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ABSTRACT 

 

This paper addresses the study of vibrations induced by turbulent boundary layers flowing over 

plate-like structures. The aim is here to propose a predictive method in order to evaluate the 

vibroacoustical behaviour of a plate excited by turbulent boundary layer pressure fluctuations. The 

ultimate goal is to develop tools for predicting internal cabin noise in an aircraft during flight. 

Hence turbulent boundary layer (TBL) is considered. Different TBL models are discussed and 

compared. A prediction method well suited for mid-high frequencies is also presented. The method 

called, Simplified Energy Method (SEM), is based on local energetic considerations and extends the 

well known Statistical Energy Analysis (SEA). Two different SEM formulations are presented. The 

first one is of heat conduction type, whilst the second is radiative. The TBL source model was 

integrated in the local energy proposed formulations. When applied to a simple Kirchhoff-Love 

simply supported plate, SEM allows prediction of averaged energy quantities. Comparisons are 

drawn between heat and radiative formulations. Good concordance was observed between energy 

results and pure analytical calculations of the structural response under TBL excitation over a wide 

frequency range. 
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1 INTRODUCTION 

With increasing flight speed and the generalisation of air transportation has appeared a necessity to 

reduce structural fatigue for aircraft and acoustic/vibration levels for their payload and passengers. 

Passengers' comfort, during the past years, has become one of the principal concerns of various 

actors in the aeronautic industry, since it is actually one of the essential demands of users. Among 

the factors that are considered to affect the wellbeing of passengers, acoustics and vibrations are 

ranked at the top of the list. Interior noise related to the external flow has become a significant 

noise contributor under certain conditions even for ground transportation vehicles. 

 

Turbulent external flow related loads are principally of two types, involving two areas of research. 

First, turbulent fluctuations behave as acoustic sources. The acoustic field resulting from turbulence 

loads the panels which, in turn, transmit noise inside the vehicle. These phenomena are qualified as 

aero-acoustic. At low Mach numbers, they become important only in the presence of a protruding 

accessory that induces strong turbulent stresses in a flow region that consequently behaves as an 

acoustic source. 

 

Fig. 1: Structural vibration due to Turbulent Boundary Layer 

 

Second, the interaction between turbulent flow and external panels causes wall pressure fluctuations 

that generate panel vibrations, which radiate sound into the passenger or payload compartment (see 

Fig. 1). In all cases, fluid inertia forces will become greater than viscous forces and a turbulent 

boundary layer (TBL) develops if velocity is high enough and if the structure is large. 

 

On the one hand, the numerical prediction of such phenomena is costly when processed through 

conventional methods such as Finite-Element based ones. This is especially true for distributed 

random excitation, such as TBL excitation, for which the forced response problem requires 

exponentially more computational effort than the modal analysis of the structure. Some alternative 

methods, still displacement based, like the dynamic stiffness method and the spectral FEM, 

(Birgersson et al 2003) succeeded in reducing the number of degrees of freedom and increase 

accuracy. The elements are formulated and assembled as in the standard FEM while the basis 



M. N. Ichchou et al.: Energy modelling of TBL induced Vibration 

Laboratoire de Tribologie et de Dynamique des Systèmes, UMR CNRS 5513, Ecole Centrale de Lyon 5

functions are exact solutions to the equations of motion. Normally, the spectral FEM, and the 

dynamic stiffness method (DSM), consider excitation at the element ends only. Though the above 

method is efficient and accurate, the relevant information regarding the response of the structure 

rely on an averaged value. This true to energy based method, to which cross-spectral densities and 

cross-correlation functions can be related in a straight forward manner. The weakness of energy 

methods is in the models used for injected power. Provided the TBL excitation can be well 

described, one can expect some good results. The most common TBL model is attributed to Corcos 

(Corcos 1967), and has been validated experimentally. Yet, it overestimates the wall-pressure cross-

spectral density at wave-numbers below the convective peak. Some improved models were 

therefore developed to give a better representation of the sound source associated to the TBL 

interacting with surface panels (Zheng 2003). It should be pointed out that the weak coupling 

assumption (Graham 1997) is accepted in the current study. This assumption corresponds to the 

assumption, implicit in acoustic analogy analyses, that the basic turbulence structure is essentially 

unaffected by the acoustic motions. Feedback from the vibrating panel can affect the properties of 

turbulent flow and its pressure loading. However, when trying to predict the body panel responses, 

the complexity is such that most studies keep a weak interaction hypothesis, i.e., they neglect panel 

feedback on flow. This approach, when valid, i.e., without aeroelastic instabilities, allows 

computation of the panel response from the properties of the wall pressure field experimentally 

determined on a hard surface. The predictions obtained from the weak coupling approximation have 

been shown to work well in a wide range of cases (Graham 1997), except for the differences 

between the theoretical results and measured data mentioned in (Blake 1986) in supersonic flow 

cases. 

 

On the other hand, TBL excitation is a typical wide frequency band excitation. It should thus be 

noted that well established and detailed numerical methods like finite element or boundary equation 

based formulations run into important limitations as frequency increases. Specific medium and high 

frequency range methods are then needed to deal with the vibrational behaviour in this particular 

frequency range. Among possible alternatives, two different philosophies can be found in the 

specialised literature. The first class of analysis methods are based on displacement variables. These 

methods tend to reach the medium and high frequency domain using both phase and amplitude 

behaviour. Among these methods we note the work done by C. Soize (Soize 1993) who introduced 

the structural-acoustic fuzzy theory. Ultimately, the complex ray theory developed by Ladeveze 

(Ladeveze 1996) can also be considered as displacement approach to medium and high frequencies. 

The second class of analysis methods are based on energy variables. The Statistical Energy 
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Analysis (SEA) (Lyon 1975) is the recognized originator. SEA gives the mechanical energy of 

complex built-up structures. Statistical Energy Analysis offers an alternative form of vibrational and 

acoustical state. The statistical aspects included are mainly related to the high frequency features. 

Modelling uncertainties made deterministic approaches often irrelevant at high frequency. SEA also 

provides a way of energy transfer analysis. Stored energies, dissipated energies, exchanged powers 

as well as injected powers, are the main variables. SEA tends to characterise the amplitude of 

vibrational signals, without any information about phase. This is a major simplification. It offers 

reduced computational costs, mainly at high frequencies. However SEA suffers from its axiomatic 

formulation and still requires improvements, as indicated in (Fahy 1994) where an interesting 

survey and a number of critical comments are given. Beyond these studies, a number of works 

attempt to enhance the Statistical Energy Analysis robustness and predictivity. Among these 

attempts we may cite the earlier work of Nefske and Sung (Nefske and Sung 1987) who proposed 

the use of an energy diffusion model to predict the space spread of energy density within 

subsystems. Basically, this way of thinking can be viewed as a local energy formalism whereas the 

SEA formalism is based on global energies of finite subsystems. This model has been improved by 

Bernhard and his colleagues (Wohlever and Bernhard 1992, Han et al. 1999). Among other 

contributors to this subject, we may mention (Langley 1995, Carcatera and Sestieri, 1995) where 

interesting discussions are given. Developments at the Ecole Centrale de Lyon in the context of 

energy models started with the so-called general energy method (Ichchou 1996). The main goal of 

this method was to reformulate the classical displacement models using four energy variables: the 

total energy as well as the Lagrangian energy density, the active and the reactive energy flow. 

Eliminating the Lagrangian energy density and the reactive energy flow, the general energy 

formulation leads to an interesting energy model well suited for medium and high frequency 

dynamics. In fact, from a propagative approach, it has been shown that the Lagrangian energy 

density and the reactive energy flow is mainly linked to wave interferences or singularities. So that, 

taking into account only the incoherent contribution of waves to the energy variables leads to the 

formulation of the local energy approach discussed here and called Simplified Energy Method 

(SEM).  

 

Two main energy formulations have been formulated. The first one is similar to the heat transfer 

equation and can be solved through finite element energy based techniques (among others). The 

second formulation is similar to radiative equations and can be solved through boundary element 

energy based approaches. The main goal of this paper is to synthesise these formulations in order to 

show the interest of this local energy approach in the context of predicting TBL induced vibration. 
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This paper deals with such predictions for the vibroacoustical behaviour of a plate-like structure by 

means of energy based approaches. These latter are first introduced in section 2, as an alternative to 

conventional SEA (Statistical Energy Analysis). In section 3, an overview of the existing TBL 

(Turbulent Boundary Layer) models is given. The choice of one of these is then justified. Section 5 

presents the numerical compared results obtained by means of the two energy approaches in an 

example fully described in section 4. 

2 LOCAL ENERGY APPROACH FORMULATIONS 

The main goal of this section is to discuss local energy approach formulations. Dynamical equations 

of motion of structures will then be expressed in terms of energy. This leads to practical efficient 

methods especially for high and mid frequency vibrations. We start with a reminder of basic 

equations of energy conservation in general elastoacoustics. We then formulate the problem in 

terms of energy flow balance. This is the first step in the local energy as well as global SEA 

formulation. Then, using a wave approach very similar to the one given in (Ichchou and Jezequel 

1996) in the steady state case, smooth energy behaviour is studied for damped structures. This wave 

approach is combined with statistical representation, in order to reach averaged energy levels for 

complex dynamical situations. Specifically, the analysis starts with elementary wave energy 

behaviour. In this context, the discussion starts with a plane wave assumption, leading to a 

differential energy equation of the associated energy parameters. After that, spherical waves are 

considered and related energy equations are given. The transition, from elementary waves to a 

complex waves composed dynamics is then discussed. A fundamental set of required assumptions 

are thus introduced and commented. The main assumption is related to the non-coherence situation 

between waves, which leads to a local superposition principle. Finally, a foundation of the local 

energy approach is given. 

 

2.1. PRELIMINARIES 

 

In view of describing the energy transfer inside the medium, two continuous energy fields are 

introduced. The first energy quantity is merely the total energy density  t),W( x


 defined as the sum 

of the potential energy density and the kinetic energy density. x


 being an abscissa point of the 

studied medium. The second energy variable )t,( x


I  is the energy flow. These quantities are local, 

in contrast with energies per subsystem involved in SEA. The energy balance equation from 
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continuum mechanics, obeying the conservation principle, and which govern the energy density in 

various vibrating systems can be described by: 

injdiss pp))t,((div)t,(
t

W 


xx


I   (1) 

where div is the divergence operator, dissp  is the dissipated power density. injp  is connected to 

exterior forces that will inject power in the system. The damping model adopted here is the same as 

in SEA (power density being dissipated is proportional to the energy density). Hence:  

)t,(W)t,(pdiss xx
    (2) 

where  is the damping loss factor and   the circular frequency. The validity of this relationship 

has been discussed in the literature (Lyon 1975) about SEA. In order to derive the energy density 

equations, a wave description of vibrational-acoustical behaviour is adopted. In the subsequent 

presentation, planes and symmetrical propagating disturbances in an elastic and dissipative medium 

are considered. Each propagating wave involves partial energy quantities defined as the energy 

variables associated to those waves. In order to establish a relationship between the partial energies 

 t),(Wi x


 and )t,(i x


I  and the total ones  t),W( x


 and )t,( x


I , an additional assumption is 

introduced. In fact, a superposition principle is assumed and applied here for all quadratic variables: 


i

i   (3) 

i,  being any quadratic variable, representing either a partial energy or a global energy 

associated with a particular wave field. This assumption is often used in statistical phenomena in 

physics. In fact, we can find such an assumption in room acoustics, electromagnetism, etc. This 

assumption is typical in the high frequency literature (see (Lyon 1975) and (Sestieri and Carcaterra 

2003) for further details). In the following developments, an intrinsic energy law will be used. This 

equation  is often introduced in order to define the wave velocity ic . Where: 

iiii )t,(Wc)t,( nxx
 I   (4) 

This expression was shown to be valid for conservative wave fields. It will be used in the following 

as a first step in the energy density equation process for lightly damped structures. 

 

2.2. ELEMENTARY WAVE ANALYSIS: PLANE and SPHERICAL WAVES 

 

In (Ichchou and Jezequel 1996, Ichchou et al. 2001), it was shown that, considering a plane wave in 

an isolated medium, as a particular solution of the motion equation, it verifies the energy equation: 
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0)(2 2

2

2
2 


 i

ii

ii W
t

W

t

W
Wc    (5) 

Under continuous forced harmonic excitation  (angular frequency ), through time averaging, the 

following equation is obtained:  

022  iii W)(Wc   (6) 

Or equivalently through linearity in a forced medium  

injiii pW)(Wc  22             (7) 

This equation is equivalent to the equation of heat diffusion with a term of convection. This 

equation governs the energy density changes. It provides a space average of the predicted energy 

density. This equation has been commented and discussed in-depth by many authors (see for 

instance (Langley 1995) and (Ichchou 1996) for further details).  Let us consider now symmetrical 

wave fields. Specifically, we will consider cylindrical waves in dimension 2, and spherical waves in 

dimension 3. In this case, due to the revolution symmetry, the energy variables are ),( trWi  and 

)t,r(iI


, where r is the radial coordinate. Performing the same demonstration as for plane waves, the 

following equation is readily obtained:  

02
1 2

2

2

2

12

1

2 



 

 i
iii

n

ni W)(
t

W

t

W

r

)Wr(

r
c  (8) 

We can also study the harmonic stationary case, whose equation is:  

0
1 2

2

12

1

2 
 

 i
i

n

ni W)(
r

)Wr(

r
c   (9) 

We notice that this equation is distinct from the equation of heat diffusion. It correctly gives the 

energy behaviour of infinite systems.  

 

2.3. ENERGY FIELDS RECONSTRUCTION: HEAT CONDUCTION EQUATION 

 

From the local energy equations of elementary fields, we will be able to derive the local energy 

equations for more complex wave fields. Hence, for one dimension, the knowledge of the wave 

content will lead to the formulation of the problem in terms of the global field. The situation is more 

complicated for two or three dimension where the wave contents and nature can be of various kinds. 

New assumptions are then needed to deal with multi-dimensional cases, like for instance, vibrating 

Kirchhoff-Love plates. 
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Fig.  2: Energy field reconstruction with plane waves in complex 2 and 3 dimensional media: a reverberant 

field is considered 

 

Fig. 3: Energy field reconstruction with symmetrical waves in complex 2 and 3 dimensional media: direct 

and reverberant fields are indicated 

 

Fig. 4: Energy field reconstruction with symmetrical waves in complex 2 and 3 dimensional media: primary 

and secondary sources definitions 

 

Fig. 2 and 3 show two distinct ways of energy reconstruction. In both techniques, energy variables 

are defined as the superposition of a direct field and a reverberant field. In both techniques, the 

direct field is calculated assuming a symmetrical wave field as described above. The difference lies 

in the reverberant field treatment. In Fig. 2 the reverberant field is assumed to be a set of plane 

waves. This approach leads to a simple differential operator on the reverberant energy density. The 

second solution considers the reverberant field as the result of secondary sources located at 

boundaries as shown in Fig. 4. So, only symmetrical wave fields are considered. This solution was 

first proposed by Kuttruff (Kuttruff  1997). It is also known as the radiosity method. Further details 

can be found in (Schmitt 2004). Both formulations are explained below. Some indications about 

their numerical resolution are also briefly given. 

 

2.4. ENERGY FIELDS RECONSTRUCTION: HEAT CONDUCTION EQUATION 

 

Let us consider a medium in which only plane waves exist. The medium is assumed to be 

homogeneous and isotropic, so that all the waves have the same energy velocity, noted for 

convenience as, cg and which is a physical time and space  constant. It was shown that the energy 

variables, associated to the considered field obeys:  

02 2

2

2
2 


 W)(

t

W

t

W
)W(cg   (10) 

In the case where the considered medium is defined by a distribution of exterior forces, this will be 

represented by a right-hand side injp . Under harmonic stationary excitation, this equation becomes 

simply: 

    injg pt,W)()t,W(c  xx
 22   (11) 

It is a heat conduction type equation with a term of convection. Numerical resolution of this 

equation requires three main parameters. The first one is the energy group velocity. This parameter 

is known for most conventional structural elements (see reference (Ichchou and Jezequel 1996) for 
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details). The second parameter is the damping loss factor which is assumed to be given and finally 

the power injected density which is directly related to the source. Calculation of this quantity in the 

context of TBL excitation is explained below. It should be also pointed out, that Eq 11 needs 

boundary conditions to be given in terms of energy variables. Detailed discussions of these 

boundary conditions can be found in many references (see for instance (Ichchou 1996)). In the case 

considered in this paper, the plate is assumed to be boundary conservative (non absorbing). This 

condition is found in many classic mechanical situations (clamped, free, pinned,…). So that the non 

absorbing boundary condition can be simply expressed in terms of energy flow such as:  

0


ext

W

n
   (12) 

extn


being the external normal vector to the considered boundary. Eq 11 and 12 can finally be solved 

within a finite element energy based context, once all the relevant quantities are provided. 

 

2.5. ENERGY FIELDS RECONSTRUCTION: RADIATIVE TRANSFER EQUATION 

 
 

Let us assume that only spherical waves can be propagated in the studied medium, with an energy 

velocity cg. In this case the energy equation derived above also stands for the global energy and so 

that for stationary dynamics: 

0
1 2

2

12

1

2 
 

 W)(
r

)Wr(

r
c

n

ng   (13) 

Let us note )M,S(G  the impulsional solution corresponding to this equation, and )M,S(H


 the 

associated intensity vector. S will designate below the source point, and M the point where the 

energy density is evaluated. Analytical expressions of both functions are, in two dimensional space, 

given by: 




 SMH
2SM

e
)M,S(and,

SM

e
)M,S(G

gg c

SM

c

SM


 (14) 

The destructive interferences assumption allows one to build the solution by superposition of 

energies associated respectively to direct and reverberated fields (see Fig. 3 and 4). So, at each point 

of the domain , the contributions of real sources (corresponding to external forces) and fictive 

unknown sources (located on the boundary ) are summed. Both contributions are detailed in the 

following expression: 

)M,P()(f)P(and)M,P(G)(f)P(,P

)M,S()S(and)M,S(G)S(,S

PMPPMP Hnnnn

H







 (15) 
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f  is a scalar function, which depends on the angle between the direction of active intensity and the 

boundary external normal. M is the point of the considered domain, the primary source density is 

 S  over   , and the primary sources are proportional to the injected power density injp . Here, 

f  follows a Lambert directivity law, so that the total energy density and the active intensity 

somewhere in the considered media can be written simply as:  

dP)M,P())(P(d)M,S()S()M(

dP)M,P(G))(P(d)M,S(G)S()M(W

PMP

PMP









HnnHI

nn





 (16) 

The injected power density in the system is equal to gc2  because the energy density and the 

active intensity vector verify the following equation:  

gcWdiv  2I


  (17) 

To complete this description, a boundary condition is considered in terms of energy. Indeed, if 

conservative boundaries are assumed then no energy is flowing from the boundary (the scalar 

product of the active intensity and of the exterior normal is null). Applying this result to the 

previous expression of active intensity, a Freedholm integral type equation of the second kind is 

shown as:  

P'P'PPg 'dP)P,'P())('P(*d)P,S()S()P(c nHnnH
    2  (18) 

The resolution of this integral equation is obtained by discretising the boundary  in n segments Sk. 

Pk is the middle of the segment Sk and Q is a variable point on the segment. The source density is 

assumed to be constant on each segment and takes the value k. kn


is the exterior normal vector to 

the domain at Pk. The equation becomes:  

  


  n

kl
l

S
kkQQPlkkkg

l
k

dQ)P,Q()(d)P,S()S(c
1

2 nHnnnH


 (19) 

The n values of  for a type of wave are obtained in solving the preceding system. After their 

evaluation, one can obtain the fields of energy density and active intensity in the domain : 

 
 







n

l
S

QMQl

n

l
S

QMQl

l

l

dQ)M,Q()(d)M,S()S()M(

dQ)M,Q(G)(d)M,S(G)S()M(W

1

1

HnnHI

nn





 (20) 

In the multidimensional domain, Kuttruff proposed (Kuttruff 1997) an integral equivalent to the one 

provided here. This method is known as the "radiosity method". It was principally applied in the 

domain of room acoustics. Further discussions of this formulation can be found in (Schmitt 2004). 


