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Université de Caen Basse-Normandie
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Abstract. Condensed representations of patterns are at the core of
many data mining works and there are a lot of contributions handling
data described by items. In this paper, we tackle sequential data and
we define an exact condensed representation for sequential patterns ac-
cording to the frequency-based measures. These measures are often used,
typically in order to evaluate classification rules. Furthermore, we show
how to infer the best patterns according to these measures, i.e., the pat-
terns which maximize them. These patterns are immediately obtained
from the condensed representation so that this approach is easily usable
in practice. Experiments conducted on various datasets demonstrate the
feasibility and the interest of our approach.

1 Introduction

It is well-known that the “pattern flooding which follows data flooding” is un-
fortunate consequence in exploratory Knowledge Discovery in Databases (KDD)
processes. There is a large range of methods to discover the patterns of a potential
user’s interest but the most significant patterns are lost among too much trivial,
noisy and redundant information. Many works propose methods to reduce the
collection of patterns, such as the constraint-based paradigm [15], the pattern
set discovery approach [4,11], the so-called condensed representations [3,27] as
well as the compression of the dataset by exploiting the Minimum Description
Length Principle [19]. In practice, these methods often tackle data described by
items (i.e., itemsets) and/or specific contexts, such as the largely studied fre-
quent patterns extraction issue (a pattern X is said frequent if the number of
examples in the database supporting X exceeds a given threshold). Many appli-
cations (e.g., security network, bioinformatics) require sequence mining. Oddly
enough, even more than in the item domain, sequence mining suffers from the
massive output of the KDD processes. However, little works focused on this as-
pect mainly because the difficult formalization required for sequential patterns.
For instance, although there are many condensed representations of frequent
itemsets, only closed sequential patterns have been proposed as a exact con-
densed representation for all the frequent sequential patterns [27]. Moreover,
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some concise representations of itemset patterns cannot be used in order to con-
dense frequent sequential patterns [17]. This illustrates the intrinsic difficulty to
extend such works from itemsets to sequential patterns.

This paper addresses the issue of condensed representations of sequential pat-
terns. The idea is to compute a representation R of the extracted patterns which
is lossless: the whole collection of patterns can be efficiently derived from R. This
approach has been mainly developed in the context of frequency [3,27] and there
are very few works addressing other measures [8,21,22]. In this paper, we in-
vestigate exact condensed representations of sequential patterns based on many
interestingness measures, the so-called frequency-based measures (see Section 3).
These measures (e.g., frequency, confidence, lift, growth rate, information gain)
are precious in real-world applications to evaluate the interestingness of patterns
and the quality of classification rules [20]. For instance, the emerging measure is
very useful to characterize classes and classify them. Initially introduced in [5],
emerging patterns (EPs) are patterns whose frequency strongly varies between
two datasets (i.e., two classes). An EP can be seen as a classification rule and
EPs are at the origin of various works such as powerful classifiers [13]. From
an applicative point of view, we can quote many works on the characterization
of biochemical properties or medical data [14]. A condensed representation of
itemsets according to frequency-based measures has already been proposed [22],
but it is only limited to the item domain.

The contribution of this paper is twofold. First, we define an exact condensed
representation of sequential patterns according to the frequency-based measures.
Exact means that we are able to infer not only the patterns, but also the mea-
sure values associated to the patterns without accessing the data. This is useful
because the user is mainly interested in these values. For that purpose, the key
idea is to show that the value of a frequency-based measure of any sequential
pattern can be deduced from one of its closed sequential patterns. This idea has
already been used in the item domain [22], but not in sequential data. Contrary
to itemsets, a sequential pattern may have several closed sequential patterns, our
method overcomes this difficulty. As this condensed representation is based on
the closed sequential patterns and there are efficient algorithms to extract these
patterns, these algorithms are also efficient to mine such a condensed representa-
tion. Second, we define the notion of strong sequential patterns (SPs) according
to frequency-based measures. Given a frequency-based measure, these patterns
maximize it. This is interesting because it highlights the best patterns with re-
spect to the measure and moreover it reduces the output. On the other hand,
the SPs are immediately obtained from the condensed representation. Finally,
experiments conducted on various datatsets demonstrate the feasibility of our
approach and quantify the interests of SPs.

This paper is organized as follows. Section 2 provides the preliminaries which
are needed for the rest of the paper. In Section 3, we propose a condensed
representation of sequential patterns according to the frequency-based measures.
Section 4 defines the strong frequency-based measures and the SPs. Section 5
provides in depth experimental results and we review related work in Section 6.
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2 Preliminary Concepts and Definitions

Let I = {i1, i2, . . . , in} be a finite set of items. An itemset I is a subset of I.
A sequence s = 〈I1, I2, . . . , In〉 is an ordered list of itemsets. A sequence sα =
〈A1, A2, . . . , An〉 is said to be contained in another sequence sβ=〈B1, B2, . . . , Bm〉
if there exist integer 1 ≤ i1 < i2 < . . . < in ≤ m such that A1 ⊆ Bi1 , A2 ⊆
Bi2 , . . . , An ⊆ Bin

(denoted by sα ⊑ sβ). If the sequence sα is contained in the
sequence sβ , sα is called a subsequence of sβ and sβ a supersequence of sα.

Input data in sequential pattern mining consists in a collection of sequences.
As previously highlighted in the introduction section, frequency based-measures
are mainly used to assess the quality of classification rules and a class identifier
is associated to each data sequence. Therefore, the input database D consists in
a collection of tuples (sid, s, c) where sid is a sequence identifier, s is sequence
and c is a class identifier (see the example given in Tab. 1). D corresponds to a
partition of i subsets Di where each Di contains all tuples (sid, s, ci) in D. Each
sequence belongs to a single subset Di. A tuple (sid, s, c) is said to contain a
sequence sα if sα ⊑ s. The intersection of a set of sequences S = {s1, s2, . . . , sn},
denoted

⋂
si ∈ S, is the set of all maximal subsequences contained into all the

si. For example, the intersection of s = 〈c, b, c, a〉 and s′ = 〈c, b, a, c, c, c〉 is
{〈c, b, a, 〉, 〈c, b, c〉}.

Table 1. Toy database D with class values

Seq id Sequence Class

s1 〈c, b, c, a〉 c1

s2 〈c, b, a, c, c, c〉 c1

s3 〈a, a, a, c, c, a, a〉 c2

s4 〈a, a, b, a, c, c〉 c2

Frequency-based measures are linked to the notions of support. The absolute
support of a sequence sα in D is the number of tuples in D that contain sα,
denoted by support(sα,D). The relative support of sα is the percentage of tuples
in D that contain sα. For instance, support(〈c, a〉,D) = 3. Unless otherwise
stated, we use the absolute support all along this paper.

Let minsup be a minimum support threshold. A sequence sα is a frequent se-
quence on D if support(sα,D) ≥ minsup. A frequent sequence sα is a closed fre-
quent sequence if there does not exist a sequence sβ such that support(sα,D) =
support(sβ ,D) and sα ⊏ sβ . Then, given D and minsup, the problem of mining
frequent closed sequential patterns is to find the complete set of frequent closed
sequences. Function Closed(x,D) from Definition 1 return the set of closed se-
quential patterns in sequence database D which contains a sequence s.

Definition 1 (Closed(x,D)). Let x be a sequential pattern and D be a sequence
database.

Closed(x,D) =
⋂

{s ∈ D|x ⊑ s}
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Following our example in Table 1, we get: Closed(〈c, b〉,D) = {〈c, b, a〉, 〈c, b, c〉}.
These two sequences are closed in D. Finally, we recall the notion of classification
sequential rule.

Definition 2 (Classification sequential rules). Let C = {c1, c2, . . . , cm} be
a set of class values, a classification sequential rule is a rule R = s → ci where
s is a sequential pattern and ci ∈ C.

3 Exact Condensed Representation of Sequential Pattern

According to Frequency Based Measures

Various measures [7] are used to evaluate the quality of classification rules. Many
measures are based on the frequency of the sequential patterns s and the con-
catenation of s and ci, i.e. 〈s, {c}〉. These measures are called frequency-based
measures and are defined as follows:

Definition 3 (Frequency-Based Measure). Let D be a sequence database
partitioned into k subsets denoted D1,D2, . . . ,Dk, a frequency-based measure
Mi to characterize Di is a function F of supports: support(s,D1),
support(s,D2), . . . , support(s,Dk), i.e. Mi(s) = F (support(s,D1), support(s,
D2), . . . , support(s,Dk)).

With the notation Mi, the subscript i denotes the dataset Di which is charac-
terized according to the measure M . A frequency-based measure consists of a
finite combination of supports of a pattern s on several sequence data sets Di.
More precisely, a frequency-based measure cannot contain other parameters. Ta-
ble 2 lists some well-known frequency-based measures that are commonly used
in the literature. These measures are given here by using the absolute support
whereas the literature often writes them in term of conditional probabilities [7]

(P (X |ci)) corresponds to support(X,Di)
|Di|

where X is a (sequential) pattern. Note

that some frequency-based measures (e.g., J-Measure, confidence, lift, growth
rate) are expressed with supports that are not restricted to sets D1,D2, . . . ,Dk.
However, these measures respect Definition 3 because these supports can be
computed from support(s,D1), support(s,D2), . . . support(s, ,Dk). For instance,

support(s,D) =
∑k

j=1 support(s,Dj).
To compute the value of a frequency-based measure for a rule s → ci, com-

puting the support of s in datasets D and Di (support(s,D) and support(s,Di))
is enough. An important result is that these frequencies can be obtained thanks
to the set of closed sequential patterns in D and Di. Indeed, we have:

– ∀e ∈ Closed(s,D) support(s,D) = support(e,D)
– ∀e ∈ Closed(s,Di) support(s,Di) = support(e,Di)

Consequently, the computation of Closed(s,D) and Closed(s,Di) are enough
to compute support(s,D) and support(s,Di). Furthermore, the following prop-
erty indicates that the computation of the function Closed can be made only
once:
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Table 2. Examples of frequency-based measures characterizing Di

Frequency-based measure Formula Strong

J-Measure support(s,Di)
|D|

× log support(s,Di)×|D|
|Di|×support(s,D)

no

Relative support support(s,Di)
|D|

yes

Confidence support(s,Di)
support(s,D)

yes

Sensitivity support(s,Di)
|Di|

yes

Success rate support(s,Di)
|D|

+ |D\Di|−support(s,D\Di)
|D|

yes

Specificity |D\Di|−support(s,D\Di)
|D|

yes

Piatetsky-Shapiro’s (PS) support(s,Di)
|D|

− support(s,D)
|D|

× |Di|
|D|

yes

Lift support(s,Di)×|D|
support(s,D)×|D

i
|

yes

Odd ratio (α) support(s,Di)×(|D\Di|−support(s,D\Di))
(support(s,D)−support(s,Di))×(|Di|−support(s,Di)

yes

Growth rate (GR) |D|−|Di|
|D|

× support(s,Di)
support(s,D)−support(s,Di)

yes

Information Gain log support(s,Di)×|D|
support(s,D)×|Di|

yes

Property 1. Let s be a sequential pattern and Di a subset of D, ∀e ∈
Closed(s,D), support(s,Di) = support(e,Di)

Proof. According to Definition 1, sequence e from Closed(s,D) is a super-
sequence of s having the same support in D. Since s is a subsequence of e,
all sequences from D that contain e also contain s. Moreover, sequences s and
e have the same support in D. Thus, they are contained by the same sequences
of D. Since Di is a subset of D, sequences e and s are contained in the same
sequences of Di. Thus, support(s,Di) = support(e,Di).

As said in Section 2, a sequential pattern s may have several closed patterns.
Theorem 1 shows that all closed patterns of s have the same value for a measure.
Consequently, the value of a frequency-based measure for s can be deduced from
any of its closed sequential patterns:

Theorem 1. Let s be a sequential pattern, we have:

∀e ∈ Closed(s,D), Mi(s) = Mi(e)

Proof. Let s be a sequential pattern. Since ∀e ∈ Closed(s,D), support(s,Di) =
support(e,Di) (property 1), we can express Mi(s) =
F (support(s,D1), support(s,D2), . . . , support(s,Dk)) by Mi(s) =
F (support(e,D1), support(e,D2), . . . , support(e,Dk)) = Mi(e) where
e ∈ Closed(s,D). Thus Mi(s) = Mi(e).

For example, Closed(〈c, b〉,D) = {〈c, b, a〉, 〈c, b, c〉}, and Confidencec1
(〈c, b〉) =

Confidencec1
(〈c, b, a〉) = 1. The closed sequential patterns with their values of

the measure Mi are enough to synthesize the set of sequential patterns according
to Mi. As a consequence, the closed sequential patterns with their values of the
measure Mi are an exact condensed representation of the whole set of sequential
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patterns according to Mi. In practice, the number of closed patterns is lower (and
often much lower) than the complete set of sequential patterns. More generally,
this condensed representation benefits from all the advantages of the condensed
representation based on the closed sequential patterns [27,25].

4 Strong Sequential Patterns According to

Frequency-Based Measures

In practice, the number of patterns satisfying a given threshold for a measure Mi

can be very large and hampers their individual analysis. In this section, we show
that our approach easily enables us to highlight the best patterns according to
measures, that is to say the patterns which maximize such measures. To achieve
this result, we have to consider a slightly different set of measures, the strong
frequency-based measures:

Definition 4 (Strong Frequency-Based Measure). A frequency-based mea-
sure Mi which decreases with support(s,D) when support(s,Di) remains un-
changed, is a strong frequency-based measure.

Most frequency-based measures are also strong frequency-based measures (in
Table 2, only the J-measure is not a strong frequency-based measure). More gen-
erally, Definition 4 is less restrictive than the property P3 of Piatetsky-Shapiro’s
framework [16] which defines three properties which have to be satisfied by an
interestingness measure to be qualified as a “good” one.

Theorem 2 indicates that the closed sequential patterns satisfy an interesting
property w.r.t. the strong frequency-based measures.

Theorem 2. Let Mi be a strong frequency-based measure and s be a sequen-
tial pattern, we have ∀e ∈ Closed(s,Di), Mi(s) ≤ Mi(e). The elements from
Closed(s,Di) are called strong sequential patterns (SPs) in class i or dominant
sequential patterns for Mi.

Proof. Let Mi be a strong frequency-based measure and s be a sequential pat-
tern. ∀e ∈ Closed(s,Di), we have support(s,Di) = support(e,Di) (see Definition
1). As s ⊑ e, we obtain that support(s,D) ≥ support(e,D) thanks to the anti-
monotonicity of the support. By definition 4, we conclude that Mi(s) ≤ Mi(e).

The result given by Theorem 2 is important: it means that the closed sequential
patterns in Di maximize any strong frequency-based measure Mi. In other words,
a sequential pattern that is not closed in Di has a lower (or equal) value than
one of its closed sequential patterns in Di for any measure Mi.

However, Theorem 2 means that mining all closed sequential patterns in
each Di is needed, which indeed require a lot of computation. Lemma 1 links
closed sequential patterns in Di with closed sequential patterns in D. For that,
we first have to define the sequence concatenation. Given a sequence sα =
〈A1, A2, . . . , An〉 and a class c, the concatenation of sequence sα with 〈c〉, de-
noted sα • c is 〈A1, A2, . . . , An, {c}〉. We then consider the sequence database D′
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from D where each data sequence contains a new item that represents their class
value. For each tuple (sid, s, c) we add the tuple (sid, s•c, c) in D′. Then, like D,
D′ corresponds to a partition of i subsets D′

i where each D′
i contains all tuples

(sid, s•ci, ci). Note that we have the relation support(s,Di) = support(s•ci,D
′
i).

Lemma 1. If the sequence s • ci is a closed sequential pattern in D′
i then s • ci

is a closed sequential pattern in D′.

Proof. By construction of the subsets of D′, a class value ci is only contained in
D′

i and not in the other datasets. So we have support(s,D′
i) = support(s•ci,D

′).

Thanks to Lemma 1, we can give Property 2 which indicates that mining only the
closed sequential patterns in D′ is enough. In other words, only one extraction
of closed patterns is needed.

Property 2 (SPs: computation of their frequency-based measure ). If s is a strong
sequential pattern in Di, then Mi(s) can directly be computed with the supports
of the condensed representation based on the closed sequential patterns of D′.

Proof. Let s be a SP in Di. Thus, s • ci is a closed sequential pattern in D′
i.

To compute Mi(s), it is necessary to know support(s,D′
i) and support(s,D′).

By definition of D′
i, support(s,D′

i) = support(s • ci,D
′) and lemma 1 ensures

that s • ci is closed in D′. As a consequence, its support is provided by the
condensed representation of the closed sequential patterns of D′. To compute
support(s,D′), two cases are possible: (i) if s is a closed sequential pattern in
D′, its support is directly available; (ii) if, s is not a closed sequential pattern in
D′, then s • ci belongs to Closed(s,D′) and support(s,D′) = support(s • ci,D

′).

We have defined a theoretical framework for SPs in database D and its subset
Di. In practice, these patterns can be discovered in D′ and their frequencies
can also be computed in D′ thanks to any closed sequential pattern mining
algorithm. Indeed, if s is a strong sequential pattern in Di, then s • ci is a closed
sequential pattern in D′, support(s,Di) = support(s•ci,D

′) and support(s,D) =
support(s,D′).

Example 1. Following our example in Table 1, with minsup = 2, we have 11
closed frequent sequential patterns. In particular, 〈c, b, a〉 and 〈c, b, c〉 are SPs
for class c1, 〈a, a, a, c, c〉 is a SP for class c2. Thus these sequences maximize any
frequency-based measure Mi.

Let M2 be the confidence measure, 〈a, a, a, c, c〉 • c2 is a closed sequential pat-
tern in D′. To compute its confidence, we need to know support(〈a, a, a, c, c〉,D′).
Since sequence 〈a, a, a, c, c〉 is not a closed sequential pattern in D′, then
support(〈a, a, a, c, c〉,D′) = support(〈a, a, a, c, c〉 • c2,D

′) = 2. Thus the confi-
dence of SP 〈a, a, a, c, c〉 for class c2 is 1.

5 Experiments

Experiments have been carried out on real datasets by considering the emerging
measure (Growth Rate) [5]. The emerging measure is very useful to characterize
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classes and classify them. Emerging patterns (EPs) are patterns whose frequency
strongly varies between two datasets (i.e., two classes). Note that any frequency-
based measure can be used. However, due to the space limitation, we only report
experiments on strong emerging frequent sequential patterns (SESPs). To mine
closed sequential patterns, we have implemented Bide algorithm [25] in Java
language (JVM 1.5). Furthermore, we do not report results about the runtime
of the discovery of SEPSs. However, it is important to note that the computation
of SP growth rates is negligible compared to the step of frequent closed sequential
pattern mining. We can conclude that the scalability issue of SPs’ discovery is
Bide-dependent and Bide is known as being a scalable and robust algorithm.
Consequently, the discovery of SESPs is then scalable.

In these experiments, we consider the following real datasets:

– E.Coli Promoters dataset: The E. Coli Promoters data set [23] is available
on the UCI machine learning repository [1]. The data set is divided into two
classes: 53 E. Coli promoter instances and 53 non-promoter instances. We
consider pairs of monomers (e.g., aa, ac, etc.) as items.

– PSORTdb v.2.0 cytoplasmic dataset: The cytoplasmic data set was obtained
from PSORTdb v.2.0 [6]. The data set contains 278 cytoplasmic Gram-
negative sequences and 194 Gram-positive sequences. We consider items in
the same way as in the previous dataset.

– Greenberg’s Unix dataset: We transform the original Unix dataset [9] into
a new data set that contains 18681 data sequences where a data sequence
contains a session of a Unix command shell user. These sequences are divided
into 4 classes: 7751 sequences about navigation of computer scientists, 3859
sequences for experienced-programmers, 1906 sequences for non-programmers
and 5165 sequences about novice-programmers.

– Entree Chicago Recommendation Dataset: We use the data set underlying the
Entree system [2]. This data set is also available on the UCI machine learning
repository [1]. For each restaurant, a sequence of features is associated. We
consider 8 classes (Atlanta, Boston, Chicago, Los Angeles, New Orleans,
New York, San Francisco and Washington DC) that respectively contain
267, 438, 676, 447, 327, 1200, 414 and 391 sequences.

These experiments aim at studying several quantitative results of the discov-
ery of strong sequential patterns satisfying both a growth rate threshold and a
support threshold.

Figures from Fig. 1 report the number of frequent closed, strong and emerging
sequential patterns according to the minimum support threshold. Obviously, the
number of patterns decreases when the support threshold increases. We note
that the number of SESPs is much lower than the number of SPs which is
itself significantly lower than the number of sequential patterns (the figure uses
a logarithmic scale). It indicates a high condensation of patterns reducing the
output and highlighting the most valuable patterns according to the measures.
Note that there is no SESP (and no SP in E.coli and Entree datasets) when
minsup is high because no pattern can satisfy the growth rate measure.
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Fig. 1. Numbers of closed, strong and emerging sequential patterns according to the
minimum support threshold
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Fig. 2. Number of strong emerging sequential patterns and their repartition according
to the growth rate threshold

Figures from Fig. 2 report the number of SESPs and their distribution among
the different class values according to the growth rate threshold. The number
of SESPs decreases when the growth rate threshold increases. However, this
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number does not always tend to zero. Indeed, some SESPs with an infinite
growth rate can appear (see Fig. 2(a) and Fig. 2(d)). These particular SESPs
are called jumping SESPs (JSESPs). They are sequential patterns that appear
for only one class value, and never appear for other class values. It should be
noticed that the repartition of SESPs among the class values is not necessary
uniform. For instance, class value novice-programmers for Fig. 2(c) and class
value Washington DC for Fig. 2(d) contain a significantly greater number of
SESPs than the others.

Discovered SESPs: Sequential pattern 〈(aa)(at)(ta)(gc)〉 is a JSESP for
promoter sequences in E. coli dataset while 〈(tg)(cg)(ac)(tg)〉 is a JS-
ESP for non-promoter sequences. According to Entree dataset, the sequence
〈(Week-end Dining)(Parking-Valet)〉 is a SESP for class Washington DC with a
growth rate gr = 10.02. Sequential pattern 〈pix, umacs, pix, umacs〉 is a SESP
for class novice-programmers with a growth rate gr = 450. Let us recall that to
the best of our knowledge, our method is the unique method to discover such
patterns.

6 Related Work

Main works on condensed representations have been outlined in the introduc-
tion. A condensed representation of frequency-based measures has already been
proposed in [22], but it is limited to the item domain and our work can be seen
as an extension of [22] to the sequence framework. To the best of our knowledge,
there is no work in the literature that addresses condensed representations of
sequential patterns w.r.t. any frequency-based measure.

In the literature, classification on sequence data has been extensively studied.
In [26], the authors introduce the problem of mining sequence classifiers for early
prediction. Criteria for feature selection are proposed in [12]. The authors use
the confidence to quantify the features. Our work can lead to a generalization of
this work by allowing the use of any frequency-based measure. In [18] frequent
subsequences are used for classification but the interestingness of a pattern is
valued according to the only confidence measure.

An approach to detect sequential pattern changes between two periods is pro-
posed in [24]. First, two sequential pattern sets are discovered in the two-period
databases. Then, the dissimilarities between all pairs of sequential patterns are
considered. Finally, a sequential pattern is classified as one of the following three
change-types: an emerging sequential pattern, an unexpected sequence change,
and an added/perish sequence. These latter correspond to jumping emerging
sequences. Note that the notion of EPs differs from [5]. This work does not con-
sider condensed representations. Moreover, two databases have to be mined and
then similarities between each pair of sequences have to be computed whereas
our framework needs only one database mining and no computation of sequence
similarities.
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7 Conclusion

In this paper, we have investigated condensed representations of sequential pat-
terns according to many interestingness measures and we have proposed an exact
condensed representation of sequential patterns according to the frequency-based
measures. Then, we have defined the strong sequential patterns which are the
best patterns according to the measures. These patterns are straightforwardly
obtained from the condensed representation so that this approach can be eas-
ily used in practice. Experiments show the feasibility and the interest of the
approach.

We think that condensed representations of patterns have a lot of applications
and their use is not limited to obtain more efficiently patterns associated to
their interestingness measures. As they can be used as cache mechanisms, they
make interactive KDD processes more easily and are a key concept of inductive
databases. Moreover, their properties are useful for high-level KDD tasks such as
classification or clustering. Finally, the behavior of interestingness measures has
been studied in [10] and the next step is to determine lower bounds for weighted
combinations of frequency-based measures in order to ensure a global quality
according to a set of measures.
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