
HAL Id: hal-01011416
https://hal.science/hal-01011416

Preprint submitted on 26 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online Train Shunting
Vianney Boeuf, Frédéric Meunier

To cite this version:

Vianney Boeuf, Frédéric Meunier. Online Train Shunting. 2014. �hal-01011416�

https://hal.science/hal-01011416
https://hal.archives-ouvertes.fr

ONLINE TRAIN SHUNTING

VIANNEY BŒUF AND FRÉDÉRIC MEUNIER

Abstract. At the occasion of ATMOS 2012, Tim Nonner and Alexander Souza defined a new
train shunting problem that can roughly be described as follows. We are given a train visiting
stations in a given order and cars located at some source stations. Each car has a target station.
During the trip of the train, the cars are added to the train at their source stations and removed
from it at their target stations. An addition or a removal of a car in the strict interior of the train
incurs a cost higher than when the operation is performed at the end of the train. The problem
consists in minimizing the total cost, and thus, at each source station of a car, the position the car
takes in the train must be carefully decided.

Among other results, Nonner and Souza showed that this problem is polynomially solvable by
reducing the problem to the computation of a minimum independent set in a bipartite graph. They
worked in the offline setting, i.e. the sources and the targets of all cars are known before the trip
of the train starts. We study the online version of the problem, in which cars become known at
their source stations. We derive a 2-competitive algorithm and prove than no better ratios are
achievable. Other related questions are also addressed.

1. Introduction

1.1. Context. The Train Shunting Problem, defined by Tim Nonner and Alexander Souza
at the occasion of ATMOS 2012 [11], was motivated by concrete problems met by Deutsche Bahn
AG. The problem goes as follows. We are given a set of cars and a set of stations. Each car has
a source station and a target station. A locomotive visits the stations according to a predefined
order. Once the locomotive passes the source station of a car, this latter is added to the train, and
once the locomotive passes its target station, it is removed from the train. Adding or removing a
car at the end of the train incurs a cost assumed to be smaller than the cost of adding or removing
a car in the interior of the train. Hence, once a car has to be added to the train, a decision must
be taken regarding the position it will take in the train. The objective of the Train Shunting

Problem consists in minimizing the total cost. Nonner and Souza proved that this problem can
be polynomially solvable by a reduction to the problem of finding a maximum-weight independent
set in a bipartite graph. They also propose some extensions they prove to be polynomially solvable
as well, with the help of dynamic programming.

The main assumption they made is that the number of cars, their sources, and their targets are
known before solving the problem. However, due to random events and to new demands that can
occur during the trip of the locomotive, we expect to face a dynamic part in concrete applications,
requiring online decisions. This paper aims to make a step in this direction by defining and studying
an online version of the Train Shunting Problem.

1.2. Model. The stations are numbered 1, 2, . . . and visited in this order. We denote the set of
cars by J = [n] (throughout the paper, the set {1, 2, . . . , a} is denoted [a]). The source station of a
car j is denoted sj and its target station is denoted tj . If a car j is added to or removed from the
exact end of the train, then an outer operation of cost cj is performed. If a car j is added to or

Key words and phrases. Bipartite graph, competitive analysis, online algorithm, train shunting problem, vertex
cover.

1

removed from the true interior of the train, then an inner operation of cost c′j is performed, with

c′j > cj . An event is a source or a target station. Nonner and Souza proved that we can assume

that at each station exactly one operation is performed (Lemma 5 in their paper): when several
operations must be performed at the same station, we can split the station into as many copies
as there are operations to perform and easily order them in a way minimizing the total cost (and
which does not depend on future cars). We make the same assumption throughout the paper.

A train configuration is a sequence of distinct cars, corresponding to the sequence of cars in
the train, the end being the left-most position. A sequence (Ci)i=1,...,m of train configurations is
feasible if for each station i the train configuration Ci is a sequence of cars involving only cars
j such that sj ≤ i < tj and the common cars of Ci and Ci+1 occur in the same order in both
configurations. Such a sequence encodes a feasible solution of the Train Shunting Problem:
under the assumption made above, Ci and Ci+1 differs only by one car, and the corresponding
operation is completely determined. The cost of a sequence (Ci)i=1,...,m is the sum of the costs of
these operations.

The problem can be formalized as follows.

Train Shunting Problem

Input. A number m of stations; a set J = [n] of cars; for each car j, two costs cj < c′j and a

source-target pair of stations (sj , tj) with 1 ≤ sj < tj ≤ m.

Output. A feasible sequence of train configurations (Ci)i=1,...,m.

Measure. The cost of (Ci)i=1,...,m.

Nonner and Souza proved that a solution of minimal cost can be computed in polynomial time
and explained its relation with independence set problems in bipartite graphs. While they worked
in the more traditional offline framework, we focus in this work on online algorithms.

An online algorithm for this problem is an algorithm which computes Ci without taking into
account the cars j such that sj > i. However, at station i, the algorithm can use the information
regarding the target station of a car j when sj ≤ i, even if tj > i. We require moreover that the
online algorithms do not know the number of cars in advance.

Let A be an online algorithm. Denote by SOL(I) the value of the solution it returns when
applied on an input I, and denote by OPT (I) the optimal value of the instance. A is c-competitive

for c ≥ 1 if for some real number b, we have

SOL(I) ≤ c ·OPT (I) + b

for all instances I.

1.3. Results. Our main results are the existence of a 2-competitive online algorithm (Theorem 1)
and the proof that there is no better competitive ratio (Proposition 8). The core of our 2-competitive
algorithm consists in providing a 2-competitive algorithm for the Vertex Cover Problem in
some special-purpose bipartite graph. While it is known that there is no competitive algorithms
with fixed ratio for the general Vertex Cover Problem in bipartite graphs, see [6], our study
provides a family of restricted but not artificial instances for which there is such an algorithm. The
precise statement of these results, their proofs, and some related results are given in Section 3.
They are based on some properties of vertex covers in bipartite graphs presented and proved in
Section 2.

Section 4 is devoted to a slight relaxation of the problem. Suppose that we are now allowed to
postpone inner operations, by letting cars at the end of the train for some while before moving
them to the interior of the train. Since such an inner operation is decided when more information is

2

available, we can expect to have in this case a better competitive ratio. We prove that actually no
online algorithms of this type can achieve a ratio smaller than 4/3. We leave as an open question
the existence of an online algorithm achieving this ratio.

1.4. Related works. Many papers are already devoted to shunting for freight trains. To the best
of our knowledge, except the one introduced by Nonner and Souza, all shunting problems consider
the case when the cars are collected by a train, and then lead to a shunting yard where they are
rearranged in one or several trains. This yard plays the role of a hub from which the cars starts
their final trip to their destinations. Overviews of problems and practices can be found in [3, 9].
Problems and methods aiming at direct applications are proposed in [2, 4, 10, 12]. When there are
only two incoming tracks, the system is often based on a hump. Some papers have considered this
special case, which provides nice combinatorial problems, see [1, 5, 7].

Other related references can be found in the corresponding section in the paper by Nonner and
Souza.

2. Vertex covers in bipartite graphs with positive weights

Let G = (V,E) be a bipartite graph with colour classes S and T . A vertex cover of G is a subset
K ⊆ V such that any edge in E has at least one endpoint in K. A vertex cover is minimal if it is
minimal for inclusion.

Dulmage and Mendelsohn [8] proved several properties on minimal-cardinality vertex covers in
bipartite graphs, especially that they form a lattice. We extend some of their results to the weighted
case. We assume from now on that a weight-function w : V → Q+ is given with w(v) > 0 for all
v ∈ V . As often in combinatorial optimization, given X ⊆ V , we use w(X) to denote

∑
v∈X w(v).

A vertex cover is minimum if it is of minimal weight. Note that since all weights are positive, a
minimum vertex cover is minimal.

Proposition 1. Two minimum vertex covers having the same intersection with S are equal.

Proof. Let K and K ′ be two such vertex covers. If T ∩ K = ∅, then K = K ′. Suppose that
T ∩K 6= ∅ and let v ∈ T ∩K. Since K is minimal, there exists u ∈ S \K such that uv ∈ E. We
have S \ K = S \ K ′. Since K ′ is a vertex cover, the edge uv requires v to be in T ∩ K ′. Thus
T ∩K ⊆ T ∩K ′. The reverse inclusion is obtained by exchanging K and K ′. �

In our 2-competitive algorithm described in Section 3, some minimum vertex covers play a special
role.

Proposition 2. There exists a unique minimum vertex cover K such that any other minimum

vertex cover K satisfies S∩K ⊆ S∩K. Moreover, this vertex cover can be computed in polynomial

time.

Proof. Let K and K ′ be two minimum vertex covers. Denote by X (resp. X ′) the subset S ∩K
(resp. S∩K ′) and by Y (resp. Y ′) the subset T∩K (resp. T∩K ′). We claim that (X∪X ′)∪(Y ∩Y ′)
is also a minimum vertex cover.

Indeed, first note that (X ∩X ′) ∪ (Y ∪ Y ′) is a vertex cover. Thus w(X ∩X ′) + w(Y ∪ Y ′) ≥
w(X) + w(Y), which implies that w(Y ′ \ Y) ≥ w(X \X ′). Second, note that (X ∪X ′) ∪ (Y ∩ Y ′)
is a vertex cover. Its weight is w(X ∪X ′) +w(Y ∩ Y ′) = w(X ′) +w(Y ′) +w(X \X ′)−w(Y ′ \ Y).
Using the inequality that has just been proved, we get w(X ∪X ′) + w(Y ∩ Y ′) ≤ w(X ′) + w(Y ′),
which means that (X ∪X ′) ∪ (Y ∩ Y ′) is a minimum vertex cover.

Thus the sets S ∩K where K is a minimum vertex cover are stable by union, which leads to the
existence of K. Proposition 1 ensures then the uniqueness of K.

It remains to prove the statement about the polynomiality of the computation. K is the minimum
vertex cover that has the largest number of vertices in S. By simply subtracting a small quantity

3

to all weights in S, we reduced the problem of finding K to a minimum vertex cover problem in a
bipartite graph, which is polynomially solvable (see [13] for instance). �

Such a vertex cover K is source-optimal (it is our terminology). Note that without the condition
w(v) > 0 for all v, the proposition would not hold. The next proposition shows that while the
source-optimal vertex cover is maximal on the source side, it is minimal on the target side.

Proposition 3. Let K be the source-optimal vertex cover. Any other minimum vertex cover K
satisfies T ∩K ⊆ T ∩K.

Proof. If T ∩ K = ∅, then the inclusion is obviously satisfied. Suppose that T ∩ K 6= ∅ and let
v ∈ T ∩K. Let K be any minimum vertex cover. Since K is minimal, there exists u ∈ S \K such
that uv ∈ E. Since K is source-optimal, we have S \K ⊆ S \K. Since K is a vertex cover, the
edge uv requires v to be in T ∩K. �

3. Competitive algorithms

3.1. Preliminaries. A pair of cars (k, ℓ) is overlapping if sk < sℓ < tk < tℓ. It is non-overlapping
otherwise. Nonner and Souza introduced the constraint graph G = (V,E), which encodes the
overlaps of an instance. It is defined as follows. Its vertex set is

⋃
j∈J{sj , tj}. The edges are the

sℓtk with (k, ℓ) being overlapping. The graph G is bipartite with the set of sources S = {sj : j ∈ J}
as one of its colour class and the set of targets T = {tj : j ∈ J} as the other colour class.

Proposition 4 (Nonner and Souza [11]). In a feasible solution, the events having inner operations

form a vertex cover of G.

Proposition 5 (Nonner and Souza [11]). Let K be a minimal vertex cover in G. Then there exists

a feasible solution whose inner operations are performed precisely on the events in K. Moreover,

K being given, this solution can be computed in O(n2).

Nonner and Souza actually formulated and proved these propositions with outer operations
instead of inner operations and independent sets instead of vertex covers, but since they are com-
plement of each others, it is an equivalent point of view.

Defining w(sj) = w(tj) = c′j − cj , the total cost of a feasible solution is w(K)+ 2
∑

j∈J cj , where

K is the vertex cover provided by Proposition 4. The total cost is thus minimum when w(K) is
minimum. For positive weights on the vertices, a minimum vertex cover is minimal. Since a mini-
mum vertex cover in a bipartite graph can be computed in polynomial time, the two propositions
show that the optimal solution of the Train Shunting Problem can be computed in polynomial
time in the offline setting.

Let us see how we can adapt these considerations in an online context. To ease the discussion,
we assume without loss of generality that sj < sk if j < k: the cars are ordered by their source
stations (recall that we have assumed that at each station exactly one operation is performed).

We define Gj = (Vj , Ej) to be the constraint graph limited to the cars k ∈ [j]:

Vj =
⋃

k∈[j]

{sk, tk} and Ej = {sℓtk : k, ℓ ∈ [j] and (k, ℓ) is overlapping}.

Note that Gj is a bipartite graph and that Gn = G, where G is still the constraint graph of the
full input. Moreover, Gj is an induced subgraph of Gj+1: we have Vj+1 = Vj ∪ {sj+1, tj+1} and
Ej+1 = Ej ∪ δ(sj+1), where δ(sj+1) is the set of edges incident to sj+1 in G. Using Proposition 4,
we can see that a feasible solution induces a chain K1 ⊆ K2 ⊆ · · · ⊆ Kn where Kj is a vertex cover
of Gj . Indeed, we can for instance set Kj to be the events subject to inner operations up to station
tj .

4

A counterpart of Proposition 5 is also true, see Proposition 6 below: a chain K1 ⊆ · · · ⊆ Kn,
where Kj is a vertex cover of Gj satisfying some condition to be detailed below, provides the inner
operations of some feasible solution. However, this is not a direct consequence of Proposition 5 –
the inner operations programmed up to station sj must be compatible with the inner operations
programmed up to station sj−1 – and deserves a proof. By N(sj), we denote the set of neighbours
of sj , i.e. the set of vertices v of G such that sjv is an edge of G. Note that it is also the set of
neighbours of sj in Gj . By N [sj], we denote the closed neighbourhood of sj , i.e. the set N(sj)∪{sj}.

Proposition 6. Let K1 ⊆ · · · ⊆ Kn be such that each Kj is a vertex cover of Gj satisfying

N [sj] \Kj 6= ∅. Then there exists a feasible solution such that

• the sources sj subject to inner operations are exactly those sj such that sj ∈ Kj, and

• the targets tj subject to inner operations are such that tj ∈ Kn.

Moreover, we can decide in polynomial time the position each car j must take in the train using

K1, . . . ,Kj.

In Proposition 6, we have a stronger statement for the sources than for the targets. Anyway, the
proposition ensures that we can build a feasible solution online, and allows to bound from above
its cost: w(Kn) + 2

∑
j∈J cj is an upper bound on the cost of this feasible solution.

Proof of Proposition 6. See Appendix. �

The following lemma will be useful. For each j, we denote by Kj the source-optimal vertex cover
of Gj .

Lemma 1. For each j ≥ 2, we have T ∩Kj−1 ⊆ T ∩Kj and exactly one of the following relations

is satisfied:

• Kj = Kj−1 ∪ {sj}.
• S ∩Kj−1 ⊇ S ∩Kj.

Proof. Suppose first that sj ∈ Kj . The set Kj \ {sj} is a vertex cover of Gj−1, and thus w(Kj)−
w(sj) ≥ w(Kj−1). The set Kj−1∪{sj} is a vertex cover of Gj , and thus w(Kj)−w(sj) ≤ w(Kj−1).

Combining both inequalities shows that Kj \ {sj} is a minimum vertex cover of Gj−1 and that

Kj−1 ∪ {sj} is a minimum vertex cover of Gj . The vertex cover Kj−1 being source-optimal, we

have S ∩Kj−1 ⊇ S ∩ (Kj \ {sj}), which implies S ∩ (Kj−1 ∪ {sj}) ⊇ S ∩Kj . The vertex cover Kj

being source-optimal, we have Kj = Kj−1 ∪{sj} by uniqueness of the source-optimal vertex cover,

and we have T ∩Kj−1 ⊆ T ∩Kj .

Suppose then that sj /∈ Kj . Let Xk = S∩Kk and Yk = T ∩Kk. The set (Xj−1∩Xj)∪(Yj−1∪Yj)
is a vertex cover of Gj . Indeed, an edge sktℓ in Ej with tℓ /∈ Yj−1 ∪Yj is such that sk ∈ Xj because

Kj is a vertex cover of Gj , and also such that k 6= j because we supposed sj /∈ Kj ; it implies that

sktℓ is in Ej−1 as well and that sk ∈ Xj−1. Thus, w(Xj−1 ∩Xj) + w(Yj−1 ∪ Yj) ≥ w(Kj), which

implies that w(Xj \Xj−1) ≤ w(Yj−1\Yj). Since w(Xj−1∪Xj)+w(Yj−1∩Yj) = w(Kj−1)−w(Yj−1\
Yj)+w(Xj \Xj−1), the latter inequality shows that w(Xj−1 ∪Xj)+w(Yj−1 ∩Yj) ≤ w(Kj−1). The
set (Xj−1∪Xj)∪ (Yj−1∩Yj) is a vertex cover of Gj−1, and thus is a minimum vertex cover of Gj−1.

The set Kj−1 being source-optimal, we get Xj−1 ∪Xj ⊆ Xj−1, which implies S ∩Kj−1 ⊇ S ∩Kj .

Moreover, Proposition 3 implies that Yj−1 ⊆ Yj−1 ∩ Yj , i.e. T ∩Kj−1 ⊆ T ∩Kj . �

3.2. A 2-competitive algorithm. We propose the following online algorithm.

Start with an empty graph G0 and an empty set K̃0; when the train arrives at station sj , build

Gj as described in Section 3.1, compute a source-optimal vertex cover Kj of Gj for the weight
5

function w, define K̃j = K̃j−1 ∪Kj .

In other words, the set K̃j is equal to
⋃j

k=1Kk. We are going to prove that the sequence of

the K̃j satisfies the condition of Proposition 6 and thus the algorithm computes a feasible solution

performing an inner operation at station sj if and only if sj ∈ Kj .

Proposition 7. Each K̃j is a vertex cover of Gj satisfying N [sj]\K̃j 6= ∅ and we have the following

chain: K̃1 ⊆ · · · ⊆ K̃n.

Proof. The fact that K̃j is a vertex cover and the inclusion K̃j−1 ⊆ K̃j are obvious.

Suppose that N(sj) ⊆ K̃j . Then necessarily, the elements in N(sj) belong to the union of some

T ∩ Kk with k ≤ j. Lemma 1 implies that actually N(sj) ⊆ Kj . Since Kj is minimal, we have

sj /∈ Kj , and thus sj /∈ K̃j . �

Proposition 6 and Proposition 7 show that the online algorithm described above computes a
feasible solution to the Train Shunting Problem. It is polynomial according to Proposition 2.
We have thus the following theorem, the calculation of the competitive ratio being done in the
proof.

Theorem 1. There is a polynomial 2-competitive online algorithm for the Train Shunting Prob-

lem.

Proof. The preceding discussion shows that the online algorithm described above is polynomial
and computes a feasible solution. It remains to evaluate its competitive ratio. The cost of the

solution computed by the online algorithm is bounded from above by w(K̃n) + 2
∑

j∈J cj because

of Proposition 6. The set Kn is a minimum vertex cover of G = Gn. According to Nonner-
Souza’s result (see discussion in Section 3.1), the optimum of the Train Shunting Problem is

w(Kn) + 2
∑

j∈J cj . The proof strategy consists in bounding w(K̃n) from above using w(Kn). We

set K0 = ∅.

K̃n can also be written Kn ∪
(⋃

j∈J Kj−1 \Kj

)
, and hence

w(S ∩ K̃n) ≤ w(S ∩Kn) +
∑

j∈J

w(S ∩ (Kj−1 \Kj)).

Since Kj contains a vertex cover of Gj−1, we have w(Kj−1) ≤ w(Kj). According to Lemma 1, we

know that T ∩Kj−1 ⊆ T ∩Kj and that if S ∩ (Kj−1 \Kj) 6= ∅, then S ∩Kj−1 ⊇ S ∩Kj . Therefore

w(S ∩ (Kj−1 \Kj)) ≤ w(T ∩Kj)− w(T ∩Kj−1). Hence

w(S ∩ K̃n) ≤ w(S ∩Kn) +
∑

j∈J

(w(T ∩Kj)− w(T ∩Kj−1)).

Therefore w(S ∩ K̃n) ≤ w(S ∩Kn) + w(T ∩Kn) and w(S ∩ K̃n) ≤ w(Kn).

On the other hand, we have w(T∩K̃n) = w(T∩Kn) again because of Lemma 1. Thus w(T∩K̃n) ≤
w(Kn).

The two inequalities lead to w(K̃n) ≤ 2w(Kn). Our algorithm provides thus a solution of cost

bounded from above by w(K̃n) + 2
∑

j∈J cj ≤ 2(w(Kn) + 2
∑

j∈J cj). �

Remark 1. No algorithms computing Kj in linear time are known up to now. However, if cj = 0

and c′j = 1 for all j, it is possible to compute Kj in O(|Ej |) by maintaining a maximum-cardinality
matching of Gj along the algorithm. Nevertheless, we do not know whether a similar idea can be
extended to the case with general costs.

6

3.3. Lower bound on the competitive ratio.

Proposition 8. No online algorithms computing a solution to the Train Shunting Problem

can have a competitive ratio smaller than 2.

Proof. Let A be an online algorithm computing a solution to the Train Shunting Problem.
The proof consists in describing for any integer q, an instance with at most 3q cars for which
SOL ≥ (2− 1/q) ·OPT , where SOL is the value of the solution computed by A, and OPT is the
optimum. The instance is built dynamically as follows, taking into account the decisions of A.

All costs cj are set to 0 and all costs c′j are set to 1. For j = 1, . . . , q, define sj = j and
tj = 4q− j+1. Set sq+1 = q+1 and tq+1 = 6q. Then, from j = q+1, we repeat the following loop:

If the operation performed by A at station j is an outer operation or if j = 3q, then stop.
Otherwise, set j ← j + 1; define sj = j and tj = 7q − j + 1.

Denote by r the number of times the loop has been repeated. We have

SOL ≥

{
r + q − 1 if r ≤ 2q − 1
2q if r = 2q.

Indeed, if r ≤ 2q − 1, the r repetitions of the loop correspond to r − 1 inner operations. The car
q + r is added to the end of the train and implies q inner operations to remove from the train the
cars indexed from 1 to q. If r = 2q, no cars between q and 3q− 1 are added to the end of the train
and their addition to the train provides 2q inner operations.

We have OPT = min(q, r). This can be seen by considering the constraint graph of the instance
and by computing a minimum vertex cover of it, see Section 3.1.

If r = 2q, we have SOL/OPT ≥ 2. If q ≤ r ≤ 2q−1, we have SOL/OPT ≥ 2−1/q. If r ≤ q−1,
we have SOL/OPT ≥ 2. �

There are two natural algorithms we can also think of. Unfortunately, they do not even enjoy a
fixed competitive ratio.

The first consists in always introducing the cars at the end of the train. In this case, the com-
petitive ratio can be arbitrarily large, as shown by the following example. Consider the instance
with sj = j and tj = 2n− j for j = 1, . . . , n− 1, and sn = n and tn = 2n. Take as costs cj = 0 and
c′j = 1 for all j. It is easy to check that the total cost is then n− 1 when that algorithm is applied,
while the optimal cost is 1.

The second algorithm consists in building a sequence of vertex covers, similarly as for the algo-
rithm of Section 3.2.

Start with an empty graph G0 and an empty set K̃0; when the train arrives at station sj , build Gj

as described in Section 3.1, compute a vertex cover K̃j of Gj of minimal cost such that K̃j−1 ⊆ K̃j .

This algorithm can be considered as natural since computing K̃j amounts to choose K̃j among

K̃j−1 ∪ {sj} and K̃j−1 ∪ N(sj), the solution being the one of minimal cost. Proposition 6 shows
that we build in this way a feasible solution. It means that we always choose an operation that is
locally the best solution.

The following example shows that this algorithm can also have an arbitrarily large competitive
ratio. Consider the instance with sj = j for j = 1, . . . , n, t1 = n+2, t2 = n+1, and tj = 2n− j+3
otherwise. Set the costs to be cj = 0 and c′j = 1 for all j. It is easy to check that the total cost is
then n− 3 when this algorithm is applied, while the optimal cost is 2.

7

4. Postponing inner operations

Suppose that we modify the Train Shunting Problem in the following sense: at any station,
a car at the end of the train can be moved to the interior, and such an operation can be repeated
several times at a same station.

It does not change the optimal solution of an instance. Indeed, suppose that we have an optimal
solution such that a car j is added to the train at the station sj , and moved to the interior from the
end of the train at some station i ≥ sj . Then the solution consisting in inserting the car j directly
at some inner position so that the train configuration will be the same at station i will not be of
larger cost.

Hence, from an offline point of view, this new possibility does not reduce the best cost that can
be achieved. However, we do not know whether the conclusion is identical in the online setting.
We were however able to prove the following result, which leaves some hope for a better ratio.

Proposition 9. No online algorithms computing a solution to the Train Shunting Problem in

this modified setting can achieve a competitive ratio smaller than 4/3.

Proof. Let A be an online algorithm computing a solution to the Train Shunting Problem with
this additional possibility. Consider the instance where the first five cars are such that

(s1, t1) = (1, 11), (s2, t2) = (2, 10), (s3, t3) = (3, 6), (s4, t4) = (4, 16), (s5, t5) = (5, 15).

Then, if A has chosen an inner removal for car 3, then stop. Otherwise, three cars 6, 7, and 8 are
added to the instance with

(s6, t6) = (7, 14), (s7, t7) = (8, 13), (s8, t8) = (9, 12).

If the car 3 is in the interior of the train when it leaves station 5, then the total cost achieved by
the algorithm is 3 at best: the car 3 will be subject to an inner operation, and the instance reduced
to cars 1, 2, 4, and 5 has an optimal cost of 2.

If the car 3 is at the end the train when it leaves station 5, then the cars 4 and 5 have been added
or moved to the interior of the train, and the instance reduced to the cars 1, 2, 3, 6, 7, and 8 has
an optimal cost of 2, which gives in total a cost of 4. So, the total cost achieved by the algorithm
is 4 at best, while the optimum is 3. �

References

1. Katharina Beygang, Florian Dahms, and Sven O. Krumke, Train marshalling problem: Algorithms and bounds,
Tech. report, 2010.

2. Markus Bohlin, Florian Dahms, Holger Flier, and Sara Gestrelius, Optimal freight train classification using

column generation, Proceedings of the 12th workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS’12), vol. 25, 2012, pp. 10–22.

3. Nils Boysen, Malte Fliedner, Florian Jaehn, and Erwin Pesch, Shunting yard operations: Theoretical aspects and

applications., European Journal of Operational Research 220 (2012), 1–14.
4. Alberto Ceselli, Michael Gatto, Marco E. Lübbecke, Marc Nunkesser, and Heiko Schilling, Optimizing the cargo

express service of swiss federal railways, Transportation Science 42 (2008), 450–465.
5. Elias Dahlhaus, Peter Horák, Mirka Miller, and Joseph F. Ryan, The train marshalling problem, Discrete Applied

Mathematics 103 (2000), 41–54.
6. Marc Demange and Vangelis T. Paschos, On-line vertex-covering, Theoretical Computer Science 332 (2005),

83–108.
7. Gabriele Di Stefano and Magnus Love Koci, A graph theoretical approach to the shunting problem, Electronic

Notes in Theoretical Computer Science 92 (2004), 16–33.
8. Andrew L. Dulmage and Nathan S. Mendelsohn, Coverings of bipartite graphs, Canadian Journal of Mathematics

10 (1958), 517–534.
9. Michael Gatto, Jens Maue, Matús Mihalák, and Peter Widmayer, Robust and online large-scale optimization,

ch. Shunting for dummies: An introductory algorithmic survey, pp. 310–337, Springer, 2009.

8

10. Riko Jacob, Peter Marton, Jens Maue, and Marc Nunkesser, Multistage methods for freight train classification,
Networks 57 (2011), 87–105.

11. Tim Nonner and Alexander Souza, Optimal algorithms for train shunting and relaxed list update problems, Pro-
ceedings of the 12th workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS’12), vol. 25, 2012, pp. 97–107.

12. Marc Nunkesser, Michael Gatto, and Riko Jacob, Optimization of a railway hub-and-spoke system; Rounting and

shunting, Proceedings of WEA 2005, 2005.
13. Alexandrer Schrijver, Combinatorial optimization, Springer, 2003.

Appendix A

The main purpose of this appendix is to prove Proposition 6. We mimic the proof of Theorem 2
in [11] but several difficulties related to the online aspect arise. We assume given a chain of vertex
covers K1 ⊆ · · · ⊆ Kn such that each Kj is a vertex cover of Gj satisfying N [sj] \Kj 6= ∅.

For each j ∈ J , we define a directed graph Hj = ([j], Aj), whose vertices are the integers from 1
to j (the cars up to j). The arcs are defined as follows. For a car k ≤ j and an event e such that
sk < e < tk, with e ∈ {sℓ, tℓ} and ℓ ≤ j, the arc (k, ℓ) is in Aj if e /∈ Kmax(k,ℓ). The definition of
the graph Hj resembles the definition of the graph H of the original proof, but is not completely
identical. Note that the sequence of graphs Hj is increasing, Aj ⊆ Aj+1 for all 1 ≤ j ≤ n− 1, and
that all arcs in Aj+1 \Aj are incident to j + 1.

Lemma 2. The graph Hj is acyclic.

Proof. Suppose for a contradiction that there is a directed cycle C = (k1, . . . , kr) in Hj . We choose
C with the minimum number of arcs. Note that we have anyway r ≥ 2. Without loss of generality,
we assume that k1 is the smallest integer on C.

The arc (kr, k1) exists in Hj , thus skr < tk1 < tkr and tk1 /∈ Kkr . As sk1 < skr , the pair (k1, kr)
is overlapping and Gkr contains the edge skr tk1 . Necessarily, skr ∈ Kkr . Consider now the arc
(kr−1, kr). We prove that skr−1

∈ Kkr−1
, that tkr /∈ Kkr , and that (kr, kr−1) is overlapping.

Suppose first that skr−1
< skr . We necessarily have skr−1

< tkr < tkr−1
and tkr /∈ Kkr because

skr ∈ Kkr . (Note that it implies that r ≥ 3.) Thus skr−1
< tk1 < tkr−1

, and there should be an
arc (kr−1, k1) in Hj since tk1 /∈ Kkr−1

(otherwise we would have tk1 ∈ Kkr , in this case kr being
larger than kr−1). Such an arc would contradict the minimality of C. Hence skr−1

> skr and
Kkr ⊆ Kkr−1

. We have skr−1
< tkr < tkr−1

and tkr /∈ Kkr−1
and the pair (kr, kr−1) is overlapping.

There is therefore an edge skr−1
tkr in Gkr−1

, which implies that skr−1
∈ Kkr−1

as required. We also
have tkr /∈ Kkr since in this case Kkr ⊆ Kkr−1

.
Repeating the argument along the same lines, we get then that skr−i

∈ Kkr−i
, that tkr−i+1

/∈
Kkr−i+1

, and that (kr−i+1, kr−i) is overlapping for all i ∈ [r− 1]. In particular, for i = r− 1, we get
that sk2 < sk1 , which is a contradiction. �

Since Hj is acyclic, we can define a partial order on [j]: we set k �j ℓ if there is a directed path
from k to ℓ in Hj . Since the sequence (Aj) is increasing, k �j ℓ implies k �j′ ℓ for all j′ ≥ j. The
converse is actually true.

Lemma 3. Let k and ℓ be two integers in [j]. If k and ℓ are incomparable for �j, they are

incomparable for all �j′ with j′ ≥ j.

Proof. Assume for sake of a contradiction that k and ℓ are incomparable for �j but not for some
�j′ with j′ > j. We choose j′ as small as possible with this property. Without loss of generality,
we assume that k �j′ ℓ. It means that there is an elementary path from k to ℓ in Hj′ that goes
through j′ (because of the minimality of j′). Moreover, it means also that the two neighbours of
j′ on this path are incomparable in Hj′−1: if there were a path between these two neighbours,
it would either contradict the acyclicity of Hj′ (Lemma 2), or the minimality of j′ (the integers
k and ℓ would already have been comparable for Hj′−1), depending on the direction of the path.

9

The two neighbours of j′ are thus incomparable for �j′−1 and comparable for �j′ , and they would
also contradict the statement of the lemma we want to prove. We can thus assume without loss of
generality that k and ℓ are the two neighbours of j′ and that the arcs (k, j′) and (j′, ℓ) exist in Aj′ .

By definition of Aj′ , we have sk < e < tk, with e ∈ {sj′ , tj′} and e /∈ Kj′ , and sj′ < f < tj′ ,
with f ∈ {sℓ, tℓ} and f /∈ Kj′ . Since sℓ < sj′ , we necessarily have f = tℓ, and (ℓ, j′) is overlapping.
It implies that sj′ ∈ Kj′ , and thus e = tj′ . Therefore, we have sk < tℓ < tk with tℓ /∈ Kj′ , which
implies that the arc (k, ℓ) exists in Aj′ , and thus already in Aj . It is in contradiction with the fact
that k and ℓ are incomparable. �

We are now in position to prove Proposition 6.

Proof of Proposition 6. We build a sequence of total orders (�tot
j)j∈J , the order �tot

j being defined

on [j] and being compatible with the partial order �j defined above. We build this sequence so
that if k �tot

j ℓ for k, ℓ ∈ [j], then k �tot
j′ ℓ for all j′ ≥ j.

When j = 1, the definition is trivial. Suppose that �tot
j is defined for some j. We explain how to

build �tot
j+1. We consider the tournament induced by �tot

j on [j]. (Recall that a tournament in graph

theory is obtained by giving an orientation to each edge of a complete graph). The tournament is
acyclic. We add a vertex j+1 to this tournament, as well as all arcs (k, j+1) with k �j+1 j+1 and
all arcs (j + 1, k) with j + 1 �j+1 k. Let D′

j+1 be this new graph. We claim that D′

j+1 is acyclic.
Indeed, suppose for a contradiction that it contains a directed cycle. It necessary goes through
j + 1. The two neighbours of j + 1 on this cycle are comparable according to �j+1. According to
Lemma 3, they are already comparable for �j . As it has been noticed right before the statement of
Lemma 3, these two neighbours should then be ordered in a same way by �j and by �j+1, which is
in contradiction with the acyclicity of the tournament. We can thus complete D′

j+1 into an acyclic

tournament, which provides the total order �tot
j+1. To conclude this part of the proof, note that

�tot
j+1 is compatible with �j+1: it is compatible with �j and thus with �j+1 (Lemma 3) for the

elements in [j]; since all arcs (k, j + 1) with k �j+1 j + 1 and all arcs (j + 1, k) with j + 1 �j+1 k
are present in D′

j+1, the order �tot
j+1 is compatible with �j+1 on all elements of [j + 1].

Note that this construction is polynomially computable.

We say that a car j is active at station i if sj ≤ i < tj . Now, we define the following sequence

(C̃i) of train configurations: C̃i is the sequence of active cars at station i ordered from right to left
according to �tot

j(i), where j(i) = max{j : sj ≤ i}. Note that in particular the end of the train,

which is on the left, starts with the maximal element for the total order, and the first car after the
locomotive is the minimal element for the total order.

The sequence (C̃i) is feasible: the common cars in C̃i and C̃i+1 occur in the same order because
j(i+1) ∈ {j(i), j(i)+1} and in any case �tot

j(i) and �
tot
j(i+1) are compatible. Note that the operation

to perform at station i, and in particular the exact position the car must take in the train in case
i is a source station, can be done in polynomial time using �tot

j(i).

We prove now that sj ∈ Kj if and only if sj is subject to an inner operation in the sequence

(C̃i). Suppose first that sj ∈ Kj . Since, N [sj] \ Kj 6= ∅, there is a car k < j such that (k, j) is
overlapping and tk /∈ Kj . We have thus an arc (j, k) in Hj . Therefore, j precedes k in �tot

j , which
means that j cannot be at the end of the train when the train leaves station sj . Suppose now that
sj /∈ Kj and let k be any active car at station sj distinct from j. We have sk < sj < tk and thus
the arc (k, j) exists in Hj . Since it holds for any such k, the car j is the maximal element for �tot

j

on the subset of active cars and is at the end of the train when the train leaves sj : the car j has
incurred an outer operation.

10

Finally, we prove that if tj is subject to an inner operation, then tj ∈ Kn. Suppose that tj /∈ Kn.
For any active car k at station tj , i.e. any car such that sk < tj < tk, we have tj /∈ Kmax(k,j). There
is thus an arc (k, j) in Hmax(k,j). Thus at tj , the car j is located at the end of the train and is
subject to an outer operation. �

V. Bœuf, Université Paris Est, CERMICS, 6-8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-

la-Vallée, Cedex 2, France

E-mail address: vianney.boeuf@polytechnique.org

F. Meunier, Université Paris Est, CERMICS, 6-8 avenue Blaise Pascal, Cité Descartes, 77455

Marne-la-Vallée, Cedex 2, France

E-mail address: frederic.meunier@enpc.fr

11

