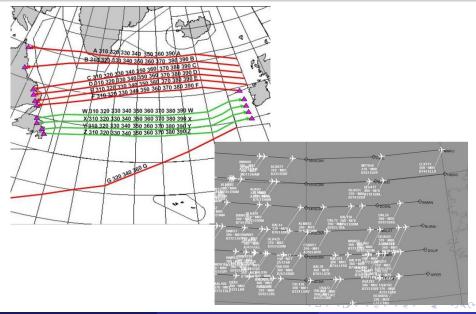
Wind Networking in North Atlantic Oceanic Airspace

O. Rodionova

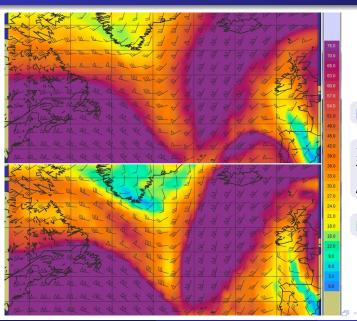

Laboratoire de Mathématiques Appliquées Informatique Automatique pour l'Aérien École Nationale de l'Aviation Civile Advisors: Daniel Delahaye, Marcel Mongeau, Mohamed Sbihi

20 February 2013

- Context and objectives
- Wind networking concept
- Simulation results

- Context and objectives
- Wind networking concept
- Simulation results

Organized Track System (OTS) in North Atlantic (NAT)

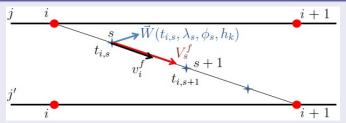


Objectives

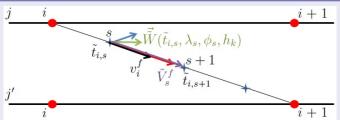
- Ameliorate cruising time prediction
- Ameliorate conflict prediction

- Context and objectives
- Wind networking concept
- Simulation results

Real and estimated wind simulation

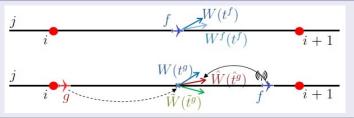

Real wind

10 December 2013 Time 0000UTC Altitude 200hPa


Estimated wind

Flight simulation

Flight simulation with real winds



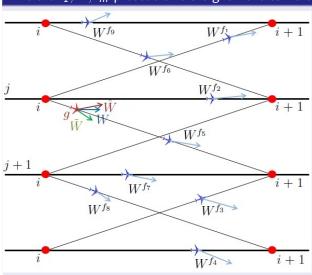
Flight prediction with estimated winds

Wind networking concept

Aircraft f precedes aircraft g on the same track

Wind adjusting by networking

Real wind $W(t_g, \lambda, \phi, h)$


Estimated wind $\tilde{W}(\tilde{t}_g, \lambda, \phi, h)$

Adjusted wind: $\hat{W}(\hat{t}_g, \lambda, \phi, h) \approx W^f(t_f, \lambda, \phi, h)$

- \Leftrightarrow Real time t_g
- \Leftrightarrow Estimated time $ilde{t}_g$
- \Leftrightarrow Adjusted time \hat{t}_g

Wind networking with interpolation

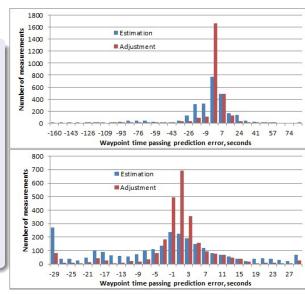
Aircraft $f_1, ..., f_m$ precede aircraft g on the same or close tracks

Adjusted wind:

 $\hat{W}(\hat{t}^g, \lambda, \phi, h) = F[W^{f_n}], n = 1, ..., m$

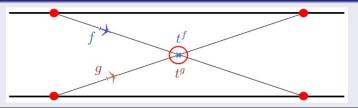
- Context and objectives
- Wind networking concept
- Simulation results

Time prediction comparison


Purpose:

To compare the error of prediction of the time of passing the aircraft route points when using estimated winds \tilde{W} and adjusted winds \hat{W} :

- t real time of passing the waypoint
- ullet $ilde{t}$ estimated time of passing the same waypoint
- $f \hat{t}$ adjusted time of passing the same waypoint
- $oldsymbol{ ilde{e}} \ ilde{e} = ilde{t} t$ prediction error with estimations
- $\hat{e} = \hat{t} t$ prediction error with adjustements

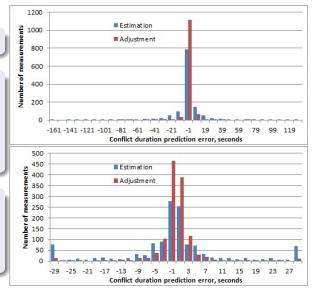

Time prediction comparison. Test for 378 flights

- 10 Decembre 2013
- 378 aircraft (real flight plans)
- from 0000UTC to 0900UTC
- 5 tracks
- 8 waypoints
- from FL320 to FL400
- 2646 measurements of waypoint time passing

Conflict prediction comparison

Conflicts in North Atlantic

Purpose: evaluate the difference between


- the number of real and predicted conflicts:
 - ullet Conflicts that are predicted and would happen in the reality (C_t)
 - Conflicts that are predicted but would not happen in the reality (false alarm) (C_p)
 - Conflicts that are not predicted but would happen in the reality (urgency) (C_r)
- real and predicted conflict duration times.

Conflict prediction comparison. Test for 1000 flights

1000 aircraft (random)

Number of conflicts: Adjust Estim C_t 1175 1229 48 13 70 16

Total conflict duration prediction error (min) Estim Adjust 242.7 63.4

Conclusion

- Implementing new technologies enables aicraft to exchange the measured meteorological data with each other directly
- The data obtained with wind networking is much more accurate than the initial estimations
- Adjusted predictions of cruising time and conflicts are much closer to the reality
- Wind networking evolves great amelioration of flight prediction
- Wind networking is especially efficient in dense traffic conditions

Thank you for your attention!