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In this paper, we present a surprising two-dimensional contraction family for porous medium and fast diffusion equations. This approach provides new a priori estimates on the solutions, even for the standard heat equation.

Introduction

In this paper, we answer a long standing open question about the existence of new contractions for porous medium type equations. For m > 0 and d ≥ 1, we consider nonnegative solutions U (t, x) of the following normalized equation (1.1) mU t = ∆U m on (0, +∞) × Ω = Q with Ω = R d .

For m > 1, this equation is called the porous medium equation (PME), while for m < 1, it is called the fast diffusion equation (FDE). We choose the following standard definition of solution:

Definition 1.1 (Notion of solution) Let m > 0. We say that U ≥ 0 is a solution of (1.1) with intial data 0 ≤ U 0 ∈ L 1 (Ω), if U, U m ∈ L 1 loc (Q) and for every function η ∈ C ∞ c (Q) with compact support, we have

Q U m m ∆η + U η t dxdt + Ω U 0 (x)η(0, x) dx = 0.
We recall that for m > 0 and any initial data satisfying

(1.2) U 0 ∈ L 1 (Ω) ∩ L ∞ (Ω) with U 0 ≥ 0,
there is exactly one solution U ∈ C([0, +∞); L 1 (Ω)) ∩ L ∞ (Q) in the sense of Definition 1.1 (see [START_REF] Vázquez | Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type[END_REF][START_REF] Vázquez | The Porous Medium Equation. Mathematical Theory, Oxford mathematical monographs[END_REF]). In the special case where m > m c (d) := max 0, d-2 d , it is well known that it is possible to remove the condition U 0 ∈ L ∞ (Ω) to get existence and uniqueness in some weaker space. To present our results in a concise and unified way for m > 0, we will stick under assumptions (1.2).

In any dimensions, it is known (see [START_REF] Vázquez | The Porous Medium Equation. New contractivity results[END_REF] and the references therein), that this equation has at least three types of contractions: in L 1 , in H -1 and finally for the 2-Wasserstein distance if m > m c (d). This last contraction property has been discovered by Otto in [START_REF] Otto | Double degenerate diffusion equations as steepest descent[END_REF] and published in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF] (see also later [START_REF] Carrillo | Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media[END_REF]). It is also known for the PME, that for the p-Wasserstein distance, there is no contraction for d ≥ 2 and p > p 1 (m, d), while there is contraction for any p ∈ [1, +∞] in dimension d = 1 (see [START_REF] Vázquez | The Porous Medium Equation. New contractivity results[END_REF]). Note also that in [START_REF] Vázquez | The Porous Medium Equation. Mathematical Theory, Oxford mathematical monographs[END_REF] (Theorem A.5 p. 583), the author proves that the PME is not contractive with respect to L p norm for m ≥ 2 if p > p 2 (m, d).

In this paper, for 0 < m < 2, we present a new family of contractions for this equation in any dimensions, which extends the L 1 contraction properties. Our contraction can be seen as the fourth known contraction for this equation. Even for the case m = 1, our approach leads to new results for the standard heat equation. More precisely, for U and V two nonnegative solutions of (1.1), we show that the following quantity

(1.3) Ω |U α -V α | p
is a Lyapunov functional which is nonincreasing in time for all (α, p) in some admissible set. For convenience, we will work in the whole paper with

n = m -1.
For 0 < |n| < 1, we define the admissible (convex) set (which is skeched on Figure 1)

(1.4) K |n| = (α, p) ∈ [|n|, 1] × R; P -(α) ≤ p ≤ P + (α), with P ± (α) = 1 + 2 n 2 (1 -α)(α ± √ α 2 -n 2 ) .
For n = 0, we also set K 0 = {(α, p) ∈ (0, 1] × R; αp ≥ 1}. One may wonder if contraction (1.3) is related or not to some gradient flow structure of the equation. Indeed, for a given positive solution U of (1.1), we can set u = U α which solves (1.5)

u t = u γ-1 u∆u + γ|∇u| 2 with γ = n α
and γ = γ -1 + α -1 . In the special case where γ = γ/2, it can be seen that equation (1.5) is the negative L 2 -gradient flow of some energy, i.e. it solves

u t = -∇ L 2 E(u) with E(u) = Ω u γ |∇u| 2 2 .
Moreover, it is easy to check (computing the hessian of E) that E is convex if γ ∈ [-1, 0]. This corresponds exactly to the points (α, p) = (1 + n 2 , 2) ∈ K |n| that we capture for n ∈ [- 2 3 , 0]. This interpretation is similar to the derivation of Yamabe flow (see for instance [START_REF] Ye | Global existence and convergence of Yamabe flow[END_REF]) with the difference here that the exponent of the fast diffusion is not directly related to the space dimension. Nevertheless, except this very exceptional case, contraction (1.3) does not seem to be related to any gradient flow structure. The paper is organized as follows. In Section 2, we present our main results. In Section 3, we prove the new contraction property. Finally in Section 4, we prove several gradient decay estimates.

Main results

We state precisely our main results. With the previous notation, and for u, v > 0, we define the symmetric matrix for p > 1 and α ∈ (0, 1]: (2.6)

Q α,p (v, u) = (p -1)    v γ 1 + Γ u v -1 - 1 2 (v γ + u γ ) - 1 2 (v γ + u γ ) u γ 1 + Γ v u -1    with Γ = 1 -α α(p -1)
.

and set Q 1,1 (v, u) = 0.
We can check that this matrix is nonnegative for all u, v > 0 if and only if (α, p) ∈ K |n| (see Lemma 3.1). For y ∈ R, we set y + = max(0, y). Then our main result is the following 

≤ U 0 ∈ L 1 (Ω) ∩ L ∞ (Ω) (resp. 0 ≤ V 0 ∈ L 1 (Ω) ∩ L ∞ (Ω)). Let (α, p) ∈ K |n| where K |n| is defined in (1.4). We set u = U α and v = V α .
Then for w = u and v, we have

w ∈ C(Q) ∩ L ∞ (Q) ∩ C([0, +∞); L p (Ω)) and w ∈ C ∞ (Q ∩ {w > 0}). Moreover, with the notation v(τ ) = v(τ, •), u(τ ) = u(τ, •), we have for all t ≥ 0 (2.7) Ω (v(t) -u(t)) p + dx + p t 0 dτ {v-u>0}∩{u>0} e[v, u] dx ≤ Ω (v(0) -u(0)) p + dx with (2.8) e[v, u] = |v -u| p-2 ∇v ∇u T Q α,p (v, u) ∇v ∇u ≥ 0, for v > u > 0.
Note that it is possible to see that there is equality in (2.7), for instance if u and v are smooth and positive on the torus T d instead of the whole space. We now define a second symmetric matrix M 1,1 = 0 and for (α, p)

∈ K |n| \ {(1, 1)} (2.9) M α,p = (p -1)     1 -Γ + γ 2 -Γ + γ 2 Γ(1 -γ)     ,
which turns out to be also nonnegative (see Lemma 4.1).

Then, we have also the following result Theorem 2.2 (Decay of the gradient) Let U be the solution of equation (1.1) with initial data U 0 , under the assumptions of Theorem 2.1. Assume that ∇U α 0 ∈ L p (Ω). Setting u = U α , we have ∇u ∈ L ∞ ([0, +∞); L p (Ω)). Moreover, with the notation u(τ ) = u(τ, •), we have for almost every t ≥ 0:

(2.10)

Ω |∇u(t)| p dx + p t 0 dτ {∇u =0}∩{u>0} ē[u, ∇u, D 2 u]dx ≤ Ω |∇u(0)| p dx. with (2.11) ē[u, w, A] = |w| p-2 u γ-2 uA 0 w 2 T M α,p uA 0 w 2 + |w| p-2 u γ |A 2 | 2 + p|A 1 | 2 ≥ 0,
where we write a general symmetric matrix A as

A = A 0 A 1 A T 1 A 2 by blocks in the vector space Rb ⊕ b ⊥ with b = w |w| .
Again, note that it is possible to see that there is equality in (2.10), if U 0 is smooth and positive with Ω = T d .

Let us mention that our results will be used in a future work to get information on the anomalous exponents associated to self-similar solutions like the one of Aronson-Graveleau (see [START_REF] Aronson | A Self-similar solution to the focusing problem for the porous medium equation[END_REF]), and also the one of King-Peletier-Zhang (see [START_REF] King | Self-similar behaviour for the equation of fast nonlinear diffusion[END_REF][START_REF] Peletier | Self-similar solutions of a fast diffusion equation that do not conserve mass[END_REF]).

The new contraction property

This section is devoted to the proof of Theorem 2.1. To this end, we first need the following result whose proof is elementary.

Lemma 3.1 (Properties of the matrix Q α,p ) For |n| < 1, let (α, p) ∈ Int K |n| where K |n| is defined in (1.4). i) Positive definite matrix Let η > 0. Then for v > u > 0 with 1 + η -1 > v/u ≥ 1 + η, we have (3.12) Q α,p (v, u) ≥ v γ νI 2 ,
where I 2 is the 2 × 2 identity matrix, Q α,p is defined in (2.6), and ν = ν(n, α, p, η) > 0.

ii) Bound from below for the top diagonal term Let v ≥ u > 0, then the top diagonal term of the matrix satisfies

(3.13) (Q α,p (v, u)) 11 ≥ v γ ν 0 ,
for some ν 0 = ν 0 (n, α, p) > 0.

Proof of Lemma 3.1

We set w = u/v ∈ (0, 1] and start with α ∈ (0, 1) and p > 1.

Step 1: on the determinant A direct computation shows that det Q α,p (v, u) > 0 if and only if

(3.14) G γ (w) := Γ (1 -Γ) f 1 (w) - 1 4 f γ (w) > 0 with f γ (w) := w γ -2 + 1 w γ .
Note that G γ (1) = G γ (1) = 0. We now show that G γ is strictly convex for w ≤ 1, which will imply (3.14) for w = 1. Indeed, we have

G γ (w) = -w -3 F γ (w) with F γ (w) := 1 4 γ (γ -1)w γ+1 + (γ + 1)w 1-γ -2Γ (1 -Γ) ≤ F γ (1),
where we have used |γ| < 1 and w ≤ 1 to get the inequality. We see that F γ (1) < 0 if and only if Γ is in between the two distinct roots Γ

± := 1 ± 1 -γ 2 2
, which is equivalent to (α, p) ∈ Int K |n| . This implies the strict convexity of G γ .

Step 2: conclusion

Recall that for (α, p) ∈ Int K |n| , we have p > P -(α) ≥ 1 α . We deduce that each diagonal term of Q α,p is positive (which shows ii)) and then tr Q α,p (v, u) > 0. With Step 1, this implies the result i).

Proof of Theorem 2.1

We only deal with the case (α, p) ∈ Int K |n| . Note that the border case can easily be recovered, by a passage to the limit. The proof is divided into several steps.

Step 1: Estimate for smooth positive solutions Given two nonnegative and smooth initial data U 0 , V 0 with compact support, we consider modified initial data for ε ∈ (0, 1)

U 0ε = U 0 + ε and V 0ε = V 0 + ε.
According to the standard parabolic theory (see [START_REF] Ladyženskya | Linear and Quasilinear Equations of Parabolic Type[END_REF]), we can consider the smooth positive functions U ε , V ε , which are the classical solutions of (1.1) respectively associated to initial data U 0ε and V 0ε . We have moreover the obvious bounds

(3.15) ε ≤ U ε , V ε ≤ |U 0 | L ∞ (Ω) + ε. For u ε = U α ε , v ε = V α ε , for a cut-off function ϕ ∈ C ∞ c
(Ω) satisfying ϕ ≥ 0 and for p > 1, we will compute d dt Ω ϕ 2 (v ε -u ε ) p + . We will use the positivity properties of the matrix Q α,p , to control the error term created by the cut-off. To this end, it is useful to introduce for δ ∈ [0, ε), the function Ψ δ,p (w) which is an approximation of Ψ 0,p (w) = w p + , given by

Ψ δ,p (w) = w p p -δ p-1 w -δ p 1 p -1 • 1 {w>δ} .
Then a direct computation gives (3.16)

d dt Ω ϕ 2 Ψ δ,p (v ε -u ε ) dx = Ω ϕ 2 Ψ δ,p (v ε -u ε ) {v γ ε ∆v ε -u γ ε ∆u ε } dx + Ω ϕ 2 Ψ δ,p (v ε -u ε ) γ v γ-1 ε |∇v ε | 2 -u γ-1 ε |∇u ε | 2 dx = {vε-uε>δ} f dx - {vε-uε>δ} ϕ 2 e[v ε , u ε ] dx + δ p-1 {vε-uε>δ} ϕ 2 g dx with the notation e[•, •] defined in (2.8) and f = -Ψ δ,p (v ε -u ε ) 2ϕ∇ϕ•{v γ ε ∇v ε -u γ ε ∇u ε } and g = (α -1) α |∇v ε | 2 v γ-1 ε -|∇u ε | 2 u γ-1 ε .
Here in (3.16) we have used equation (1.5) to get the second line, and have done an integration by parts on the first term of the second line, using in particular for δ > 0 the chain rule ∇Ψ δ,p (w) = Ψ δ,p (w) ∇w with equality almost everywhere with the convention that the right hand side is zero if ∇w = 0 irrespective of whether Ψ δ,p is defined. The case δ = 0 can be recovered, passing to the limit δ → 0. Using bounds (3.15), we see that 0 < v γ ε , u γ ε ≤ M for some constant M > 0. Moreover for v ε -u ε > δ > 0, we have by Young inequality

(3.17) |f | ≤ (v ε -u ε ) p-2 2M εν (v ε -u ε ) 2 |∇ϕ| 2 + ϕ 2 εν(v γ ε |∇v ε | 2 + u γ ε |∇u ε | 2 )
where ν = ν(δ) > 0 is given in (3.12) for δ > 0.

Step 2: First integral estimate on the gradient We now choose u ε ≡ ε and δ = 0. Then estimate (3.17) still holds true, but with ν replaced by ν 0 given in (3.13). This implies

d dt Ω ϕ 2 Ψ 0,p (v ε -ε) dx ≤ Ω C 0 |∇ϕ| 2 Ψ 0,p (v ε -ε) dx -(1 -ε) {vε-ε>0} ϕ 2 e[v ε , ε] dx with C 0 = 2pM εν 0 .
We then take a sequence of functions ϕ converging towards ϕ λ (x) = e -λ|x| for λ > 0. Integrating in time, and passing to the limit λ → 0, and using again (3.13), we get

(3.18) Ω Ψ 0,p (v ε (t) -ε) dx + (1 -ε)ν 0 t 0 dτ Ω v γ ε |∇v ε | 2 ≤ Ω Ψ 0,p (v ε (0) -ε) dx
Step 3: Refined estimate We come back to general v ε , u ε as in Step 1 and now consider δ > 0. Using (3.17), we get

d dt Ω ϕ 2 Ψ δ,p (v ε -u ε ) dx ≤ Ω C|∇ϕ| 2 Ψ 0,p (v ε -u ε ) dx -(1 -ε) {vε-uε>δ} ϕ 2 e[v ε , u ε ] dx + δ p-1 {vε-uε>δ} ϕ 2 g dx with C = 2pM εν
. Note that estimate (3.18) for both v ε and u ε , controls uniformly in time

Ω Ψ 0,p (v ε -u ε )
dx and the time integral of Ω δ p-1 |g| dx. Therefore, we can again apply the choice of ϕ = ϕ λ , integrate in time, and take the limit λ → +∞ as in Step 2, and then conclude in the limit δ → 0 (3.19)

Ω Ψ 0,p (v ε (t) -u ε (t)) dx+(1-ε) t 0 dτ {vε-uε>0}∩{uε>0} e[v ε , u ε ] dx ≤ Ω Ψ 0,p (v ε (0) -u ε (0)) dx.
Step 4: The limit ε → 0 For a point P 0 = (t 0 , x 0 ), let us denote the open parabolic cylinder Q r (P 0 ) = (t 0 -r 2 , t 0 ) × B r (x 0 ), where B r (x 0 ) is the open ball of center x 0 and radius r > 0. It is known by Theorem 1.1 in Sacks [START_REF] Sacks | Continuity of solutions of a singular parabolic equation[END_REF] that for any smooth solution U ε of (1.1) on Q 2r (P 0 ), there exists a modulus of continuity ω of U ε on Q r (P 0 ), depending only on r, d, n and |U ε | L ∞ (Q 2r (P 0 )) . This property is automatically transfered to u ε = U α ε with the modulus of continuity ω α . This implies, by Ascoli-Arzela theorem, that U ε → U , where U is still a solution of (1.1) with initial data U 0 in the sense of Definition 1.1. We also note that (with αp ≥ 1)

Ω |u(t, •) -u(s, •)| p ≤ Ω |U (t, •) -U (s, •)| αp ≤ (2|U | L ∞ (Q) ) αp-1 |U (t, •) -U (s, •)| L 1 (Ω)
which shows in particular that U ∈ C([0, +∞); L 1 (Ω)) implies u ∈ C([0, +∞); L p (Ω)).

From the standard parabolic theory [START_REF] Ladyženskya | Linear and Quasilinear Equations of Parabolic Type[END_REF], we know that U ∈ C ∞ (Q ∩ {U > 0}), with corresponding quantitative estimates on solutions locally bounded from above and below. Similarly, we have V ε → V , and we call u = U α , v = V α . Using the C 1 convergence of (v ε , u ε ) to (v, u) on compact sets inside {v -u > 0} ∩ {u > 0}, we can pass to the limit in (3.19), and get the same inequality for ε = 0 with (v ε , u ε ) replaced by (v, u). This means (2.7). We finally conclude to the result for general initial data U 0 , V 0 , by a standard approximation argument in L 1 (Ω).

Decay of the gradient

This section is divided into two subsections. In the first subsection, we give the proof of the gradient decay Theorem 2.2. In the second subsection, we give a directional derivative estimate (Theorem 4.2) as a corollary of our contraction estimate.

Decay of the gradient

We start with the following simpler analogue of Lemma 3.1, whose proof follows from an elementary computation. where I 2 is the 2 × 2 identity matrix, M α,p is defined in (2.9), and ν 1 = ν 1 (n, α, p) > 0.

Proof of Theorem 2.2

We follow the lines of proof of Theorem 2.1. For δ > 0, a direct computation gives with Here we have integrated by parts the term ∆u ε in the second line of (4.21). We then pass to the limit δ → 0. We replace the fine property (3.12) of the matrix Q α,p , by (4.20). We finally conclude as in the proof of Theorem 2.1.

b ε = ∇u ε |∇u ε | (4.21) d dt Ω ϕ 2 Ψ δ,p (|∇u ε |) dx = Ω ϕ 2 Ψ δ,p (|∇u ε |) b ε • ∇ u γ-1 ε u ε ∆u ε + γ|∇u ε | 2 dx = {|∇uε|>δ} f dx -

Decay of the directional derivative

For ξ = (ξ t , ξ x ) ∈ R × R d , we define the directional derivative (4.22) D ξ u = ξ t u t + ξ x • ∇u.

In this subsection, we prove the following result as a consequence of our contraction estimate. 
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In particular (4.23) is satisfied if ξ t = 0 and D ξ U α 0 ∈ L p (Ω). We will use the following result. Lemma 4.3 (Limit of the quadratic term) For |n| < 1, let (α, p) ∈ K |n| where K |n| is defined in (1.4).

Let Ω 1 be an open set such that u, w, z ∈ C 1 (Ω 1 ) with u > 0 on Ω 1 . For η ∈ (0, 1), let v η be a function satisfying

Then we have on Ω 1

where we recall that the matrices Q α,p and M α,p are respectively defined in (2.6) and (2.9).

Proof of Lemma 4.3

The proof is done using a simple Taylor expansion argument. For Q α,p (v, u), we set

which implies the result.

Proof of Theorem 4.2 Let v η (t, x) = u((t, x) + ηξ). We simply apply Theorem 2.1 to v η -u and u -v η and use the symmetry e[v, u] = e[u, v], in order to control

We pass to the limit as η → 0 using Lemma 4.3 which gives (4.23).
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