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Abstract. Large tiles in a database are itemsets with the largest area
which is defined as the itemset frequency in the database multiplied by
its size. Mining these large tiles is an important pattern mining problem
since tiles with a large area describe a large part of the database. In
this paper, we introduce the problem of mining top-k largest tiles in a
data stream under the sliding window model. We propose a candidate-
based approach which summarizes the data stream and produces the
top-k largest tiles efficiently for moderate window size. We also propose
an approximation algorithm with theoretical bounds on the error rate
to cope with large size windows. In the experiments with two real-life
datasets, the approximation algorithm is up to hundred times faster than
the candidate-based solution and the baseline algorithms based on the
state-of-the-art solutions. We also investigate an application of large tile
mining in computer vision and in emerging search topics monitoring.

1 Introduction

Mining frequent patterns is an important research topic in data mining. However,
instead of focusing on exhaustive search to find all possible frequent patterns,
many works are now focusing on designing methods that are not only efficient
in the context of very big data but also limit, e.g. with constraints or with new
interestingness measures, the number of patterns output by these algorithms.

Area is a measure of pattern interestingness defined as a pattern’s frequency
in the database multiplied by its size. It has been shown that in some applications
such as in role mining [10, 16] where the idea is, given a set of users and a set of
permissions, to find a minimum set of roles such that all users will be assigned
a role for which some permissions will be granted, mining roles is equivalent to
a variant of mining itemsets with large area in a database.

Recent applications produce a large variety of transactional data streams,
such as text stream from twitter4 or video stream in which video frames can
be converted into transactions [6]. In the context of data streams, data usually
arrive continuously with high speed, hence requiring efficient mining techniques
for summarizing the data stream and keeping track of important patterns.

4 www.twitter.com
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In this paper we tackle the problem of mining the top-k largest tiles, i.e. the
k closed itemsets with the largest area in a stream of itemsets. The problem
of mining the largest tile in a database is well-known to be NP-hard and in-
approximable [7]. Therefore, the straightforward approach that recalculates the
set of top-k largest tiles from scratch every time a sliding window is updated
is not efficient. To deal with this situation, we first introduce in Section 4 a
candidate-based approach which incrementally summarizes the stream by keep-
ing the itemsets that can be the top-k largest tiles in some future windows. For
each candidate, an upper-bound and a lower-bound of the area in any future win-
dow are kept. These bounds are used to prune the candidates when they cannot
be the top-k largest tiles in any future window. In doing so, the candidate-based
algorithm is more efficient than the straightforward approach because updating
is cheaper than recalculating the top-k tiles from scratch.

However, when the widow size is large, the candidate-based algorithm is
inefficient because the summary grows very quickly. Therefore, we introduce
an approximation algorithm with theoretical bounds on the error rate. In the
experiments with two real-life datasets presented in Section 6, the approximation
algorithm is two to three orders of magnitude faster and more accurate than the
candidate-based solution and the baseline algorithms created based on the state-
of-the-art solutions for the top-k largest tiles mining. We also discuss potential
applications of mining large tiles for object tracking in video and emerging search
topics monitoring problems.

2 Related Works

Recent works [12, 9, 17] propose approaches to solve the redundancy and trivial
patterns issues in frequent pattern mining. For instance, the first two works
focuse on finding a relevant or concise representation of sets of frequent patterns.
Meanwhile, the last work solves the aforementioned issues by proposing a MDL-
based approach that finds patterns compressing the database well. In all these
cases as well as in ours, the purpose is to limit the output of the algorithms to
a set of useful patterns.

The problem of mining large tiles has already been tackled in [10, 16, 13]. The
authors of the two first papers show that the problem of finding roles is equivalent
to variants of the tiling database problem. The last paper shows how tiles can be
used to understand complex proteins by identifying their subunits. The authors
of [4] also showed that the dense rectangles in a binary matrix seem to correspond
to interesting concepts. Therefore, mining large tiles may help to identify those
interesting concepts from the databases. In [15] the authors investigate how to
output the set of tiles in a tree representation which is easily interpretable by the
users. Tiles are also used to identify and characterize anomalies in a database in
[14].

In many applications, data arrives in a streaming fashion with high speed
[1]. Besides the popularity of data streams in many applications, the temporal
aspect of the patterns such as the evolution of patterns overtime [1] provides
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a b c d e f g h k 

𝑇1 0 0 0 1 1 0 1 1 0 

     𝑇2 1 1 1 1 1 0 1 1 0 

𝑇3 1 1 1 1 1 1 1 1 1 

𝑇4 1 1 1 0 0 0 1 1 1 

     𝑇5  1 1 1 0 0 0 1 1 1 

𝑇6 1 1 1 0 1 1 0 0 0 

𝑇7 0 1 1 0 0 0 1 1 1 

𝑇8 0 0 0 0 1 1 1 1 1 

Fig. 1. An example of large tiles in a window with w = 8 transactions.

useful insights about the data for the users. Despite the importance of data
stream paradigm, there is no work yet addressing the problem of mining large
tiles in a data stream. The algorithms introduced in this paper are, to the best
of our knowledge, the first to solve the problem of mining the top-k largest tiles
in a stream of itemsets under the sliding windows model.

3 Problem Definition

Let Σ be an alphabet of items, a transaction T is an itemset T ⊆ Σ. Let S =
T1T2 · · ·Tn be a stream of transactions where each transaction Tt is associated
with a timestamp t indicating the order of transaction generation.

In this work we consider the sliding window model in which a window of the
w most recent transactions is monitored. A sliding window of size w at time
point t denoted by Wt is a sequence of w consecutive transactions in the data
stream, i.e. Wt = Tt−w+1 · · ·Tt−1Tt.

For any given itemset I ⊆ Σ the frequency of I in a sliding window Wt,
denoted by ft(I), is defined as the number of transactions in Wt that are the
supersets of I. Let |I| be the cardinality of the set I, the area of I in the window
Wt denoted by At(I) is defined as At(I) = ft(I) ∗ |I|.

An itemset I is closed in a window Wt if there is no superset of I with the
same frequency as I in the window Wt. Such itemsets are usually called large
tiles in the literature [7]. Itemsets that are not closed correspond to sub-tiles of
large tiles and are thus not interesting for our problem. From now on we use the
term tiles to refer to closed itemsets.

Example 1 (Large tiles). Figure 1 shows a window with 8 transactions repre-
sented as rows of a binary matrix. In each row, an element is equal to 1 if the
corresponding item belongs to the transaction. In this figure, three large tiles
abc, degh and ghk with respective area 15, 12 and 15 are highlighted. Large tiles
are the maximal sub-matrices containing only 1.

The problem of stream tiling can be formulated as :
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Definition 1 (Stream Tiling). Given a data stream of itemset transactions
S, a parameter k and a window size w, the stream tiling problem consists in
computing the k tiles with the largest area in every window of size w.

4 Algorithms

It was proven that the problem of mining the largest tile in a database is NP-
Complete and is even inapproximable [7]. Therefore, recalculation of the top-
k largest tiles from scratch every time the window is updated is very time-
demanding. In this section we discuss efficient solutions for the given problem
under the streaming context.

4.1 Candidate-Based Algorithm

We first discuss an exact algorithm named cTile which maintains a summary of
the sliding window containing candidate itemsets that potentially can become
top-k largest tiles in any future window. This summary is designed such that it
can avoid expensive recalculation of the set of largest tiles from scratch when
the window is sliding.

The general idea of the algorithm is as follows: at every transaction Ti we
keep a candidate list Ci of all closed subsets of the given transaction which
can become a top-k tile in a future sliding window. In order to identify these
closed itemsets, we keep a lower-bound and an upper-bound on the area of these
itemsets in any future sliding window which contains Ti. These bounds will be
used to infer which itemsets can be top-k tiles and which sets for sure cannot be
top-k tiles in any future window (thus can be removed from the summary).

𝑇1 𝑇2  … … … … 𝑇𝑖 … … … 𝑇𝑤−1 𝑇𝑤   

𝑊𝑤 

𝑊𝑤+𝑖−1 
 𝐽− = min 𝐴𝑤+𝑖−1(𝐽)  𝐽+ = max 𝐴𝑤+𝑖−1(𝐽) 

 

𝑖 − 1 transactions 

Given a window Ww = T1 · · ·Tw−1Tw, for every closed itemset J in the
candidate list Ci(1 ≤ i ≤ w), the lower-bound and the upper-bound of the area
of this itemset in any future sliding window containing Ti are denoted J− and
J+. The lower-bound J− at time point w is calculated as the area of J in the
transactions Ti, Ti+1, · · · , Tw and the upper-bound J+ is calculated as

J+ = J− + (i− 1)× |J | (1)

Proposition 1. J− and J+ are the correct lower-bound and upper-bound on the
area of J in any future window Wt of size w, w ≤ t, containing the transaction
Ti.
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ac ab abc bd acd 

C1                                   

T2                                   T3                                   T4                                   T5                                   

a, 4, 4 

ac, 6, 6 

a, 3, 4 

b, 3, 4 

ac, 4, 8 

b, 2, 4 

acd, 3, 15 d, 2, 5 

bd, 2, 8 

ab, 4, 6 abc, 3, 9 C4                                   C5                                   

T1                                   

ac ab abc bd acd 

C1                                   

T2                                   T3                                   T4                                   T5                                   

a, 4, 4 

ac, 6, 6 

a, 4, 4 

b, 3, 3 

ac, 6, 8 

b, 2, 3 

acd, 3, 12 d, 2, 4 

bd, 2, 6 

ab, 4, 4 abc, 3, 6 C6                                   

T1                                   
ac 

C5                                   

ac, 2, 10 

ac, 4, 10 

T6                                   

Fig. 2. An example of the summary maintained by the cTile algorithm for sliding
windows with size w = 5. The summary contains candidate itemsets which can become
a top-k tile in the future. Every candidate is associated with a lower-bound and an
upper-bound on the area which are used to prune the candidate list.

Example 2 (Bounds). Figure 2 (upper-part) shows an example of a sliding win-
dow with size w = 5. Each candidate J in a candidate list Ci is associated with
two numbers corresponding to the lower-bound and the upper-bound on the
area of the candidate. For instance, for the candidate J = ac associated with the
candidate list C3 the lower-bound is J− = 4 because the area of ac in the set of
currently observed transactions T3, · · · , T5 is 2 ∗ 2 = 4. For any future window
in which the transaction T3 is not expired, the area of ac is at least as large as 4.
Meanwhile J+ = 8 because the area of ac in any future window that contains T3
is at most 4 + 2 ∗ 2 = 8. The area is equal to J+ only when the new transactions
T6 and T7 both contain ac.

Algorithm 1 incrementally maintains the candidate lists Ci in the summary.
When a new transaction is appended to the end of the window, the bounds
J+ and J− are updated accordingly (line 10-13). Then the new transaction is
intersected with every element in the summary and the intersections are added
to the corresponding candidate list (line 8-9). If there exists another candidate
B ∈ Cj kept at a younger transaction Tj (j > i), such that B− is ranked kth

in all transactions younger than Ti (including itself) and meanwhile B− > J+,
then J will never be among top-k tiles in any future sliding window, hence J is
removed from the summary. When a transaction is expired, it is removed from
the window along with the candidate list stored at the given transaction.

Example 3 (cTile). Figure 2 (bottom part) shows one update step of Algorithm
1 when a new transaction T6 = {a, c} is appended to the window and T1 together
with C1 are removed from the summary. First, T6 is intersected with all the ex-
isting candidates in C2, C3, · · · , C5 to add new closed sets to the candidate lists.
After that all the lower-bounds and the upper-bounds are updated accordingly.

Assume that we want to get top-3 largest tiles in the sliding window, i.e.
k = 3. Since (b, 3, 3) in C2 has the upper-bound equal to 3. It is removed from the
summary because the itemset ranked at the third position in the candidates lists



6

Algorithm 1 cTile(St)

1: Input: A stream of transactions T1, T2, · · · , T∞, a sliding window size w and a
parameter k

2: Output: Summary C for calculating top-k largest tiles
3: C ←− {C1, C2, · · · , Cw} //candidate lists
4: for t = w →∞ do
5: C ← C \ {Ct−w+1}
6: Ct+1 ← {Tt+1}
7: C ← C ∪ {Ct+1}
8: for i = t→ t− w + 2 do
9: Ci ←− Ci

⋃
intersect(Ci, Tt+1)

10: for J ∈ Ci do
11: J− = |{i ≤ l ≤ t|J ⊆ Tl}| ∗ |J |
12: J+ = J− + (w − t + i− 1)|J |
13: end for
14: Pruning(Ci)
15: end for
16: end for
17: Return C

of younger transactions (including T2) are (a, 4, 4), (ac, 4, 10), (ab, 4, 4) whose
lower-bound is 4. The same pruning operation can be applied for (b, 2, 3) in C3.

Theorem 1 Given k, w and a stream of transactions, using the summary in
Algorithm 1 we can answer the top-k largest tiles exactly.

Proof. Assume that there exists a top-k largest tile I in a window Wt not rec-
ognized as a top-k largest tile (false negative). The first transaction of Wt con-
taining I is denoted by Ti. False negative can only occur if at time t, I 6∈ Ci.
Therefore either I is directly pruned from Ci by pruning criteria or indirectly
pruned because its closed supersets are pruned.

Since the bounds are exact the former case cannot happen. The latter case
happens when I is not a closed itemset at the moment its closed supersets are
pruned. In such case, the upper-bound of I is always less than the upper-bound
of its closed supersets which were used to prune the supersets. Therefore, I is
not a top-k tile in Wt. Both cases lead to contradiction.

4.2 Approximation Algorithm

The size of the summary maintained by cTile grows quickly when the window
size increases making it inefficient for monitoring large windows. The main reason
is that each time a new transaction arrives, it has to be intersected with a large
amount of candidates, which is a time-consuming operation. Therefore, in this
section we discuss an approximation algorithm named aTile that approximates
the set of largest tiles efficiently.

The main process of the approximation algorithm is almost the same as
Algorithm 1. The only difference of these two algorithms lies in the method
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of candidate pruning. Instead of using an upper-bound on the area, aTile tries
to approximate the future area of a tile. This estimate is used to prune the
candidates in the same way as cTile does.

Let us denote the probability of observing an itemset J as a subset of a
transaction in the data stream by µJ . Therefore, the expectation of the area of
the itemset J in a window of size w is µJ .|J |.w.

Given a window Ww = T1 · · ·Tw−1Tw, assume that J is kept in the candi-
date list Ci of transaction Ti. The lower-bound J− is calculated as in the cT ile
algorithm. Instead of using an upper bound J+ on the area of J , we compute
an estimate of the area of J denoted by J∗.

Since µJ is unknown, we cannot directly define J∗ as µJ .|J |.w. The probabil-
ity µJ is thus estimated in the sub-window Ti · · ·Tw. However, if this sub-window
is too small, the estimation of µJ is not accurate. Therefore, we introduced a
threshold L ≤ w: if the sub-window is smaller than L, we do not use this esti-
mation and fall back on using the upper bound J+ for J∗:

J∗ =

{
J− + (i− 1)× |J | if w − i+ 1 ≤ L (i.e., J∗ = J+)

J−

(w−i+1) × w if w − i+ 1 > L
(2)

All the steps of the of the aTile algorithm are very similar to the cT ile
algorithm except that it uses J∗ instead of J+ for candidate pruning. In the
experiment section we empirically show that the aTile algorithm is more efficient
than the cT ile algorithm because its candidate set is more concise. An important
property of the aT ile algorithm is that the error rate on the accuracy of the result
is bounded if we assume that the transactions are i.i.d. in a window of size 2w.

5 Theoretical Analysis

In this section, we show theoretical bounds on the probability of errors induced
by the aT ile algorithm. We mainly show that the error rate is extremely low
when L is large enough. We consider two types of error event: False negative
(FN): in a window Wt∗ for some t∗, there is a true top-k largest tile that is not
present in the results returned by the aT ile algorithm and False positive (FP):
in a window Wt∗ for some t∗, there is a non top-k largest tile that is present in
the result returned by the aT ile algorithm.

5.1 False Negative Bound

Let us assume that I is a true top-k largest tile in the window Wt∗ and It
∗

k is
ranked at position k in the list of a true top-k largest tile of the window Wt∗ . Let
4 ≥ 0 be the difference between the average area of I and It

∗

k in the window Wt∗ ,

i.e. 4 =
At∗ (I)−At∗ (I

t∗
k )

w . The following lemma show the relationship between the
probability of a false negative, L and 4:
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Lemma 1 If the transactions are independent and identically distributed (i.i.d)
in a window of size 2w, the probability that a random top-k tile is not reported,
is bounded as follows:

Pr(FN) < 4w ∗ e−
L42

2|I|2

Proof. A false negative happens in the window Wt∗ with respect to an itemset
I if its area is underestimated in that window. This only happens if there exists
at least one moment t < t∗ such that I is pruned from the candidate list Ci

(t− w < i ≤ t).
Given a time t, let W0 be a window containing transactions Ti, Ti+1, · · · , Tt

where |W0| = wo > L and let f0(I) be the frequency of I in the window W0.
When t is given, the event ”I is removed from Ci” (denoted by Rt) only happens
when the estimate of the upper-bound on the area of I is less than the area of
It
∗

k , i.e. fW0
(I)|I| ww0

< At∗(I
t∗

k ). Therefore, we have:

Pr(Rt) < Pr

(
f0(I)|I| w

w0
≤ At∗(I

t∗

k )

)
< Pr

(
f0(I)|I| w

w0
< At∗(I)− w4

)
< Pr

(
f0(I)

w0
<
ft∗(I)

w
− 4
|I|

)
< Pr

(∣∣∣∣f0(I)

w0
− ft∗(I)

w

∣∣∣∣ > 4|I|
)

< Pr

(∣∣∣∣f0(I)

w0
− µI

∣∣∣∣+

∣∣∣∣ft∗(I)

w
− µI

∣∣∣∣ > 4|I|
)

< Pr

(∣∣∣∣f0(I)

w0
− µI

∣∣∣∣ > 40

w0

)
+ Pr

(∣∣∣∣ft∗(I)

w
− µI

∣∣∣∣ > 41

w

)
< Pr (|f0(I)− µIw0| > 40) + Pr (|ft∗(I)− µIw| > 41)

Where 40 = 4w0

2|I| and 41 = w4
2|I| . It is important to notice that w0µI and wµI

are the expectation of the frequency of I in the window W0 and the window Wt∗

respectively. Since the transactions are independent to each other, according to
the Hoeffding inequality [11] we have:

Pr (|f0(I)− w0µI | > 40) < 2e−
242

0
w0 < 2e

−w0
42

2|I|2 < 2e
−L 42

2|I|2 (3)

A similar inequality can be obtained for bounding the second term as follows:

Pr (|ft∗(I)− wµI | > 41) < 2e−
242

1
w < 2e

−w 42

2|I|2 < 2e
−L 42

2|I|2 (4)

Moreover, since FN happens only when there at least one moment t such
that Rt happens, therefore:

Pr(FN) < Pr(∪t∗−w<t≤t∗Rt) <
∑

t∗−w<t≤t∗
Pr(Rt) (5)

Inequalities 3, 4 and 5 prove the lemma.
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A direct corollary of Lemma 1 is shown in the following theorem:

Theorem 2 If I is strictly more important than It
∗

k , i.e. the expectation of the
area of I in a transaction is strictly greater than the expectation of the area of
It
∗

k in a transaction and L = O(w) then: lim
L−→∞

Pr(FN) = 0

Proof. Let E(A(I)) be the expectation of the area of I in a transaction and
E(A(It

∗

k )) be the expectation of the area of It
∗

k in a transaction. Since 4 =
At∗ (I)−At∗ (I

t∗
k )

w we can imply that:

4
|I|

=
At∗(I)−At∗(I

t∗

k )

w|I|
' E(A(I))− E(A(It

∗

k ))

|I|
(6)

The last equation is the result of the law of large number when L goes to ∞.

From the last equation we can imply that lim
L−→∞

4we
−L 42

2|I|2 = 0 from which the

theorem is proved.

5.2 False Positive Bound

In this subsection we prove bound for false positive error which can be obtained
in a similar way as the bound of false negative.

Let J be an itemset that is not a true top-k largest tile in the window Wt∗

but returned by the aT ile algorithm as a false positive tile. An itemset ranked
at position k in the list of a true top-k largest tile of the window Wt∗ is denoted
by It

∗

k . Let 4 ≥ 0 be the difference between the area of J and It
∗

k in the window

Wt∗ , i.e. 4 =
At∗ (I

t∗
k )−At∗ (J)

w .
The following lemma show the relationship between the probability of a false

positive and L, 4 (proof is similar to Lemma 1):

Lemma 2 If the transactions are i.i.d. in a window of size 2w the probability of
false positive, i.e. the event that a random non top-k tile is reported, is bounded
as follows:

Pr(FP ) < 4w ∗ e−
L42

2|I|2

A corollary of Lemma 2 is shown as follows (proof is similar to Theorem 2):

Theorem 3 If tile size is bounded and if J is strictly less important than It
∗

k ,
i.e. the expectation of the area of J is strictly less than the expectation of the
area of It

∗

k in a transaction and L = O(w) then: lim
L−→∞

Pr(FP ) = 0

Theorem 3 and Theorem 2 show an interesting result that the probability
of false positive and false negative decrease exponentially with L = O(w). It is
important to notice that the condition L = O(w) can be replaced by a weaker
assumption L = k logw for some constant values k. If k is large enough the
bound is also closed to zero. Although the bounds are not tight, in experiments,
we empirically show that false negative rate and false positive rate are negligible
even when L is set to a small value.
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5.3 Long Lasting Tiles

The two previous Theorems give probabilistic results. We can also show a de-
terministic one: if an itemset stays in the top-k largest tiles for more than w
consecutive windows and its area is at least twice the area of the k-th tile, then
the aTile algorithm finds it. An important point of this theorem is that it does
not depends on the value of L. Therefore, even if the probability of false negative
or false positive is higher with a small L, the algorithm is still able to mine these
tiles that we call the long lasting tiles.

Theorem 4 Let z be a time and J be an itemset. If the area of J in every
windows Wt with z ≤ t < z+w is larger than two time the area of the k-th largest
tile in this window (i.e., At(J) ≥ 2At(I

t
k)), then there is a time z−w < t∗ < z+w

such that J (or one of its supersets) is in Ct∗ and is never pruned by aTile.

Proof. We define hypothesis H as: t∗ does not exist. We will show that if H is
true, it leads to a contradiction and thus the theorem must be true. We denote
by [x, y] the subsequence of transactions Tx · · ·Ty. The occurrence times of J in
the subsequence [z−w+1, z+w−1] are denoted by z−w < t1 < . . . < tk < z+w.

If H is true, then for every ti, itemset J and its supersets must be pruned
from Cti at some time t′i no later than ti + w − 1, i.e., t′i < ti + w.

Let Si be the subsequence [ti, t
′
i] = Tti · · ·Tt′i . If for all z − w < ti ≤ z, we

have t′i ≤ z then we define W0 = Wz. Otherwise, we take W0 = Wt′max
where

t′max = max{t′i | ti ≤ z}.
We now construct a set S of these subsequences Si such that every subse-

quence of S is included in W0, every occurrence of J is in at least one of these
subsequences, and at most two of these subsequences intersect at any given time.
We start with S = ∅ if W0 = Wz or with S = {[tmax, t

′
max]} otherwise. We scan

the window W0 from left to right. If there is an occurrence of J at time ti not al-
ready in a subsequence of S, then we add Si in S. All the added subsequences are
disjoint by construction, only the last added one may intersect with (tmax, t

′
max).

For every Si ∈ S, let Ai be the area of the k-th largest tile of Si used to
prune J , i.e., J∗ < Ai. Since by Eq. 2 J∗ ≥ wASi

(J)/(t′i − ti + 1), we have
wASi(J)/(t′i − ti + 1) < Ai. If we define Am = maxAi, then ASi(J) < Am(t′i −
ti + 1)/w and by summation for all Si ∈ S:

∑
iASi(J) < Am

∑
i(t
′
i − ti + 1)/w.

Since all occurrences of J are covered by at least one Si,
∑

iASi
(J) > AW0

(J)
and since at most two subsequences Si from S intersect at any given time,∑

i(t
′
i − ti + 1) ≤ 2w and thus AW0

(J) < 2Am. Since Am is the size of the k-th
tile of one of the Si ⊆ W0, it is less than the size of the k-th tile in the whole
window W0. Finally, AW0(J) is strictly less than two time the area of the k-th
tile in W0 which is a contradiction.

6 Experiments

In this section, we perform experiments with two real-life data streams to com-
pare the proposed algorithms to the baseline approaches with respect to the
efficiency and the accuracy of the results. The two datasets are:
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Fig. 3. Accuracy versus average update time in seconds of the aTile algorithm and the
sTile algorithm when L and the number samples increases
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Fig. 4. The average accuracy of the aTile algorithm when L is varied. In the table: the
average accuracy of the top-10 largest tiles returned by aTile when the window size is
varied and L = 0.1w

– Kosarak: 1M transactions of click log by the users of a website. Item are a
pages in the website. The largest transaction contains 500 items.

– AOL: 100K search queries by the users of the AOL search engine. Each item
is a keyword in the search query. Most queries are short and the longest
query contains only 26 keywords.

The datasets and the source codes of aTile and cTile in C++ are available
for download5. The baseline algorithms for comparison are as follows:

– Tile: the original implementation of the tiling algorithm for static database
[7]. In order to adopt this algorithm for a data stream, we use Tile to recal-
culate the top-k largest tiles from scratch whenever the window is sliding.

– sTile: a sampling based technique proposed in [2]. The sT ile algorithm sam-
ples N itemsets from the window such that each itemset is sampled with
probability proportional to the area of the itemset. The top-k largest tiles
are extracted from the samples every time the window is sliding.

5 http://www.win.tue.nl/~lamthuy/tile.htm
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Fig. 5. The average sum (larger is better) of the area of the top-10 tiles returned by
the aTile and the sTile algorithms.
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6.1 Accuracy

We performed experiments to demonstrate the effectiveness of the aTile algo-
rithm in term of accuracy. In the first experiment the window size is set to
w = 5000 for the Kosarak dataset and w = 10000 for the AOL dataset. Figure
4 shows the average accuracy calculated as the precision of the top-k largest
tiles returned by the aTile algorithm when L is varied. Even for very small L,
the accuracy is very high, e.g. 99% in the Kosarak dataset and 93% in the AOL
dataset. The accuracy increases and reaches 100% accuracy when L is increased.
In the same figure, we can also see that the results are similar when k is varied.

In order to compare to the baseline algorithm sTile, we plot the accuracy
(y-axis) versus average update time (x-axis) in Figure 3. We varied both L for
the aTile algorithm and the number of samples of the sTile algorithm. Recall
that the sTile algorithm depends on the number of samples it collects from the
window. When the number of samples increases, so do the accuracy and the
update time. This fact is illustrated in Figure 3 in which the sTile algorithm is
significantly less accurate than the aTile algorithm given about the same average
update time.

The accuracy of sTile may be negatively influenced by the fact that sTile has
a very low probability to find each top-k tile. When we calculated the average
sum of the area of the top-10 tiles in the Kosarak dataset for w = 5000, we
observed that it was significantly lower for sTile than for the aTile algorithm
(Figure 5). This confirmed that sTile is not able to find the large tiles with a
reasonable number of samples.
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Fig. 7. Running time according to the database size when the algorithm is used to
mine large tiles in a database instead of a stream. The right most subplot shows the
number of candidates in the summary when the window size increases.

6.2 Efficiency

Figure 6 shows average update time of four algorithms for k = 10 and different
values of w. The number of samples in the sTile algorithm was set to N = 80000
(when N is larger, the algorithm become significantly slower). We set L = w

10 (as
shown in Sect. 6.1, the accuracy is then always above 85%). In term of update
time, aTile is up to an order of magnitude (50x) faster than the cTile algorithm
and about two to three orders of magnitude faster than the sTile (100x) and the
Tile (1000x) algorithms. The speed-up increases with the window size.

In Figure 7, the last plot shows the number of candidates kept in the summary
of the aTile and the cTile algorithm for varying values of w (the result of the
AOL dataset is omitted because it is very similar to the results of the Kosarak
dataset in this experiment). The aTile algorithm is more memory efficient than
the cTile algorithm as the number of candidates it keeps in the summary is
much lower.

Finally, in Figure 7 we show the running time when the aTile, cTile and
Tile algorithms are used to find the top-10 largest tiles in a static corpus with
varying size. The purpose of the experiment is to see whether the aTile and the
cTile algorithm can find the large tiles in a static corpus more efficiently than
the Tile algorithm. For the AOL dataset, when most of transactions are small,
the Tile algorithm is the fastest one. However, for the Kosarak dataset, when
the average transaction size is larger, aTile outperforms both Tile and cTile.
Therefore, the aTile algorithm can not only be used for mining large tiles from
a data stream but also to mine large tiles from a database efficiently.

6.3 Application to Topics Monitoring in the AOL Query Stream

In order to show a potential application of the work we created a demo video6 to
visualize the top-k largest tiles of the AOL query stream. Each snapshot of the
video corresponds to a list of the largest tiles extracted from a sliding window.

6 http://www.youtube.com/watch?v=3UCjs9d91_g
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Fig. 8. Top-10 largest tiles in windows (ordered by timestamps) from the AOL query
stream. Larger words correspond to tiles with bigger area. The tile “high school”
emerges in the second window related to searches for the “high school musical movies”.

Figure 8 shows example snapshots taken from the demo video. Three snapshots
of the demo (ordered by timestamps) show the evolution of the largest tiles
overtime. Each snapshot is visualized by the wordcloud tool in R. Larger words
correspond to tiles with larger area.

For example, in the first snapshot the keyword “real estate” is the most
important tile. However, it becomes less important in the second and the third
snapshot. Meanwhile, new important tiles such as “high school” is emerging as
search for the “high school musical movies” increases in 2006. With this demo,
users can track the dynamic of important search topics online.

6.4 Application to Tracking in Videos

We investigate how mining top-k largest tiles in a data stream can be useful for
analysis of videos and, in particular, for tracking. A more detailed description
of this application can be found in [3]. We worked on a real video made of 5619
frames. This video is shot from a car while following another car (the main
object). The main object is present in almost all the frames of the video. If we
are able to represent the video as a data stream and use our tile mining algorithm
on it, it should discover the car as a large tile or a set of large tiles.

We used the segmentation algorithm7 [8] to generate a stream of graphs (one
graph per frame). Each graph is a Region Adjacency Graph (RAG) where each
node is a region (a set of adjacent pixels) and two nodes are connected if their
regions are adjacent. This algorithm performs a temporal segmentation, which
means that a given region (and thus, the corresponding node) is present in several
successive frames. However, a single region is not enough to track an object in
the video: due to change in the object pose or illumination, some regions will
split, or merge or disappear and so do the corresponding nodes. We then build
a transaction consisting in the set of nodes of each RAG.

Mining tiles on this data stream results in tiles containing regions spread
all over the frames. Moreover, the top-k tiles are generally very similar (only
differing by one or two regions). Indeed, by removing the information about the

7 http://www.videosegmentation.com
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Fig. 9. Frame of the video. Fig. 10. top-30 star-shaped tiles in the
segmented frame.

adjacency of the regions, it was not possible to find meaningful tiles. The main
problem is that the regions composing the car (or more generally, an object to
be tracked) must be “close” to each other and this was not taken into account
in the original setting. Therefore, we added a spatial constraint to the problem.
We chose to mine tiles that are star subgraphs of the RAGs. A star subgraph
is a graph with nodes i0, i1, . . . in where i1, . . . , in are nodes adjacent to i0 in
the RAG. This formalization ensures that the items in a tile are adjacent to
a “center” item i0. Moreover, it is easy to integrate this constraint into our
algorithms: the intersection of two star graphs with the same center is just the
intersection of their set of nodes. The algorithm is otherwise unchanged.

We extracted the top-30 tiles with a window of 300 frames (see an example on
Fig 10). Then we checked if the extracted tiles could be useful to track the main
object (car). We manually drawn the bounding box containing the car in each
fifth frame. Then, we selected, for each frame, the tile with the best precision.
We end up with a set of 69 tiles with an overall precision of 0.92 and recall of
0.74 on the whole video (and even a recall of 1 on the 2000 first frames). This
means that the tiles can actually be used as a high level feature for tracking. Of
course, in a real application, the bounding box is not known. But techniques like
those described in [5] can be used to build tracks from the extracted tiles.

7 Conclusions and Future Works

In this paper, we proposed two algorithms for mining the top-k largest tiles from
a data stream with a sliding window model. The first candidate-based algorithm
cTile solves the problem exactly but the update time becomes important when
the window size increases. The second one is an approximation algorithm with
theoretical bounds on the error rate. Experiments with two real-life datasets
show that the approximation algorithm can find large tiles with high accuracy
while being an order of magnitude faster than the candidate based algorithm
and two to three order of magnitude faster than the other baseline algorithms.

We also show potential applications of large tiles mining in monitoring emerg-
ing popular topics in a search engine query log or in a tracking problem. A pos-
sible extension for future work is to consider mining different types of tiles with
constraints for meaningful applications.
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