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Persistence criteria for populations with non-local dispersion

Henri Berestycki ∗, Jérôme Coville †, Hoang-Hung Vo ‡

July 20, 2014

Abstract

In this article, we analyse the non-local model :

∂u

∂t
= J ⋆ u− u+ f(x, u) with x ∈ R

N ,

where J is a positive continuous dispersal kernel and f(x, u) is a heterogeneous KPP type non-linearity
describing the growth rate of the population. The ecological niche of the population is assumed to be
bounded (i.e. outside a compact set, the environment is assumed to be lethal for the population). For
compactly supported dispersal kernels J , we derive an optimal persistence criteria. We prove that a
positive stationary solution exists if and only if the generalised principal eigenvalue λp of the linear
problem

J ⋆ ϕ(x) − ϕ(x) + ∂sf(x, 0)ϕ(x) + λpϕ(x) = 0 in R
N ,

is negative. λp is a spectral quantity that we defined in the spirit of the generalised first eigenvalue
of an elliptic operator. In addition, for any continuous non-negative initial data that is bounded or
integrable, we establish the long time behaviour of the solution u(t, x). We also analyse the impact of
the size of the support of the dispersal kernel on the persistence criteria. We exhibit situations where
the dispersal strategy has ”no impact” on the persistence of the species and other ones where the slowest
dispersal strategy is not any more an ”Ecological Stable Strategy”. We also discuss persistence criteria
for fat-tailed kernels.
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1 Introduction

In this article, we are interested in finding persistence criteria for a species that has a long range dispersal
strategy. For such a model species, we can think of trees of which seeds and pollens are disseminated on
a wide range. The possibility of a long range dispersal is well known in ecology, where numerous data
now available support this assumptions [16, 23, 24, 60]. A commonly used model that integrates such long
range dispersal is the following nonlocal reaction diffusion equation ([40, 43, 48, 52, 63]):

∂u

∂t
(t, x) = J ⋆ u(t, x)− u+ f(x, u(t, x)) in R

+ × R
N . (1.1)

Here u(t, x) is the density of the considered population, J is a dispersal kernel, f(x, s) is a KPP type
non-linearity describing the growth rate of the population.

In this setting the tail of the kernel can be thought of as the range of dispersion or as a measure of the
frequency at which long dispersal events occur. A biological motivation for the use of (1.2) to describe the
evolution of the population comes from the observation that the intrinsic variability in the capacity of the
individuals to disperse generates, at the scale of a population, a long range dispersal of the population. The
effect of such variability has been investigated in [46, 55] by means of correlated random walks. In such a
framework, each individual moves according to classical random walks, however the diffusion coefficients is
given by a probability law. It can be checked ([46, 55, 63]) that the density of population will then satisfy
an integro-differential equation where the dispersal kernel J describes the probability to jump from one
location to another.

Throughout this paper we will always make the following assumptions on the dispersal kernel J .
(H1) J ∈ C(RN ) ∩ L1(RN ) is nonnegative, symmetric and of unit mass (i.e.

´

RN J(z)dz = 1) .
(H2) J(0) > 0
In the present paper, we focus our analysis on species that have a bounded ecological niche. A simple

way to model such a spatial repartition consists in considering that the environment is hostile to the species
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outside a bounded set. For instance, biological populations that are sensitive to temperature thrive only
in a limited latitude zone. Thus, if x is the latitude, we get such dependence. This fact is translated in
our model by assuming that f satisfies:

(H3) f ∈ C1,α(RN+1) is of KPP type, that is :











f(·, 0) ≡ 0,

For all x ∈ R
N , f(x, s)/s is decreasing with respect to s on (0,+∞).

There exists S(x) ∈ C(RN) ∩ L∞(RN ) such that f(x, S(x)) ≤ 0 for all x ∈ R
N .

(H4) lim sup|x|→∞
f(x,s)

s < 0, uniformly in s ≥ 0.

A typical example of such a nonlinearity is given by f(x, s) := s(a(x) − b(x)s) with b(x) > 0 and a(x)
satisfies lim sup|x|→∞ a(x) < 0.

Our main purpose is to find conditions on J and f that characterise the persistence of the species
modelled by (1.1). In this task, we focus our analysis on the description of the set of positive stationary
solutions of (1.1), that is the positive solutions of the equation below

J ⋆ u(x)− u(x) + f(x, u(x)) = 0 in R
N . (1.2)

Existence of stationary solutions is naturally expected to provide the right persistence criterion. We will
see that this is indeed the case.

In the literature, persistence criteria have been well studied for the local reaction diffusion version of
(1.1)

∂u

∂t
(t, x) = ∆u(t, x) + f(x, t, u(t, x)) in R

+ ×Ω, (1.3)

where Ω is a domain of RN , possibly R
N itself. Persistence criteria have been obtained for various media,

ranging from periodic media to ergodic media [5, 6, 10, 17, 18, 54, 56, 61]. In the context of global
warming, persistence criteria have been investigated in [10, 4, 11]. For such reaction diffusion equations
the persistence criteria are often derived from the sign of the first eigenvalue of the linearised problem at
the 0 solution. One is thus led to determine the sign of the first eigenvalue λ1(∆ + ∂sf(x, 0),Ω) of the
spectral problem

∆ϕ(x) + ∂sf(x, 0)φ(x) + λ1ϕ(x) = 0 in Ω (1.4)

associated with the proper boundary conditions (if Ω 6= R
N ).

In most situations, for KPP– like non-linearities, the existence of a positive stationary solution to (1.3)
is indeed uniquely conditioned by the sign of λ1. More precisely, there exists a unique positive stationary
solution if and only if λ1 < 0. If such type of criteria seems reasonable for problems defined on bounded
set, it is less obvious for problems in unbounded domains. In particular, in unbounded domains, one of
the main difficulty concerns the definition of λ1. As shown in [9, 6, 12], the notion of first eigenvalue in
unbounded domain can be quite delicate and several definitions of λ1 exist rendering the question of sharp
persistence criteria quite involved.

Much less is known for the non-local equation (1.2) and, to our knowledge persistence criteria have
been essentially investigated in some specific situations such as periodic media : [33, 35, 62] or for a version
of the problem (1.2) defined in a bounded domain Ω [2, 29, 31, 41, 51, 62] :

∂u

∂t
(t, x) =

ˆ

Ω
J(x− y)u(t, y) dy − u(t, x) + f(x, u(t, x)) in R

+ × Ω. (1.5)
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We also quote [8] for an analysis of a persistence criteria in periodic media for a non-local version of
(1.3) involving a fractional diffusion and [59] for persistence criteria in time periodic versions of (1.5) .
Similarly to the local diffusion case, for KPP like non-linearities, the existence of a positive solution of the
non-local equation (1.5) can be characterised by the sign of a spectral quantity λp, called the generalised
principal eigenvalue of

ˆ

Ω
J(x− y)φ(y) dy − φ(x) + ∂sf(x, 0)φ(x) + λφ(x) = 0 in Ω. (1.6)

In the spirit of [7], this generalised principal eigenvalue λp is defined by :

λp := sup {λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0, such that L
Ω
[ϕ](x) − ϕ(x) + ∂sf(x, 0)ϕ(x) + λϕ(x) ≤ 0 in Ω.} ,

where LΩ [ϕ](x) denotes

L
Ω
[ϕ](x) :=

ˆ

Ω
J(x− y)ϕ(y) dy.

Unlike the elliptic PDE case, due to the lack of a regularising effect of the diffusion operator, the
above spectral problem may not have a solution in spaces of functions like Lp(Ω), C(Ω)[33, 32, 51]. As
a consequence, even in a bounded domain, simple sharp persistence criteria are quite delicate. Another
difficulty inherent to the study of nonlocal equations (1.6) in unbounded domain concerns the lack of
natural a priori estimates for the solution thus making standard approximations difficult to use in most
cases.

1.1 Main Results:

Let us now state our main results. In the first one we establish a simple sharp persistence criteria assuming
that the dispersal kernel J has compact support.

Theorem 1.1. Assume that J, f satisfy (H1-H4) and assume further that J is compactly supported. Then,
there exists a positive solution, ũ, of (1.2) if and only if λp(M + ∂sf(x, 0)) < 0, where M denotes the
continuous operator M[ϕ] = J ⋆ ϕ(x)− ϕ(x) and

λp(M+ ∂sf(x, 0)) := sup{λ ∈ R | ∃ϕ ∈ C(RN ), φ > 0 so that M[ϕ] + ∂sf(x, 0)ϕ + λϕ ≤ 0}.

When it exits, the solution is unique, that is, if v is another bounded solution, then ũ = v almost everywhere.
Moreover, for any non-negative initial data u0 ∈ C(RN) ∩ L∞(RN ) we have the following asymptotic
behaviour:

• If λp(M+ ∂sf(x, 0)) ≥ 0, then the solution satisfies ‖u(t)‖∞ → 0 as t→ ∞,

• If λp(M+ ∂sf(x, 0)) < 0, then the solution satisfies ‖(u− ũ)(t)‖∞ → 0 as t → ∞.

In addition, if the initial data is such that u0 ∈ C(RN ) ∩ L1(RN ), then the convergence u(t, x) → ũ holds
in L1(RN ).

We observe that the stationary solution ũ may not necessarily be continuous. For some homogeneous
problems f(x, u) = f(u), it is known that discontinuous solution may exists [34]. If f satisfies the stronger
hypothesis that, for any x, f(x, u) is concave with respect to u, then actually the solution ũ is continuous.
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To see this, it suffices to notice that J ⋆ ũ > 0 in R
N . The concavity of f with respect to u implies that for

any x the map u 7→ u− f(x, u) is strictly increasing whenever u− f(x, u) > 0. Then from the continuity of
J ⋆ ũ and (1.2), which can be rewritten as in the form J ⋆ ũ = ũ− f(x, ũ), we deduce that ũ is continuous.

Next, we aim at understanding the effect of the dispersal kernel on the persistence of the species, more
precisely, of its range and scaling. To this end, we analyse the behaviour of the persistence criteria under
some scaling of the dispersal operator. More precisely, let Jε :=

1
εN
J
(

z
ε

)

and let Mε denotes the operator
M with the rescaled kernel, that is, Mε[ϕ] := Jε ⋆ϕ−ϕ. We are interested in the behaviour of the solution
to (1.2) as ε→ 0 or ε→ +∞ where the dispersal operator M is replace by γ(ε,m)Mε, with γ(ε,m) ∼ α0

εm .

These asymptotics represent two possible strategies that are observed in nature. The dispersal kernel
γ(ε,m)Jε arises when the dispersal of the species is conditioned by a dispersal budget as defined in [48].
Roughly speaking, for a fixed cost, this budget is a way to measure the differences between different range
strategies. For a given cost function of the order of |y|m, the term γ(ε,m) behaves like α0

εm and in the
analysis, the dispersal operator is then given by γ(ε,m)Mε. As explained in [48], the limit as ε → 0 can
be associated to a strategy of producing many offspring but with little capacity of movement. On the
other extreme of the spectrum, the limit ε→ +∞ corresponds to a strategy that aims at maximizing the
exploration of the environment at the expense of the number of offspring produced. We will discuss more
precisely this notion of dispersal budget in Section 2, where we also interpret our findings in this context.
For simplicity, we introduce the notation Mε,m to denote the operator γ(ε,m)Mε.

In the present paper, we analyse the cases 0 ≤ m ≤ 2 and α0 = 1. The study of the case m = 0
corresponds to understanding the impact of the mean distance by itself on the persistence criteria. To
simplify the presentation of these asymptotics, we restrict our discussion to nonlinearities f(x, s) of the
form

f(x, s) = s(a(x)− s).

However, most of the proofs apply to a more general nonlinearity f(x, s), and with a(x) = ∂sf(x, 0).
Our first result deals with the case m = 0.

Theorem 1.2. Assume that J and f satisfy (H1-H4), J is compactly supported and let m = 0. Then
there exists ε0 ∈ (0,+∞] so that for all ε < ε0 there exists a positive solution uε to (1.2). Moreover, at
this value ε0, we have

lim
ε→ε0

uε(x) = (a(x)− 1)+,

where s+ denotes the positive part of s (i.e. s+ = sup{0, s}). Assuming further that a is smooth, Lipschitz
continuous, we have

lim
ε→0

uε(x) = v(x) almot everywhere

where v is a non-negative bounded solution of

v(x)(a(x) − v(x)) = 0 in R
N .

When ε0 < +∞ and, in addition, a(x) is symmetric (a(x) = a(−x) for all x) and the map t → a(tx) is
non increasing for all x, t > 0, then ε0 is sharp, in the sense that for all ε ≥ ε0 there is no positive solution
of (1.2).
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The ecological interpretation of this result bears on the single range of expansion factor. It shows that
a strategy for species to persist is to match the resource and not to move much. Note that it can happen
that ε0 = +∞ and then there is no effect of the dispersal on the persistence criteria of the species. A
natural sufficient condition for this to happen is

(a(x)− 1)+ 6= 0.

In this context, the birth rates exceed all death rates and this guarantees the persistence of the population
regardless the dispersal strategy. In particular, there exists a bounded positive solution to (1.2) for any
positive kernel J . The uniqueness and the behaviour at infinity of the solution are still open questions for
general kernels.

When m > 0, the characterisation of the existence of a positive solution changes and a new picture
emerges. In particular, for large ε there is always a positive solution of (1.2), whereas for small ε, when
m = 2, it may happen that no positive solution exists. Thus, when m = 2,the situation is, in a sense,
opposite to the case when m = 0. Here is our precise results.

Theorem 1.3. Assume that J and f satisfy (H1-H4), J is compactly supported and let 0 < m < 2. There
exist ε0 ≤ ε1 ∈ (0,+∞) such that for all ε ≤ ε0 and all ε ≥ ε1 there exists a positive solution uε of (1.2).
Moreover, we have

lim
ε→+∞

‖uε − a+‖∞ = 0, lim
ε→+∞

‖uε − a+‖L2(RN ) = 0.

In addition, assuming further that a is C2(RN ), we have

lim
ε→0

uε(x) = v(x) almost everywhere,

where v is a non-negative bounded solution of

v(x)(a(x) − v(x)) = 0 in R
N .

In the next Theorem, we require the following notation for the second moment of J :

D2(J) :=

ˆ

RN

J(z)|z|2 dz.

Theorem 1.4. Assume that J and f satisfy (H1-H4), J is compactly supported and let m = 2. Then,
there exists ε1 ∈ (0,∞) so that for all ε ≥ ε1 there exists a positive solution uε to (1.2). Moreover,

lim
ε→+∞

uε = a+(x).

In addition, if J is radially symmetric, we have the following dichotomy

• When λ1

(

D2(J)
2N ∆+ a(x)

)

< 0, there exists ε0 ∈ (0,∞) such that for all ε ≤ ε0 there exists a positive

solution of (1.2) and
uε → v, in L2

loc(R
N ),

where v is the unique bounded non-trivial solution of

D2(J)

2N
∆v + v(a(x)− v) = 0 in R

N .
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• When λ1

(

D2(J)
2N ∆+ a(x)

)

> 0 there exists ε0 ∈ (0,∞) such that for all ε ≤ ε0 (1.2) does not have

any positive solution.

This last result clearly highlights the dependence of the spreading strategy on the cost functions and
the structure of ecological niche. Especially when m = 2, the smaller spreader strategy may not be an
optimal strategy, in the sense that a population adopting such strategy can go extinct. This effect will be
discussed in more detail in the next Section.

Lastly, we further establish existence/ non-existence criteria when we relax the compactly supported
constraint on the dispersal kernel J . In this direction, we investigate a class of kernel J that can have a
fat tail but still have some decay at infinity. More precisely, we assume that

(H5)
´

RN J(z)|z|N+1 < +∞.

Theorem 1.5. Assume that J and f satisfy (H1-H4) and assume further that J satisfies (H5). Then

(i) if λp(M+ ∂sf(x, 0)) > 0 there is no bounded positive solution of (1.2),

(ii) if limR→∞ λp(LR
+ ∂sf(x, 0)) < 0 then there exists a unique positive solution of (1.2), where

L
R
[ϕ] :=

ˆ

BR(0)
J(x− y)ϕ(y) dy − ϕ(x).

1.2 Remarks on the Principal eigenvalue

Before going into the proofs of these results, let us comment on the notion of generalised principal eigen-
value. Our results essentially hinge on the properties of the principal eigenvalue λp(M + a(x)) and more
precisely on the relations between the following spectral quantities:

λp(M+ a) := sup {λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0, such that M[ϕ](x) + a(x)ϕ(x) + λϕ(x) ≤ 0 in Ω} .

λ′p(M+ a) := inf {λ ∈ R | ∃ϕ ∈ C(Ω) ∩ L∞(Ω), ϕ > 0, such that M[ϕ](x) + a(x)ϕ(x) + λϕ(x) ≥ 0 in Ω} .

λv(M+ a) := inf
ϕ∈L2(RN ),ϕ 6≡0

1
2

˜

RN×RN J(x− y)[ϕ(x) − ϕ(y)]2 dxdy −
´

RN a(x)ϕ
2(x) dx

‖ϕ‖22
.

These quantities have been introduced in various contexts (see for example [29, 35, 31, 42, 50]). However
until now, relations between them have not been fully investigated or only in some particular contexts such
as when a(x) is homogeneous or periodic. Some new results have been recently obtained in [3] now allowing
us to have a clear description of the relation between λp, λ

′
p and λv. Moreover, [3] provides a description

of the asymptotic behaviour of these spectral quantities with respect to the scaling of the kernel. Since we
strongly rely on these results, for the purpose of our analysis, we present a summary of these results in
Section 3.

Finally, we also want to stress that although we have a clear description of the existence and the non-
existence of a positive solution for small ε, the study of the convergence of uε as ε → 0 is quite delicate.
Indeed, it is to be expected that the limiting solution will satisfy the problem

v(x)(a(x) − v(x)) = 0 in R
N .

But this problem has infinitely many bounded non negative solution in L∞. E.g., for any set Q ⊂ R
N the

function a+(x)χQ is a solution. Therefore, owing to the lack of regularising effect of the dispersal operator,
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we cannot rely on standard compactness results to obtain a smooth limit. If for the case m = 2 we could
rely on the elliptic regularity and the new description of Sobolev Spaces developed in [13, 14, 57, 58] to get
some compactness, this characterisation does not allow us to treat the case m < 2. We believe that a new
characterisation of Fractional Sobolev space in the spirit of the work of Bourgain, Brezis and Mironescu
[13, 14] will be helpful to resolve this issue.

The paper is organised as follows. In Section 2, we discuss the biological interpretations of our results.
There, we describe notion such as dispersal budget and evolutionary stable strategies. In Section 3, we
recall some known properties and describe our recent work on the principal eigenvalue λp(LΩ

+a). We also
describe the sharp persistence criteria for problem (1.5) defined in a bounded domain Ω that are derived in
terms of principal eigenvalues. In Sections 4 and 5, we establish the sharp persistence criteria and prove the
long time behaviour of the solution of (1.2) (Theorem 1.1). We analyse the dependence of the persistence
criteria (Theorems 1.2 and 1.3) in Section 6. Finally, in the Section 7 we discuss the extension of the
persistence criteria to kernels that are non longer assume to be compactly supported. In the concluding
section, we emphasize some of our results and corresponding biological interpretations. We also indicate
several open problems and directions that arise naturally from this work.

1.3 Notations

To simplify the presentation of the proofs, we introduce some notations and various linear operator that
we will use throughout this paper:

• BR(x0) denotes the standard ball of radius R centred at the point x0

• χR will always refer to the characteristic function of BR(0) .

• S(RN ) denotes the Schwartz space,[15]

• C(Ω) denotes the space of continuous function in Ω,

• C0(Ω) denotes the Banach space of continuous function in Ω that vanishes at the boundary.

• For a positive integrable function J ∈ S(RN ), the constant
´

RN J(z)|z|2 dz will refer to

ˆ

RN

J(z)|z|2 dz :=

ˆ

RN

J(z)

(

N
∑

i=1

z2i

)

dz

• We denote by L
Ω
the continuous linear operator

L
Ω
: C(Ω̄) → C(Ω̄)

u 7→
´

Ω J(x− y)u(y) dy,
(1.7)

where Ω ⊂ R
N .

• L
R
corresponds to the continuous operator LΩ − I with Ω = BR(0), (I denotes the identity)

• We will use M to denote the operators LΩ − I with Ω = R
N .

• Finally, Mε will denote the operator M with a rescaled kernel 1
εN
J
(

z
ε

)

and Mε,m := 1
εmMε

• To simplify the presentation of the proofs, we will also use the notation β(x) := ∂sf(x, 0).
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2 Ecological interpretation of our results

Here we define more precisely some concepts from ecology and discuss the ecological interpretation of our
findings. We start with the notion of dispersal budget introduced in [48]. To this end, let us go back to
the description of the dispersal of the population. The main ecological idea behind this “dispersal budget”
is that we can consider that the amount of energy per individual that the organism can use to disperse is
fixed (because of environmental or developmental constraints).

Let us denote by u, the density of the population and suppose, as an example, that it represents a
population of trees that produces and disperses its seeds. Several dispersal strategies are then possible for
this species: it can “choose” to disperse few seeds over long distances or produce many seed and disperse
them over a short distance and, of course, there are the intermediate strategies. We can then assume that
the costs involved in the dispersal are proportional to

• the number of individuals dispersed,

• a non decreasing and even function α of the distance moved.

For a population of trees, for instance, the function α can be somehow related, to the amount of energy
used to produce seeds with sophisticated shapes and components that allow it to take advantage of wind
or gravity or a transport by animals.

If we discretize uniformly the space RN by small cubes of volume δx centered at points xi and the time
in time step δt, then we can compute the cost C(xi, xj) associated to the transfer from a site xj to a site
xi and we get

C(xj, xi) = J(xj , xi)α(xi − xj)u(xj , t)(δx)
2δt,

where the term J(xj , xi)u(xj , t)(δx)
2δt is the total number of individuals that is transferred through a

dispersal kernel J , from a site xj to a site xi. The total cost in time δt for a typical site xj is then:

u(xj , t)δxδt
∑

i

J(xj , xi)α(xi − xj)δx.

Thus, if the amount of energy per individual is fixed, we get

∑

i

J(xi, xj)α(xj − xi)δx = c0

where c0 > 0 is a constant. Letting the volume of the cube δx go down to 0, we obtain

ˆ

RN

J(x, y)α(y − x) dx = c0.

For an dispersal that only depends on the distance moved, (i.e. J(x, y) = J(x− y)), we get

ˆ

RN

J(z)α(z) dz = c0.

To investigate the effects of the dispersal range on the persistence of the population, it is then reasonable
to fix the cost function α and to allow the dispersal kernel J to depend on a scaling factor, ε. Now,
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for a fixed cost function α(z) proportional to |z|m, by taking a rescaled dispersal kernel of the form

γ(ε,m)Jε(z) :=
γ(ε,m)
εN

J
(

z
ε

)

we get
ˆ

RN

γ(ε,m)Jε(z)|z|
m dz = c0.

Thus,

γ(ε,m) =
1

εm
c0

´

RN J(z)|z|m dz
,

and the rescaled dispersal kernel associated with the cost function α(z) proportional to |y|m is

α0

εm
Jε(z), with α0 :=

c0
´

RN J(z)|z|m dz
.

Fixing the dispersal budget now means that the dispersal process involved is defined by the operator
Mε,m = γ(ε,m)Mε and that the species has the choice between large ε, which corresponds to a strategy
that produces few offspring that are dispersed far away or small ε, which corresponds to the opposite
strategy, that is, producing a large number of offspring dispersed on short range. The rescaled dispersal
kernel, will then depend upon three parameters, α0, ε and m. As explained in [48], in the above setting,
the constant α0

εm will refer to the rate of dispersal, whereas ε is a measure of the range of dispersal of the
species. From the above formula, we clearly see how the cost function and the range factor affect the rate
of dispersal.

The results of Theorems 1.2, 1.3 and 1.4 give some insight on the effects of the cost functions on the
different strategies. When 2 > m > 0, we see that strategies based on sufficiently large or sufficiently small
range factors enable the population to persist. It is worth to mention that strategies based on sufficiently
large range factors always enable the population to persist when m > 0. This is not necessarily true when
m = 0.

To investigate further the effects of the dispersal budget on the different strategies, we can use the
notion of Evolutionary Stable Strategy (ESS) introduced in Adaptive Dynamics, see [36, 37, 53, 64]. The
concept of ESS comes from games theory and goes back to the work of Hamilton [45] on the evolution of
sex-ratio. Roughly speaking, an Ecological Stable Strategy is a strategy such that if most of the members
of a population adopt it, there is no “mutant” strategy that would yield a higher reproductive fitness. In
this framework the strategies are compared using their relative pay-off. This concept has been recently
used and adapted to investigate ecological stable strategies of dispersal in several contexts: unconditional
dispersal [38, 47, 49], conditional dispersal [1, 19, 20, 21, 22, 28, 25, 44] and nonlocal dispersal [48, 51], see
[26] for a review on this subject.

In these works, the general idea is to compare the dispersal strategies through the analysis of some
invasion criteria. Here, following this idea, the strategies can be compared through the dynamics of a
solution of a competitive system

∂tu(t, x) = Mε1,m[u] + u(t, x)(a(x) − u(t, x)− v(t, x)) in R
N (2.1)

∂tv(t, x) = Mε2,m[u] + v(t, x)(a(x) − u(t, x) − v(t, x)) in R
N (2.2)

where u is a population that has adopted the spreading strategy ε1 and v the ε2 strategy. The notion
of ESS is then linked to some invasion condition which is related to the stability of the equilibria (u∗, 0)
where u∗ is a positive solution of the following problem

Mε1,m[u] + u(x)(a(x) − u(x)) = 0 in R
N .
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The stability analysis of this equilibria, leads us to consider the sign of a principal eigenvalue of the
operator Mε2,m+a−u∗. When λp(Mε2,m+a−u∗) < 0 then the equilibria (u∗, 0) is unstable and a mutant
may overtake the territory. Therefore, the strategy followed by u will not be an ESS. On the contrary,
when λp(Mε2,m + a − u∗) > 0 the equilibria (u∗, 0) is stable and a mutant cannot invade its territory,
making this strategy a possible candidate for an ESS.

In the context of local dispersion, this system has been introduced to discuss Ecological Stable Strategy
of dispersal (see [1, 19, 21, 22, 28, 25, 38, 47, 44]). The only difference is that, in this case, Mepsi,m is an
elliptic operator possibly involving an advection (1st order) term.

In this framework, two classes of dispersal strategies are distinguished: the unconditional dispersal vs
the conditional dispersal. Unconditional dispersal refers to dispersal without regard to the environment
or the presence of other organisms. Pure diffusion and diffusion with physical advection (e.g. due to local
climatic conditions) are examples of unconditional dispersal. Conditional dispersal refers to dispersal that
is influenced by the environment or the presence of other organisms.

For particular conditional dispersal strategies, known as ideal free, it is known that such strategies are
evolutionary stable [20, 21, 25, 26]. For long range dispersal, some nonlocal ideal free strategies have been
recently exhibited [27].

For unconditional dispersal strategies, within the framework of reaction diffusion models, it is known
that the smaller disperser is always favoured [21, 38, 47]. Such results are still valid for nonlocal dispersal
strategies as soon as the cost function is a constant [48, 51]. In such cases, the range factor does not affect
the rate of dispersal.

For cost functions proportional to |y|m with m > 0, the range factor ε strongly affects the rate of
dispersal, and the picture changes. From the asymptotics we have obtained (Theorems 1.3 and 1.4), we
clearly see that the smaller spreader will not always be favoured. Indeed, consider two species that have
the same ecological niche and suppose that this ecological niche is bounded.

Let ε1 be the range factor associated to one of the species and let us denote by u∗ the equilibrium
reached by this population, i.e. u∗ > 0 (or u∗ = 0 if there is no positive equilibrium) is the solution of
Mε1,m[u∗] + u∗(a(x) − u∗) = 0. Let ε2 be the range factor associated with the other species. Let us look
at the sign of λp(Mε2,m + a− u∗). From our results, for ε2 large enough, we have λp(Mε2,m + a− u∗) ≈
− supRN (a − u∗). Since u∗ satisfies Mε1,m[u∗] + u∗(a(x) − u∗) = 0, by the maximum principle, we infer
that supRN (a − u∗) > 0. As a consequence, for ε2 large enough, λp(Mε2,m + a − u∗) < 0 and the
population having the range factor ε1 will be wiped out. In other words, if a competing species disperses
on a sufficiently long range, it will invade the territory occupied previously by the species of range factor
ε1. Conversely, when the cost functions is sub-quadradic, i.e. m < 2, for ε2 small enough, we have also
λp(Mε2,m + a − u∗) ≈ − supRN (a − u∗). This means that a smaller spreading factor can also lead to
invasion. For a cost function proportional to |y|m with 0 < m < 2, the effect of the cost function is then
twofold, both large and small spreader species can be favoured.

From our result, we also infer that within the framework of the space of a quadratic cost function
(m = 2), the ubiquity strategy (ε = ∞) seems to be an ESS. Indeed, for this case, we are led to consider
the sign of λp(Mε2,2 + a− a+) which is positive for any ε > 0. It is worth noticing that in this situation,
the smallest spreader (ε = 0) is never an ESS. For such singular strategy, what matter is the sign of
λp(Mε2,2 + a− u∗) where u∗ is the solution of

D2(J)

2N
∆u∗ + u∗(a(x)− u∗) = 0.

For ε2 large enough, we see that λp(Mε2,2+a−u
∗) < 0. Thus the equilibrium (u∗, 0) is unstable, rendering

11



the singular strategy not evolutionary stable.
Such behaviour stands in contrast with known results on ESS strategy governed by the rate of dispersion

[48, 51]. These properties show that nonlocal diffusion exhibits quite different behaviour with respect to
what was known in the local diffusion case, where in such case the slowest possible rate is always the best
strategy.

3 Preliminaries

In this section, we recall some known results on the principal eigenvalue of a linear non-local operator
L

Ω
+ a and on the nonlocal Fisher-KPP equation :

∂u

∂t
(t, x) = LΩ [u] + f(x, u(t, x)) in R

+ ×Ω, (3.1)

considered in a bounded domain Ω ⊂ R
N .

3.1 Principal eigenvalue for non-local operators

In this subsection, we focus on the properties of the spectral problem

L
Ω
[ϕ] + aϕ+ λϕ = 0 in Ω. (3.2)

In contrast with elliptic operators, when a is not a constant, neither L
Ω
+ a + λ nor its inverse are

compact operators and the description of the spectrum of LΩ + a using the Krein-Rutman Theory fails.
However as shown in [29], some variational formula introduced in [7] to characterise the first eigenvalue of
elliptic operators E := aij(x)∂ij + bi(x)∂i + c(x),

λ1(E) := sup{λ ∈ R | ∃ϕ ∈W 2,n(Ω), ϕ > 0 so that E [ϕ] + λϕ ≤ 0}, (3.3)

can be transposed to the operator L
Ω
+ a. Namely, we define the quantity

λp(LΩ
+ a) := sup{λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0 so that L

Ω
[ϕ] + aϕ+ λϕ ≤ 0}. (3.4)

λp(LΩ
+ a) is well defined and we call it the generalised principal eigenvalue.

As in [29], the quantity defined by (3.4) is not always an eigenvalue of L
Ω
+ a in a reasonable Banach

space. This means that there is not always a positive continuous eigenfunction associated with λp. This
stands in contrast with elliptic PDE’s. However, as proved in [29, 51, 62], when Ω is a bounded domain
we can give some conditions on the coefficients that guarantee the existence of a positive continuous
eigenfunction. For example, if the function a satisfies

1

supΩ a− a
6∈ L1

loc(Ω̄),

then λp(LΩ
+ a) is an eigenvalue of L

Ω
+ a in the Banach space C(Ω̄) that is, it is associated to a positive

continuous eigenfunction, continuous up to the boundary.
Another useful criteria that guarantees the existence of a continuous principal eigenfunction is

Proposition 3.1. Let Ω be a bounded domain and let L
Ω

be as in (1.7) then there exists a positive
continuous eigenfunction associated to λp if and only if λp(LΩ

+ a(x)) < − supΩ a.
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A proof of this proposition can be found for example in [35, 31]. To have a more complete description
of the properties of λp in bounded domains see [32].

Next, we recall some properties of λp that we constantly use throughout this paper:

Proposition 3.2. (i) Assume Ω1 ⊂ Ω2, then for the two operators L
Ω1

+ a and L
Ω2

+ a respectively
defined on C(Ω1) and C(Ω2), we have :

λp(LΩ1
+ a) ≥ λp(LΩ2

+ a).

(ii) For a fixed Ω and assume that a1(x) ≥ a2(x), for all x ∈ Ω. Then

λp(LΩ
+ a2) ≥ λp(LΩ

+ a1).

(iii) λp(LΩ
+ a) is Lipschitz continuous with respect to a. More precisely,

|λp(LΩ
+ a)− λp(LΩ

+ b)| ≤ ‖a− b‖∞

(iv) The following estimate always holds

− sup
Ω

(

a(x) +

ˆ

Ω
J(x− y) dy

)

≤ λp(LΩ
+ a) ≤ − sup

Ω
a.

We refer to [29, 31] for the proofs of (i)− (iv). Let us also recall the two following results proved in [3].

Lemma 3.3. Assume that a achieves its maximum in Ω and let LΩ + a be defined as in (1.7) with J
satisfying (H1−H2). Assume further that J is compactly supported. Let (Ωn)n∈R be a sequence of subset
of Ω such that limn→∞Ωn = Ω, Ωn ⊂ Ωn+1. Then, we have

lim
n→∞

λp(LΩn
+ a) = λp(LΩ

+ a)

Lemma 3.4. Assume that a(x) ∈ C(RN ) ∩ L∞(RN ). Then for all ε > 0

λp(M+ a) = λp(Mε + aε),

where aε(x) := a
(

x
ε

)

and Mε[ϕ](x) :=
1
εN

´

RN J
(x−y

ε

)

ϕ(y) dy − ϕ(x).

Lastly, we recall some recent results obtained in [3] on the characterisation of the generalised principal
eigenvalue λp(Mε,m + a). Motivated by the works [9, 6, 10] on the generalised principal eigenvalue of an
elliptic operators, let us introduce the two definitions :

Definition 3.5. Let L
Ω
+ a be as in (1.7). We define the following quantities:

λ′p(LΩ
+ a) := inf{λ ∈ R | ∃ϕ ≥ 0, ϕ ∈ C(Ω) ∩ L∞(Ω), such that L

Ω
[ϕ] + (a+ λ)ϕ ≥ 0 in Ω}, (3.5)

λv(LΩ
+ a) := inf

ϕ∈L2(Ω),ϕ 6≡0
−
〈L

Ω
[ϕ] + aϕ,ϕ〉

〈ϕ,ϕ〉
, (3.6)

= inf
ϕ∈L2(Ω),ϕ 6≡0

´

Ω

´

Ω J(x− y)(ϕ(x) − ϕ(y))2 dxdy −
´

Ω(a− 1 + k(x))ϕ2(x) dx

‖ϕ‖2
L2(Ω)

. (3.7)

where k(x) :=
´

Ω J(y − x) dy and 〈·, ·〉 denotes the standard scalar product in L2(Ω).
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These definitions are natural extension of the definitions known for an elliptic operator. It is worth to
mention that those definitions have already been used for the study of (1.2) in several papers [33, 35, 31,
42, 50], but the relation between λp, λ

′
p and λv had not been clarified.

For elliptic operators, the analogues of these three quantities are equivalent on bounded domain [7].
This is not necessarily the case for unbounded domains, where examples can be constructed [9, 6, 12], for
which λ1 > λ′1. Since the operator, L

Ω
+ a, shares many properties with elliptic operators, it is suspected

that the three quantities, λp, λ
′
p and λv, are not necessarily equal. However, for compactly supported kernel

,?, J , we have:

Theorem 3.6 ([3]). Let J be compactly supported satisfying (H1)–(H2). Assume that a ∈ C(RN) ∩
L∞(RN ). Then we have

λp(Mε,m + a) = λ′p(Mε,m + a) = λv(Mε,m + a).

Moreover, we have the following asymptotic behaviour as either ε→ 0 or ε→ ∞ :

• When 0 < m ≤ 2 limε→+∞ λp(Mε,m + a) = − supx∈RN a(x)

• When m = 0, limε→+∞ λp(Mε + a) = 1− supx∈RN a(x)

• When 0 ≤ m < 2, limε→0 λp(Mε,m + a) = − supx∈RN a(x)

• When m = 2 and a is globally Lipschitz, then

lim
ε→0

λp(Mε,2 + a) = λ1

(

D2(J)

2N
∆+ a

)

,

where we recall that

D2(J) :=

ˆ

RN

J(z)z2 dz.

and

λ1

(

D2(J)

2N
∆+ a

)

:= inf
ϕ∈H1

0 (R
N ),ϕ 6≡0

D2(J)

2N

´

RN |∇ϕ|2(x) dx

‖ϕ‖22
−

´

RN a(x)ϕ
2(x) dx

‖ϕ‖22
.

A similar result also holds for the rescaled operator

L
R,ε,m

:=
1

εm
L

R,ε

with L
R,ε

defined by :

L
R,ε

[ϕ](x) =

ˆ

BR

Jε(x− y)ϕ(y) dy − ϕ(x)

with the rescaled kernel Jε. Namely,

Theorem 3.7 ([3]). Assume J satisfies (H1)–(H2) and let a(x) ∈ C(B̄R(0)). Then we have

λp(LR,ε,m
+ a) = λ′p(LR,ε,m

+ a) = λv(LR,ε,m
+ a).

Moreover, we have the following asymptotic behaviour:
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• When 0 < m ≤ 2 limε→+∞ λp(LR,ε,m
+ a) = − supBR(0) a(x)

• When m = 0, limε→+∞ λp(LR,ε
+ a) = 1− supBR(0) a(x)

• When 0 ≤ m < 2, limε→0 λp(LR,ε,m
+ a) = − supBR(0) a(x)

• When m = 2 and assuming that the function a is globally Lipschitz, we get

lim
ε→0

λp(LR,ε,2
+ a) = λ1

(

D2(J)

2N
∆+ a,BR(0)

)

3.2 Existence criteria for the KPP-equation (3.1)

With this notion of generalised principal eigenvalue, it has been shown [2, 29] that on bounded domains,
the existence of a positive stationary solution of (3.1) is conditioned by the sign of λp(LΩ

+ ∂sf(x, 0)).
More precisely,

Theorem 3.8 ([2, 29]). Let Ω be a bounded domain and L
Ω
defined as in (1.7). Assume that f satisfies

(H3). Then there exists a unique positive continuous function, ū, stationary solution of (3.1) if and only
if λp(LΩ

+ ∂sf(x, 0)) < 0. Moreover, if λp ≥ 0 then 0 is the only non negative bounded stationary solution
of (3.1). In addition, for any positive continuous solutions of (3.1) we have the following dynamics :

(i) When λp ≥ 0,
lim
t→∞

u(t, x) → 0 uniformly in Ω,

(ii) When λp < 0,
lim
t→∞

u(t, x) → ū uniformly in Ω.

Remark 1. This existence criteria is similar to those known for the PDE reaction diffusion versions of
(3.1) [5, 17, 18, 39].

4 Existence/non existence and uniqueness of a non-trivial solution

In this section we construct a non-trivial solution of (1.2) and prove the necessary and sufficient condition
stated in Theorem 1.1. We treat successively the existence of a solution, its uniqueness and non-existence.

4.1 Existence of a non-trivial positive solution

The construction follows a basic approximation scheme previously used for example in [4]. We introduce
the following approximated problem :

L
R
[u] + f(x, u) = 0 in B̄(0, R) (4.1)

where B(0, R) denotes the ball of radius R centred at the origin. By Theorem 3.8, for any R > 0 the
existence of a unique positive solution of (4.1) is conditioned by the sign of λp(LR

+ β) where β(x) :=
∂uf(x, 0). Since

lim
R→+∞

λp(LR
+ β) = λp(M+ β) < 0,
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by Lemma 3.3 there exists R0 > 0 such that

∀R ≥ R0, λp(LR
+ β) < 0.

As a consequence, by Theorem 3.8, for all R > R0 there exists a unique positive solution of (4.1) that we
denote uR. Moreover, since for all R > 0, supBR(0) S(x) is a super-solution of (4.1), by a standard sweeping
argument since the solution to (4.1) is unique, we get

∀R > 0, uR ≤ sup
BR(0)

S(x) in B(0, R).

On another hand, for any R1 > R2, the solution uR1 is a super-solution for the problem

L
R2
[u] + f(x, u) = 0 in B(0, R2) (4.2)

By the same sweeping argument we get

uR2(x) ≤ uR1(x) in B(0, R2).

Thus, the map R 7→ uR is monotone increasing.
The idea is to obtain a positive solution of (1.2) as a limit of the positive solution of (4.1). To this end

we construct a uniform super-solution of problem (1.2).

Lemma 4.1. There exists ū ∈ C0(R
N ) ∩ L1(RN ), ū > 0 such that ū is a super-solution of problem (1.2).

Proof. Let us fix ν > 0 and R0 > 1 so that ν < − lim sup|x|→∞ β(x) and β(x) ≤ −ν
2 for all |x| ≥ R0.

Consider the function
w(x) = Ce−α|x|,

where C and α are to be chosen. For all x ∈ R
N \BR0(0) we get:

M[w](x) + β(x)w(x) = Ce−α|x|

(
ˆ

RN

J(x− y)e−α(|y|−|x|) dy − 1 + β(x)

)

,

≤ w(x)

(
ˆ

RN

J(z)eα(|z|) dz − 1−
ν

2

)

.

Therefore, w satisfies

M[w](x) + β(x)w(x) ≤ h(α)w(x) in R
N \BR0(0), (4.3)

where h(α) is defined by

h(α) = −1−
ν

2
.

Since J is compactly supported, thanks to Lebesgue’s Theorems, we can check that h(·) is a smooth
(C2) convex increasing function of α. Moreover, we have

lim
α→0

h(α) = h(0) = −
ν

2
.

Therefore, by continuity of h, we can choose α small enough such that h(α) < 0. For such an α, we get

M[w](x) + β(x)w(x) ≤ h(α)w(x) < 0 in R
N \BR0(0). (4.4)
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Let M := supB2R0
(0) S(x) and let us fix C = 2Me2αR0 . We consider now the continuous function

ū(x) :=

{

Ce−α|x| in R
N \B2R0(0),

2M in B2R0(0).

By direct computation we can check that ū is a super-solution of the problem (1.2). Indeed, for any
x ∈ B2R0(0), we have ū = 2M > supB2R0

(0) S(x) which implies that f(x, ū) = f(x, 2M) ≤ 0 and thus

M[ū](x) + f(x, ū(x)) ≤ 2M

ˆ

RN

J(x− y) dy − 2M + f(x, 2M) ≤ f(x, 2M) ≤ 0.

Then, for x ∈ R
N \B2R0(0) ⊂ R

N \BR0(0) by (4.4) we have

M[ū](x) + f(x, ū(x)) ≤ M[ū](x) + β(x)w(x) ≤ M[w](x) + β(x)w(x),

≤ h(α)w(x) ≤ 0.

We are now in a position to construct a positive solution of (1.2). By Lemma 4.1, there exists ū
a positive continuous super-solution of problem (1.2). Therefore, for any R > 0, ū is also a positive
continuous super-solution of the problem (4.1). Therefore, by the standard sweeping argument, we can
check that for all R ≥ R0 the unique positive continuous solution of (4.1) satisfies uR ≤ ū in BR(0). By
letting R → ∞ and observing that uR ∈ C(BR) is uniformly bounded and monotone with respect to R,
we get uR → ũ := limR→∞ uR. The function ũ is a non-negative solution of (1.2) and it is non zero since
0 ≤ ũ ≤ ū and

0 < uR ≤ ũ in B(0, R), for all R ≥ R0.

4.2 Uniqueness

Having constructed a positive solution of (1.2) in L1(RN ), we now prove its uniqueness. Assume by
contradiction that v ∈ C(RN )∩L∞(RN ) is another positive solution. Then v is a supersolution of problem
(4.1) for any R > 0. Therefore v ≥ uR for all R ≥ R0. Since uR is monotone with respect to R, it follows
that v ≥ ũ := limR uR(x). By assumption v 6≡ ũ almost everywhere. Recall that the functions v and ũ
satisfies:

M[ũ] + f(x, ũ) = 0 in R
N , (4.5)

M[v] + f(x, v) = 0 in R
N . (4.6)

Multiplying (4.5) by v and (4.6) by u we get after integration over RN :

ˆ

RN

ˆ

RN

J(x− y)ũ(y)v(x) dydx −

ˆ

RN

ũ(x)v(x) dx +

ˆ

RN

v(x)f(x, ũ(x)) dx = 0, (4.7)

ˆ

RN

ˆ

RN

J(x− y)ũ(x)v(y) dydx −

ˆ

RN

ũ(x)v(x) dx +

ˆ

RN

ũ(x)f(x, v(x)) dx = 0. (4.8)

Subtracting (4.8) from (4.7) yields

17



0 <

ˆ

RN

v(x)ũ

[

f(x, ũ(x))

ũ(x)
−
f(x, v(x))

v(x)

]

dx = 0,

which is a contradiction since ũ ≤ v and f(x, s)/s is decreasing.
When v is just a L∞ solution of (1.2), a similar argument holds using an adapted version of the

maximum principle (Theorem 1.4 in [33]).

4.3 Non-existence of a solution

In this section, we deal with the non-existence of positive solution when λp(M + β) ≥ 0. To simplify the
presentation of the proofs, we treat the two cases: λp(M+β > 0 and λp(M+β) = 0 separately, the proof
in the second case being more involved.

Case λp(M+ β) > 0:

In this situation we argue as follows. Assume by contradiction that a positive bounded solution u exists.
By assumption, u satisfies

M[u](x) + β(x)u(x) ≥ 0. (4.9)

Therefore, u is a test function for λ′p(M+β) and we get λ′p(M+β) ≤ 0. Since by Theorem 3.6, λp(M+β) ≤
λ′p(M+ β) we get an obvious contradiction.

Case λp(M+ β) = 0:

We argue again by contradiction. Assume that a non-negative, non identically zero, bounded solution u
exists. By a straightforward application of the maximum principle, since u 6≡ 0 we have u > 0 in R

N . By
the above argument we have λp(M + β) = 0 = λ′p(M + β) and by (iv) of Proposition (3.2) we get the
following estimate :

sup
RN

(β(x)− 1) ≤ 0. (4.10)

Let us denote γ(x) := f(x,u(x))
u(x) , then we obviously have

J ⋆ u(x)− u(x) + γ(x)u(x) = 0 in R
N (4.11)

By definition of λ′p we have λ′p(M + γ) ≤ 0. By construction, γ(x) ≤ β(x), so by combining (4.11) with
Proposition 3.2, Theorem 3.6 and the definition of λp(M+ γ) we can infer that

λp(M+ γ) ≤ λ′p(M+ γ) ≤ 0 ≤ λp(M+ β) ≤ λp(M+ γ).

Hence λp(M + γ) = 0. Let us denote η ∈ C(RN ) a smooth regularisation of χB1(0) the characteristic

function of the unit ball. Since γ(x) < β(x) in R
N , we can find ε0 > 0 small enough so that for all ε ≤ ε0

γ(x) ≤ γ(x) + εη(x) < β(x) in R
N .

By (i) of Proposition 3.2, we then have

0 = λp(M+ β) ≤ λp(M+ γ + εη) ≤ λp(M+ γ) = 0.

Next we claim that
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Lemma 4.2. There exists R1 > 0 and ψ > 0, ψ ∈ C(RN) ∩ L1(RN ) such that

J ⋆ ψ(x) − ψ(x) + (γ(x) + εη(x))ψ(x) = 0 in R
N .

Assume for a moment that the Lemma holds. Then by arguing as in subsection (4.2), since ψ ∈ L1 we
get the following contradiction

0 = −ε

ˆ

RN

u(x)ψ(x)η(x) dx < 0.

Proof of the Lemma. For convenience we denote γ̃ := γ + εη. By (4.10), since γ̃ < β we also have

0 < − sup
RN

(γ̃ − 1). (4.12)

From this inequality, by using Proposition 3.1 and Lemma 3.3 we see that there exists R0 such that for
all R ≥ R0 there exists a positive eigenfunction ϕR ∈ C(B̄(0, R)) associated with the generalised principal
eigenvalue λp(LR

+ γ̃) of the approximated problem

L
R
[ϕ] + (γ̃ + λ)ϕ = 0 in B(0, R) (4.13)

Consider now the increasing sequence (Rn)n∈N := (R0 + n)n∈N and let (ϕn)n∈N be the sequence of
positive principal eigenfunction associated with λp(LRn

+ γ̃). Without loss of generality, we can assume
that for all n, ϕn(0) = 1.

For all n, ϕn satisfies
L

Rn
[ϕn] + (γ̃ + λp(LRn

+ γ̃))ϕn = 0 in BRn . (4.14)

Let us now define bn(x) := −λp(LRn
+ γ̃)− γ̃(x). Then ϕn satisfies

L
Rn

[ϕn] = bnϕn in BRn .

By construction, for all n ≥ 0 we have bn ≥ −λp(LRn0
+ γ̃)− supRN (γ̃(x)− 1) > 0, therefore the Harnack

inequality (Theorem 1.4 in [30]) applies to ϕn. Thus for n ≥ 0 fixed and for all compact set ω ⊂⊂ BRn

there exists a constant Cn(ω) such that

ϕn(x) ≤ Cn(ω)ϕn(y) ∀x, y ∈ ω.

Moreover, the constant Cn(ω) only depends on
⋃

x∈ω Br0(x) and is monotone decreasing with respect
to infx∈BRn

bn(x). For all n ≥ 0, the function bn(x) being uniformly bounded from below by a constant
independent of n, we can choose the constant Cn so that it is bounded from above independently of n by
a constant C(ω). Thus,

ϕn(x) ≤ C(ω)ϕn(y) ∀x, y ∈ ω.

From the normalization ϕn(0) = 1, we infer that the sequence (ϕn)n≥0 is locally uniformly bounded
in R

N . Moreover, from a standard diagonal extraction argument, there exists a subsequence still denoted
(ϕn)n≥0 such that (ϕn)n≥0 converges locally uniformly to a continuous function ϕ. Furthermore, ϕ is a
non-negative non trivial function and ϕ(0) = 1.

Since J is compactly supported, we can pass to the limit in equation (4.14) using the Lebesgue monotone
convergence theorem and get

M[ϕ] + (γ̃ + λp(M+ γ̃))ϕ = 0 in R
N .
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Hence, we have

M[ϕ] + γ̃ϕ = 0 in R
N . (4.15)

To conclude the proof of this Lemma, we characterise the behaviour of ϕ(x) for |x| >> 1.
Let us denote 0 < ν < − lim sup|x|→∞ β(x) and let us fix R1 so that β(x) ≤ −ν

2 for |x| ≥ R1.
Since by Lemma 3.3, λp(LR

+ γ̃) → λp(M+ γ̃) = 0, we can take R1 larger if necessary to achieve

γ̃(x) + λp(LR
+ γ̃) ≤ −

ν

4
for |x| ≥ R1.

Let us now consider ψ(x) := Ce−α(|x|−R1) where C and α will be chosen later on. By a straightforward
computation, we see that for all R > R1

L
R
[ψ](x) + (γ̃(x) + λp(LR

+ γ̃))ψ(x) ≤ ψ(x)

(
ˆ

RN

J(z)eα|z|dz − 1−
ν

4

)

for |x| ≥ R1,

≤ h(α)ψ(x) for |x| ≥ R1,

with

h(α) :=

(
ˆ

RN

J(z)eα|z|dz − 1−
ν

4

)

.

Since J is compactly supported, by the Lebesgue Theorem, the function h is continuous and h(0) = −ν
4 .

By assumption ν > 0, and by continuity of h there exists α0 > 0 such that h(α0) < 0. Thus, for α = α0

we achieve
L

R
[ψ](x) + (γ̃(x) + λp(LR

+ γ̃(x)))ψ(x) ≤ 0 for |x| ≥ R1. (4.16)

Recall that by construction, the function ϕn satisfies :

L
Rn

[ϕn](x) + (γ̃(x) + λp(LRn
+ γ̃(x)))ϕn(x) = 0 in BRn(0). (4.17)

Since J is compactly supported and J(0) > 0 there exist positive constants r0 ≥ r1 and M ≥ m so that

MχBr0 (x)
≥ J(x− y) ≥ mχBr1 (x)

for all x, y ∈ R
N .

For n large enough, say n ≥ n0, we have Rn > R1 + r0 and by the Harnack inequality, for all n ≥ n0, we
have

ϕn(x) ≤ C(BR1 , λp(LRn
+ γ̃(x)))ϕn(y) for all x, y ∈ BR1(0),

with C(BR1 , λp(LRn
+ γ̃(x))) a constant that only depends on

⋃

x∈BR1
Br0(x) and is monotone decreasing

with respect to infx∈BRn
(γ̃(x) + λp(LRn

+ γ̃)). For all n ≥ n0, the function γ̃(x) + λp(LRn
+ γ̃) being

uniformly bounded from below by a constant independent of n, the constant C(BR1 , λp(LRn
+ γ̃)) is

bounded from above independently of n by a constant C(BR1). Thus for all n ≥ n0;

ϕn(x) ≤ C(BR1)ϕn(y) ∀x, y ∈ BR1 .

In particular, for all n ≥ n0 we have :

ϕn(x) ≤ C(BR1)ϕn(0) = C(BR1) ∀x ∈ BR1 .
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By choosing C > C(BR1), we get

ψ(x) ≥ C > C(BR1) ≥ ϕn(x) ∀x ∈ BR1 .

Set wn := ψ − ϕn. From (4.16) and (4.17) we get

L
Rn

[wn](x) + (γ̃(x) + λp(LRn
+ γ̃(x)))wn(x) ≤ 0 for R1 ≤ |x| < Rn, (4.18)

wn > 0 for |x| < R1. (4.19)

By a straightforward application of the Maximum principle, it follows that for all n ≥ n0 we have ϕn(x) ≤ ψ.
Indeed, since wn is continuous, wn achieves a minimum at some point x0 ∈ BRn . Assume by contradiction
that wn(x0) < 0. Then, thanks to (4.19), x0 ∈ BRn \BR1 and at this point, by (4.18) we have the following
contradiction

0 ≥ L
Rn

[wn](x0) + (γ̃(x0) + λp(LRn
+ γ̃(x)))wn(x0) ≥

ˆ

BRn

J(x0 − y)wn(y) dy − wn(x0) +
ν

4
|wn(x0)|,

≥

ˆ

BRn

J(x0 − y)[wn(y)− wn(x0)] dy +
ν

4
|wn(x0)| > 0.

Hence, for all n ≥ n0, we get ϕn ≤ ψ in BRn which, by sending n → ∞, leads to ϕ ≤ ψ in R
N . This

concludes the proof of the Lemma.

5 Long time Behaviour

In this section, we investigate the long-time behaviour of the positive solution u(t, x) of

∂u

∂t
(t, x) = J ⋆ u(t, x)− u(t, x) + f(x, u(t, x)) in R

+ × R
N , (5.1)

u(0, x) = u0(x). (5.2)

For any u0 ∈ Ck(RN ) ∩ L∞ or in Ck(RN ) ∩ L1(RN ) the existence of a smooth solution u(t, x) ∈
C1((0,+∞), Cmin{1,k}(RN )) respectively u(t, x) ∈ C1((0,+∞), Cmin{1,k}(RN ) ∩ L1(RN )) is a straightfor-
ward consequence of the Cauchy-Lipschitz Theorem and of theKPP structure of the nonlinearity f . Before
going to the proof of the asymptotic behaviour, let us recall some useful results

Lemma 5.1. Assume that u0(x) is a sub-solution to (5.1), then the solution u(t, x) is increasing in time.
Conversely, if u0(x) is a super-solution to (5.1) then u(t, x) is decreasing in time.

The proof of this Lemma follows from a straightforward application of the parabolic maximum principle
and is left to reader. Let us now prove the asymptotic behaviour of the solution of (5.1) and finish the
proof of Theorem 1.1.

Proof. Let z(t, x) be the solution of

∂z

∂t
= J ⋆ z − z + f(x, z(t, x)) in R

+ × R
N , (5.3)

z(0, x) = C‖u0‖∞. (5.4)
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Since S(x) ∈ L∞ by choosing C large enough, the constant C‖u0‖∞ is a super-solution of (5.1). Therefore
z(t, x) is a decreasing function and by the parabolic maximum principle u(t, x) ≤ z(t, x) for all (t, x) ∈
[0,+∞)× R

N . Therefore,

lim sup
t→∞

u(t, x) ≤ lim sup
t→∞

z(t, x) for all x ∈ R
N . (5.5)

Let us consider the approximated parabolic problem

∂vR
∂t

(t, x) =

ˆ

BR(0)
J(x− y)vR(t, y) dy − vR(t, x) + f(x, vR(t, x)) in R

+ ×BR(0), (5.6)

vR(0, x) = η
R
u0(x), (5.7)

where η
R
:= η

(

|x|
R

)

with η ∈ C(R+) a smooth cut-off function such that η ≥ 0, η ≡ 1 in [0, 1] and η ≡ 0

in R
+ \ [0, 2]. By Theorem 3.8, for R large enough the solution vR converges to uR as t → ∞, where uR

denotes the unique positive stationary solution of (5.6). By construction, since u(t, x) is a super-solution
of the problem (5.6), by the parabolic comparison principle for R large enough we have vR(t, x) ≤ u(t, x)
for all (t, x) ∈ [0,+∞) ×BR(0). Thus for R large enough, we get

lim inf
t→∞

u(t, x) ≥ uR(x) for all x ∈ BR(0). (5.8)

By taking the limit in the above inequality as R→ ∞, we obtain

lim inf
t→∞

u(t, x) ≥ lim
R→∞

uR(x) = ũ(x) for all x ∈ R
N (5.9)

Note that we can reproduce the above arguments with z(t, x), and thus we also get

vR(t, x) ≤ z(t, x) for all (t, x) ∈ [0,+∞) ×BR(0), (5.10)

lim inf
t→∞

z(t, x) ≥ lim
R→∞

uR(x) = ũ(x) for all x ∈ R
N . (5.11)

By (5.10), z(t, x) is locally uniformly bounded from below and, since z(t, x) is a decreasing function of t,
we get limt→∞ z(t, x) = z̄(x) > 0, for all x ∈ R

N . Moreover z̄ is a bounded stationary solution of (5.1).
By uniqueness of the positive stationary solution, we conclude that z̄ = ũ. It follows that

lim
t→∞

z(t, x) = ũ(x) for all x ∈ R
N (5.12)

By collecting (5.5),(5.9) and (5.12) we get for all x ∈ R
N

ũ(x) ≤ lim inf
t→∞

u(t, x) ≤ lim sup
t→∞

u(t, x) ≤ lim sup
t→∞

z(t, x) = lim
t→∞

z(t, x) = ũ(x).

Now, to complete the proof it remains to show that ‖u− ũ‖∞ → 0 as t→ ∞. To this end, we follow the
argument in [10]. We argue by contradiction and assume that there exists ε > 0 and sequences (tn) ∈ R

+,
(xn) ∈ R

N such that
lim
n→∞

tn = ∞, |u(tn, xn)− ũ(xn)| > ε, ∀n ∈ N. (5.13)
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By (5.12), we already know that u → ũ locally uniformly in R
N , so, without loss of generality, we can

assume that |xn| → ∞. From the construction of ũ, Subsection 4.1, we have lim|x|→∞ ũ(x) = 0. Therefore,
for some R0 > 0, we have ũ(x) ≤ ε

2 for all |x| ≥ R0. This, combined with (5.12) and (5.13) enforces

z(tn, xn)− ũ(xn) ≥ u(tn, xn)− ũ(xn) > ε, ∀n ∈ N. (5.14)

Next we require the following limiting result

Lemma 5.2. For all sequences (tn)n∈N, (xn)n∈N such that limn→∞ tn = limn→∞ |xn| = +∞, we have
z(tn, xn) → 0.

Assume for the moment that the Lemma holds. Then we obtain a straightforward contradiction since :

0 = lim
n→∞

z(tn, xn)− ũ(xn) ≥ lim
n→∞

u(tn, xn)− ũ(xn) > ε.

We now prove the Lemma. Again, we argue by contradiction and assume that there exists ε > 0 and
sequences (tn)n∈N, (xn)n∈N satisfying limn→∞ tn = limn→∞ |xn| = ∞ such that z(tn, xn) > ε for all n ∈ N.
Let us define zn(t, x) := z(t, x+ xn). It satisfies

∂zn
∂t

(t, x) =

ˆ

R

J(x− y)zn(y) dy − zn(t, x) + f(x+ xn, zn(t, x)) in R
+ × R

N ,

zn(0, x) = C‖u0‖∞,

and 0 < zn(t, x) < C‖u0‖∞ for t > 0. Since for all n, zn(0, x) ∈ C∞, by the Cauchy Lipschitz Theorem, we
see that zn ∈ C1(R+, C1(RN )). Thus, there exists C0 > 0 independent of n so that ‖zn‖C1,1(R+,C(RN )) < C0.

From these estimates, the sequence (zn)n∈N is uniformly bounded in C1,1((0, T ), C0,1(RN )) for any T > 0.
By a diagonal extraction, there exists a subsequence of (zn)n∈N that converges locally uniformly to z̃(t, x).

Moreover, thanks to lim|x|→∞
f(x,s)

s < 0, there exists κ > 0 so that z̃(x, t) satisfies

∂z̃

∂t
(t, x) ≤

ˆ

R

J(x− y)z̃(t, y) dy − z̃(t, x)− κz̃(t, x)) in R
+ × R

N , (5.15)

z̃(0, x) = C‖u0‖∞. (5.16)

In addition, for all t > 0, z̃(t, 0) = limn→∞ zn(t, 0) ≥ ε. Since z̃(0, x) is a super-solution of (5.15),
by Lemma 5.1 the function z̃(t, x) is monotone decreasing in time. By sending t → ∞, since z̃ ≥ 0, z̃
converges locally uniformly to a non-negative function z̄ that satisfies

ˆ

R

J(x− y)z̄(y) dy − z̄(x)− κz̄(x)) ≥ 0 in R
N ,

0 ≤ z̄ ≤ C‖u0‖∞,

z̄(0) ≥ ε.

Let us now consider the function w(x) := ε
2e

α|x| − z̄ with α to be chosen. It satisfies

ˆ

R

J(x− y)w(y) dy − w(x)− κw(x) ≤ ρeα|x|
(
ˆ

RN

J(z)eα|z| dy − 1− κ

)

in R
N .
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The left hand side of the inequality is well defined and continuous with respect to α since J is compactly
supported. Since

´

RN J(z)dz = 1, by choosing α small enough we achieve

ˆ

R

J(x− y)w(y) dy − w(x)− κw(x) < 0 in R
N .

By construction, since z̄ is bounded, lim|x|→∞w(x) = +∞ and w achieves a minimum in R
N , say at x0.

Since w(0) = ε
2 − z̄(0) ≤ − ε

2 , we have w(x0) < 0. At this point, we get the following contradiction

0 <

ˆ

R

J(x0 − y)[w(y) − w(x0)] dy − κw(x0) < 0 in R
N .

Finally we establish the long time behaviour of the solution u(t, x) starting from an integrable initial
datum u0,i.e u0 ∈ L1(RN ) ∩ C(RN ). To do so, we consider two auxiliary functions h(t, x) and v(t, x) that
are respectively solutions of

{

∂h
∂t (t, x) = J ⋆ h(t, x) − h(t, x) + f(x, h(t, x)) in R

+ × R
N ,

h(0, x) = sup{ũ(x), u0(x)},
(5.17)

{

∂v
∂t (t, x) = J ⋆ v(t, x)− v(t, x) + f(x, v(t, x)) in R

+ × R
N ,

v(0, x) = inf{ũ(x), u0(x)}.
(5.18)

By construction, from the comparison principle we see that v(t, x) ≤ u(t, x) ≤ h(t, x) for all (t, x) ∈
R
+ × R

N . Therefore
‖u− ũ‖L1(RN ) ≤ sup{‖h − ũ‖L1(RN ), ‖v − ũ‖L1(RN )}.

Thus, to prove that ‖u− ũ‖L1(RN ) → 0 it is enough to show that h and v converge to ũ in L1(RN ).

Let us show that v converges to ũ in L1(RN ). Since ũ(x) is a super solution to (5.18) we deduce
v(t, x) ≤ ũ(x) for all x ∈ R

N . Let ε > 0 be fixed and choose R such that
´

RN\B(0,R) ũ(x) dx ≤ ε
4 . We have

‖ũ− v‖L1(RN ) =

ˆ

RN\BR(0)
(ũ(x)− v(t, x)) dx +

ˆ

BR(0)
(ũ(x)− v(t, x)) dx,

≤ 2

ˆ

RN\BR(0)
ũ(x) dx+

ˆ

BR(0)
(ũ(x)− v(t, x)) dx,

≤
ε

2
+

ˆ

BR(0)
(ũ(x)− v(t, x)) dx.

Recall that v converges pointwise to ũ as t tends to infinity. Therefore, by Lebesgue’s Theorem for some
t(ε) we get for t ≥ t(ε),

´

BR(0)(ũ(x)− v(t, x)) dx ≤ ε
2 which yields

‖ũ− v‖L1(RN ) ≤ ε.

Since ε is arbitrary, we see that limt→∞ ‖ũ− v‖L1(RN ) = 0.
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To obtain that ‖h− ũ‖L1(RN ) → 0 we argue as follows. By construction, ũ is a sub solution to (5.17),

thus, ũ(x) ≤ h(t, x) for (t, x) ∈ R
+ × R

N . Let us denote w(t, x) := h(t, x) − ũ(x). Then w satisfies for
(t, x) ∈ R

+ × R
N :

∂w

∂t
(t, x) = J ⋆ w(t, x) − w(t, x) +

(

f(x, h(t, x))

h(t, x)
−
f(x, ũ(x))

ũ

)

h(t, x) +
f(x, ũ(x))

ũ
w(t, x),

≤ J ⋆ w(t, x) − w(t, x) +
f(x, ũ(x))

ũ
w(t, x).

Now since lim|x|→∞
f(x,s)

s < 0, there exists κ > 0 and R0 so that w satisfies

∂w

∂t
(t, x) ≤ J ⋆ w(t, x)− w(t, x) − κw(t, x) in R

+ × R
N \BR0(0). (5.19)

Fix now ε > 0. Recall that h(t, x) converges pointwise to ũ. By Lebesgue’s Theorem, there exists t0 so
that for t ≥ t0,

ˆ

BR0
(0)
w(t, x) dx ≤ κε.

Now let us estimate
´

RN\BR0
(0) w(x) dx for t ≥ t0. Integrating (5.19) over RN \BR0(0) yields

∂
´

RN\BR0
(0) w(t, x) dx

∂t
≤

ˆ

RN\BR0
(0)
J ⋆ w(t, x) dx −

ˆ

RN\BR0
(0)
w(t, x) dx − κ

ˆ

RN\BR0
(0)
w(t, x) dx.

By Fubini’s Theorem, the uniform estimate on ‖w‖∞ and the unit mass of the kernel, we can check that
for t ≥ t0

ˆ

RN\BR0
(0)
J ⋆ w(t, x) dx ≤

ˆ

RN\BR0
(0)
w(t, y) dy +

ˆ

BR0
(0)
w(t, y) dy,

≤

ˆ

RN\BR0
(0)
w(t, y) dy + κε.

Therefore for t ≥ t0, w satisfies

∂
´

RN\BR0
(0) w(t, x) dx

∂t
≤ κε− κ

ˆ

RN\BR0
(0)
w(t, x) dx.

From this differential inequality, there exists t(ε) ≥ t0 such that for all t ≥ t(ε) we have

ˆ

RN\BR0
(0)
w(t, x) dx ≤ 2ε.

Hence, for t ≥ t(ε) we have

‖w‖L1(RN ) =

ˆ

RN\BR0
(0)
w(t, x) dx +

ˆ

BR0
(0)
w(t, x) dx ≤

(

2 +
κ

|BR0(0)|

)

ε,

As above, ε being arbitrary, we see that limt→∞ ‖w‖L1(RN ) = 0.
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6 Some asymptotics

In this section we analyse the qualitative behaviour of the solution of (1.2) with respect to the size of the
support of J . For convenience we investigate the particular situation

1

εm
(Jε ⋆ u− u) + u(a(x) − u) = 0 in R

N (Pε)

where Jε(z) =
1
εN
J
(

z
ε

)

with supp(J) = B̄(0, 1) and a ∈ C1(RN ) so that a+ 6≡ 0. This last condition on
a(·) is necessary for the existence of a solution. Indeed, if a+ ≡ 0 then for any positive constant c0 we have

M[c0] + a(x)c0 ≤ 0.

Therefore, λp(M[c0] + a(x)c0) ≥ 0 and for all ε there is no solution of (Pε) besides 0.
We analyse the behaviour of uε when ε→ 0 and → +∞ and seek to understand the influence of m on

the resulting limits. Now we start by showing some a priori estimates for the solution uε.

Lemma 6.1. There exists positive constants C1, C2, C3 such that for any positive bounded solution uε of
(Pε) the following estimates hold

(i) ‖uε‖L2(RN ) ≤ C1, ‖uε‖∞ < C3,

(ii)
´

RN

´

RN Jε(x− y)(uε(x)− uε(y))
2 dxdy ≤ C2ε

m

(iii) supsupp(a+) uε ≥ −λp(Mε,m+a(x))
2 .

(iv) uε ≥ (a(x) − 1
εm )+,

Proof. By construction the solution is unique and uε ∈ L1(RN ) ∩ L∞. By (Pε), uε ≤ M = ‖a‖∞. We
derive (i) by integrating (Pε) over R

N . Indeed, we get

ˆ

RN

u2ε(x) dx =

ˆ

RN

a(x)uε(x) dx ≤

ˆ

RN

a+(x)uε(x) dx ≤M

ˆ

RN

a+(x)dx =: C1.

To obtain (ii), let us multiply (Pε) by uε and integrate over RN to get

1

2εm

ˆ

RN

ˆ

RN

J(x− y)(uε(x)− uε(y))
2 dxdy =

ˆ

RN

u2ε(x)(a(x) − uε(x)) dx.

Since uε and a(x) are uniformly bounded independently of ε, (ii) holds with C2 := 4C1M . Observe that
(a(x) − 1

εm )+ is always a sub-solution of (Pε), so by the standard sweeping principle uε ≥ (a(x) − 1
εm )+

and (iv) holds.
Finally let us derive (iii). Since uε is a positive bounded solution of (Pε) by Theorem 1.1 we know that

λp(Mε,m + a) < 0. Consequently, and as J is compactly supported, by regularising a if need be, we can
find ϕε ∈ Cc(R

N ) so that

Mε,m[ϕε](x) + (a(x) +
λp
2
)ϕε(x) ≥ 0 in R

N ,

see the proof of Lemma 3.1 in [3]. Moreover, we can normalised ϕε by imposing ‖ϕε‖∞ = 1. Plugging θϕε

in (Pε), it follows that
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Mε,m[θϕε] + θϕε(a(x) − θϕε) ≥ θϕε

(

−
λp
2

− θϕε

)

.

Therefore, for 0 < θ ≤ −
λp

2 , the function θϕε is a sub-solution to (Pε). By the sweeping argument we have
already mentioned, we get

−
λp
2
ϕε ≤ uε and sup

RN

uε ≥ −
λp
2
.

Since uε ∈ L
1(RN ), uε achieves its maximum at some point, say x0. From (Pε), we infer

0 ≥ Mε,m[uε](x0) = −uε(x0)(a(x0)− uε(x0)).

This implies that x0 ∈ supp(a+) and thus ‖uε‖∞ = supsupp(a+) uε which proves (iii).

Next we derive an upper bound for large ε.

Lemma 6.2. There exists ε0 > 0 such that for all m ≥ 0 and ε ≥ ε0, any positive bounded solution uε of
(Pε) satisfies

uε ≤ a+(x) +
1

ε
N
4

Proof. Let δ ∈ (0, N2 ) and consider the function ζε(x) :=
1

ε
N
2 −δ

+ a+(x). We will show that ζε is a super-

solution to (Pε) when ε is large enough.
Indeed, we have

Mε,m [ζε](x) + ζε(x)(a(x) − ζε(x)) ≤
‖J‖∞
εN+m

ˆ

RN

a+(y) dy +

(

1

ε
N
2
−δ

+ a+(x)

)[

a(x)−
1

ε
N
2
−δ

− a+(x)

]

≤
‖J‖∞
εN+m

ˆ

RN

a+(y) dy −
1

εN−2δ
.

where in the last inequality we use

(

1

ε
N
2
−δ

+ a+(x)

)[

a(x)−
1

ε
N
2
−δ

− a+(x)

]

≤ −
1

εN−2δ
for all x ∈ R

N .

Thus, for ε large enough, we get

M[ζε](x) + ζε(x)(a(x)− ζε(x)) ≤
‖J‖∞
εN+m

ˆ

RN

a+(y) dy −
1

εN−2δ
< 0.

Therefore for ε >> 1, we get uε ≤ ζε. We end the proof by taking δ = N
4 .

Remark 2. When m = 0 and (a(x) − 1)+ 6≡ 0, the above computation holds as well with ζε(x) :=
1

ε
N
2 −δ

+ (a(x)− 1)+. Thus in this case, for large ε, we have

uε(x) ≤
1

ε
N
4

+ (a(x)− 1)+.
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Next, we prove the continuity of λp(LR,ε
+ a(x)) with respect to ε.

Lemma 6.3. Let R, ε be fixed and positive then for all η > 0 there exists δ > 0 so that

|λp(LR
+ aε(x))− λp(LR

+ aε+δ(x))| ≤ η,

where aε(x) := a(εx).

Proof. Let ε > 0 and R > 0 be fixed. We observe that for all |δ| < ε we have for all x ∈ R
N , aε+δ(x) =

aε
(

ε+δ
ε x
)

therefore

‖aε − aε+δ‖∞,R = sup
B(0,R)

∥

∥

∥

∥

aε(x)− aε

(

ε+ δ

ε
x

)
∥

∥

∥

∥

.

Since aε is Lipschitz continuous in R
N , we have

∥

∥

∥

∥

aε(x)− aε

(

ε+ δ

ε
x

)
∥

∥

∥

∥

≤ K(ε)εδ‖x‖,

where K(ε) is the Lipschitz constant of aε. Thus

‖aε − aε+δ‖∞,R ≤ K(ε)Rεδ.

Hence, by Proposition 3.2 (ii) we get

|λp(LR
+ aε(x))− λp(LR

+ aε+δ(x))| ≤ K(ε)Rεδ.

Lastly, we require the following identity.

Proposition 6.4. Let ρ ∈ C∞
c (RN ) be a radial function, then for all u ∈ L2(RN ), ϕ ∈ C∞

c (RN ) we have
¨

RN×RN

ρ(z)[u(x + z)− u(x)]ϕ(x) dzdx =
1

2

¨

RN×RN

ρ(z)u(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)] dzdx.

Proof. Let us denote the left hand side of the equality by I, i.e.

I :=

¨

RN×RN

ρ(z)[u(x + z)− u(x)]ϕ(x) dzdx.

By change of variables and thanks to the spherical symmetry of ρ, we get

I =
1

2

¨

RN×RN

ρ(z)[u(x + z)− u(x)]ϕ(x) +
1

2

¨

RN×RN

ρ(−z)[u(x− z)− u(x)]ϕ(x),

=
1

2

¨

RN×RN

ρ(z)[u(x + z)− u(x)]ϕ(x) +
1

2

¨

RN×RN

ρ(z)[u(x) − u(x+ z)]ϕ(x + z),

= −
1

2

¨

RN×RN

ρ(z)[u(x + z)− u(x)][ϕ(x + z)− ϕ(x)],

= −
1

2

¨

RN×RN

ρ(z)u(x)[ϕ(x) − ϕ(x− z)] +
1

2

¨

RN×RN

ρ(z)u(x)[ϕ(x + z)− ϕ(x)],

=
1

2

¨

RN×RN

ρ(z)u(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)].
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From this Proposition, we get the following identity for all u ∈ L2(RN ), ϕ ∈ C∞
c (RN ) :

ˆ

RN

Mε,m [u](x)ϕ(x) dx =
ε2−mD2(J)

2

¨

RN×RN

ρε(z)

|z|2
uε(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)] dxdz (6.1)

where ρε(z) =
1

εND2(J)
J
(

z
ε

) |z|2

ε2 .

With these various apriori estimates, we can now analyse the asymptotic behaviour of uε.

6.1 The case m = 0

In this situation, from Theorem 3.6 we know that

lim
ε→0

λp(Mε + a(x)) = − sup
RN

a(x) (6.2)

lim
ε→+∞

λp(Mε + a(x)) = 1− sup
RN

a(x) (6.3)

As a consequence, for ε small enough, λp(Mε + a(x)) ≤ −
sup

RN
a(x)

2 < 0 and, by Theorem (1.1), there
exists a positive solution of (Pε). Moreover the following quantity is well defined

ε∗ := sup{ε > 0 | for all ε′ < ε, there exists a positive solution to (Pε′)}.

In view of (6.3) ε∗ ∈ (0,+∞] and ε∗ < +∞ if and only if (a(x)− 1)+ 6≡ 0.

Let us now determine the limit of uε as ε→ 0 and ε→ +∞. We start by proving that

lim
ε→0

uε(x) = v(x) a.e. (6.4)

where v is a non negative bounded solution of

v(x)(a(x) − v(x)) = 0 in R
N . (6.5)

Let wε := a(x)− uε, then from (Pε), wε satisfy

− Jε ⋆ wε + wε + uε(x)wε(x) = a(x)− Jε ⋆ a(x). (6.6)

Multiplying this equation by w+
ε and integrating over RN , it follows that

¨

RN×RN

Jε(x− y)((w+
ε )

2(x)− wε(y)w
+
ε (x)) dxdy +

ˆ

RN

uε(w
+
ε )

2 =

ˆ

RN

w+
ε gε,

with gε(x) := a(x)− Jε ⋆ a(x).
Let us now estimate the above integrals. First, we observe that the double integral is positive. Indeed,

since w(y) = w+(y)− w−(y) we get

¨

RN×RN

Jε(x− y)((w+
ε )

2(x)− wε(y)w
+
ε (x)) dxdy =

¨

RN×RN

Jε(x− y)((w+
ε )

2(x)− w+
ε (y)w

+
ε (x)) dxdy

+

¨

RN×RN

Jε(x− y)w−
ε (y)w

+
ε (x) dxdy.
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Thus,

¨

RN×RN

Jε(x− y)((w+
ε )

2(x)−wε(y)w
+
ε (x)) dxdy =

1

2

¨

RN×RN

Jε(x− y)((w+
ε )(x)− w+

ε (y))
2 dxdy

+

¨

RN×RN

Jε(x− y)w−
ε (y)w

+
ε (x) dxdy.

(6.7)

Let us denote Q := supp(a+). Since uε is positive and uniformly bounded, we have supp(w+) ⊂ Q and

∣

∣

∣

∣

ˆ

RN

w+
ε gε

∣

∣

∣

∣

≤ C

ˆ

Q
|gε|.

Since a is Lipschitz continuous, a Taylor expansion leads to |gε(x)| ≤ εD2(J)‖∇a‖∞. Therefore,

∣

∣

∣

∣

ˆ

RN

w+
ε gε

∣

∣

∣

∣

≤ C|Q|ε. (6.8)

Collecting (6.7) and (6.8), we get

1

2

¨

RN×RN

Jε(x− y)((w+
ε )(x)−w+

ε (y))
2 dxdy+

¨

RN×RN

Jε(x− y)w−
ε (y)w

+
ε (x) dxdy +

ˆ

RN

uε(w
+
ε )

2 ≤ Cε.

Thus,
ˆ

RN

uε(w
+
ε )

2 ≤ Cε

and uεw
+
ε → 0 almost everywhere in Q.

Recalling that
ˆ

RN

uεwε = 0,

from the above estimates we conclude that

ˆ

RN\Q
uε(a(x) − uε) =

ˆ

Q
uε(a(x)− uε) → 0 when ε→ 0.

Since uε(a(x) − uε) ≤ 0 in R
N \ Q, it follows that uε(x)wε → 0 almost everywhere in R

N \ Q. Since
uε > 0 and wε = (a(x) − uε(x)) ≤ 0, it follows that uε → 0 almost everywhere in R

N \ Q. Hence, uε
converges pointwise almost everywhere to a bounded non-neqative solution of (6.5).

Remark 3. Note that the above proof can easily be adapted to Mε,m for m < 2 as soon as the function
a is smooth enough. Indeed, for a ∈ C2(RN ), following the above arguments, we get by using the Taylor
expansion up to order 2 of a

ˆ

RN

uε(w
+
ε )

2(x) dx ≤ Cε2−m,

with a constant C only depending on ‖∇2u‖∞. When a is only Lipschitz, this argument is valid for Mε,m

only when m < 1.
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Finally, to complete our analysis, we need to check that

lim
ε→ε∗

uε = (a(x)− 1)+. (6.9)

We treat separately the following two cases : (i) ε∗ < +∞, (ii) ε∗ = ∞. The latter case arises
when supRN (a(x) − 1) > 0. In this situation, there exists R0 > 0 such that the continuous function
ϕ = (a(x)− 1)+ 6≡ 0 in BR(0) for R ≥ R0 and we can check that ϕ is a sub-solution for the approximated
problem:

ˆ

BR(0)
Jε(x− y)u(y) dy − u(x) + u(x)(a(x)− u) = 0 in BR(0). (6.10)

Since large constants are super-solutions of (6.10) for any ε ≥ 0, R > R0, there exists a unique solution
uε,R with ϕ ≤ uε,R ≤ M . By sending R → ∞ and by the uniqueness of the solution of (Pε) we have
ϕ ≤ uε ≤M in R

N .

Case ε∗ = +∞:

Owing to Lemma 6.1 and by Remark 2, for all x ∈ R
N for large ε we get

(a(x)− 1)+ ≤ uε(x) ≤ (a(x)− 1)+ +
1

ε
N
4

.

Hence, uε converge uniformly to (a(x)− 1)+.

Case ε∗ < +∞:

In this situation, the function (a(x)− 1)+ ≡ 0 in R
N and the problem is reduced to prove that

lim
ε→ε∗

uε(x) = 0 for all x ∈ R
N .

Note that by definition of ε∗ we must have λp(Mε∗ + a(x)) ≥ 0. Indeed, if not, then λp(Mε∗ + a(x)) < 0
and by Lemma 3.4, λp(M+aε∗(x)) < 0. This implies that for some R, λp(LR

+aε∗(x)) < 0. By continuity
of λp(LR

+ aε∗(x)) with respect to ε, (Lemma 6.3) we get for some δ0 > 0, λp(LR
+ aε∗+δ(x)) < 0 for any

δ ≤ δ0. Hence, λp(Mε∗+δ + a(x)) = λp(M+ aε∗+δ(x)) < 0 for any δ ≤ δ0 and by Theorem 1.1 there exists
a positive solution of (Pε) for all ε ≤ ε∗ + δ0 thus contradicting the definition of ε∗.

Note also that since ε∗ < +∞, the construction of the supersolution in Section 4 holds for any ε ∈
[ ε

∗

2 , ε
∗], thus uε is uniformly bounded in L1(RN ).

Let g(x, s) := s(a(x)− 1− s) then for all ε we have

Jε ⋆ uε = −g(x, uε(x)) in R
N .

Since J is C1 and ε∗ > 0, for ε ∈ [12ε
∗, ε∗), we have

|g(x, uε(x))− g(z, uε(z))| =

∣

∣

∣

∣

ˆ

RN

[Jε(x− y)− J(z − y)]uε(y) dy

∣

∣

∣

∣

,

≤ |x− z|

ˆ

RN

|Jε(x− y)− J(z − y)|

|x− z|
uε(y) dy,

≤ C(ε∗)|x− z|.
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This leads to :

C(ε∗)|x− z| ≥ |[1− a(x) + uε(x) + uε(z)][uε(x)− uε(z)] + [a(z) − a(x)]uε(x)|,

≥ |[1− a(x) + uε(x) + uε(z)]||uε(x)− uε(z)| − |x− z|
|a(z) − a(x)|

|x− z|
M.

From the last inequality, it follows that uε is uniformly Lipschitz in Q := {y ∈ R
N | a(y) < 1} uε with

a Lipschitz constant independent of ε. Thus, (uε)ε∈[ 1
2
ε∗,ε∗) is uniformly bounded in C

0, 1
2

loc (Q). If Qc = ∅,

then (uε)ε∈[ 1
2
ε∗,ε∗) is uniformly bounded in C

0, 1
2

loc (R
N ). Otherwise, Qc 6= ∅ and on Qc we have a(x) ≡ 1.

Therefore, on Qc, u2ε(x) = Jε ⋆ uε and the C0, 1
2 (

◦
Qc) norm of uε is bounded independently of ε. Hence,

(uε)ε∈[ 1
2
ε∗,ε∗) is uniformly bounded in C

0, 1
2

loc (Q) ∩ C0, 1
2 (

◦

Qc). (6.11)

In both case, since a(x) < 0 for |x| >> 1, Qc is a compact set and |Q̄ ∩ Qc| = 0. From (6.11), for all
sequence εn → ε∗ by a diagonal extraction procedure there exists a subsequence still denoted (uεn)n∈N
that converges locally uniformly in R

N \ (Q̄∩Qc) to some non-negative function v. By passing to the limit
in (Pε) we can see that v is a bounded non negative solution of

Jε∗ ⋆ v(x)− v(x) + v(x)(a(x) − v(x)) = 0 in R
N \ (Q̄ ∩Qc).

Since Q̄ ∩Qc is of zero measure v is a solution to

L
ε∗,RN \(Q̄∩Qc)

[v] + v(x)(a(x) − v(x)) = 0 in R
N \ (Q̄ ∩Qc).

Since 0 ≤ λp(Mε∗ + a(x)) ≤ λp(L
ε∗,RN \(Q̄∩Qc)

+ a(x)), we deduce that v ≡ 0 which concludes the proof of

the limit.

Remark 4. When a(x) is a radially symmetric non-increasing function we remark that ε∗ is a sharp
threshold. That is for all ε ≥ ε∗ then (Pε) does not have any positive solutions. Indeed in this situation,
the function aε(x) is monotone non increasing with respect to ε. Thus, by (i) of Proposition 3.2, for all
ε ≥ ε∗ we have

0 = λp(M+ aε∗(x)) ≤ λp(M+ aε(x)).

Hence, by Theorem 1.1, 0 is the unique non negative solution to (Pε) for ε ≥ ε∗.

6.2 The case 0 < m < 2

In this situation, from Theorem 3.6 we know that

lim
ε→0

λp(Mε,m + a(x)) = − sup
RN

a(x) (6.12)

lim
ε→+∞

λp(Mε + a(x)) = − sup
RN

a(x) (6.13)

As a consequence, for ε small enough and for large ε we have λp(Mε + a(x)) ≤ −
sup

RN
a(x)

2 < 0.
Therefore, by Theorem (1.1) there exists a solution of (Pε) for both small and large ε.
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The limit of uε when ε→ ∞ is an obvious consequence of (iv) of Lemma 6.1 and Lemma 6.2 since for
ε large enough

(a(x)−
1

εm
)+ ≤ uε ≤ a+(x) +

1

ε
N
4

.

To obtain the limits in L2, we just observe that since by Lemma uε is uniformly bounded in L2 and
converges pointwise to a+, we get uε ⇀ a+ in L2. Moreover by Fatou’s Lemma, we infer that

ˆ

RN

(a+)2(x) dx ≤ lim inf
ε→∞

ˆ

RN

u2ε(x) dx.

On the other hand, by integrating (Pε) over R
N we get for all ε

ˆ

RN

u2ε(x) dx =

ˆ

RN

a(x)uε(x) dx ≤

ˆ

RN

a+(x)uε(x) dx.

By the Cauchy-Schwartz inequality, for all ε

(
ˆ

RN

u2ε(x) dx

)1/2

≤

(
ˆ

RN

(a+)2(x) dx

)1/2

and we get

ˆ

RN

(a+)2(x) dx ≤ lim inf
ε→∞

ˆ

RN

u2ε(x) dx ≤ lim sup
ε→+∞

ˆ

RN

u2ε(x) dx ≤

ˆ

RN

(a+)2(x) dx.

Hence, ‖uε‖2 → ‖a+‖2 and by the parallelogram identity uε → a+ in L2(RN ) since uε converges weakly to
a+ in L2.

As already mentioned in Remark 3, it can be seen that uε has a limit when ε → 0 as soon as a is
smooth enough. Thus,

lim
ε→0

uε = v(x)

where v is a non-negative bounded solution of (6.5).

6.3 The case m = 2

In this situation, from Theorem 3.6 we have

lim
ε→0

λp(Mε,m + a(x)) = λ1

(

D2(J)

2N
∆+ a(x)

)

(6.14)

lim
ε→+∞

λp(Mε + a(x)) = − sup
RN

a(x) (6.15)

As a consequence, for large ε we have λp(Mε + a(x)) ≤ −
sup

RN
a(x)

2 < 0 and by Theorem (1.1) there
exists a solution of (Pε) for large ε. For ε small, the existence of a positive solution is conditioned by the

sign of λ1

(

D2(J)
2N ∆+ a(x)

)

. When λ1

(

D2(J)
2N ∆+ a(x)

)

> 0, for ε small there exists no positive solution

of (Pε). The limit of uε when ε → +∞ is obtained in the same way as in the case 2 > m > 0. Hence, we
only focus here on the limit when ε→ 0.
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Assume for the moment that λ1

(

D2(J)
2N ∆+ a(x)

)

< 0. We now show that uε → v where v is the

positive solution of
D2(J)

2N
∆v + v(a(x) − v) = 0 in R

N .

Let (εn)n∈N be a sequence of positive reals converging to 0. We write un instead of uεn . By Lemma
6.1, ‖un‖2 is bounded uniformly and a simple algebraic computation yields :

¨

RN×RN

ρn(z)
(un(x+ z)− un(x))

2

|z|2
dxdz < C,

with C independent of n. Therefore, for any R > 0, we see that

¨

BR×BR

ρε(z)
(un(x+ z)− un(x))

2

|z|2
dxdz < C.

For R > 0 fixed, since ‖un‖2 is uniformly bounded in L2, there exists a subsequence un ⇀ v in L2(BR)
and from the characterisation of Sobolev Space [58, 57], we have un → v in L2(BR).

By a standard diagonal extraction argument, from the sequence (un)n∈N we can then extract a sub-
sequence still denoted (un)n∈N which converges to some v in L2

loc(R
N ). Moreover, by Lemma 6.1, un is

uniformly bounded and there exists δ(λ1) > 0 independent of ε such that maxsupp(a+)(un) > δ.

Multiplying (Pε) by ϕ ∈ C∞
c (RN ) and integrating yields :

D2(J)

2

¨

RN×RN

ρn(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)] dxdz +

ˆ

RN

ϕ(x)un(x)(a(x) − un(x)) dx = 0,

where we use (6.1) to compute
´

RN Mε,2 [un](x)ϕ(x) dx. This leads us to

D2(J)

2

¨

RN×RN

ρn(z)

|z|2
un(x)

tz∇2ϕ(x)z dxdz +

ˆ

RN

ϕ(x)un(x)(a(x) − un(x)) dx

= −
D2(J)

2

¨

RN×RN

ρn(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)− tz∇2ϕ(x)z] dxdz,

where ∇2ϕ(x) := (∂ijϕ(x))i,j . Since ρn(z) is radially symmetric, we can see that

D2(J)

2

¨

RN×RN

ρn(z)

|z|2
un(x)

tz∇2ϕ(x)z dxdz =
D2(J)K2,N

2

ˆ

RN

un(x)∆ϕ(x) dx

with

K2,N :=

 

SN−1

(σ · e1)
2dσ =

1

N
.

Thus, we get

D2(J)

2N

ˆ

RN

un(x)∆ϕ(x) dx +

ˆ

RN

ϕ(x)un(x)(a(x) − un(x)) dx

= −
D2(J)

2

¨

RN

ρn(z)

|z|2
un(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)− tz∇2ϕ(x)z] dxdz, (6.16)
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Note that since un converges to v in L2
loc(R

N ) we have

ˆ

RN

ϕ(x)un(x)(a(x) − un(x)) dx →

ˆ

RN

ϕ(x)v(x)(a(x) − v(x)) dx (6.17)

Recall that ϕ ∈ C∞
c (RN ), so there exists C(ϕ) and R(ϕ) so that

|ϕ(x+ z)− 2ϕ(x) + ϕ(x− z)− tz∇2ϕ(x)z| < C(ϕ)|z|3χBR(ϕ)
(x).

Because un is bounded uniformly we obtain

D2(J)

2

¨

RN

ρε(z)

|z|2
un(x)[ϕ(x+z)−2ϕ(x)+ϕ(x−z)− t z∇2ϕ(x)z] dxdz ≤ CC(ϕ)

ˆ

RN

ρn(z)|z| → 0. (6.18)

Passing to the limit ε→ 0 in (6.16), using (6.17) and (6.18), we get

D2(J)

2N

ˆ

RN

v(x)∆ϕ(x) dx +

ˆ

RN

ϕ(x)v(x)(a(x) − v(x)) dx = 0. (6.19)

(6.19) being true for any ϕ ∈ C∞
c this implies that v satisfies

D2(J)

2N
∆v + v(a(x)− v) = 0 a.e. in R

N .

Since v is bounded, by elliptic regularity v is smooth. To conclude we need to prove that v is non zero.
To this end, we claim that

Lemma 6.5. There exists R0, τ and ε0 positive constants so that for all ε ≤ ε0 we have uε ≥ τ almost
everywhere in BR0(0).

From the above claim, we deduce that v ≥ τ > 0 a.e. and therefore v ≡ u, the unique smooth non-trivial
solution of

D2(J)

2N
∆u+ u(a(x)− u) = 0 in R

N .

The sequence (εn)n being arbitrary, it follows that uε → u in L2
loc(R

N ).

Similarly, if we assume now that λ1(
D2(J)
2N ∆+ a(x)) = 0 and there exists a sequence (εn)n∈N, εn → 0 of

non trivial solution of (Pε). The above argument is valid and we get un → v in L2
loc(R

N ) with v a smooth
solution to

D2(J)

2N
∆v + v(a(x) − v) = 0 in R

N .

Since λ1(
D2(J)
2N ∆+ a(x)) = 0, v ≡ 0 is the only solution and we get un → 0 in L2

loc(R
N ).

Let us complete our proof and establish the Lemma.

Proof. Let us denote, L the operator

L[ϕ] :=
1

ε2

[

ˆ

BR(0)
Jε(x− y)ϕ(y) dy − ϕ(x)

]

.

Since supRN a(x) is achieved on R
N we regularise a by aσ independently of ε, so that for all ε and R ≥ R1

the principal eigenvalue λp(L+aσ(x)) is associated with a continuous principal eigenfunction ϕp,ε and

|λp(LR,ε,2
+ aσ(x))− λp(LR,ε,2

+ a(x))| ≤ ‖aσ(x)− a(x)‖∞ ≤ κσ,
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where κ is the Lipschitz constant of a.

By the Lipschitz continuity of λ1

(

D2(J)
2N ∆+ a(x)

)

with respect to a, we can choose σ small enough so

that

λ1

(

D2(J)

2N
∆+ aσ(x)

)

≤
1

2
λ1

(

D2(J)

2N
∆+ a(x)

)

< 0.

Recall that

lim
R→∞

λ1

(

D2(J)

2N
∆+ aσ(x), BR

)

= λ1

(

D2(J)

2N
∆+ aσ(x)

)

,

So we can choose R0 large so that

λ1

(

D2(J)

2N
∆+ aσ(x), BR0

)

≤
1

4
λ1

(

D2(J)

2N
∆+ a(x)

)

.

Thanks to Theorem 3.7, we have limε→0 λp(LR,ε,2
+aσ(x)) = λ1

(

D2(J)
2N ∆+ aσ(x), BR

)

so for ε small,say

ε ≤ ε0 by choosing σ smaller if necessary, we achieve

λp(LR,ε,2 + aσ(x)) ≤
1

8
λ1

(

D2(J)

2N
∆+ a(x)

)

for all ε ≤ ε0.

Let ϕp,ε be the principal eigenfunction associated with L
R0,ε,2

+ aσ(x), then we have

L
R0,ε,2

[ϕp,ε](x) + a(x)ϕp,ε(x) ≥

[

−
1

8
λ1

(

D2(J)

2N
∆+ a(x)

)

− κσ

]

ϕp,ε(x) for all ε ≤ ε0.

By choosing σ smaller if necessary,

[

−
1

8
λ1

(

D2(J)

2N
∆+ a(x)

)

− κσ

]

≥ −
1

16
λ1

(

D2(J)

2N
∆+ a(x)

)

and we achieve

L
R0,ε,2

[ϕp,ε](x) + a(x)ϕp,ε(x) ≥ −
1

16
λ1

(

D2(J)

2N
∆+ a(x)

)

ϕp,ε(x) for all ε ≤ ε0. (6.20)

To conclude our proof, it is then enough to show that for some well chosen normalisation of ϕp,ε we
have

ϕp,ε(x) → ϕ1(x), a.e. in BR0 (6.21)

ϕ1 is a positive principal eigenfunction associated with λ1

(

D2(J)
2N ∆+ aσ(x), BR0

)

. Indeed, assume for the

moment that (6.21) holds true. Then there exists α > 0 so that

αϕp,ε(x) → αϕ1(x) <
1

2
a.e. in BR0 .

Now thanks to (6.20), we can now adapt the proof the proof of (iii) of Lemma 6.1 to get for ε small,
says ε ≤ ε1,
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uε(x) ≥ −
α

32
λ1

(

D2(J)

2N
∆+ a(x)

)

ϕp,ε(x) a.e. in BR0 , (6.22)

which combined with (6.21) enforces

uε(x) ≥ γϕ1(x) a.e. in BR0 , for all ε ≤ ε2,

for some γ, ε2 > 0. Since ϕ1 > 0 in BR0 , the claim holds true in any smaller ball BR.
To prove (6.21), let us normalise ϕp,ε by ‖ϕp,ε‖L2(BR0

) = 1. Let kε be the function defined by

kε(x) :=
1

ε2

ˆ

RN\BR0

Jε(x− y) dy.

Multiplying by ϕp,ε the equation satisfied by ϕp,ε and integrating over BR0 yields

D2(J)

2

¨

BR0
×BR0

ρε(x− y)
|ϕp,ε(y)− ϕp,ε(x)|

2

|x− y|2
dxdy =

ˆ

BR0

(aσ(x) + λp,ε)ϕ
2
p,ε(x) dx−

ˆ

BR0

kε(x)ϕ
2
p,ε(x) dx

≤ C.

Therefore by the characterisation of Sobolev space [58, 57], along a sequence we have ϕp,ε → ψ in L2(BR0)
with ‖ψ‖L2(BR0

) = 1. Moreover by extending ϕp,ε and ϕ by 0 outside BR0 and by arguing as above for any

ϕ ∈ C2
c (BR0) we have

D2(J)

2

¨

BR0
×RN

ρε(z)

|z|2
ϕp,ε(x)[ϕ(x + z)− 2ϕ(x) + ϕ(x− z)] dxdz = −

ˆ

BR0

ϕ(x)ϕp,ε(a(x) + λp,ε) dx

+

ˆ

BR0

kε(x)ϕp,ε(x)ϕ(x) dx.

Since ϕ ∈ C2
c (BR0) we get for ε small enough supp(kε) ∩ supp(ϕ) = ∅. Thus passing to the limit along

a sequence in the above equation yields

D2(J)K2,N

2

ˆ

BR0

ψ(x)∆ϕ(x) dx +

ˆ

BR0

ϕ(x)ψ(x)(a(x) + λ1) dx = 0. (6.23)

The relation (6.23) being true for any ϕ, it follows that ψ is the smooth positive eigenfunction associated
to λ1 normalised by ‖ψ‖L2(BR0

) = 1. ψ being uniquely defined, we get ϕp,ε → ψ in L2(BR0) when ε → 0.

Thus along any sequence ϕp,ε(x) → ϕ1(x) almost everywhere in BR0 .

7 Extension to non-compactly supported kernels

In this section, we discuss the extension of our persistence criteria to more general dispersal kernel J and
prove Theorem 1.5. Observe that the construction of positive solution only required that λp(LR

+β(x)) < 0
for some R, regardless of what the dispersal kernel J is. Therefore as soon as limR→∞ λp(LR

+ β(x)) < 0
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there exists a positive solution to (1.2) with no restriction on the decay of the kernel. Similarly, when
λp(M + β(x)) > 0 the proof of the non-existence of positive bounded solution essentially relies on the
inequality between λp(M+ β(x)) and λ′p(M+ β(x)) which holds for quite general kernels including those
satisfying the assumption H5 as proved in [3].Concerning the proof of the uniqueness of the positive
solution, it relies on the construction of an integrable uniform super-solution of (1.2) which guarantes the
existence of a positive L1 solution to (1.2). Such super-solution still exists for kernels J that satisfies the
decay assumption H5. Indeed, we can show

Lemma 7.1. Assume that J satisfies H5 and there exists a periodic function µ(x) : RN → R such that

lim sup
|x|→∞

(β(x) − µ(x)) ≤ 0 and λp(M+ µ(x)) > 0.

Then there exists ū ∈ C0(R
N ) ∩ L1(RN ), ū > 0 so that ū is a super-solution to (1.2).

Observe that the construction of the super-solution thus covers a class of nonlinearities f(x, u) larger
than those that satisfy H4. As an immediate consequence, the persistence criteria obtained in Theorem
1.1 still holds for any nonlinearity that satisfies:

(H7) There exists µ(x) ∈ Cp(R
N ) such that :

{

λp(M+ µ(x)) > 0,

lim sup|x|→∞

(

f(x,s)
s − µ(x)

)

≤ 0 uniformly in s.

From an ecological point of view, such a nonlinearity allows one to consider a more complex niche
structure for the species. Thus, we can consider ecological niches that are the superposition of a compact
niche structure with a periodic structure. Assume that in the (unbounded) periodic structure, there
is extinction. Then, this framework allows us to discuss perturbation with compact support from the
periodic structure and derive conditions for persistence. The perspective offered by this approach are quite
promising and we believe that it may also be applied to investigate a climate change version of (1.2).

Proof. The construction of the super-solution in this situation follows the same general scheme as for a
compactly supported kernel. By assumption since lim sup|x|→∞(β(x) − µ(x)) ≤ 0, for any δ > 0 there
exists Rδ > 1 such that

β(x) ≤ µ(x) + δ for all x, |x| ≥ Rδ.

Fix δ < λp(M + µ(x)) and observe that by the definition of λp(M + µ(x)) there exists a constant
δ < λ < λp(M+ µ(x)) and a positive periodic function ϕ such that

M[ϕ](x) + (µ(x) + λ)ϕ(x) ≤ 0 for all x ∈ R
N . (7.1)

Let w = C ϕ(x)
1+τ |x|N+1 with C, τ to be chosen.

M[w] + (µ(x) + δ)w(x) = C(1 + τ |x|N+1)−1

(
ˆ

RN

J(x− y)
(1 + τ |x|N+1)

(1 + τ |y|N+1)
ϕ(y) dy − ϕ(x) + (µ(x) + δ)ϕ(x)

)

,

≤ C(1 + τ |x|N+1)−1

(
ˆ

RN

J(z)

[

(1 + τ |x|N+1)

(1 + τ |x+ z|N+1)
− 1

]

ϕ(x+ z) dz + (δ − λ)ϕ(x)

)

,

≤ C(1 + τ |x|N+1)−1

(

τ

ˆ

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

ϕ(x+ z) dz + (δ − λ)ϕ(x)

)

,

≤ w(x)

(

τ

ˆ

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

ϕ(x+ z)

ϕ(x)
dz + δ − λ

)

,
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where we use (7.1) and infRN ϕ > 0.
Set

h(τ, x) := τ

ˆ

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

ϕ(x+ z)

ϕ(x)
dz + δ − λ.

Since ϕ ∈ L∞(RN ) and infRN ϕ > 0, there exists a positive constant C0 such that

ϕ(x+ z)

ϕ(x)
≤ C0 for all x, z ∈ R

N .

For all x ∈ R
N , we have

h(τ, x) ≤ C0τ

ˆ

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz + δ − λ. (7.2)

Let

I := C0τ

ˆ

RN

J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz,

then we have

I = C0τ

ˆ

{|x|≤2|z|}
J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz + C0τ

ˆ

{|x|>2|z|}
J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz.

Let us estimate the first integral. Since |x| ≤ 2|z| we have

C0τ

ˆ

{|x|≤2|z|}
J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz ≤ C0τ2
N+1

ˆ

RN

J(z)|z|N+1 dz. (7.3)

Let us now estimate the second term. Since |x+ z|N+1 ≥ (|x| − |z|)N+1, we have

C0τ

ˆ

{|x|>2|z|}
J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz ≤ C0

N+1
∑

i=1

(

N + 1

i

)
ˆ

{|x|>2|z|}
J(z)(−1)i+1|z|i

[

τ |x|N+1−i

(1 + τ |x+ z|N+1)

]

dz,

≤ C0

N+1
∑

i=1

(

N + 1

i

)
ˆ

{|x|>2|z|}
J(z)|z|i

[

τ |x|N+1−i

(1 + τ |x+ z|N+1)

]

dz.

Since |x| > 2|z|, we have
1

1 + τ |x+ z|N+1
≤

2N+1

2N+1 + τ |x|N+1

and for |x| ≥ R0 > 1

C0τ

ˆ

{|x|>2|z|}
J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz ≤ C02
N+1

N+1
∑

i=1

(

N + 1

i

)
ˆ

{|x|>2|z|}
J(z)

|z|i

|x|i

[

τ |x|N+1

(2N+1 + τ |x|N+1)

]

dz

≤
C02

N+1

R0

N+1
∑

i=1

(

N + 1

i

)
ˆ

RN

J(z)|z|i
[

τ |x|N+1

2N+1 + τ |x|N+1

]

dz.
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Since for all |x|,
[

τ |x|N+1

2N+1 + τ |x|N+1

]

< 1,

we get for |x| ≥ R0

C0τ

ˆ

{|x|>2|z|}
J(z)

[

|x|N+1 − |x+ z|N+1

(1 + τ |x+ z|N+1)

]

dz ≤
C02

N+1

R0

N+1
∑

i=1

(

N + 1

i

)
ˆ

RN

J(z)|z|i dz. (7.4)

Combining (7.3), (7.4) and (7.2), we get for |x| > R0

h(x, τ) ≤
C02

N+1

R0

N+1
∑

i=1

(

N + 1

i

)
ˆ

RN

J(z)|z|i dz + C0τ2
N+1

ˆ

RN

J(z)|z|N+1 dz + δ − λ.

Thanks to (H5), for τ small enough, says τ ≤ τ1 and R0 large enough we derive h(x, τ) ≤ δ−λ
2 < 0,

Hence, for all τ ≤ τ1, we have

M[w] + (µ(x) + δ)w(x) ≤ w(x)h(x, τ) ≤ w(x)
δ − λ

2
< 0 for all x ∈ R

N \BR0 . (7.5)

Fix now τ ≤ τ1 and fix R0 > Rδ so that h(x, τ) < 0 in R
N \BR0(0). Let κ0 := supRN\BR0

(0)
ϕ(x)

1+τ |x|N+α Let

0 < κ < κ0 and consider the set

Ωκ :=

{

x ∈ R
N |

ϕ(x)

1 + τ |x|N+α
≤ κ

}

.

By construction, since ϕ > 0 in R
N , we can choose κ small so that

Ωκ ⊂ R
N \BR0(0).

Moreover, RN \Ωκ is a bounded domain andM := supRN\Ωκ
S(x) is well defined. Choose now C such that

C = 2M
κ and consider the continuous function

ū(x) :=

{

C ϕ(x)
1+τ |x|N+α in Ωκ,

Cκ in R
N \ Ωκ.

We can check that ū is a super-solution to (1.2). Indeed, for any x ∈ R
N \ Ωκ, we have ū = Cκ =

2M > supRN\Ωκ
S(x) which implies that f(x,Cκ) ≤ 0 and

M[ū](x) + f(x, ū(x)) ≤

ˆ

RN

J(x− y)ū(y) dy − Cκ+ f(x,Cκ) ≤ f(x,Cκ) ≤ 0.

On the other hand, for x ∈ Ωκ we directly have

M[ū](x) + f(x, ū(x)) ≤ M[ū](x) + β(x)w(x) ≤ M[w] + (µ(x) + δ)w(x),

≤ h(x, τ)w(x) ≤ 0.

This completes the proof.
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8 Conclusion

In this paper, we obtain an optimal persistence criteria for a population that has a long range dispersal. The
dynamics of the population is described by a reaction dispersion equation with a convolution for dispersal
and a Fisher-KPP type nonlinearity that describes the reproduction and mortality of the population. The
model reads :

∂u

∂t
(t, x) = M[u] + f(x, u(t, x)),

with M[u] = J ⋆ u− u.
We consider here the case of a bounded ecological niche, that is when the environment is lethal to the

population outside a bounded region. In our model, this fact is translated by an assumption on the Fisher-
KPP nonlinearity, th This fact is translated in our model by assuming that the Fisher -KPP nonlinearity
f satisfies:

lim sup
|x|→∞

f(x, s)

s
< 0, uniformly in s ≥ 0.

When the dispersal kernel is compactly supported, we prove that the existence of a positive solution of
the above equation is characterised by the sign of the generalised principal eigenvalue λp(M + ∂sf(x, 0))
defined by

λp(M+ ∂sf(x, 0)) := sup{λ ∈ R |∃ϕ ∈ C(RN ), ϕ > 0, such that M[ϕ] + ∂sf(x, 0)ϕ + λϕ ≤ 0}.

Moreover, when such a positive stationary solution exists, it is unique. In addition, we describe com-
pletely the long time behaviour of positive solution of the above nonlocal Fisher-KPP equation. We also
obtain persistence criteria for fat-tailed kernel, in terms of the sign of limR→∞ λp(LR

+∂sf(x, 0)). However,
due to the lack of Harnack type a priori estimate, the optimality of this criteria is still an open problem.
A better understanding of the properties of the generalised principal eigenvalue λp in such context would
allow one to resolve this issue. In particular, the optimality of this criteria would follow from proving that

lim
R→∞

λp(LR
+ ∂sf(x, 0)) = λp(M+ ∂sf(x, 0)).

In the context of compactly supported kernel, we also analyse the effect of the range of dispersal on
the persistence of a species for some rescaled dispersal kernels e. g. 1

εmJε(z). These rescaled kernels
arise, when the dispersal is conditioned by a dispersal budget in which the cost functions are of the
form |z|m. For 0 ≤ m < 2, we prove that small spreaders, i.e. ε small, always survive. This is not
necessarily true when m = 2. In that case, it may happen that having a small dispersal leads to extinction.
Conversely, when m > 0, we prove that large spreaders, i.e ε large, always survive. We also provide the
asymptotics of the solution of the associated nonlocal Fisher-KPP equation. These asymptotics provide
valuable informations, when we try to compare the different dispersal strategies and for the search of a
Evolutionary Stable Strategy.

Many new open problems and new directions come up naturally as the continuation of the present
study. For instance, to clarify the effect of the dispersal budget on the dispersal strategies, we would
need a deeper understanding of the generalised principal eigenvalue. We suspect that for a quadratic cost
function, at least in some situation, the effect of the dispersal budget should be the opposite of the one
usually observed for unconditional dispersal strategies. That is, the larger spreader should be always
favoured.
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