localization algorithm, that is based on

the tensor decomposition, and the three reference methods.

2.3.1. Disk algorithm (DA)

To localize extended sources based on the estimated spatial mixing matrix obtained

by the STWV and STF analyses, we present in this section the newly developed disk

algorithm. In addition to the hypotheses that are made on the structure of the STF or

STWV tensor in order to separate the sources, this approach assumes that the measure-

ments can be described by extended sources with a piece-wise constant spatial distribution
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according to data model (4) and (5). The concept underlying the disk algorithm consists

in recovering the extended source from a number of small circular-shaped patches of grid

dipoles, the disks. Each extended source is then obtained by the union of several disks.

For each grid dipole, several disks composed of the 0 to Dmax − 1 nearest dipoles and the

current grid dipole as central point are determined. Assuming equal coefficients for all

grid dipoles belonging to the extended source, the spatial mixing vector of each disk is

computed by adding the lead field vectors of all grid dipoles belonging to the disk. The

reconstructed spatial mixing vector dk of the k-th disk, k = 1, . . . , DmaxNd, can then be

obtained from

dk = Gĉk (12)

where the elements of the coefficient vector ĉk that are associated with dipoles belonging

to the disk are equal to 1 whereas all other elements are 0. To determine which disks of

the parameter space best describe the measurements, the spatial mixing vectors dk of all

disks are then compared to the estimated spatial mixing vector ĥr of the r-th source with

the help of the following metric, which is based on the normalized inner product:

Miprod(ĉr) = −

(

ĥT
r Gĉr

)2

ĉTr G
TGĉr

. (13)

This metric is minimized with respect to the coefficient vector ĉr. The norm of the

spatial mixing vector ĥr is fixed. The extended source localization procedure then selects

a certain number of disks which are associated with the smallest values of this metric.

2.3.2. sLORETA

Minimum norm solutions are based on the assumption that among all possible source

configurations that explain the measurements, the source distribution with minimal energy

is the most likely. In this context, the idea of the conventional sLORETA algorithm

(Pascual-Marqui, 2002) consists in standardizing the minimum norm solution for the

current density distribution, computed on a voxel grid inside the brain, by weighting the

current dipoles by their estimated variances. This method can be adapted to our data

model by replacing the voxel grid by a surface grid that considers only dipoles on the

cortical surface with an orientation perpendicular to this surface. Due to the assumption

of radial orientation, we solve the inverse problem for one coefficient per dipole which

represents its amplitude instead of recovering three components for each dipole in order to
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determine both dipole strength and orientation as the conventional sLORETA algorithm

does. Thanks to an inversion lemma, the solution of the optimization problem

argmin
c

{

||x̃−Gc||2 + λ||c||2
}

,

where λ is a regularization parameter, can be written as

ĉ = Qx̃. (14)

Here, Q = GT
(

GGT + λI
)−1

∈ R
Nd×Nr is the Tikhonov-regularized inverse matrix of G

and I denotes the identity matrix of size Nr ×Nr. Next, the covariance matrix of ĉ takes

the form: K = GT(GGT+λI)−1G. The idea of sLORETA consists in weighting solution

ĉ by the inverse of the diagonal matrix (Diag{K})
1

2 ; see (Palmero-Soler et al., 2007) for

more details. This leads to unbiased estimates for single dipole sources (Sekihara et al.,

2005). The i-th dipole coefficient, i = 1 . . . Nd, can then be computed as 1

ĉi,r = (Ki,i)
− 1

2Qi,:x̃ (15)

The resulting coefficient vector ĉ contains continuous values for the dipole strengths. For

the localization of extended sources, all the grid dipoles whose coefficients exceed a certain

threshold are associated to the extended source.

2.3.3. cLORETA

The objective of the LORETA algorithm (Pascual-Marqui et al., 1994) consists in iden-

tifying a maximally smooth source distribution. Similarly to sLORETA, it has originally

been conceived for volumetric source localization, but can be modified to work on a sur-

face grid (Wagner et al., 1996). In this case, it is also referred to as cLORETA. To obtain

a smooth source distribution, cLORETA solves the following optimization problem:

min
c

{

||x̃−Gc||2 + λ||LWc||2
}

(16)

where L corresponds to the surface Laplacian matrix whose elements are given by (Wagner

et al., 1996)

Li,j =



















− 1∑
j di,j

∑

j
1

di,j
for i = j

1
di,j

∑
j di,j

if i and j are indices of adjacent dipoles

0 otherwise

1In equation (15), the Matlab notation is used to denote the i-th row of a matrix.
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where di,j denotes the distance between dipoles i and j, i, j = 1, . . . , Nd, and W is a

diagonal weight matrix with Wi,i = ||gi||
−1. The solution to (16) can be computed as

ĉ =
(

WLTLW
)−1

GT
(

G
(

WLTLW
)−1

GT + λI
)−1

x̃. (17)

In order to obtain an estimate of the extended source, the resulting coefficient vector

ĉ is thresholded and only the grid dipoles with coefficients exceeding the threshold are

retained to characterize the extended source.

2.3.4. 4-ExSo-MUSIC

Contrary to the other source localization algorithms used in this paper, which are

deterministic, the 4-ExSo-MUSIC algorithm (Birot et al., 2011) interprets the Nt mea-

surement vectors x̃ contained in the data matrix X̃ as Nt realizations of a random vector.

The algorithm exploits the estimated Fourth Order (FO) cumulants of the latter random

vector, which are contained in the quadricovariance matrix C4. In order to resort to the

FO statistics of the data, which offer an asymptotic robustness with respect to Gaussian

noise and a better resolution than second order (SO) statistics (Chevalier et al., 2006;

Birot et al., 2011), the FO marginal cumulants of the epileptic source signals are assumed

to be non-zero. The 4-ExSo-MUSIC algorithm is then based on the FO signal subspace,

which is computed by an eigenvalue decomposition (EVD) of the quadricovariance matrix:

C4 =
[

Es En

]





Λs 0

0 Λn









ET
s

ET
n



 . (18)

Here, the matrices Es ∈ R
N2×P and En ∈ R

N2×(N2−P ) span the signal and noise sub-

spaces where P corresponds to the dimension of the signal subspace and Λs ∈ R
P×P and

Λn ∈ R
(N2−P )×(N2−P ) are diagonal matrices containing the signal and noise eigenvalues.

The source localization is then accomplished based on data model (4) and the hypothesis

of extended sources with a piece-wise constant spatial distribution by performing an ex-

haustive search over a parameter space that is composed of disks which are constructed

as described in Section 2.3.1. Nevertheless, the metric which is optimized in order to find

the appropriate union of disks is different of that used in the DA algorithm. More par-

ticularly, the 4-ExSo-MUSIC algorithm identifies the disks whose spatial mixing vectors

13



dk = Gĉk are closest to the signal subspace, leading to the MUSIC metric

MMUSIC(ĉ) =
(d⊗ d)TEsE

T
s (d⊗ d)

(d⊗ d)T(d⊗ d)

=
(ĉ⊗ ĉ)T(G⊗G)TEsE

T
s (G⊗G)(ĉ⊗ ĉ)

(ĉ⊗ ĉ)T(G⊗G)T(G⊗G)(ĉ⊗ ĉ)
, (19)

which is maximized with respect to the coefficient vector ĉ. Here, d ⊗ d denotes the

Kronecker product of the spatial mixing vector d with itself, yielding the FO spatial

mixing vector. Since 4-ExSo-MUSIC does not separate the sources, all source regions are

recovered simultaneously and are characterized by the union of all disks for which the

metric (19) is above a certain threshold value.

2.4. Study of the computational complexity

In order to compare the different extended source localization methods relative to

their computational cost, we have analyzed the number of real-valued multiplications

that are required for each step of the different source localization processes, comprising

tensor construction, tensor decomposition, cumulant and spectrum estimation, and source

localization algorithms. The results are summarized in a table that is available in the

online supplementary material.

2.5. Simulations

2.5.1. Data generation

In order to generate physiological data, we employ a realistic head model with three

compartments representing the brain, the skull, and the scalp, whose surfaces are obtained

from a normal MRI. The data is generated for Nr = 91 EEG sensors. The source space is

defined by the triangularized inner cortical surface (grey matter / white matter interface),

where a grid dipole is placed at the centroid of each of the triangles. The grid consists

of 19626 triangles (9698 for the left hemisphere and 9928 for the right hemisphere) and

on average, each triangle describes 5 mm2 of the cortical surface. The lead field vectors

contained in the matrix G ∈ R
91×19626 are then computed numerically for all grid dipoles

using a Boundary Element Method (ASA, ANT, Enschede, Netherlands).

For the generation of extended sources, we consider a number of patches each of

which consists of 100 adjacent grid dipoles corresponding to a cortical area of approxi-

mately 5 cm2. Using a model of coupled neuronal populations as previously described

(Wendling et al., 2000; Cosandier-Rimélé et al., 2007; Cosandier-Rimélé et al., 2010),
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highly-correlated epileptiform spike-like signals comprising Nt = 200 time samples with

a sampling rate of 256 Hz are created for all dipoles of one patch (see Figure 1 for an

example). For scenarios with two patches, the time courses of the dipoles in the first patch

are delayed by several time samples according to the distance between the two patches

and attributed to the dipoles in the second patch. This corresponds to the case where the

epileptic activity in the first patch spreads to a second patch. For small distances, a ran-

dom delay of 1 or 2 time samples (4-8 ms) is used for each signal. For medium distances

the signals are shifted by 3 or 4 time samples (12-16 ms) and for large distances, a signal

delay of 5 or 6 samples (20-24 ms) is employed. Finally, using the same model of neuronal

populations, we generate normalized physiological background activity and add it to the

simulated measurement data. The normalization is carried out such that the amplitude

of the background activity for dipoles outside the patch corresponds to the amplitude of

background activity between spikes in the patch. We do not consider instrumentation

noise. All simulations are repeated for 50 realizations with different spike-like signals and

background activities.
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Figure 1: Example of highly correlated signals for the dipoles of one patch.

2.5.2. Tensor-based preprocessing

To separate several simultaneously active patches and to reduce the noise on the

estimated lead field matrix, we employ tensor-based preprocessing. Here, we consider the

application of both the STF and the STWV analysis. To this end, we construct the STF

data tensor by computing a wavelet transform over time of the electric potential data.

Due to the application of a real-valued Morlet-wavelet, the resulting tensor W is also

real-valued and of size Nr ×Nt×Nf where Nr, Nt, and Nf denote the number of sensors,
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time samples, and frequency samples, respectively. Here, we consider Nf = 50 frequency

samples and frequencies ranging from 0.5 to 20 Hz.

To obtain STWV transformed data, we select sensor data with the help of a spherical

window function that is centered at different electrode positions on the scalp and attribute

a weight 1 to sensors located within the sphere and 0 to all other sensors. Then we compute

a discrete non-uniform spatial short term Fourier transform of the selected data. This

leads to the complex-valued tensor F ∈ C
N ′

r×Nt×Nk , where N ′
r is the effective number of

sensors. To ensure meaningful results, the local Fourier transform is only computed for

N ′
r manually selected sensors which are deemed to be surrounded by a sufficient number

of electrodes, leading to an effective number of sensors which is strictly less than Nr.

Here, we choose a radius of 3.3 cm for the spherical window function, and select 71

electrodes, surrounded by 7 to 12 sensors within the spherical window, for the local

spatial Fourier transform. The variable Nk = 63 denotes the number of wave vector

samples k = [k1, k2, k3]
T, which are chosen arbitrarily to contain all possible combinations

of k1, k2, k3 ∈ {0,±1,±2} such that there are no two wave vectors k1 and k2 for which

k1 = −k2.

The tensors are then decomposed using the DIAG algorithm (Luciani and Albera,

2011, 2014). In case of the STWV tensor, it is followed by 10 ALS iterations to ensure

that the loading matrix B that contains the temporal characteristics of the signal is

real-valued. The number of CP components is chosen such that it equals the number of

patches. Finally, the spatial mixing matrix is estimated according to the STF and STWV

methods.

2.5.3. Extended source localization

The patches are localized based on the spatial mixing vectors obtained by the STF

and STWV preprocessing using DA. Depending on the tensor method used for the pre-

processing, we subsequently refer to these techniques as STF-DA and STWV-DA. If sev-

eral patches are simultaneously active and if the corresponding STF and STWV tensors

have an approximately trilinear structure, the tensor-based preprocessing separates the

patches. The localization is thus performed for each patch separately. Furthermore, we

employ sLORETA, cLORETA, and 4-ExSo-MUSIC for extended source localization to

compare the results of the tensor-based methods to other approaches. sLORETA and
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cLORETA are applied to spatially prewhitened data2 as we found that this generally

improves the results. Since these two methods do not take into account the temporal

information, they are applied to the time sample that exhibits the highest variance over

all EEG channels, corresponding to the maximum of the epileptiform spike. The FO

statistics employed in the 4-ExSo-MUSIC algorithm are estimated from the same data

that is used for the construction of the STF and STWV tensors, comprising Nt = 200

time samples. For both DA and 4-ExSo-MUSIC, we consider disks that are composed of

up to Dmax = 100 grid dipoles.

2.5.4. Evaluation

For the comparison of the different extended source localization methods, we use the

receiver operating curves (ROC), which represent a plot of the true positive fraction (TPF)

over the false positive fraction (FPF) of the estimated grid dipoles. If I denotes the set

of extended source dipoles which belong to the original source, Î is the set of correctly

identified extended source dipoles, and J represents the set of all grid dipoles, then the

two measures are defined as follows:

TPF =
#{I ∩ Î}

#{I}
(20)

FPF =
#{Î} −#{I ∩ Î}

#{J } −#{I}
. (21)

Here, #{I} denotes the number of elements in the set I. Different TPF and FPF values

are achieved by varying the threshold values for the extended source localization algo-

rithms. The ROC curves are generally plotted for a FPF ranging from 0 % (no dipoles

that are falsely associated to the patch) to 6 %, which corresponds to approximately

60 cm2 of cortex that is erroneously associated to the patch.

In the case of several patches, the STF and STWV preprocessing separate the patches,

yielding a separate ROC curve for each patch. In order to compare these results with the

solutions of the other methods, we combine the individual ROC curves by multiplying the

FPF by the number of separate patches and computing the arithmetic mean of the TPF

values for each FPF. This procedure assumes that the grid dipoles erroneously identified

2The spatial prewhitening is accomplished by multiplying the data and the lead field matrix by the

prewhitening matrix P = K
+, where K is the square root of the covariance matrix of the background

activity.
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for each source are distinct, such that the FPFs add up. Thus, the resulting ROC curve

represent the worst case overall performance for these methods.

2.6. Real data

Real EEG data were acquired with a 62-channel measurement system using the com-

mon average reference with a sampling rate of 1000 Hz. Our analysis is based on 9

interictal spikes that were selected from the recordings. We have considered data seg-

ments comprising the ascending and descending parts of the spikes as well as parts of

the following wave. The selected time intervals are marked in Figure 8. A realistic head

model was built by segmenting the patient’s MRI using the BrainVisa software (Rivière

et al., 2003). The lead field matrix was then computed for a cortical mesh with 20003

vertices using Brainstorm (Tadel et al., 2011) and OpenMEEG (Gramfort et al., 2010;

Kybic et al., 2005). In this case, each vertex of the mesh corresponded to one grid dipole.

The sources were localized using STWV-DA, STF-DA, and 4-ExSo-MUSIC as well as

using sLORETA and cLORETA. Contrary to STWV-DA, STF-DA, and 4-ExSo-MUSIC,

which exploit the data of the whole time interval, sLORETA and cLORETA were ap-

plied to three time points corresponding to the first (negative) peak, the second (positive)

peak, and the wave. The STWV and STF tensors were constructed and decomposed as

described in Section 2.5.2. We analyzed the results obtained for R = 1, R = 2, and

R = 3 CP components in accordance with the number of sources that could be expected

according to the SEEG recordings that were available for the same patient. For the source

localization using STWV-DA, STF-DA, and 4-ExSo-MUSIC, we employed a maximal disk

size of 200 dipoles. The number of disks or grid dipoles to consider, which determines the

size of the identified patch, was chosen such that the goodness-of-fit (GOF) value

GOF =
||X̃−Xrec||F

||X̃||F
(22)

was minimal. Here, Xrec corresponds to the data matrix that is reconstructed from the

estimated source configuration. In case of STF-DA, STWV-DA, and 4-ExSo-MUSIC,

Xrec =
∑R

r=1 d̃rs̃
T
r where d̃r denotes the reconstructed spatial mixing vector for the com-

bination of a certain number of disks for the r-th component and s̃r denotes the corre-

sponding patch signal that can be computed as S̃ = D̃+X with D̃ =
[

d̃1, . . . , d̃R

]

. For

sLORETA and cLORETA, Xrec = d̃s̃T where d̃ =
∑

d∈Î gd corresponds to the sum of

the lead field vectors of the considered grid dipoles, which are characterized by the set
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Î of dipole indices and which are identified by thresholding the coefficient vector ĉ. The

corresponding patch signal is computed as s̃ = d̃+X.

The source localization results can be evaluated based on the findings of the SEEG,

which give a strong hypothesis on the actual source regions of the epileptic activity. To this

end, in Figure 8, we marked by small spheres the positions of the three SEEG electrodes

for which the highest amount of epileptic spikes were automatically detected (Bourien

et al., 2005) during SEEG recordings. Note that the automatic detection was based on

an independent evaluation of the recordings of each SEEG electrode which means that

the epileptic activity at the three identified sites could be independent or concomitant.

A more detailed analysis of the SEEG recordings showed that in some cases, an epileptic

spike at the anterior SEEG electrode may be associated with an epileptic spike at the

central SEEG electrode, delayed by about 20 ms, and a spike at the posterior SEEG

site delayed by 70 ms with respect to the spike at the anterior site. This suggests that

epileptic activity is propagated from the anterior SEEG electrode to the posterior SEEG

electrode.

3. Results

3.1. Single patch scenarios

3.1.1. Analysis of the patch position

Since superficial sources exhibit more focal distributions of the electric potential than

deep sources, this may favor the source localization procedure. Furthermore, the signals

emanating from deep sources lead to smaller amplitudes at the sensor level than those

of superficial sources and therefore correspond to smaller SNRs for the same background

activity. It is thus significant to determine the influence of the patch position on the

localization accuracy of the different source localization methods. To this end, in the first

simulation, we consider 9 different patches with various locations (see Figure 2) on the left

hemisphere, leading to SNR ranging from 3.9 dB to 11 dB where the SNR was computed

as SNR = ||X||2

||Xb||2
. We evaluate the performance of the source localization algorithms based

on the ROC curves, which are plotted in Figure 2 along with images of the recovered

patches for a fixed FPF of approximately 0.2 % and for the source localization method

that yields the best results in each case.
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As can be seen in Figure 2, for all simulation scenarios other than patch BasTe, STF-

DA and STWV-DA outperform sLORETA and cLORETA. For patch BasTe, sLORETA

leads to slightly better results than STF-DA and STWV-DA, whereas the latter two

clearly yield more accurate results than cLORETA. While the performance of sLORETA

and, in particular, cLORETA approaches that achieved by STF-DA and STWV-DA for

some scenarios, e.g., patches InfPa and SupOcc, the results of sLORETA and cLORETA

are rather poor for other scenarios, e.g., patches MidTe and ParaHipp. Finally, the

4-ExSo-MUSIC algorithm generally yields comparable results to STF-DA and STWV-

DA. For the examined single patch scenarios, there is hardly any difference between

the results of the STF and the STWV analysis. Concerning the patch location, the

simulation results show that the examined source localization methods generally yield

good results for superficial patches (except for patches PreC (precentral) and MidTe (mid

temporal)). However, they show some difficulties for accurately recovering deep patches

such as patches BasTe (basal temporal) and ParaHipp (para hippocampal).

3.1.2. Influence of the patch size

Besides the patch location, another factor that influences the result of the source

localization is the patch size. This is why, in the second simulation, we consider a scenario

where this parameter is varied over 10, 25, 50, 100, 200, 300, and 400 triangles that

composed the patch corresponding to an area of 0.5, 1.25, 2.5, 5, 10, 15, and 20 cm2 of

cortex. Figure 3 shows the resulting patches of different sizes and the TPF score of the

examined source localization methods for a fixed FPF of 0.2 %. Except for sLORETA,

all source localization methods display the best performance for intermediate patch sizes

(around 100 or 200 patch dipoles corresponding to an area of 5 to 10 cm2 and the green

zone in Figure 3 (left)) with decreasing accuracy for both small and very large patches.

3.2. Two patch scenarios

One of the main interests of the tensor-based methods consists in their ability to

separate several simultaneously active patches. This point is therefore studied in the

following simulations. Please note that a discussion of the results obtained for two of

the considered scenarios with respect to the theoretical analysis of the STF and STWV

analyses can be found in the supplementary material “Trilinear approximation”.
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Figure 2: ROC curves and recovered patches for the 9 examined single patch scenarios and an FPF of

approximately 0.2 % (0.13 % for patch InfPa). Triangles belonging to the original patch are marked in

red, correctly identified triangles are dark red and erroneously identified triangles are yellow. L (left),

R (right), F (frontal), and O (occipital) indicate the orientations of the figures. Patches BasTe and

ParaHipp are viewed from the bottom. The SNR for each scenario is indicated beneath the estimated

patch.
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Figure 3: Different examined patch sizes (left; frontal view) and TPF as a function of the number of

patch dipoles for a fixed FPF of 0.2 % (right). The colorbar on the x-axis of the Figure on the right

associates the patch dipoles with the triangles of the same color in the Figure on the left. The results

of the different methods are coded as follows: Plain blue line - sLORETA, plain beige line with crosses

(x) - cLORETA, plain green line with circles - STF-DA, dashed red line with stars - STWV-DA, dashed

dotted black line with crosses (+) - 4-ExSo-MUSIC.

3.2.1. Influence of the patch distance

An important factor for the distinction of two patches is their distance, especially

for the STWV analysis, which exploits the difference between spatial distributions of the

electric potential for each patch. To determine the influence of the patch distance on

the source localization results, we consider in the following three configurations of two

superficial patches with large, medium, and small distances amounting to approximately

13.5 cm, 9 cm, and 5 cm, respectively. The corresponding ROC curves as well as the

original and recovered patches are plotted in Figure 4. For all three patch configurations,

STWV-DA clearly outperforms all other approaches. The localization accuracy (in terms

of the TPF) diminishes with decreasing source distance. For two close sources, at an FPF

of about 0.2 %, only one patch has been partly recovered by STWV-DA while at larger

distances, for the same FPF, both patches have been almost completely identified (cf.

Figure 4).

3.2.2. Influence of the depth of the patch

In the previous simulations for two patches, we considered only superficial patches.

However, as already stated in Section 3.1.1, the depth of a patch plays an important role

in the outcome of the source localization process. To determine its impact on the source

separation and localization of two patches, we conduct a simulation study with three patch
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Figure 4: ROC curves and recovered patches for scenarios consisting of patches SupFr and SupOcc (large

distance), patches InfFr and InfPa (medium distance), and patches InfFr and SupFr (small distance).

Triangles belonging to the original patches are marked in red, correctly identified triangles are dark red

and erroneously identified triangles are yellow. L (left), R (right), F (frontal), and O (occipital) indicate

the orientations of the figures. Patches SupFr and SupOcc are viewed from the top. The SNR for each

scenario is indicated beneath the estimated patch.

configurations comprising either one superficial and one deep patch or two deep patches.

The recovered patches and resulting ROC curves are displayed in Figure 5 and show that

all tested source localization algorithms have great difficulties in identifying both patches.

Both the STF and the STWV analysis fail to accurately separate the sources. The 4-

ExSo-MUSIC algorithm thus features the best performance for the first two scenarios.

However, in the first scenario, it only permits to recover the superficial patch and in the

second scenario it first identifies a false patch. In the third scenario involving two deep

patches, sLORETA yields the best source localization result. It recovers parts of both

patches, but does not permit to identify the true patch forms and extents.

3.3. Influence of the number of CP components

The number of CP components identified in the decomposition of the STF and STWV

tensors should be chosen according to the number of extended sources. However, in prac-

tice, the number of sources is unknown and has to be estimated from the measurements.

While the estimation of the number of sources is out of the scope of the present paper,

we analyze in this section the sensitivity of the STF and STWV based source localization
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Figure 5: ROC curves and original and recovered patches for two patch scenarios with varying patch

depths: patches InfFr (superficial) and Cing (deep), patches MidTe (superficial) and ParaHipp (deep),

and patches BasTe (deep) and ParaHipp (deep). Triangles belonging to the original patches are marked

in red, correctly identified triangles are dark red and erroneously identified triangles are yellow. L (left)

and R (right) indicate the orientations of the figures. Patches BasTe and ParaHipp are viewed from the

bottom. The SNR for each scenario is indicated beneath the estimated patch.

methods to the number of CP components used in the tensor decomposition. To this end,

we consider a scenario with a single patch, InfPa, and a scenario consisting of the two

patches InfFr and InfPa. Then, we decompose the STF and STWV tensors using one CP

component and using two CP components. For both cases, we perform source localization

using STF-DA and STWV-DA. The resulting ROC curves are shown in Figure 6. For

STF-DA, the results that are achieved with one or two CP components are the same,

indicating that the spatial mixing vectors obtained for both components must be almost

identical. With a TPF close to 100% for an FPF of about 1%, the results obtained by

STF-DA are good for the single patch scenario, but poor for two patches where the TPF

does not exceed 50% for an FPF smaller than or equal to 6%, which suggests that only one

patch is localized. For STWV-DA, with a 1-component CP decomposition, one obtains

the same results as with STF-DA for both scenarios. With a 2-component CP decompo-

sition, on the other hand, the results of STWV-DA are worse than those obtained for one

component in the single patch case, but considerably better than those obtained with one

component in the two patch case. This shows that the correct choice of the number of
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CP components is important to achieve accurate results with STWV-DA.

Figure 6: ROC curves obtained for STF-DA and STWV-DA based on a CP decomposition with one or

two components for a single patch and a two-patch scenario.

3.4. Computational Complexity

In Section 2.4, we provided a number of formulas for the computational complexity of

the tensor-based preprocessing methods and the source localization algorithms. However,

these formulas are difficult to interpret due to their dependence on a large number of

parameters. To give an idea of the computational complexity that can be encountered in

practice for the compared methods, we compute the number of real-valued multiplications

for fixed values of parameters that were used for the computer simulations for two patches

presented above and vary only the parameters associated with the data, namely the

number of sensors and the number of time samples. As Figure 7 shows, the 4-ExSo-

MUSIC algorithm clearly exhibits the highest computational cost, which augments rapidly

with increasing number of sensors, but hardly changes for the examined numbers of time

samples, since the cost of the EVD of the cumulant matrix depends only on the number

of sensors and dominates the cost of all other operations. The cLORETA algorithm

has the lowest computational complexity, followed by sLORETA. For both methods, the

computational complexity does not depend on the number of time samples since the

algorithms are applied to a single data vector. The number of real-valued multiplications

required for STF and STWV analyses are comparable for about 200 time samples. For

identical tensor sizes, the STWV analysis is computationally more expensive than the STF

technique since the STWV tensor is complex-valued. However, for an increasing number
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of time samples, the calculation of the wavelet transform becomes computationally more

expensive, which explains the increased computational burden of STF-DA compared to

STWV-DA for large time samples in Figure 7 (right).
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Figure 7: Computational complexity of the different source localization methods depending on the number

of sensors (left) for Nt = 200 time samples and as function of the number of time samples (right) for 91

electrodes.

3.5. Real data results

To validate the tensor-based methods and in particular the STWV analysis, we applied

these techniques to real EEG measurements that were recorded for a patient suffering from

epilepsy. For comparison, we also analyzed the data using 4-ExSo-MUSIC, sLORETA,

and cLORETA. In Figure 8, the patch dipoles that were identified with the examined

algorithms for the 9 different spikes are marked in color. The colorscale varies from 0

to 9 depending on the number of spikes for which a dipole was determined to be active.

STWV-DA, STF-DA, 4-ExSo-MUSIC, and sLORETA identified patches mostly on the left

hemisphere, at locations that were close to the two or three SEEG contacts that recorded

the highest amount of spikes. However, all tested source localization methods also iden-

tified patches on the right hemisphere. This was particularly the case for cLORETA. In

case of STWV-DA, the patches identified for most of the spikes were located in between

the two posterior or the two frontal SEEG contacts, in the superior frontal gyrus or in

the mesial areas of the frontal lobe. Some isolated patches were located in the posterior

of the right hemisphere. Comparing the results of STWV-DA obtained for R = 1, R = 2,

and R = 3 CP components, we observe that for R = 1, only one small patch, located

in between the two frontal SEEG contacts, was identified. For R = 2, the recovered
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patches were larger and located close to the three SEEG contacts, whereas for R = 3, the

majority of patches was localized between the two posterior SEEG contacts. The patches

localized by STF-DA were mostly located between the two frontal SEEG contacts and

were comparable for the three tested tensor ranks. However, for R = 3, in some cases,

patches were also identified at the equivalent position on the right hemisphere. Moreover,

a small number of patches were localized in the vicinity of the third SEEG contact in

the pre-central gyrus. The 4-ExSo-MUSIC algorithm identified patches in between the

frontal and the posterior SEEG contact, with most patches located close to the central

SEEG contact. The patch size slightly increased for larger ranks of the signal subspace.

Otherwise, the different ranks of the signal subspace lead to similar results. As for STF-

DA, patches were also localized at the equivalent positions on the right hemisphere. The

patches localized by sLORETA are globally more anterior, while cLORETA identified

patches all over the frontal parts of the left and right hemispheres.

4. Discussion and conclusion

We have compared the results of tensor-based methods to conventional techniques for

extended source localization. We reviewed two types of tensor methods, namely STF

and STWV analyses, and proposed an algorithm, DA, for source localization based on

the results of the tensor decomposition. These methods have been evaluated with re-

spect to three different aspects: (i) their theoretical foundation, (ii) their computational

complexity, and (iii) their source localization performance on simulated and real data.

4.1. Analysis of the tensor-based methods

Whereas previous references on STF and STWV analyses have provided only intuitive

conditions concerning their applicability in practical situations, in the supplementary

material of this paper, we have derived sufficient conditions under which the application

of the STF and STWV techniques is justified. Although these mathematical conditions are

very restrictive and it is difficult to translate them into physiological conditions, which can

be verified in practice, we will subsequently discuss several points which can be deduced

from the identified conditions and which influence the functioning of the STF and STWV

analyses:

Source strengths For a correct separation, the sources should lead to surface measure-

ments of comparable strengths. Sources with significant differences in amplitude or
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Figure 8: Results of STWV-DA and STF-DA for R = 1, R = 2, and R = 3 and of 4-ExSo-MUSIC for

P = 1, P = 3, and P = 6 (corresponding to 1, 2, and 3 correlated sources) as well as of sLORETA

and cLORETA for the different spikes. The patch dipoles are colored according to the number of spikes

(from 0 to 9) for which they were identified. Small blue spheres indicate the positions of the three

SEEG electrodes for which the highest amount of epileptic spikes was automatically detected during

SEEG recordings. We also illustrated the spike intervals considered for STWV-DA, STF-DA, and 4-

ExSo-MUSIC and the time points considered for cLORETA and sLORETA (displayed on the time signal

recorded by electrode AF7).
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combinations of deep and superficial sources often lead to the idenfication of the

source with the highest surface amplitude only.

Correlation of the source time signals The time signals of the different sources should

not be too correlated. Low correlations facilitate the source separation.

Correlation of the spatial mixing vectors For close sources, the spatial mixing vec-

tors are highly correlated, making the source separation difficult. Distant sources, on

the other hand, lead to a limited spatial correlation and favor the source separation.

Time-frequency or space-wave-vector characteristics The STF analysis assumes

the time-frequency content of each source to be of rank 1 and the STWV analysis

is based on the hypothesis of a rank-1 space-wave vector content of each source.

In practice, it is generally sufficient if the singular values of the time-frequency or

space-wave-vector matrix of each source decrease quickly.

In fact, as the simulations conducted in Section 3 showed, despite their approximate

nature, the tensor-based methods, STF-DA and STWV-DA, lead to good results for a

number of scenarios. The usefulness of the STWV method became particularly apparent

for several simultaneously active superficial patches, in which case it accurately separated

the patches and exhibited a considerable performance gain compared to all other methods.

Nevertheless, it is important to retain that even though tensor-based methods can

provide a powerful tool for EEG preprocessing and source separation as we demonstrated

in Sections 3.1 and 3.2.1 of this paper, they may fail even in ideal situations where there is

neither noise nor artifacts and all patch signals are identical. This is particularly the case

for the STF analysis when patches emit highly correlated activities (spreading activity

from one region to another one) or for the STWV analysis when deep sources are expected

(see results of simulations in Section 3.2.2).

Another source of errors for the tensor-based techniques stems from the imperfect

synchronization of the signals that are emitted by the dipoles of one patch. Both the

STF and the STWV analysis are based on the model (4), which approximates model (1)

by assuming the same signal for all dipoles within a patch. If the activity of the patch

dipoles is not sufficiently synchronous, this model is incorrect and leads to perturbations

of the estimated spatial mixing vectors and thereby of the source localization results. The

same problem also applies to the 4-ExSo-MUSIC algorithm.
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A remaining problem of the tensor methods consists in the estimation of the number

of active patches, which we assumed to be known in this paper. As the analysis of STF-

DA and STWV-DA with respect to the number of identified CP components (see Section

3.3) showed, this parameter has a high impact on the results of the STWV analysis. An

inappropriate number of components may cause the STWV analysis to fail by separating

patches into several components or by mixing different patches in one component. For

the STF analysis, the number of CP components seemingly did not have an impact on

the results. But this insensitivity may be explained by the inability of the STF analysis

to identify components that can be associated to different patches because the time-

frequency content of the simulated patch activities is nearly identical. In practice, the

number of patches has to be determined from the measurements, which is a difficult task,

especially in the context of delayed signals for simultaneously active patches. Similarly,

for 4-ExSo-MUSIC, one has to estimate the dimension of the FO signal subspace, which

raises the same difficulties.

4.2. Computational complexity analysis

Most evaluations of source localization algorithms are based exclusively on perfor-

mance measures that compare the estimated source distributions to the ground truth

whereas considerations concerning the computational complexity of different approaches

are generally neglected. Nevertheless, the computational cost of a source localization

method should also be taken into account as it influences the usefulness of the method

in practice. In this paper, we have therefore included a comparison of the different tech-

niques with respect to their computational complexity. Our analysis has revealed that

for a few hundred time samples generally used in the STF or STWV analyses, the cost of

4-ExSo-MUSIC is considerably higher than that of STF-DA and STWV-DA. In partic-

ular, it increases strongly with the number of sensors, leading to an intractable number

of operations for large sensor numbers. On the other hand, the computational cost of 4-

ExSo-MUSIC augments only linearly with the number of time samples, which makes it an

efficient algorithm for a small number of sensors and a high number (several thousands)

of time samples.

The cLORETA algorithm has the smallest computational complexity among the ex-

amined source localization methods, followed by sLORETA. Their cost can be mostly

associated with the treatment of the lead field matrix (generalized inverse computation)
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that has to be accomplished prior to the actual source localization. However, this step

needs to be performed only once per patient and the actual source localization can then

be performed many times at a much smaller cost. Yet as the simulations showed, the

cLORETA and sLORETA principles for source localization do not yield as accurate re-

sults obtained with simulated data as 4-ExSo-MUSIC, STF-DA, and STWV-DA.

4.3. Simulation results

Contrary to previous studies of tensor-based approaches (Miwakeichi et al., 2004;

Morup et al., 2006; De Vos et al., 2007a,b; Deburchgraeve et al., 2009; Becker et al.,

2012), which have mainly focused on source separation and equivalent dipole localization,

we have conducted our analysis using a realistic head model and have aimed at identifying

the spatial extent of the sources. The localization of extended sources has also been

addressed in several other publications (Limpiti et al., 2006; Friston et al., 2008; Ding,

2009; Bolstad et al., 2009; Birot et al., 2011; Chowdhury et al., 2013), based on different

algorithms including scanning methods, MEM, Bayesian and sparse approaches. While

these algorithms are generally shown to yield satisfactory results for scenarios with only

one extended source, difficulties in localizing several patches, in particular in the case of

correlated activities, have been reported in several studies. In this paper, we have analyzed

the use of tensor-based methods to overcome this problem by separating the sources prior

to the localization. In this context, an important contribution of the paper consists in

the proposition of the disk algorithm, which permits us to accurately localize extended

sources based on the results of the tensor-based preprocessing step. This method is based

on a parameterization of the extended source, similar to (Limpiti et al., 2006; Birot et al.,

2011), but utilizes a different metric to identify the elements of the source space that best

describe the measurements. To evaluate the performance of the proposed STF-DA and

STWV-DA techniques in comparison to sLORETA, cLORETA, and 4-ExSo-MUSIC, a

simulation setup inspired by (Grova et al., 2006) is used.

Our simulation study has shown that for single patch scenarios, 4-ExSo-MUSIC yields

comparable results to those of STF-DA and STWV-DA and that these methods outper-

form sLORETA and cLORETA. As no source separation is performed, the spatial mixing

vector is almost perfectly recovered by both the STF and the STWV analysis and these

methods yield approximately the same results. In this case, the errors of the patch esti-

mates are mostly due to DA. Similar to previous studies conducted in the context of MEG
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source localization (Chowdhury et al., 2013), we have observed that the extended source

localization algorithms do not work as well for deep sources as for superficial sources.

This shows that the improvement of these methods for the localization of deep sources is

an important research track for future work.

For small patches, the SNR is low, which may explain the poor performance of the

source localization algorithms. However, among all considered methods, STF-DA and

STWV-DA lead to good results except for very small patches (< 2.5 cm2). On the other

hand, for large patches, the limited size of 100 grid dipoles for the disks that we employed

in the 4-ExSo-MUSIC technique and the disk algorithm is not adequate anymore and

impedes the source localization. This may explain the better performance of cLORETA

compared to STF-DA. STWV-DA, and 4-ExSo-MUSIC for large patches and shows that

the maximal disk size has to be chosen carefully according to the expected size of the

source region to obtain accurate source localization results. To avoid this problem, one

could systematically use a high maximal disk size, but it has to be kept in mind that this

may considerably increase the computational complexity.

For scenarios with two superficial patches, STWV-DA exhibited the best performance.

This can be explained by the fact that the STWV analysis correctly separates the spatial

mixing vectors of the two patches and therefore permits to localize each patch individu-

ally. Due to the highly correlated signals of the two patches, which differ only by a small

time delay, the STF analysis fails to separate the patches, therefore impeding source lo-

calization. 4-ExSo-MUSIC needs to localize both patches simultaneously, which does not

work as well as the localization of a single patch and thus does not yield as accurate

results as STWV-DA. As for the single patch scenarios, cLORETA and sLORETA gen-

erally do not permit to achieve as accurate results as STWV-DA. However, if we consider

scenarios with one deep patch and one superficial patch or two deep patches, the tensor-

based techniques feature a poor performance because they do not accurately separate

the two patches. In the presence of one superficial and one deep patch, this is mainly

due to the different strengths of the patch signals recorded at the surface. Furthermore,

the STF technique fails because of the highly correlated signals of the patches and the

STWV method struggles with the wide-spread distribution of the electric potential of

deep sources.
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4.4. Real data

We have applied the STF-DA and STWV-DA algorithms to actual EEG measure-

ments of an epileptic patient and have localized patches that show a good correspondence

to the positions of the SEEG electrodes detecting frequent interictal epileptic activity. We

employed tensor decompositions with R = 1, R = 2, and R = 3 components because we

expected up to three active patches. In all cases, we obtained results that are concordant

with the sites identified from the SEEG recordings, yielding patches that are close to two

or three of the marked SEEG contacts for most spikes. In some cases, the determined

patches can be farther away from the marked SEEG electrodes and include regions on the

right hemisphere. This could be due to lower SNRs for the single spikes or to propagation

phenomena, which occur during the spike and wave complex of the analyzed epileptic

spikes. Nevertheless, it is difficult to consider these results as a “false” localization since,

in the absence of simultaneous SEEG/EEG recordings, the involvement of these remote

regions cannot be ruled out. For STF-DA, we did not observe significant discrepancies

between the results obtained for different tensor ranks. Due to propagation effects, the

source signals can be expected to be highly correlated and the STF analysis is therefore

unlikely to separate the sources, distinguishing rather different components of one source.

This would explain the insensibility of the results to the employed number of CP com-

ponents, which has also been observed in the simulation study. For STWV-DA, the best

results are achieved for R = 2, in which case patches are localized in proximity to the

three marked SEEG contacts. For R = 3, the source localization results are slightly less

concordant with the sites identified from the SEEG recordings and for R = 1, patches are

only identified close to the two frontal SEEG contacts. This suggests that the STWV-DA

method is able to separate only two sources. If there is a higher number of active patches,

their signals are probably too correlated or their amplitudes too different to enable their

separation using the STWV analysis, leading to worse results for higher tensor ranks.

Altogether, we deduce that the tensor-based methods are also well suited for the analysis

of real data, as is the 4-ExSo-MUSIC algorithm, for which we obtained similar results.

The results of these three methods are more concordant with the identified SEEG con-

tacts than those of sLORETA and cLORETA, which frequently identified patches on the

contralateral hemisphere.
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4.5. Conclusion

On the whole, we conclude that the disk algorithm applied to the results of the tensor-

based preprocessing and in particular of the STWV analysis yields the best results in

terms of computational complexity and localization accuracy in many cases. However,

the tensor-based methods should be used carefully as they do not provide accurate results

under certain conditions such as correlated sources in case of the STF analysis and deep

sources for the STWV analysis. Hence their suitability for the analysis of the data at hand

should be examined, which can, for example, be accomplished based on prior knowledge

about the underlying sources or using other source localization methods for comparison.
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