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Introduction

It is well-known that the "pattern flooding which follows data flooding" is unfortunate consequence in exploratory Knowledge Discovery in Databases (KDD) processes. There is a large range of methods to discover the patterns of a potential user's interest but the most significant patterns are lost among too much trivial, noisy and redundant information. Many works propose methods to reduce the collection of patterns, such as the constraint-based paradigm [START_REF] Ng | Exploratory mining and pruning optimizations of constrained associations rules[END_REF], the pattern set discovery approach [START_REF] De Raedt | Constraint-based pattern set mining[END_REF][START_REF] Knobbe | Pattern teams[END_REF], the so-called condensed representations [START_REF] Calders | A survey on condensed representations for frequent sets[END_REF][START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF] as well as the compression of the dataset by exploiting the Minimum Description Length Principle [START_REF] Siebes | Item sets that compress[END_REF]. In practice, these methods often tackle data described by items (i.e., itemsets) and/or specific contexts, such as the largely studied frequent patterns extraction issue (a pattern X is said frequent if the number of examples in the database supporting X exceeds a given threshold). Many applications (e.g., security network, bioinformatics) require sequence mining. Oddly enough, even more than in the item domain, sequence mining suffers from the massive output of the KDD processes. However, little works focused on this aspect mainly because the difficult formalization required for sequential patterns. For instance, although there are many condensed representations of frequent itemsets, only closed sequential patterns have been proposed as a exact condensed representation for all the frequent sequential patterns [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF]. Moreover, some concise representations of itemset patterns cannot be used in order to condense frequent sequential patterns [START_REF] Raïssi | Mining conjunctive sequential patterns[END_REF]. This illustrates the intrinsic difficulty to extend such works from itemsets to sequential patterns.

This paper addresses the issue of condensed representations of sequential patterns. The idea is to compute a representation R of the extracted patterns which is lossless: the whole collection of patterns can be efficiently derived from R.This approach has been mainly developed in the context of frequency [START_REF] Calders | A survey on condensed representations for frequent sets[END_REF][START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF] and there are very few works addressing other measures [START_REF] Giacometti | Condensed representations for sets of mining queries[END_REF][START_REF] Soulet | Adequate condensed representations of patterns[END_REF][START_REF] Soulet | Condensed representation of eps and patterns quantified by frequency-based measures[END_REF]. In this paper, we investigate exact condensed representations of sequential patterns based on many interestingness measures, the so-called frequency-based measures (see Section 3). These measures (e.g., frequency, confidence, lift, growth rate, information gain) are precious in real-world applications to evaluate the interestingness of patterns and the quality of classification rules [START_REF] Smyth | Rule induction using information theory[END_REF]. For instance, the emerging measure is very useful to characterize classes and classify them. Initially introduced in [START_REF] Dong | Efficient mining of emerging patterns: discovering trends and differences[END_REF], emerging patterns (EPs) are patterns whose frequency strongly varies between two datasets (i.e., two classes). An EP can be seen as a classification rule and EPs are at the origin of various works such as powerful classifiers [START_REF] Li | Making use of the most expressive jumping emerging patterns for classification[END_REF]. From an applicative point of view, we can quote many works on the characterization of biochemical properties or medical data [START_REF] Li | Emerging patterns and gene expression data[END_REF]. A condensed representation of itemsets according to frequency-based measures has already been proposed [START_REF] Soulet | Condensed representation of eps and patterns quantified by frequency-based measures[END_REF], but it is only limited to the item domain.

The contribution of this paper is twofold. First, we define an exact condensed representation of sequential patterns according to the frequency-based measures. Exact means that we are able to infer not only the patterns, but also the measure values associated to the patterns without accessing the data. This is useful because the user is mainly interested in these values. For that purpose, the key idea is to show that the value of a frequency-based measure of any sequential pattern can be deduced from one of its closed sequential patterns. This idea has already been used in the item domain [START_REF] Soulet | Condensed representation of eps and patterns quantified by frequency-based measures[END_REF], but not in sequential data. Contrary to itemsets, a sequential pattern may have several closed sequential patterns, our method overcomes this difficulty. As this condensed representation is based on the closed sequential patterns and there are efficient algorithms to extract these patterns, these algorithms are also efficient to mine such a condensed representation. Second, we define the notion of strong sequential patterns (SPs) according to frequency-based measures. Given a frequency-based measure, these patterns maximize it. This is interesting because it highlights the best patterns with respect to the measure and moreover it reduces the output. On the other hand, the SPs are immediately obtained from the condensed representation. Finally, experiments conducted on various datatsets demonstrate the feasibility of our approach and quantify the interests of SPs.

This paper is organized as follows. Section 2 provides the preliminaries which are needed for the rest of the paper. In Section 3, we propose a condensed representation of sequential patterns according to the frequency-based measures. Section 4 defines the strong frequency-based measures and the SPs. Section 5 provides in depth experimental results and we review related work in Section 6.

Preliminary Concepts and Definitions

Let I = {i 1 ,i 2 ,...,i n } be a finite set of items. An itemset I is a subset of I. A sequence s = I 1 ,I 2 ,...,I n is an ordered list of itemsets. A sequence s α = A 1 ,A 2 ,...,A n is said to be contained in another sequence

s β = B 1 ,B 2 ,...,B m if there exist integer 1 ≤ i 1 <i 2 < ... < i n ≤ m such that A 1 ⊆ B i1 ,A 2 ⊆ B i2 ,...,A n ⊆ B in (denoted by s α ⊑ s β )
. If the sequence s α i sc o n t a i n e di nt h e sequence s β , s α is called a subsequence of s β and s β a supersequence of s α .

Input data in sequential pattern mining consists in a collection of sequences. As previously highlighted in the introduction section, frequency based-measures are mainly used to assess the quality of classification rules and a class identifier is associated to each data sequence. Therefore, the input database D consists in a collection of tuples (sid, s, c)w h e r esid is a sequence identifier, s is sequence and c is a class identifier (see the example given in Tab. 1). D corresponds to a partition of i subsets D i where each D i contains all tuples (sid, s, c i )i nD.E a c h sequence belongs to a single subset D i . A tuple (sid, s, c)i ss a i dt ocontain a sequence s α if s α ⊑ s.Theintersection of a set of sequences S = {s 1 ,s 2 ,...,s n }, denoted s i ∈ S, is the set of all maximal subsequences contained into all the s i . For example, the intersection of s = c, b, c, a and s ′ = c, b, a, c, c, c is { c, b, a, , c, b, c }. Frequency-based measures are linked to the notions of support.T h eabsolute support of a sequence s α in D is the number of tuples in D that contain s α , denoted by support(s α , D). The relative support of s α is the percentage of tuples in D that contain s α . For instance, support( c, a , D) = 3. Unless otherwise stated, we use the absolute support all along this paper.

Let minsup be a minimum support threshold. A sequence s α is a frequent sequence on D if support(s α , D) ≥ minsup. A frequent sequence s α is a closed frequent sequence if there does not exist a sequence s β such that support(s α , D)= support(s β , D)a n ds α ⊏ s β . Then, given D and minsup, the problem of mining frequent closed sequential patterns is to find the complete set of frequent closed sequences. Function Closed(x, D) from Definition 1 return the set of closed sequential patterns in sequence database D which contains a sequence s.

Following our example in Table 1, 

Exact Condensed Representation of Sequential Pattern

According to Frequency Based Measures

Various measures [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF] are used to evaluate the quality of classification rules. Many measures are based on the frequency of the sequential patterns s and the concatenation of s and c i , i.e. s, {c} . These measures are called frequency-based measures and are defined as follows:

Definition 3 (Frequency-Based Measure). Let D be a sequence database partitioned into k subsets denoted D 1 , D 2 ,...,D k , a frequency-based measure M i to characterize D i is a function F of supports: support(s, D 1 ), support(s, D 2 ),...,support(s, D k ), i.e. M i (s)=F (support(s, D 1 ), support(s, D 2 ),...,support(s, D k )).
With the notation M i , the subscript i denotes the dataset D i which is characterized according to the measure M . A frequency-based measure consists of a finite combination of supports of a pattern s on several sequence data sets D i . More precisely, a frequency-based measure cannot contain other parameters. Table 2 lists some well-known frequency-based measures that are commonly used in the literature. These measures are given here by using the absolute support whereas the literature often writes them in term of conditional probabilities [START_REF] Geng | Interestingness measures for data mining: A survey[END_REF] (P (X|c i )) corresponds to support(X,Di)

|Di|
where X is a (sequential) pattern. Note that some frequency-based measures (e.g., J-Measure, confidence, lift, growth rate) are expressed with supports that are not restricted to sets D 1 , D 2 ,...,D k . However, these measures respect Definition 3 because these supports can be computed from support(s, D 1 ), support(s, D 2 ),...support(s, , D k ). For instance, support(s, D)= k j=1 support(s, D j ). To compute the value of a frequency-based measure for a rule s → c i ,c o mputing the support of s in datasets D and D i (support(s, D)andsupport(s, D i )) is enough. An important result is that these frequencies can be obtained thanks to the set of closed sequential patterns in D and D i . Indeed, we have:

-∀e ∈ Closed(s, D) support(s, D)=support(e, D) -∀e ∈ Closed(s, D i ) support(s, D i )=support(e, D i )
Consequently, the computation of Closed(s, D)a n dClosed(s, D i ) are enough to compute support(s, D)a n dsupport(s, D i ). Furthermore, the following property indicates that the computation of the function Closed can be made only once: As said in Section 2, a sequential pattern s may have several closed patterns.

+ |D\D i |-support(s,D\D i ) |D| yes Specificity |D\D i |-support(s,D\D i ) |D| yes Piatetsky-Shapiro's (PS) support(s,D i ) |D| -support(s,D) |D| × |D i | |D| yes Lift support(s,D i )×|D| support(s,D)×|D i | yes Odd ratio (α) support(s,D i )×(|D\D i |-support(s,D\D i )) (support(s,D)-support(s,D i ))×(|D i |-support(s,D i ) yes Growth rate (GR) |D|-|D i | |D| × support(s,D i ) support(s,D)-support(s,D i ) yes Information Gain log support(s,D i )×|D|
Theorem 1 shows that all closed patterns of s have the same value for a measure. Consequently, the value of a frequency-based measure for s can be deduced from any of its closed sequential patterns:

Theorem 1. Let s be a sequential pattern, we have:

∀e ∈ Closed(s, D),M i (s)=M i (e)
Proof. Let s beas e q u e n t i a lp a t t e r n .S i n c e∀e ∈ Closed(s, D), support(s, patterns according to M i . In practice, the number of closed patterns is lower (and often much lower) than the complete set of sequential patterns. More generally, this condensed representation benefits from all the advantages of the condensed representation based on the closed sequential patterns [START_REF] Yan | Clospan: Mining closed sequential patterns in large databases[END_REF][START_REF] Wang | Frequent closed sequence mining without candidate maintenance[END_REF].

D i )= support(e, D i ) (property 1), we can express M i (s)= F (support(s, D 1 ), support(s, D 2 ),...,support(s, D k )) by M i (s)= F (support(e, D

Strong Sequential Patterns According to Frequency-Based Measures

In practice, the number of patterns satisfying a given threshold for a measure M i can be very large and hampers their individual analysis. In this section, we show that our approach easily enables us to highlight the best patterns according to measures, that is to say the patterns which maximize such measures. To achieve this result, we have to consider a slightly different set of measures, the strong frequency-based measures:

Definition 4 (Strong Frequency-Based Measure). A frequency-based measure M i which decreases with support(s, D) when support(s, D i ) remains unchanged, is a strong frequency-based measure.

Most frequency-based measures are also strong frequency-based measures (in Table 2, only the J-measure is not a strong frequency-based measure). More generally, Definition 4 is less restrictive than the property P 3 of Piatetsky-Shapiro's framework [START_REF] Piatetsky-Shapiro | Discovery, analysis, and presentation of strong rules[END_REF] which defines three properties which have to be satisfied by an interestingness measure to be qualified as a "good" one. Theorem 2 indicates that the closed sequential patterns satisfy an interesting property w.r.t. the strong frequency-based measures. Theorem 2. Let M i be a strong frequency-based measure and s be a sequential pattern, we have ∀e ∈ Closed(s, D i ),M i (s) ≤ M i (e). The elements from Closed(s, D i ) are called strong sequential patterns (SPs) in class i or dominant sequential patterns for M i .

Proof. Let M i be a strong frequency-based measure and s be a sequential pattern. ∀e ∈ Closed(s, D i ), we have support(s, D i )=support(e, D i ) (see Definition 1). As s ⊑ e, we obtain that support(s, D) ≥ support(e, D) thanks to the antimonotonicity of the support. By definition 4, we conclude that M i (s) ≤ M i (e).

The result given by Theorem 2 is important: it means that the closed sequential patterns in D i maximize any strong frequency-based measure M i .Inotherwords, a sequential pattern that is not closed in D i has a lower (or equal) value than one of its closed sequential patterns in D i for any measure M i .

However, Theorem 2 means that mining all closed sequential patterns in each D i is needed, which indeed require a lot of computation. Lemma 1 links closed sequential patterns in D i with closed sequential patterns in D. For that, we first have to define the sequence concatenation. Given a sequence s α = A 1 ,A 2 ,...,A n and a class c, the concatenation of sequence s α with c ,d enoted s α • c is A 1 ,A 2 ,...,A n , {c} . We then consider the sequence database D ′ from D where each data sequence contains a new item that represents their class value. For each tuple (sid, s, c) we add the tuple (sid, s • c, c)inD ′ . Then, like D, D ′ corresponds to a partition of i subsets D ′ i where each D ′ i contains all tuples (sid, s•c i ,c i ). Note that we have the relation support(s, 

D i )=support(s•c i , D ′ i ). Lemma 1. If the sequence s • c i is a closed sequential pattern in D ′ i then s • c i is a closed sequential pattern in D ′ .
Proof. Let s be a SP in D i .T h u s ,s • c i is a closed sequential pattern in D ′ i . To compute M i (s), it is necessary to know support(s, D ′ i )a n dsupport(s, D ′ ). By definition of D ′ i , support(s, D ′ i )=support(s • c i , D ′ ) and lemma 1 ensures that s • c i is closed in D ′ .
As a consequence, its support is provided by the condensed representation of the closed sequential patterns of D ′ . To compute support(s, D ′ ), two cases are possible: (i) if s is a closed sequential pattern in D ′ , its support is directly available; (ii) if, s is not a closed sequential pattern in D ′ ,t h e ns • c i belongs to Closed(s, D ′ )a n dsupport(s, D ′ )=support(s

• c i , D ′ ).
We have defined a theoretical framework for SPs in database D and its subset D i . In practice, these patterns can be discovered in D ′ and their frequencies can also be computed in D ′ thanks to any closed sequential pattern mining algorithm. Indeed, if s is a strong sequential pattern in D i ,t h ens

• c i is a closed sequential pattern in D ′ , support(s, D i )=support(s•c i , D ′ )andsupport(s, D)= support(s, D ′ ).
Example 1. Following our example in Table 1, with minsup =2 ,w eh a v e1 1 closed frequent sequential patterns. In particular, c, b, a and c, b, c are SPs for class c 1 , a, a, a, c, c is a SP for class c 2 . Thus these sequences maximize any frequency-based measure M i .

Let M 2 be the confidence measure, a, a, a, c, c •c 2 is a closed sequential pattern in D ′ . To compute its confidence, we need to know support( a,a,a,c,c ,D ′ ). Since sequence a, a, a, c, c is not a closed sequential pattern in D ′ ,t h e n support ( a,a,a,c,c ,D ′ )=support( a,a,a,c,c •c 2 , D ′ ) = 2. Thus the confidence of SP a, a, a, c, c for class c 2 is 1.

Experiments

Experiments have been carried out on real datasets by considering the emerging measure (Growth Rate) [START_REF] Dong | Efficient mining of emerging patterns: discovering trends and differences[END_REF]. The emerging measure is very useful to characterize classes and classify them. Emerging patterns (EPs) are patterns whose frequency strongly varies between two datasets (i.e., two classes). Note that any frequencybased measure can be used. However, due to the space limitation, we only report experiments on strong emerging frequent sequential patterns (SESPs). To mine closed sequential patterns, we have implemented Bide algorithm [START_REF] Wang | Frequent closed sequence mining without candidate maintenance[END_REF] in Java language (JVM 1.5). Furthermore, we do not report results about the runtime of the discovery of SEPSs. However, it is important to note that the computation of SP growth rates is negligible compared to the step of frequent closed sequential pattern mining. We can conclude that the scalability issue of SPs' discovery is Bide-dependent and Bide is known as being a scalable and robust algorithm. Consequently, the discovery of SESPs is then scalable.

In these experiments, we consider the following real datasets:

-E.Coli Promoters dataset: The E. Coli Promoters data set [START_REF] Towell | Refinement ofapproximate domain theories by knowledge-based neural networks[END_REF] is available on the UCI machine learning repository [START_REF] Asuncion | UCI machine learning repository[END_REF]. The data set is divided into two classes: 53 E. Coli promoter instances and 53 non-promoter instances. We consider pairs of monomers (e.g., aa, ac, etc.) as items. -PSORTdb v.2.0 cytoplasmic dataset: The cytoplasmic data set was obtained from PSORTdb v.2.0 [START_REF] Gardy | PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria[END_REF]. The data set contains 278 cytoplasmic Gramnegative sequences and 194 Gram-positive sequences. We consider items in the same way as in the previous dataset. -Greenberg's Unix dataset: We transform the original Unix dataset [START_REF] Greenberg | Using Unix: Collected traces of 168 users[END_REF] into a new data set that contains 18681 data sequences where a data sequence contains a session of a Unix command shell user. These sequences are divided into 4 classes: 7751 sequences about navigation of computer scientists, 3859 sequences for experienced-programmers, 1906 sequences for non-programmers and 5165 sequences about novice-programmers. -Entree Chicago Recommendation Dataset: We use the data set underlying the Entree system [START_REF] Burke | The wasabi personal shopper: A case-based recommender system[END_REF]. This data set is also available on the UCI machine learning repository [START_REF] Asuncion | UCI machine learning repository[END_REF]. For each restaurant, a sequence of features is associated. We consider 8 classes (Atlanta, Boston, Chicago, Los Angeles, New Orleans, New York, San Francisco and Washington DC) that respectively contain 267, 438, 676, 447, 327, 1200, 414 and 391 sequences.

These experiments aim at studying several quantitative results of the discovery of strong sequential patterns satisfying both a growth rate threshold and a support threshold.

Figures from Fig. 1 report the number of frequent closed, strong and emerging sequential patterns according to the minimum support threshold. Obviously, the number of patterns decreases when the support threshold increases. We note that the number of SESPs is much lower than the number of SPs which is itself significantly lower than the number of sequential patterns (the figure uses a logarithmic scale). It indicates a high condensation of patterns reducing the output and highlighting the most valuable patterns according to the measures. Note that there is no SESP (and no SP in E.coli and Entree datasets) when minsup is high because no pattern can satisfy the growth rate measure. Figures from Fig. 2 report the number of SESPs and their distribution among the different class values according to the growth rate threshold. The number of SESPs decreases when the growth rate threshold increases. However, this number does not always tend to zero. Indeed, some SESPs with an infinite growth rate can appear (see Fig. 2(a) and Fig. 2(d)). These particular SESPs are called jumping SESPs (JSESPs). They are sequential patterns that appear for only one class value, and never appear for other class values. It should be noticed that the repartition of SESPs among the class values is not necessary uniform. For instance, class value novice-programmers for Fig. 2(c) and class value Washington DC for Fig. 2(d) contain a significantly greater number of SESPs than the others.

Discovered SESPs: Sequential pattern (aa)(at)(ta)(gc) is a JSESP for promoter sequences in E. coli dataset while (tg)(cg)(ac)(tg) is a JS-ESP for non-promoter sequences. According to Entree dataset, the sequence (Week-end Dining)(Parking-Valet) is a SESP for class Washington DC with a growth rate gr =1 0 .02. Sequential pattern pix, umacs, pix, umacs is a SESP for class novice-programmers with a growth rate gr = 450. Let us recall that to the best of our knowledge, our method is the unique method to discover such patterns.

Related Work

Main works on condensed representations have been outlined in the introduction. A condensed representation of frequency-based measures has already been proposed in [START_REF] Soulet | Condensed representation of eps and patterns quantified by frequency-based measures[END_REF], but it is limited to the item domain and our work can be seen as an extension of [START_REF] Soulet | Condensed representation of eps and patterns quantified by frequency-based measures[END_REF] to the sequence framework. To the best of our knowledge, there is no work in the literature that addresses condensed representations of sequential patterns w.r.t. any frequency-based measure.

In the literature, classification on sequence data has been extensively studied. In [START_REF] Xing | Mining sequence classifiers for early prediction[END_REF], the authors introduce the problem of mining sequence classifiers for early prediction. Criteria for feature selection are proposed in [START_REF] Lesh | Mining features for sequence classification[END_REF]. The authors use the confidence to quantify the features. Our work can lead to a generalization of this work by allowing the use of any frequency-based measure. In [START_REF] She | Frequentsubsequence-based prediction of outer membrane proteins[END_REF] frequent subsequences are used for classification but the interestingness of a pattern is valued according to the only confidence measure.

An approach to detect sequential pattern changes between two periods is proposed in [START_REF] Tsai | A change detection method for sequential patterns[END_REF]. First, two sequential pattern sets are discovered in the two-period databases. Then, the dissimilarities between all pairs of sequential patterns are considered. Finally, a sequential pattern is classified as one of the following three change-types: an emerging sequential pattern, an unexpected sequence change, and an added/perish sequence. These latter correspond to jumping emerging sequences. Note that the notion of EPs differs from [START_REF] Dong | Efficient mining of emerging patterns: discovering trends and differences[END_REF]. This work does not consider condensed representations. Moreover, two databases have to be mined and then similarities between each pair of sequences have to be computed whereas our framework needs only one database mining and no computation of sequence similarities.

7C o n c l u s i o n

In this paper, we have investigated condensed representations of sequential patterns according to many interestingness measures and we have proposed an exact condensed representation of sequential patterns according to the frequency-based measures. Then, we have defined the strong sequential patterns which are the best patterns according to the measures. These patterns are straightforwardly obtained from the condensed representation so that this approach can be easily used in practice. Experiments show the feasibility and the interest of the approach.

We think that condensed representations of patterns have a lot of applications and their use is not limited to obtain more efficiently patterns associated to their interestingness measures. As they can be used as cache mechanisms, they make interactive KDD processes more easily and are a key concept of inductive databases. Moreover, their properties are useful for high-level KDD tasks such as classification or clustering. Finally, the behavior of interestingness measures has been studied in [START_REF] Hébert | A unified view of objective interestingness measures[END_REF] and the next step is to determine lower bounds for weighted combinations of frequency-based measures in order to ensure a global quality according to a set of measures.

  we get: Closed( c, b , D)={ c, b, a , c, b, c }. These two sequences are closed in D. Finally, we recall the notion of classification sequential rule. Definition 2 (Classification sequential rules). Let C = {c 1 ,c 2 ,...,c m } be a set of class values, a classification sequential rule is a rule R = s → c i where s is a sequential pattern and c i ∈C.

1 .

 1 support(s,D)×|D i | yes Property Let s be a sequential pattern and D i a subset of D, ∀e ∈ Closed(s, D), support(s, D i )=support(e, D i ) Proof. According to Definition 1, sequence e from Closed(s, D)i sas u p e rsequence of s having the same support in D.S i n c es is a subsequence of e, all sequences from D that contain e also contain s. Moreover, sequences s and e have the same support in D. Thus, they are contained by the same sequences of D.S i n c eD i is a subset of D, sequences e and s are contained in the same sequences of D i .T h u s ,support(s, D i )=support(e, D i ).

  1 ), support(e, D 2 ),...,support(e, D k )) = M i (e)w h e r e e ∈ Closed(s, D). Thus M i (s)=M i (e).

  For example, Closed( c, b , D)={ c, b, a , c, b, c },a n dConfidence c1 ( c, b )= Confidence c1 ( c, b, a ) = 1. The closed sequential patterns with their values of the measure M i are enough to synthesize the set of sequential patterns according to M i . As a consequence, the closed sequential patterns with their values of the measure M i are an exact condensed representation of the whole set of sequential

Proof.

  By construction of the subsets of D ′ , a class value c i is only contained in D ′ i and not in the other datasets. So we have support(s, D ′ i )=support(s•c i , D ′ ). Thanks to Lemma 1, we can give Property 2 which indicates that mining only the closed sequential patterns in D ′ is enough. In other words, only one extraction of closed patterns is needed. Property 2 (SPs: computation of their frequency-based measure ). If s is a strong sequential pattern in D i ,thenM i (s) can directly be computed with the supports of the condensed representation based on the closed sequential patterns of D ′ .

Fig. 1 .Fig. 2 .

 12 Fig. 1. Numbers of closed, strong and emerging sequential patterns according to the minimum support threshold

Table 1 .

 1 Toy database D with class values

	Seq id	Sequence	Class
	s1	c, b, c, a	c1
	s2	c, b, a, c, c, c	c1
	s3	a, a, a, c, c, a, a c2
	s4	a, a, b, a, c, c	c2

Table 2 .

 2 Examples of frequency-based measures characterizing Di

	Frequency-based measure		Formula	Strong
	J-Measure	support(s,D i ) |D|	× log support(s,D i )×|D| |D i |×support(s,D)	no
	Relative support	support(s,D i ) |D|	yes
	Confidence	support(s,D i ) support(s,D)	yes
	Sensitivity	support(s,D i ) |D i |	yes
	Success rate	support(s,D i ) |D|		
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