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UNIQUENESS AND LONG TIME ASYMPTOTIC FOR THE

PARABOLIC-PARABOLIC KELLER-SEGEL EQUATION

K. CARRAPATOSO, S. MISCHLER

Abstract. The present paper deals with the parabolic-parabolic Keller-Segel equation in the
plane in the general framework of weak (or “free energy”) solutions associated to an initial datum
with finite mass M < 8π, finite second log-moment and finite entropy. The aim of the paper is
twofold:

(1) We prove the uniqueness of the “free energy” solution. The proof uses a DiPerna-Lions
renormalizing argument which makes possible to get the “optimal regularity” as well as an
estimate of the difference of two possible solutions in the critical L4/3 Lebesgue norm similarly
as for the 2d vorticity Navier-Stokes equation.

(2) We prove a radially symmetric and polynomial weighted L2 exponential stability of the
self-similar profile in the quasi parabolic-elliptic regime. The proof is based on a (singular)
perturbation argument which takes advantage of the exponential stability of the self-similar
profile for the parabolic-elliptic Keller-Segel equation as established in [9, 14].
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1. Introduction

The Patlak-Keller-Segel (PKS) system for chemotaxis describes the collective motion of cells
that are attracted by a chemical substance that they are able to emit ([31, 21]). In this paper we
are concerned with the parabolic-parabolic PKS model in the plane which takes the form

∂tf = ∆f −∇(f ∇u) in (0,∞)× R
2,(1.1)

ε∂tu = ∆u+ f − αu in (0,∞)× R
2,

which is complemented with an initial condition

(1.2) f(0, ·) = f0 ≥ 0 and u(0, ·) = u0 ≥ 0 in R
2.

Here t ≥ 0 is the time variable, x ∈ R2 is the space variable, f = f(t, x) ≥ 0 stands for the mass
density of cells while u = u(t, x) ≥ 0 is the chemo-attractant concentration and ε > 0, α ≥ 0
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are constants. We refer to [7] and the references quoted therein for biological motivation and
mathematical introduction.

The fundamental identities are that any solution to the Keller-Segel equation (1.1) satisfies at
least formally the conservation of mass

(1.3) M(t) := 〈f(t, .)〉 = 〈f0〉 =:M, with 〈g〉 :=
∫

R2

g(x) dx,

and the free energy-dissipation of the free energy identity

(1.4) F(t) +

∫ t

0

DF (s) ds = F0,

where the free energy F(t) = F(f(t), u(t)), F0 = F(f0, u0) is defined by

(1.5) F = F(f, u) :=

∫

R2

f log f dx−
∫

R2

fu dx+
1

2

∫

R2

|∇u|2 dx+
α

2

∫

R2

u2dx,

and the dissipation of free energy by

(1.6) DF = DF (f, u) :=

∫

R2

f |∇(log f)−∇u|2 dx+
1

ε

∫

R2

|∆u+ f − αu|2 dx.

Following [7], throughout this paper, we shall assume that the initial data f0 and u0 satisfy

(1.7)











f0 (1 + log〈x〉2) ∈ L1(R2) and f0 log f0 ∈ L1(R2);

u0 ∈ H1(R2) if α > 0 or u0 ∈ L1(R2), ∇u0 ∈ L2(R2) if α = 0;

f0 u0 ∈ L1(R2),

where here and below we define the weight function 〈x〉 := (1 + |x|2)1/2. We also make the
important restriction of subcritical mass hypothesis

M := 〈f0〉 ∈ (0, 8π),

because a suitable global existence theory is available in that case (see [7, 27]) and that there
exists blow up (not global in time) solution when M > 8π (see [19, 29, 28] and the discussion in
[27, 1. Introduction]). We also refer to [4, 12] where a global existence theory is developed in the
possible supercritical case M > 0 and the condition that ε is large enough (which corresponds to
a case where the nonlinearity in (1.1) is small).

As in [7], we consider the following definition of weak solution.

Definition 1.1. For any initial datum (f0, u0) satisfying (1.7) with M < 8π, we say that the
couple (f, u) of nonnegative functions satisfying

(1.8)

f ∈ L∞(0, T ;L1(R2)) ∩C([0, T );D′(R2)), ∀T ∈ (0,∞),
{

u ∈ L∞(0, T ;H1(R2)) if α > 0;

u ∈ L∞(0, T ;L1(R2)) and ∇u ∈ L∞(0, T ;L2(R2)) if α = 0;

fu ∈ L∞(0, T ;L1(R2))

is a weak solution to the Keller-Segel equation associated to the initial condition (f0, u0) whenever
(f, u) satisfies the mass conservation (1.3), the bound

(1.9) sup
[0,T ]

F(t) + sup
[0,T ]

∫

R2

f log〈x〉2 dx +

∫ T

0

DF(t) dt ≤ CT ,

as well as the Keller-Segel system of equations (1.1)-(1.2) in the distributional sense, namely
∫

R2

f0(x)ϕ(0, x) dx =

∫ T

0

∫

R2

f
{

(∇x(log f)−∇xu) · ∇xϕ− ∂tϕ
}

dx dt(1.10)

ε

∫

R2

u0(x)ψ(0, x) dx =

∫ T

0

∫

R2

{u (−∆ψ + αψ − ε∂tψ)− f(t, x)ψ} dx dt(1.11)
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for any T > 0 and ϕ, ψ ∈ C2
c ([0, T )× R2).

It is worth emphasizing that thanks to the Cauchy-Schwarz inequality, we have
∫

R2

f |∇x(log f)−∇xu| dx ≤M1/2 D1/2
F ,

and the RHS of (1.10) is then well defined thanks to (1.3) and (1.9).

This framework is well adapted for a global existence theory in the subcritical mass case.

Theorem 1.2. ([7, Theorem 1]) For any initial datum (f0, u0) satisfying (1.7) and M < 8π
there exists at least one weak solution in the sense of Definition 1.1 to the Keller-Segel equation
(1.1)-(1.2).

Our first main result establishes that this framework is also well adapted for the well-posedness
issue.

Theorem 1.3. For any initial datum (f0, u0) satisfying (1.7) with M < 8π there exists at most
one weak solution in the sense of Definition 1.1 to the Keller-Segel equation (1.1)-(1.2). This one
is furthermore a classical solution in the sense that

(1.12) f, u ∈ C2
b ((0,∞)× R

2)

and satisfies the accurate small time estimate

(1.13) ∀ q ∈ [4/3, 2), t1−
1
q ‖f(t)‖Lq → 0 as t→ 0.

Finally, the free energy-dissipation of the free energy identity (1.4) holds.

Theorem 1.3 improves the uniqueness result proved in [11] in the class of solutions f ∈ C([0, T ];
L1
2(R

2)) ∩ L∞((0, T ) × R
2) which can be built under the additional assumption f0 ∈ L∞(R2)

(see also [17] where a uniqueness result is established for a related model and the recent works
[15, 4, 12] where the well-posedness is proved in some particular regimes). Our proof follows a
strategy introduced in [16] for the 2D viscous vortex model and generalize a similar result obtained
in [14] for the parabolic-elliptic model (which corresponds to the case ε = 0). It is based on a
DiPerna-Lions renormalization process (see [13]) which makes possible to get the optimal regularity
of solutions for small time (1.13) and then to follow the uniqueness argument introduced by Ben-
Artzi for the 2D viscous vortex model (see [2, 6]). It is worth emphasizing that such an argument
is also related to Kato’s works on the Navier-Stokes equation (see e.g. [20]).

From now on in this introduction, we definitively restrict ourself to the case α = 0 and we focus
on the long time asymptotic of the solutions. For that last purpose it is convenient to work with
self-similar variables. We introduce the rescaled functions g and v defined by

(1.14) f(t, x) := R(t)−2g(logR(t), R(t)−1x), u(t, x) := v(logR(t), R(t)−1x),

with R(t) := (1 + t)1/2. For these new unknowns, the rescaled parabolic-parabolic Keller-Segel
system reads

∂tg = ∆g +∇(
1

2
x g − g∇v) in (0,∞)× R

2,(1.15)

ε∂tv = ∆v + g +
ε

2
x · ∇v in (0,∞)× R

2.(1.16)

We are interested in self-similar solutions to the Keller-Segel parabolic-parabolic equation (1.1),
that is solutions which write as

f(t, x) =
1

t
Gε(

x

t1/2
), u(t, x) = Vε(

x

t1/2
)

with

(1.17)

∫

R2

f(t, x) dx =

∫

R2

Gε(y) dy =M ∈ (0, 8π).
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Such a couple of functions (f, u) is a solution to (1.1) if and only if the associated “self-similar
profile” (Gε, Vε) satisfies the elliptic system

∆Gε −∇(Gε ∇Vε −
1

2
xGε) = 0 in R

2,(1.18)

∆Vε +
ε

2
x · ∇Vε +Gε = 0 in R

2,

and thus corresponds to a stationary solution to the rescaled parabolic-parabolic Keller-Segel sys-
tem (1.15). It is known that for any ε ∈ (0, 1/2) and anyM ∈ (0, 8π) there exists a unique solution
(Gε, Vε) to (1.18) such that the mass of Gε equals M which is furthermore radially symmetric and
smooth (say C2(R2)), see [30, 3, 12].

Our second main result concerns the exponential nonlinear stability of the self-similar profile
for any given mass M ∈ (0, 8π) under the strong restriction of radial symmetry and closeness to
the parabolic-elliptic regime. We define the norm

|||(g, v)||| := ‖g‖H1
k
+ ‖v‖H2 , k > 7,

where the weighted Lebesgue space Lp
k(R

2) for 1 ≤ p ≤ ∞, k ≥ 0, is defined by

Lp
k(R

2) := {f ∈ L1
loc(R

2); ‖f‖Lp
k
:= ‖f 〈x〉k‖Lp <∞},

and higher-order Sobolev spaces W ℓ,p
k (R2) are defined by the norm

‖f‖p
W ℓ,p

k

:=
∑

|α|≤ℓ

‖〈x〉k ∂αf‖pLp .

Theorem 1.4. For any given mass M ∈ (0, 8π), there exist ε∗ > 0 and δ∗ > 0 such that for any
ε ∈ (0, ε∗) and any initial datum (g0, v0) satisfying

|||(g0, v0)− (Gε, Vε)||| ≤ δ∗,

∫

R2

g0 dx =

∫

R2

Gε dx =M,

the associated solution (g, v) to (1.15)-(1.16) satisfies

|||(g(t), v(t))− (Gε, Vε)||| ≤ Ca e
at ∀ a ∈ (−1/2,∞), ∀ t ≥ 0,

for some constant Ca = Ca(g0, v0).

That result extends to the parabolic-parabolic Keller-Segel equations similar results known on
the parabolic-elliptic Keller-Segel equation, see [14]. To our knowledge, Theorem 1.4 is the first
exponential stability result for the system (1.1) even under the two strong restrictions of radial
symmetry and quasi parabolic-elliptic regime (we mean ε > 0 small). However, we refer again to
the recent work [12, Section 4] where some results of convergence (without rate) of some solutions to
the associated self-similar profile are established. We also refer to that work for further discussion
and additional references.

Let us end the introduction by describing the plan of the paper. In Section 2 we present
some functional inequalities which will be useful in the sequel of the paper and we establish
several a posteriori bounds satisfied by any weak solution. Section 3 is dedicated to the proof
of the uniqueness result stated in Theorem 1.3. In Section 4 we prove the exponential stability
of the linearized problem associated to (1.15)-(1.16). Finally, in Section 5 we prove the long-time
behaviour result as stated in Theorem 1.4.

Acknowledgments. We thank J.-Y. Chemin, J. Dolbeault, I. Gallagher, G. Jankowiak and O.
Kavian for fruitful discussions and for having pointed out some interesting references related to
our work. The research leading to this paper was (partially) funded by the French ”ANR blanche”
project Kibord: ANR-13-BS01-0004. K.C. is supported by the Fondation Mathématique Jacques
Hadamard.
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2. Local in time a priori and a posteriori estimates

2.1. A priori estimates. In this short paragraph, we follow [7] and we explain how to obtain the
basic estimates which lead to the notion of weak solution as presented in Definition 1.1. We first
observe that the following space logarithmic moment control holds true

d

dt

∫

R2

f (− logH)dx =

∫

R2

f ∇(log f − u) · ∇(logH) dx

≤ δ

2
DF (f, u) +

1

2δ

∫

R2

f |∇ logH |2 dx,

where

H(x) :=
1

π

1

〈x〉4 and then |∇ logH(x)| ≤ 2,

which together with (1.4) imply that the modified free energy functional

FH = F(f, u)−
∫

R2

f logH

satisfies

(2.1)
d

dt
FH(t) +

1

2
DF (t) ≤M.

On the one hand, introducing the Laplace kernel κ0(z) := − 1
2π log |z| and the Bessel kernel

κα(z) :=
1
4π

∫∞

0 t−1 exp(−|z|2/(4t)− αt) dt for α > 0, so that ū = ūα := κα ∗ f is a solution to the
Laplace type equation

−∆ū = f − αū in R
2,

and introducing as well the chemical energy and the modified entropy

Fα(f, u) :=
1

2

∫

|∇u|2 + α

2

∫

u2 −
∫

f u, HH(f) :=

∫

f log(f/H)

one can easily show (see e.g. [7, Lemma 2.2])

(2.2) FH(f, u) = HH(f) + Fα(f, ūα) +
1

2

∫

|∇(u− ūα)|2 +
α

2

∫

(u − ūα)
2

and

(2.3) Fα(f, ūα) = −1

2

∫ ∫

R2×R2

f(x) f(y)κα(x− y) dxdy.

On the other hand, we know from the classical logarithmic Hardy-Littlewood Sobolev inequality
(see e.g. [1, 10]) or its generalization for the Bessel kernel (see [7, Lemma 4.2]) that

∀ f ≥ 0,

∫

R2

f(x) log f(x) dx − 4π

M

∫ ∫

R2×R2

f(x) f(y)κα(x − y) dxdy(2.4)

−
∫

R2

f(x) logH(x) dx ≥ −C1(M),

where here and below Ci(M) denotes a positive constant which only depends on the mass M .
Then from (2.2), (2.3) and (2.4) together with the very classical functional inequality (see e.g.

[7, Lemma 2.4])

(2.5) H+ := H+(f) =

∫

f(log f)+ ≤ HH(f)− 1

4

∫

f log〈x〉2 + C2(M),

one immediately obtains for M < 8π

FH(f, u) ≥ (1− M

8π
)HH(f) +

M

8π

(

HH(f)− 4π

M

∫ ∫

R2×R2

f(x) f(y)κα(x − y) dxdy
)

≥ C3(M)H+(f) + C4(M)

∫

f log〈x〉2 − C5(M).
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One concludes that under the assumption (1.7) on the initial datum, the identity (1.3) and the
inequality (2.1) provide a convenient family of a priori estimates in order to define weak solutions,
namely

C3(M)H+(f(t)) + C4(M)

∫

f(t) log〈x〉2 + 1

2

∫ t

0

DF (f(s), u(s)) ds ≤(2.6)

≤ FH(0) + C5(M) +M t,

and one remarks that the RHS term is finite under assumption (1.7) on (f0, u0), because

FH(0) = F(f0, u0)−
∫

f0 logH

= F(f0, u0) +M log π + 2

∫

f0 log〈x〉2 < +∞.

It is worth emphasizing that in order to get the bounds announced in Definition 1.1 in the case
α > 0 one may use the inequality

(2.7) FH ≥ C6(M)

∫

|∇u|2 + C7(M)α

∫

u2 + C8(M)

∫

f u− C9(M)(1 + 1/α)

which is established in [7, (3.5)].

2.2. Local in time a posteriori estimates. We start by presenting some elementary functional
inequalities which will be of main importance in the sequel. The two first estimates are picked up
from [16, Lemma 3.2] but are probably classical and the third one is a variant of the Gagliardo-
Niremberg-Sobolev inequality.

Lemma 2.1. For any 0 ≤ f ∈ L1(R2) with finite mass M and finite Fisher information

I = I(f) :=

∫

R2

|∇f |2
f

,

there holds

∀ p ∈ [1,∞), ‖f‖Lp(R2) ≤ CpM
1/p I(f)1−1/p,(2.8)

∀ q ∈ [1, 2), ‖∇f‖Lq(R2) ≤ CqM
1/q−1/2 I(f)3/2−1/q.(2.9)

For any 0 ≤ f ∈ L1(R2) with finite mass M , there holds

∀ p ∈ [2,∞) ‖f‖Lp+1(R2) ≤ CpM
1/(p+1) ‖∇(fp/2)‖2/(p+1)

L2 .(2.10)

We refer to [16, Lemma 3.2] and [14, Lemma 2.1] for a proof.

The proof of (1.12) in Theorem 1.3 is split in several steps that we present as some intermediate
autonomous a posteriori bounds.

Proposition 2.2. For any weak solution, we have

I(f(t)) ∈ L1(0, T ), ∀T > 0.

Proof of Proposition 2.2. We write

(2.11) DF(f) ≥ I(f) + 2

∫

f ∆u.

Then by Young’s inequality it follows
∫

f ∆u =

∫

f (ε∂tu− f + αu)

≥ −(1 + α/2 + ε/2)

∫

f2 − ε/2

∫

(∂tu)
2 − α/2

∫

u2.

The second and third terms belong to L1(0, T ) from (1.9), so we only need to estimate the first
one.
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For any A > 1, using the Cauchy-Schwarz inequality and the inequality (2.8) for p = 3, we have
∫

f2 1f≥A ≤
(

∫

f 1f≥A

)1/2(
∫

f3
)1/2

≤
(

∫

f
(log f)+
logA

)1/2(

C3
3 M I(f)2

)1/2

,

from what we deduce for A = A(M,H+) large enough, and more precisely taking A such that
logA = 16H+C

3
3 M(1 + α/2 + ε/2)2,

(2.12)

∫

f2 1f≥A ≤ C
3/2
3 M1/2 H+(f)

1/2

(logA)1/2
I(f) ≤ (1 + α/2 + ε/2)−1

4
I(f).

Denoting Φ(u) = ε
∫

(∂tu)
2 + α

∫

u2 ∈ L1(0, T ) and putting together the last estimate with (2.11),
it follows

1

2
I(f) ≤ DF + C

∫

f2 1f≤A +Φ(u)

≤ DF + 2M exp(CH+M) + Φ(u),

and we conclude thanks to (1.3)–(2.6). �

Remark 2.3. The logarithmic Hardy-Littlewood Sobolev inequality (2.4) in the supercritical case
M ≥ 8π does not lead to a global estimate as for the subcritical case M ∈ (0, 8π). However,
introducing the function M :=MH of mass M and the modified free energy

F̃M (f, u) :=

∫

R2

(f log(f/M )− f + M ) dx−
∫

R2

fu dx+
1

2

∫

R2

|∇u|2 dx +
α

2

∫

R2

u2dx

one shows that any solution (f, u) to the Keller-Segel equation (1.1) formally satisfies

d

dt
F̃M (f, u) ≤ −1

2
DF (f, u) +M

≤ −1

2
I(f)−

∫

f∆u− ε

2

∫

(∂tu)
2 +M

≤ −1

2
I(f)− ε

4

∫

(∂tu)
2 + (1 + ε)

∫

f2 +
α

2

∫

u2 +M,

where we have just used (2.1), the estimate (2.11) and the ones which follow at the beginning of
the proof of Proposition 2.2. We also observe that from (2.5) and (2.7), we may deduce

H+(f) +

∫

|∇u|2 + α

∫

u2 ≤ K1F̃M (f, u) +K2

where Ki, i = 1, 2, are constants which may depend on M > 0 and α ≥ 0. Arguing then as in the
proof of Proposition 2.2, we easily get

d

dt
F̃M (f, u) ≤ −1

2
I(f)− ε

4

∫

(∂tu)
2 + (1 + ε)

{

MA+ C
3/2
3 M1/2 (K1F̃M (f, u))1/2

(logA)1/2
I(f)

}

+
K1

2
F̃M (f, u) +

K2

2
+M (∀A > 0)

≤ −1

4
I(f)− ε

4

∫

(∂tu)
2 +K3 exp(K4 F̃M (f, u)) +K5

by making the appropriate choice logA = K ′ F̃M (f, u) for A. This differential inequality provides a
local a priori estimate on the modified free energy which can be used in order to prove local existence
result for supercritical mass. Because we will prove in Theorem 1.3 that the above resulting bound
is suitable in order to get the uniqueness of the solution, we can classically obtain the existence and
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uniqueness of maximal solutions (in the weak sense of definition 1.1) (f, u) ∈ C([0, T ∗);D′(R2)×
D′(R2)) such that

sup
[0,T )

F̃M (f(t), u(t)) +

∫ T

0

{

I(f(t)) +DF(f(t), u(t))
}

dt <∞ ∀T ∈ (0, T ∗)

and the alternative

T∗ = +∞ or (T∗ <∞, F̃M (f(t), u(t)) → ∞ as t→ T ∗).

As an immediate consequence of Lemma 2.1 and Proposition 2.2, we have

Lemma 2.4. For any T > 0, any weak solution f satisfies

f ∈ Lp/(p−1)(0, T ;Lp(R2)), ∀ p ∈ (1,∞),(2.13)

∇f ∈ L2p/(3p−2)(0, T ;Lp(R2)), ∀ p ∈ [1, 2),(2.14)

∆u ∈ L2(0, T ;L2(R2)).(2.15)

Proof of Lemma 2.4. The bound (2.13) is a direct consequence of (2.8) and Proposition 2.2. The
bound (2.14) is consequence of (2.9) and Proposition 2.2. The bound (2.15) is an immediate
consequence of the equation ∆u = ε∂tu + αu − f and the fact that each term of the right-hand
side lies in L2(0, T ;L2(R2)) thanks to (2.13) and (1.9). �

Lemma 2.5. Any weak solution (f, u) satisfies
∫

R2

β(ft1) dx +

∫ t1

t0

∫

R2

β′′(fs) |∇fs|2 dxds(2.16)

≤
∫

R2

β(ft0) dx+

∫ t1

t0

∫

R2

{β(fs)− fsβ
′(fs)}∆us dxds,

for any times 0 ≤ t0 ≤ t1 < ∞ and any renormalizing function β : R → R which is convex,
piecewise of class C1 and such that

|β(ξ)| ≤ C (1 + ξ (log ξ)+), (β(ξ) − ξβ′(ξ))+ ≤ C (1 + ξ) ∀ ξ ∈ R.

Proof of Lemma 2.5. Consider a weak solution (f, u), we write

∂tf = ∆f −∇u · ∇f − (∆u) f,

and we split the proof into three steps.

Step 1. Continuity. Consider a mollifier sequence (ρn) on R2, that is ρn(x) := n2ρ(nx), 0 ≤ ρ ∈
D(R2),

∫

ρ = 1, and introduce the mollified function fn
t := ft∗xρn. Clearly, fn ∈ C([0, T );L1(R2)).

Using (2.13) and (1.9), a variant of the commutation Lemma [13, Lemma II.1 and Remark 4] tells
us that

(2.17) ∂tf
n = ∆fn −∇u · ∇fn − (∆u) fn + rn,

with rn = rn1 + rn2 given by

rn1 := ∇u · ∇fn − (∇u · ∇f) ∗ ρn → 0 in L1(0, T ;L1
loc(R

2)),

rn2 := (∆u)fn − [(∆u)f ] ∗ ρn → 0 in L1(0, T ;L1
loc(R

2)).

The important point here is that f ∈ L2(0, T ;L2(R2)) thanks to (2.13) and∇u ∈ L2(0, T ;W 1,2(R2))
thanks to (2.15), hence the commutation lemma holds true.

As a consequence, the chain rule applied to the smooth function fn reads

(2.18) ∂tβ(f
n) = ∆β(fn)− β′′(fn) |∇fn|2 −∇u · ∇β(fn)− (∆u)fnβ′(fn) + β′(fn) rn,

for any β ∈ C1(R) ∩ W 2,∞
loc (R) such that β′′ is piecewise continuous and vanishes outside of a

compact set. Because the equation (2.17) with u fixed is linear, the difference fn,k := fn − fk

satisfies (2.17) with rn replaced by rn,k := rn − rk → 0 in L1(0, T ;L1
loc(R

2)) and then also (2.18)
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(with again fn and rn changed in fn,k and rn,k). For any non-negative function χ ∈ C2
c (R

d) we
obtain
∫

R2

β(fn,k(t))χ =

∫

R2

β(fn,k(0))χ−
∫ t

0

∫

R2

β′′(fn,k(s))|∇fn,k(s)|2 χ

+

∫ t

0

∫

R2

β(fn,k(s))∇u(s) · ∇χ+

∫ t

0

∫

R2

{β(fn,k(s))− fn,k(s)β′(fn,k(s))}∆u(s)χ

+

∫ t

0

∫

R2

β′(fn,k(s)) rn,k(s)χ.

In that last equation, we choose β(ξ) = β1(ξ) where βA(ξ) = ξ2/2 for |ξ| ≤ A, βA(ξ) = A |ξ|−A2/2
for |ξ| ≥ A, and using |β′

1| ≤ 1 and β′′
1 ≥ 0 it follows

∫

R2

β1(f
n,k(t))χ ≤

∫

R2

β1(f
n,k(0))χ+

∫ t

0

∫

R2

β1(f
n,k(s)) |∇u(s)||∇χ|

+

∫ t

0

∫

R2

|β1(fn,k(s))− fn,k(s)β′
1(f

n,k(s))| |∆u(s)|χ+

∫ t

0

∫

R2

|rn,k(s)|χ,

Since f0 ∈ L1, we have fn,k(0) → 0 in L1(R2) and we deduce from the previous inequality and
the following convergences: rn,k → 0 in L1(0, T ;L1

loc(R
2)); β1(f

n,k)|∇u| → 0 in L1(0, T ;L1
loc(R

2)),
because β1(ξ) ≤ |ξ|, fn,k → 0 in L2(0, T, L2(R2)) by (2.13) with p = 2 and ∇u ∈ L2(0, T ;L2(R2))
by Definition 1.1; β1(f

n,k)|∆u| → 0 in L1(0, T ;L1(R2)), because β1(ξ) ≤ |ξ|, fn,k → 0 in
L2(0, T, L2(R2)) and ∆u ∈ L2(0, T ;L2(R2)) by (2.15); and fn,kβ′

1(f
n,k)|∆u| → 0 in L1(0, T ;L1(R2)),

because |β′
1| ≤ 1, fn,k → 0 in L2(0, T, L2(R2)) and ∆u ∈ L2(0, T ;L2(R2)); that

sup
t∈[0,T ]

∫

R2

β1(f
n,k(t, x))χ(x) dx −→

n,k→∞
0.

Since χ is arbitrary, we deduce that there exists f̄ ∈ C([0,∞);L1
loc(R

2)) so that fn → f̄ in
C([0, T ];L1

loc(R
2)), ∀T > 0. Together with the convergence fn → f in C([0,∞);D′(R2)) and the

bound (1.9), we deduce that f = f̄ and

(2.19) fn → f in C([0, T ];L1(R2)), ∀T > 0.

Step 2. Linear estimates. We come back to (2.18), which implies, for all 0 ≤ t0 < t1, all χ ∈ C2
c (R

2),
∫

R2

β(fn
t1)χ+

∫ t1

t0

∫

R2

β′′(fn
s ) |∇xf

n
s |2 χ =

∫

R2

β(fn
t0)χ+

∫ t1

t0

∫

R2

β(fn
s )∇u · ∇χ(2.20)

+

∫ t1

t0

∫

R2

{β(fn
s )− fn

s β
′(fn

s )}∆us χ+

∫ t1

t0

∫

R2

β′(fn
s ) r

n χ.

Choosing 0 ≤ χ ∈ C2
c (R

2) and β ∈ C1(R) ∩W 2,∞
loc (R) such that β′′ is non-negative and vanishes

outside of a compact set, and passing to the limit as n→ ∞, we get

(2.21)

∫

R2

β(ft1)χ+

∫ t1

t0

∫

R2

β′′(fs) |∇xfs|2 χ ≤
∫

R2

β(ft0)χ+

∫ t1

t0

∫

R2

{β(fs)− fsβ
′(fs)}∆us χ

+

∫ t1

t0

∫

R2

β(fs)∇u · ∇χ.

By approximating χ ≡ 1 by the sequence (χR) with χR(x) = χ(x/R), 0 ≤ χ ∈ D(R2), we see
that the last term in (2.21) vanishes and we get (2.16) in the limit R → ∞ for any renormalizing
function β with linear growth at infinity.

Step 3. Super-linear estimates. Finally, for any β satisfying the growth condition as in the state-
ment of the Lemma, we just approximate β by an increasing sequence of smooth renormalizing
functions βR with linear growth at infinity, and pass to the limit in (2.16) in order to conclude. �
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Lemma 2.6. For any weak solution f and any p ≥ 2, there exists a constant C := C(M,H0,M2(0), T, p)
such that

(2.22) ‖f(t1)‖pLp +
1

2

∫ t1

t0

‖∇xf
p/2‖2L2 dt ≤ C‖f(t0)‖pLp .

Proof of Lemma 2.6. We define the renormalizing function βK : R+ → R+, K ≥ 2, by

βK(ξ) := ξp if ξ ≤ K, βK(ξ) :=
Kp−1

logK
ξ log ξ if ξ ≥ K,

so that βK is convex and piecewise of class C1, and moreover there holds

β′
K(ξ)ξ − βK(ξ) = (p− 1) ξp 1ξ<K +

Kp−1

logK
ξ 1ξ>K ,

and

β′′
K(ξ) = p(p− 1) ξp−2 1ξ<K +

Kp−1

logK

1

ξ
1ξ>K .

Thanks to Lemma 2.5, we may write
∫

R2

βK(ft1) dx+
4

p′

∫ t1

t0

∫

R2

|∇x(f
p/2)|2 1f≤K dxds +

Kp−1

logK

∫ t1

t0

∫

R2

|∇xf |2
f

1f≥K dxds

≤
∫

R2

βK(ft0) dx− (p− 1)

∫ t1

t0

∫

R2

∆u fp 1f≤K dxds− Kp−1

logK

∫ t1

t0

∫

R2

∆u f 1f≥K dxds.

On the one hand, using the Gagliardo-Niremberg-Sobolev inequality
∫

R2

g4 dx ≤ C

∫

R2

g2 dx

∫

R2

|∇g|2 dx,

we have

T1 := (p− 1)

∫

R2

|∆u| fp 1f≤K dxds

≤ (p− 1)‖∆u‖L2

(

∫

R2

(f ∧K)2p dx
)1/2

≤ C ‖∆u‖L2

(

∫

R2

(f ∧K)p dx

∫

R2

|∇(f ∧K)p/2|2 dx
)1/2

≤ C ‖∆u‖2L2

∫

R2

βK(f) dx +
1

p′

∫

R2

|∇x(f
p/2)|2 1f≤K dx.

On the other hand, thanks to the Sobolev inequality (line 2) and the Cauchy-Schwarz inequality
(line 3), we have for K large enough

T2 :=
Kp−1

logK

∫

R2

|∆u| f 1f≥K dx ≤ 4
Kp−1

logK
‖∆u‖L2

(

∫

R2

(f −K/2)2+ dx
)1/2

≤ 4
Kp−1

logK
‖∆u‖L2

∫

R2

|∇(f −K/2)+| dx = 4
Kp−1

logK
‖∆u‖L2

∫

R2

|∇f |1f≥K/2 dx

≤ 4
Kp−1

logK
‖∆u‖L2 dx

(

∫

f 1f≥K/2 dx
)1/2(

∫

R2

|∇f |2
f

1f≥K/2

)1/2

≤ C ‖∆u‖2L2

∫

Kp−1

logK
f 1f≥K/2 dx+

1

2p
Kp−1

logK

∫

R2

|∇f |2
f

1f≥K/2

≤ C ‖∆u‖2L2

∫

βK(f) dx+
1

2p
Kp−1

logK

{ 4

p2

∫

R2

|∇(fp/2)|2
( 2

K

)p−1
1f≤K +

∫

R2

|∇f |2
f

1f≥K

}

≤ C ‖∆u‖2L2

∫

βK(f) dx+
1

p′

∫

R2

|∇(fp/2)|2 1f≤K dx+
1

2

Kp−1

logK

∫

R2

|∇f |2
f

1f≥K dx.
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All together, we have proved that there holds for some numerical constant C
∫

R2

βK(ft1) dx +
2

p′

∫ t1

t0

∫

R2

|∇x(f
p/2)|2 1f≤K dxds

≤
∫

R2

βK(ft0) dx+ C

∫ t1

t0

‖∆u‖2L2

∫

R2

βK(f) dx ds

We conclude to (2.22) by applying first the Gronwall lemma, using that ‖∆u‖2L2 ∈ L1(0, T ), and
passing next to the limit K → ∞. �

Lemma 2.7. Any weak solution (f, u) satisfies

∂tf, ∂xf, ∂
2
xixj

f, ∂tu, ∂xu, ∂
2
xixj

u ∈ Cb((0, T ]× R
2), ∀T > 0,

so that it is a “classical solution” for positive time.

Proof of Lemma 2.7. For any time t0 ∈ (0, T ) and any exponent p ∈ (1,∞), there exists t′0 ∈ (0, t0)
such that f(t′0) ∈ Lp(R2) thanks to (2.13), from what we deduce using (2.22) on time interval
(t′0, T ) that

(2.23) f ∈ L∞(t0, T ;L
p(R2)) and ∇xf ∈ L2((t0, T )× R

2).

Since u satisfies the parabolic equation

ε∂tu−∆u+ αu = f,

the maximal regularity of the heat equation in Lp-spaces (see Theorem X.12 stated in [5] and the
quoted references) and the fact that

u(t) = γαt/ε ∗t,x f + γαt/ε ∗x u0 and ∇u = Γα
t/ε ∗t,x f + γαt,ε ∗x ∇u0

where we denote γαs = e−αs γs and similarly for Γ, γt is the heat kernel given by

γt(x) :=
1

4πt
exp

(

−|x|2
4t

)

∈ Lz1(0, T ;Lz2(R2)), ∀ z1, z2 ≥ 1, 1/z1 + 1/z2 > 1,

and

Γt(x) := ∇xγt(x) ∈ Ls1(0, T ;Ls2(R2)), ∀ s1, s2 ≥ 1, 1/s1 + 1/s2 > 3/2,

provide the bound

(2.24) u ∈ L∞(t0, T ;L
p(R2)), ∇u ∈ L∞(t0, T ;L

p(R2)), ∂tu,D
2u ∈ Lp((t0, T )× R

2),

for all t ∈ (0, T ) and p ∈ (1,∞). Since now f satisfies the parabolic equation

∂tf −∆f = −∇u · ∇f − (∆u)f =: Z

with Z ∈ L2(t0, T ;L
q(R2)) for all t0 ∈ (0, T ) and all q ∈ [1, 2) from (2.23) and (2.24), the same

maximal regularity of the heat equation in Lq-spaces (with the choice s1 = s2 = (4/3)−) implies

∇f ∈ Lp(t0, T ;L
p(R2)), ∀ p ∈ [2, 4),

and then Z ∈ Lp(t0, T ;L
p(R2)), ∀ p ∈ [2, 4). By a bootstrap argument of the regularity property

of the heat equation we easily get

(2.25) f ∈ L∞(t0, T ;L
p(R2)), ∇f ∈ L∞(t0, T ;L

p(R2)), ∂tf,D
2f ∈ Lp((t0, T )× R

2),

for all t ∈ (0, T ) and p ∈ (1,∞). The Morrey inequality implies then f,∇f, u,∇u ∈ C0,α((t0, T )×
R2) for any 0 < α < 1, and any t0 > 0. Finally the classical Holderian regularity result for
the heat equation (see Theorem X.13 stated in [5] and the quoted references) implies first u ∈
C2,α((t0, T )× R2) and next f ∈ C2,α((t0, T )× R2), which concludes the proof. �

We prove now the free energy-dissipation of the free energy identity (1.4) in Theorem 1.3.
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Proof of the free energy identity in Theorem 1.3. We split the proof into two steps.

Step 1. We claim that the free energy functional F is lsc in the sense that for any sequence (fn, un)
of nonnegative functions such that (fn) is bounded in L1 ∩ L1(log〈x〉2) with same mass M < 8π,

(un) is bounded in H1 if α > 0 or in L1 ∩ Ḣ1 if α = 0, (fnun) is bounded in L1 and such that
F(fn, un) ≤ A and (fn, un)⇀ (f, u) in D′(R2)×D′(R2), there holds

(2.26) 0 ≤ f ∈ L1 ∩ L1(log〈x〉2) and F(f, u) ≤ lim inf
n→∞

F(fn, un).

Because of (2.5) and (2.6), we have H+(fn) ≤ C and we may apply the Dunford-Pettis lemma
which implies that fn ⇀ f weakly in L1(R2).

We rewrite the free energy functional as

F(fn, un) = H(fn) + Fα(fn, un)

with

H(fn) :=

∫

fn log fn and Fα(fn, un) :=
1

2

∫

|∇un|2 +
α

2

∫

u2n −
∫

fn un.

Case α > 0. We denote ūn = κα ∗ fn where κα(z) = 1
4π

∫∞

0
1
t e

−
|z|2

4t −αt dt is the Bessel kernel.

Since fn ≥ 0, fn ∈ L1 ∩ L logL and un ∈ H1 [7, Lemma 2.2] implies that ūn ∈ H1 and also that
the functional Fα(fn, un) is finite and satisfies

Fα(fn, un)− Fα(fn, ūn) =
1

2
‖∇(un − ūn)‖2L2 +

α

2
‖un − ūn‖2L2.

Hence we can write

F(fn, un) = H(fn)−
1

2

∫∫

fn(x)fn(y)κα(x− y) +
1

2
‖∇(un − ūn)‖2L2 +

α

2
‖un − ūn‖2L2

=: H(fn) + V(fn) + U1(un − ūn) + U2(un − ūn),

where the functionals U1 and U2 are defined through the third and fourth term respectively. We
clearly have that U1+U2 is lsc for the weakH

1 convergence andH is lsc for the weak L1 convergence,
so we investigate the functional V . For any ǫ ∈ (0, 1) we split V = Vǫ +Rǫ as

Vǫ(g) := −1

2

∫∫

fn(x)fn(y)κα(x− y)1|x−y|>ǫ

Rǫ(g) := −1

2

∫∫

fn(x)fn(y)κα(x− y)1|x−y|≤ǫ.

The Bessel kernel κα is a positive radial decreasing function with a singularity at the origin:
κα(z) = − 1

2π log |z|+O(1) when |z| → 0. Hence Vǫ is continuous for the weak L1 convergence and
for the rest term we obtain, for any ǫ ∈ (0, 1) and λ > 1,

|Rε(g)| ≤ C

∫∫

g(x)g(y)1|x−y|≤ǫ + C

∫∫

g(x)g(y)(log |x− y|)−1|x−y|≤ǫ

≤ C

∫∫

g(x)1g(x)≤λg(y)1|x−y|≤ǫ + C

∫∫

g(x)1g(x)>λg(y)1|x−y|≤ǫ

+ C

∫∫

g(x)1g(x)≥λg(y)(log |x− y|)−1|x−y|≤ǫ + C

∫∫

g(x)1g(x)>λg(y) log(|x− y|−1)1|x−y|≤ǫ

≤ Cλ

∫

y

g(y)

{

∫

|z|≤ǫ

dz

}

+ C

∫

y

g(y)

{

1

logλ

∫

x

g(x) log g(x)

}

+ Cλ

∫

y

g(y)

{

∫

|z|≤ǫ

(log |z|)− dz
}

+ C

∫

x

g(x)1g(x)>λ

∫

y

{g(y) log g(y) + |x− y|−1}1|x−y|≤ǫ

≤ CMλǫ2 + CM
H(g)

log λ
+ CMλǫ3/2 + C

H(g)

logλ
{H(g) + ǫ},
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where we have used the convexity inequality uv ≤ u log u + ev for all u > 0, v ∈ R and the
elementary inequality u log u ≥ −u1/2 for all u ∈ (0, 1). Hence supn |Rε(fn)| → 0 as ǫ→ 0 and we
deduce that F is lsc.

Case α = 0. We define ūn = κ0(fn −MH) where H(x) = 〈x〉−4/π and κ0(z) = − 1
2π log |z| is the

Laplace kernel. Since 0 ≤ fn ∈ L1 ∩ L1(log〈x〉2), H(fn) is finite,
∫

(f −MH) = 0 and un ∈ Ḣ1,

[7, Lemma 2.2] implies that ūn ∈ Ḣ1 and also that the functional F0(fn −MH,un) is finite and
verifies

F0(fn −MH,un)− F0(fn −MH, ūn) =
1

2
‖∇(un − ūn)‖2L2 .

Now we argue as in the case α > 0. First we write

F(fn, un) = H(fn)−
1

2

∫∫

fn(x)fn(y)κ0(x− y) +M

∫∫

fn(x)H(y)κ0(x− y)

+
1

2
‖∇(un − ūn)‖2L2 −M

∫

Hun − M2

2

∫∫

H(x)H(y)κ0(x− y)

=: H(fn) + V(fn) +W(fn) + U1(un − ūn) + U0(un) + Z(H).

The functional U1 is lsc for the weak Ḣ1 convergence and H is lsc for the weak L1 convergence.
For V we just argue as in the preceding case α > 0. In the same way (even simpler) we conclude
that W is lsc for the weak L1 convergence. Finally we conclude that F is lsc.

Step 2. Now, we easily deduce that the free energy identity (1.4) holds. Indeed, since (f, u) is
smooth for positive time, for any fixed t > 0 and any given sequence (tn) of positive real numbers
which decreases to 0, we clearly have

F(f(tn), u(tn)) = F(t) +

∫ t

tn

DF (f(s), u(s)) ds.

Then, thanks to the Lebesgue convergence theorem, the lsc property of F and the fact that
f(tn) ⇀ f0 and u(tn) ⇀ u0 weakly in D′(R2), we deduce from the above free energy identity for
positive time that

F(f0, u0) ≤ lim inf
n→∞

F(f(tn), u(tn))

≤ lim
n→∞

{

F(t) +

∫ t

tn

DF (f(s), u(s)) ds
}

= F(t) +

∫ t

0

DF (f(s), u(s)) ds.

Together with the reverse inequality (1.9) we conclude to (1.4).
�

3. Uniqueness - Proof of Theorem 1.3

In this section we prove the uniqueness part of Theorem 1.3. In order to do so we first prove
some estimates in Lemmas 3.1 and 3.2.

Lemma 3.1. Any weak solution f to the Keller-Segel equation satisfies that for any p ∈ (1,∞),
T ∈ (0,∞) there exists a constant K = K(f0, p, T ) such that

(3.1) tp−1‖f(t)‖pLp ≤ K ∀ t ∈ (0, T ).

Proof of Lemma 3.1. Recall that we already know that ‖f‖Lp ∈ C1(0, T ) for any p > 1 and
‖f‖Lp ∈ L∞(t0, T ) for any 0 < t0 < T and any p ∈ [1,∞]. We have then for p > 1

d

dt

∫

fp = −4(1− 1/p)

∫

|∇(fp/2)|2 + (p− 1)

∫

fp+1 − (p− 1)

∫

(∂tu+ αu)fp

=: T1 + T2 + T3.

Using the splitting f = min(f,A) + (f − A)+, for some A > 0, and denoting h(u) := ∂tu + αu ∈
L2(0, T ;L2(R2)), we have

|T3| ≤ C

∫

|h(u)|min(f,A)p + C

∫

|h(u)|(f −A)p+ =: T31 + T32.
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For the term T31 we have

|T31| ≤ CAp−1/2

∫

|h(u)|f ≤ CAp−1/2(‖h(u)‖2L2 +M).

For T32, using Gagliardo-Niremberg-Sobolev inequality ‖g‖4L4 ≤ C‖g‖2L2‖∇g‖2L2 with g = (f −
A)

p/2
+ it follows

|T32| ≤ C

∫

|h(u)|(f −A)p+

≤ C‖h(c)‖L2

(
∫

(f −A)2p+

)1/2

≤ C‖h(c)‖L2

(
∫

(f −A)p+

)1/2 (∫

|∇(f −A)
p/2
+ |2

)1/2

≤ Cδ‖h(u)‖2L2

∫

(f −A)p+ + δ

∫

|∇(fp/2)|2 1f≥A,

for any δ > 0.
For the second term we have

|T2| ≤ C

∫

min(f,A)p+1 + C

∫

(f − A)p+1
+ ,

the first part is easily bounded by CApM and for the second one, using (2.10) we obtain
∫

(f −A)p+1
+ ≤ C

(
∫

(f −A)+

)(
∫

|∇(f −A)
p/2
+ |2

)

≤ C
H+(f)

logA

(
∫

|∇(fp/2)|2 1f≥A

)

.

Gathering all the previous estimates and choosing δ > 0 small enough and A big enough, it follows

(3.2)
d

dt

∫

fp ≤ −C0

∫

|∇(fp/2)|2 + C1‖h(u)‖2L2

∫

fp + C1(M + ‖h(u)‖2L2).

Thanks to the following inequalities

(‖f‖pLp)
p/(p−1) ≤ C‖f‖1/(p−1)

L1 ‖f‖p+1
Lp+1 and ‖f‖p+1

Lp+1 ≤ C‖f‖L1‖∇(fp/2)‖2L2

we obtain from (3.2)

d

dt
X(t) ≤ −C0X(t)

p
p−1 + C1H(t)X(t) + C2(1 +H(t)), t ∈ (0, T ),

where we denote X(t) := ‖f(t)‖pLp and H(t) := ‖h(u)‖2L2(t) ∈ L1(0, T ). By standard arguments
(see e.g. [7]) we conclude to (3.1). �

We (crucially) improve the preceding estimate by showing

Lemma 3.2. Any weak solution f to the Keller-Segel equation satisfies that for any p ∈ [2,∞)

(3.3) t
p−1
2p ‖f(t, .)‖L2p/(p+1) → 0 as t→ 0.

Proof of Lemma 3.2. We now prove (3.3) from (3.1) and an interpolation argument. On the one
hand, we use Hölder’s inequality in order to get

∫

f2p/(p+1) =

∫

fp/(p+1) 〈log f〉p/(p+1) fp/(p+1) 〈log f〉p/(p+1)

≤
(

∫

f 〈log f〉
)p/(p+1) (

∫

fp 〈log f〉−p
)1/(p+1)

,

or in other words

(3.4) ‖f‖L2p/(p+1) ≤ C
(

∫

fp 〈log f〉−p
)1/(2p)

.
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On the other hand, we observe that

tp−1

∫

fp 〈log f〉−p ≤ tp−1

∫

f≤R

fp 〈log f〉−p + tp−1

∫

f≥R

fp 〈log f〉−p

≤ tp−1 Rp−1

〈logR〉p
∫

f≤R

f +
tp−1

〈logR〉p
∫

f≥R

fp

≤ tp−1 MRp−1

〈logR〉p +
K

〈logR〉p

≤ M +K

〈log t−1〉2 → 0,(3.5)

where we have used the mass conservation and the estimate (3.1) in the third line and we have
chosen R := t−1 in the last line. We conclude to (3.3) by gathering (3.4) and (3.5). �

We are now able to prove the uniqueness of solutions.

Proof of the uniqueness part in Theorem 1.3. We consider two weak solutions (f1, u1) and (f2, u2)
to the Keller-Segel equation (1.1) that we write in the mild form

fi(t) = et∆fi(0)−
∫ t

0

e(t−s)∆∇ · (fi(s)∇ui(s)) ds

= et∆fi(0)−
∫ t

0

∇e(t−s)∆(fi(s)∇ui(s)) ds

and

ui(s) = e−
α
ε se

s
ε∆ui(0) +

1

ε

∫ s

0

e−
α
ε (s−σ)e

(s−σ)
ε ∆fi(σ) dσ,

from which we also obtain

∇ui(s) = e−
α
ε se

s
ε∆(∇ui(0)) +

1

ε

∫ s

0

e−
α
ε (s−σ)(∇e (s−σ)

ε ∆)fi(σ) dσ.

When we assume f1(0) = f2(0) and u1(0) = u2(0) = u0, the difference F := f2 − f1 satisfies

(3.6)

F (t) = −
∫ t

0

∇e(t−s)∆
{

F (s)
[

e−
α
ε se

s
ε∆(∇u0)

]}

ds

−
∫ t

0

∇e(t−s)∆

{

F (s)

[

1

ε

∫ s

0

e−
α
ε (s−σ)∇e (s−σ)

ε ∆f2(σ) dσ

]}

ds

−
∫ t

0

∇e(t−s)∆

{

f1(s)

[

1

ε

∫ s

0

e−
α
ε (s−σ)∇e (s−σ)

ε ∆F (σ) dσ

]}

ds

=: I1(t) + I2(t) + I3(t).

For any t > 0, we define

Zi
p(t) := sup

0<s≤t
s

1
2−

1
2p ‖fi(s)‖

L
2p

p+1
, ∆(t) := sup

0<s≤t
s

1
4 ‖F (s)‖L4/3 .

We recall the explicit formula for the heat semigroup

et∆g = γ(t, ·) ∗x g, γ(t, x) :=
1

4πt
exp

(

−|x|2
4t

)

,

and the following inequalities that will be useful in the sequel

‖K ∗ g‖Lr ≤ ‖K‖Lq‖g‖Lp,
1

p
+

1

q
=

1

r
+ 1, 1 ≤ p, q, r ≤ ∞

and

‖γ(t, ·)‖Lq(R2) ≤ Cq t
1
q−1, ‖∇γ(t, ·)‖Lq(R2) ≤ Cq t

1
q−

3
2 .

We fix p > 2 and we shall compute the quantity t
1
4 ‖ · ‖L4/3 for each term of (3.6).
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For the second term we compute

(3.7)

t
1
4 ‖I2(t)‖L4/3 ≤ C(α, ε) t

1
4

∫ t

0

∥

∥

∥

∥

∇e(t−s)∆

{

F (s)

∫ s

0

∇e (s−σ)
ε ∆f2(σ) dσ

}∥

∥

∥

∥

L4/3

ds

≤ C t
1
4

∫ t

0

‖∇e(t−s)∆‖L4/3

∥

∥

∥

∥

F (s)

∫ s

0

∇e (s−σ)
ε ∆f2(σ) dσ

∥

∥

∥

∥

L1

ds

≤ C t
1
4

∫ t

0

(t− s)−
3
4 ‖F (s)‖L4/3

∫ s

0

‖∇e (s−σ)
ε ∆f2(σ)‖L4 dσ ds

≤ C t
1
4

∫ t

0

(t− s)−
3
4 ‖F (s)‖L4/3

∫ s

0

‖∇e (s−σ)
ε ∆f2(σ)‖L4 dσ ds,

where we have used Young’s inequality for convolution in the second line and Holder’s inequality
in the third line. Now we can estimate the integral over dσ using Young’s inequality with 1/4+1 =
1/a+ (p+ 1)/(2p), i.e. 1/a = 3/4− 1/(2p), by

∫ s

0

∥

∥

∥
∇e (s−σ)

ε ∆f2(σ)
∥

∥

∥

L4
dσ ≤

∫ s

0

‖∇e (s−σ)
ε ∆‖La ‖f2(σ)‖

L
2p

p+1
dσ

≤ C

∫ s

0

(s− σ)
3
4−

1
2p−

3
2 ‖f2(σ)‖

L
2p

p+1
dσ

≤ C Z2
p(s)

∫ s

0

(s− σ)−
3
4−

1
2p σ− 1

2+
1
2p dσ

≤ C Z2
p(s) s

− 1
4

∫ 1

0

(1− y)−
3
4−

1
2p y−

1
2+

1
2p dy

≤ C Z2
p(s) s

− 1
4

since the last integral is bounded thanks to − 3
4 − 1

2p > −1 from p > 2.

Gathering last estimate with (3.7) it follows

(3.8)

t
1
4 ‖I2(t)‖L4/3 ≤ C t

1
4

∫ t

0

(t− s)−
3
4 s−

1
4 ‖F (s)‖L4/3 Z2

p(s) ds

≤ C Z2
p(t)∆(t)

∫ t

0

(t− s)−
3
4 t

1
4 s−

1
2 ds

≤ C Z2
p(t)∆(t)

∫ 1

0

(1 − y)−
3
4 y−

1
2 dy

≤ C Z2
p(t)∆(t).

For the term I3 we compute

(3.9)

t
1
4 ‖I3(t)‖L4/3 ≤ C t

1
4

∫ t

0

∥

∥

∥

∥

∇e(t−s)∆

{

f1(s)

∫ s

0

∇e (s−σ)
ε ∆F (σ) dσ

}∥

∥

∥

∥

L4/3

ds

≤ C t
1
4

∫ t

0

‖∇e(t−s)∆‖L4/3

∥

∥

∥

∥

f1(s)

∫ s

0

∇e (s−σ)
ε ∆F (σ) dσ

∥

∥

∥

∥

L1

ds

≤ C t
1
4

∫ t

0

(t− s)−
3
4 ‖f1(s)‖

L
2p

p+1

∫ s

0

‖∇e (s−σ)
ε ∆F (σ)‖

L
2p

p−1
dσ ds.
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We compute the integral over dσ, we have
∫ s

0

‖∇e (s−σ)
ε ∆F (σ)‖

L
2p

p−1
dσ ≤

∫ s

0

‖∇e (s−σ)
ε ∆‖

L
4p

3p−2
‖F (σ)‖L4/3 dσ

≤ C

∫ s

0

(s− σ)−
3
4−

1
2p ‖F (σ)‖L4/3 dσ

≤ C∆(s)

∫ s

0

(s− σ)−
3
4−

1
2p σ− 1

4 dσ

≤ C∆(s) s−
1
2p ,

since the last integral is bounded because p > 2. Putting together this estimate with (3.9) we
obtain

(3.10)

t
1
4 ‖I3(t)‖L4/3 ≤ C t

1
4

∫ t

0

(t− s)−
3
4 ‖f1(s)‖

L
2p

p+1
∆(s) s−

1
2p ds

≤ C Z1
p(t)∆(t)

∫ t

0

(t− s)−
3
4 t

1
4 s−

1
2

≤ C Z1
p(t)∆(t).

For the term I1 we compute

(3.11)

t
1
4 ‖I1(t)‖L4/3 ≤ C t

1
4

∫ t

0

∥

∥

∥
∇e(t−s)∆

{

F (s)e
s
ε∆∇u0

}

∥

∥

∥

L4/3
ds

≤ C t
1
4

∫ t

0

‖∇e(t−s)∆‖L4/3

∥

∥F (s)e
s
ε∆∇u0

∥

∥

L1 ds

≤ C t
1
4

∫ t

0

(t− s)−
3
4 ‖F (s)‖L4/3

∥

∥e
s
ε∆∇u0

∥

∥

L4 ds,

where we have used Young’s and Hölder’s inequalities, respectively. Let K > 0 to be chosen later,
we estimate

(3.12) ‖e s
ε∆∇u0‖L4 ≤ ‖e s

ε∆∇u0 1{|∇u0|≤K}‖L4 + ‖e s
ε∆∇u0 1{|∇u0|≥K}‖L4.

Using Young’s inequality we can write

‖e s
ε∆∇u0 1{|∇u0|≤K}‖L4 ≤ ‖e s

ε∆‖L1‖∇u0 1{|∇u0|≤K}‖L4 ≤ CK
1
2 ‖∇u0‖1/2L2 .

For the second term in (3.12) we have (again by Young’s inequality)

‖e s
ε∆∇u0 1{|∇u0|≥K}‖L4 ≤ ‖e s

ε∆‖L4/3‖∇u0 1{|∇u0|≥K}‖L2 ≤ Cs−
1
4 ϕ(K)

where

ϕ(K) := ‖∇u0 1{|∇u0|≥K}‖L2 → 0 as K → +∞,

by the dominated convergence theorem. Putting together that last estimates in (3.12) and choosing

K = s−
1
4 it follows

‖e s
ε∆∇u0‖L4 ≤ C s−

1
4 ǫ(s) with ǫ(s) := s

1
8 + ϕ(s−

1
4 ) −−−→

s→0
0,

from which, coming back to (3.11), we obtain

(3.13)

t
1
4 ‖I1(t)‖L4/3 ≤ C t

1
4

∫ t

0

(t− s)−
3
4 ‖F (s)‖L4/3 s−

1
4 ǫ(s)ds

≤ C

(

sup
0<s≤t

ǫ(s)

)

∆(t)

∫ t

0

t
1
4 (t− s)−

3
4 s−

1
2 ds

≤ C

(

sup
0<s≤t

ǫ(s)

)

∆(t).
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Gathering (3.8), (3.10) and (3.13) we conclude

∆(t) ≤ C

[

sup
0<s≤t

ǫ(s) + Z1
p(t) + Z2

p(t)

]

∆(t) ≤ 1

2
∆(t)

for t ∈ (0, T ), T > 0 small enough, which in turn implies ∆(t) ≡ 0 on [0, T ). We may then repeat
the argument for later times and conclude to the uniqueness of the solution. �

4. Self-similar solutions and linear stability

4.1. Convergence of the stationary solutions. First for a given mass M ∈ (0, 8π) and a given
parameter ε ∈ (0, 1/2), we consider the associated self-similar profile solution (Gε, Vε) which is
the unique solution of the system of elliptic equations (1.17)-(1.18), as well as the unique positive
solutions (G, V ) to the limit case ε = 0 system of equations

∆G−∇(G∇V − 1

2
xG) = 0 in R

2,

∫

R2

Gdx =M,(4.1)

∆V +G = 0 in R
2.

It is worth emphasizing that (G, V ) is the unique self-similar profile associated to the parabolic-
elliptic Keller-Segel equation, see [9, 14].

Lemma 4.1. There exists a constant C such that for any ε ∈ (0, 1/4]

(4.2) 0 ≤ Gε(x) ≤ C e−|x|2/4,

(4.3) sup
x∈R2

(
1

|x| + 〈x〉) |∇Vε(x)| ≤ C,

and

(4.4) sup
x∈R2

|∆Vε(x)| ≤ C.

Proof of Lemma 4.1.

Step 1. The estimate (4.2) has been proved in [3]. More precisely it is a consequence of equations
(26) and (49) in [3], and

G(0) = b, 0 ≤M(ε, b) ≤ 4π min(2, b).

Here the parametrization of G is made in function of ε and b = G(0) instead of ε and M because
this dependence is more tractable. Observe that the estimate above guarantees that the mass is
subcritical, i.e. M(ε, b) ≤ 8π.

Step 2. Since Vε and Gε are radially symmetric functions the equation on Vε writes

(4.5) V ′′
ε +

(1

r
+

1

2
ε r

)

V ′
ε +Gε = 0 ∀ r > 0,

where we abuse notations in writing Vε(r) = Vε(x), Gε(r) = Gε(|x|), r = |x|. The function Vε
is smooth and the equation is complemented with the boundary conditions V ′

ε (0) = V ′
ε (∞) = 0.

Defining w := (rV ′
ε )

2, we find

w′

2
= −1

2
ε r w −Gε V

′
ε r

2 ≤ C
√
w

r

〈r〉3 , C := sup
r>0

Gε 〈r〉3.

As a consequence
d

dr

√
w ≤ C

r

〈r〉3 ,

and then √
w ≤ C (1 ∧ r)2,

from which the inequality supx[〈x〉 |∇Vε(x)|] ≤ C of (4.3) follows. �
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Step 3. We rewrite (4.5) as

1

r
(V ′

εr)
′ = w := −Gε −

1

2
εrV ′

ε ∈ L∞,

which implies

|V ′
ε (r)r| =

∣

∣

∣

∣

∫ r

0

sw(s) ds

∣

∣

∣

∣

≤ C r2.

This completes the estimate (4.3) and coming back to (4.5) we also obtain

|V ′′
ε (r)| ≤ C,

which gives (4.4) and completes the proof.

Corollary 4.2. There hold

Gε → G in W 2,p ∀ p ∈ (1,∞),

and

∇Vε → ∇V in L∞
1 , ∆Vε → ∆V in L∞

Proof of Corollary 4.2. Coming back to (1.18) and using Lemma 4.1 it follows, for any p ∈ (1,∞),
that

LGε = ∇Gε · ∇Vε +Gε∆Vε ∈ Lp,

where L denotes the operator LGε := ∆Gε −∇ · (12xGε). By elliptic regularity we obtain that Gε

is uniformly bounded (with respect to ε ∈ (0, 1/2)) in W 2,p.
Thanks to previous estimates and Lemma 4.1 there exists (Ḡ, V̄ ) and a subsequence (still denoted

as (Gε, Vε)) such that Gε → Ḡ, Vε → V̄ . We may pass to the limit (in the weak sense) in the
system of equations, and we find

V̄ ′′ +
1

r
V̄ ′ + Ḡ = 0, V̄ ′(0) = V̄ ′(∞) = 0.

We conclude that (Ḡ, V̄ ) is a solution to the stationary equation (4.1) and complete the proof. �

4.2. Splitting structure for the linearized operator. The evolution equation in self-similar
variables writes (see (1.15) and (1.16))

(4.6)











∂tg = ∆g +∇(
1

2
x g − g∇v),

∂tv =
1

ε
(∆v + g) +

1

2
x · ∇v,

and the associated linearized equation is given by

(4.7)











∂tf = Λ1,ε(f, u) := ∆f +∇(
1

2
x f − f ∇Vε −Gε ∇u),

∂tu = Λ2,ε(f, u) :=
1

ε
(∆u+ f) +

1

2
x · ∇u,

which we also denote ∂t(f, u) = Λε(f, u) =
(

Λ1,ε(f, u),Λ2,ε(f, u)
)

. We restrict ourself to a radially
symmetric setting.

We introduce the Hilbert space

(4.8) X := X1 ×X2, X1 := L2
rad ∩ L2

k,0 ⊂ L2
k,1, k > 7, X2 = L2

rad,

associated to the norm

‖(f, u)‖2X := ‖f‖2L2
k
+ ‖u‖2L2.(4.9)

We now state a property of the spectrum of Λε in X that is the main result of this subsection.

Proposition 4.3. There exist ε∗, r∗ > 0 such that in X

∀ ε ∈ (0, ε∗) Σ(Λε) ∩∆−1/3 ⊂ Σd(Λε) ∩B(0, r∗).



20 K. CARRAPATOSO, S. MISCHLER

We define the bounded operator A by

(4.10) A1(f, u) := NχR[f ] := N(χRf − χ1〈χRf〉), A2(f, u) := 0,

for some constants N,R > 0 to be chosen later and a smooth non-negative radially symmetric
cut-off function χR(x) := χ(x/R) with χ ≡ 1 on B1/2, Suppχ ⊂ B2 and 〈χ1〉 = 1. We can split
the operator Λε = A+Bε and we shall investigate some properties of A and Bε in the next lemmas
before proving Proposition 4.3.

Lemma 4.4. In the above splitting, we may choose N∗ and R∗ large enough in such a way that
for any N ≥ N∗, R ≥ R∗, the operator Bε is a-hypo-dissipative in X for any a ∈ (−1/2, 0) in the
sense that

‖SBε(t)‖B(X) ≤ Ca e
at ∀ t ≥ 0,

for some constant Ca > 0.

Proof of Lemma 4.4. First of all, thanks to Lemma A.1 we see that in X the norm of L2
k × L2 is

equivalent to the norm defined by

(4.11) ‖(f, u)‖2X∗
:= ‖f‖2L2

k
+ η ‖u− κf‖2L2 ,

for any fixed η > 0. We now consider the equation ∂t(f, u) = Bε(f, u) = Λε(f, u) − A(f, u) and
split the proof in several steps.

Step 1. First of all, we write the equation satisfied by f as

∂tf = ∆f +∇(
1

2
x f − f ∇Vε −Gε ∇u)−NχR[f ].

Then we compute, using that 〈f〉 = 0 and the notation χc
R = 1− χR,

(4.12)

1

2

d

dt

∫

f2〈x〉2k =

∫

∆f f〈x〉2k +
1

2

∫

∇ · (xf) f〈x〉2k −
∫

∇ · (f∇Vε) f〈x〉2k

−
∫

∇ · (Gε∇u) f〈x〉2k −
∫

NχR[f ]f〈x〉2k

= −
∫

|∇f |2〈x〉2k +

∫

{ϕ(x)−NχR(x)} f2〈x〉2k

−
∫

∇ · (Gε∇u) f〈x〉2k −N

∫

f χ1 〈x〉2kdx 〈χc
Rf〉

where

ϕ(x) =

(

1

2
∆〈x〉2k − 1

2
x · ∇〈x〉2k +

1

4
∇ · (x〈x〉2k)− 1

2
∇ · (∇Vε〈x〉2k) +∇Vε · ∇〈x〉2k

)

〈x〉−2k

= −1

2
(k − 1) + k(2k + 1/2)〈x〉−2 − k(2k − 2)〈x〉−4 − 1

2
∆Vε + k(∇Vε · x)〈x〉−2.

Thanks to Lemma 4.1 we have (∇Vε · x)〈x〉−2 → 0 as |x| → ∞ and from (1.18) we have that

−1

2
∆Vε =

1

2
Gε +

ε

4
x · ∇Vε

with Gε → 0 as |x| → ∞ from (4.2) and |x · ∇Vε| ≤ CVε from (4.3). It follows then

(4.13) ϕ(x) ≈
|x|→∞

−1

2
(k − 1− εCVε/2).

For the third term in (4.12), for any δ > 0, thanks to Hölder’s inequality and using that Gε(x) ≤
Ce−|x|2/4 ≤ C〈x〉−α (see (4.2)), we get

−
∫

∇ · (Gε∇u) f 〈x〉2k =

∫

∇f · ∇uGε 〈x〉2k +

∫

Gε∇u · ∇(〈x〉2k) f

≤ δ‖∇f‖2L2 + C(δ)‖∇u‖2L2 + C‖f‖2L2

≤ δ‖∇f‖2L2 + C(δ)‖∇(u − κf )‖2L2 + C(δ)‖f‖2L2
ℓ
+ C‖f‖2L2,
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for some ℓ ∈ (3, k). For the fourth term, we have

−N
∫

f χ1 〈x〉2kdx 〈χc
Rf〉 ≤ N ‖χ1‖L2

2k−ℓ
‖χc

R 〈x〉−ℓ‖L2 ‖f‖2L2
ℓ

≤ N R1−ℓ Cℓ ‖f‖2L2
ℓ
.

We conclude this step by gathering the previous estimates to obtain

(4.14)

1

2

d

dt
‖f‖2L2

k
≤ −(1− δ)‖∇f‖2L2

k
+ C(δ)‖∇(u − κf)‖2L2

+

∫

{

ϕ(x) + (C(δ) + C N R1−ℓ)〈x〉2(ℓ−k) −NχR(x)
}

f2〈x〉2k.

Step 2. On the other hand, from the second equation in (4.7), we get
(4.15)

1

2

d

dt

∫

(u− κf )
2 =

∫

(u− κf )

{

1

ε
(∆u+ f) +

1

2
x · ∇(u − κf ) +

1

2
x · ∇κf − ∂tκf

}

= −1

ε

∫

|∇(u− κf )|2 −
1

2

∫

(u − κf )
2 +

∫

(u− κf )

{

1

2
x · ∇κf − ∂tκf

}

,

and we shall estimate the last integral. Since ∂tκf = κ ∗ ∂tf , we write
∫

(u − κf)

{

1

2
x · ∇κf − ∂tκf

}

=
1

2

∫

(u− κf )
{

x · ∇κf}

−
∫

(u− κf )κ ∗
{

∆f +
1

2
∇(xf)−∇(f∇Vε)−∇(Gε∇u)−NχR[f ]

}

,

and we estimate each of these terms. It follows that

I1 :=
1

2

∫

(u− κf )
{

x · ∇κf} =
1

2

∫

(u− κf )
{

x · (K ∗ f)}

≤ δ‖(u− κf)‖2L2 + C(δ)‖K ∗ f‖2L2
1

≤ δ‖(u− κf)‖2L2 + C(δ)‖f‖2L2
ℓ
,

where we have used Lemma A.2 in the last line with 3 < ℓ < k since f ∈ X1 ⊂ L2
k,1. Moreover we

get

I2 := −
∫

(u − κf)κ ∗ {∆f} =

∫

(u− κf )f

≤ δ ‖(u− κf )‖2L2 + C(δ) ‖f‖2L2.

Arguing as for the term I1 and using Lemma A.2, we also obtain (we denote here K = (Ki)i=1,2

and use the convention of summation of repeated indices)

I3 := −1

2

∫

(u− κf )κ ∗ ∇(xf) = −1

2

∫

(u − κf)Ki ∗ (xif)

≤ δ‖(u− κf )‖2L2 + C(δ)‖f‖2L2
ℓ
,

with 3 < ℓ < k. Furthermore, since f∇Vε ∈ L2
k,0, we can apply Lemma A.2 with the same ℓ ∈ (2, k)

and use that ∇Vε ∈ L∞ to obtain

I4 :=

∫

(u− κf )κ ∗ ∇(f∇Vε) =
∫

(u− κf )Ki ∗ (f∂iVε)

≤ δ‖(u− κf )‖2L2 + C(δ)‖f∇Vε‖2L2
ℓ

≤ δ‖(u− κf )‖2L2 + C(δ)‖f‖2L2
ℓ
.
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For the next term we get, using (A.2) since Gε∇u ∈ L2
k,0 and the bound Gε ∈ L∞

k ,

I5 :=

∫

(u − κf )κ ∗ ∇(Gε∇u) =
∫

(u− κf )Ki ∗ (Gε ∂iu)

≤ δ‖(u− κf )‖2L2 + C(δ)‖K ∗ (Gε∇u)‖2L2

≤ δ‖(u− κf )‖2L2 + C(δ)‖Gε∇u‖2L2
k

≤ δ‖(u− κf )‖2L2 + C(δ)‖∇u‖2L2

≤ δ‖(u− κf )‖2L2 + C(δ)‖∇(u − κf )‖2L2 + C(δ)‖f‖2L2
ℓ
.

For the last term and thanks to Lemma A.1

I6 := N

∫

(u − κf )κ ∗ {χR[f ]} ≤ C ‖u− κf‖L2 N ‖χR[f ]‖L2
ℓ,1

≤ δ‖u− κf‖2L2 + C(δ)N2‖f‖2L2
ℓ
.

Putting together all the estimates of this step it follows

(4.16)
1

2

d

dt
‖u− κf‖2L2 ≤ −

(1

ε
− C(δ)

)

‖∇(u− κf )‖2L2 −
(1

2
− δ

)

‖u− κf‖2L2 + C(δ)N2‖f‖2L2
ℓ
.

Step 3. Conclusion. Gathering (4.14)-(4.16), we obtain

(4.17)

1

2

d

dt
‖(f, u)‖2X∗

≤
∫

{

ϕ(x) +
[

(1 + ηN2)C(δ) +
CN

Rℓ−1

]

〈x〉2(ℓ−k) −NχR(x)

}

|f |2〈x〉2k

− η
(1

2
− δ

)

‖u− κf‖2L2 − (1− δ)‖∇f‖2L2
k
− η

(1

ε
− C(δ)

)

‖∇(u− κf )‖2L2

Taking then first δ ∈ (0, 1) small enough and next ε ∈ (0, 1) small enough, it follows that for
η = N−3 and R = N we have

1

2

d

dt
‖(f, u)‖2X∗

≤
∫

{ϕ̄N (x)−NχR(x)} |f |2〈x〉2k + a‖∇f‖2L2

+ a η ‖u− κf‖2L2 + a η ‖∇(u− κf )‖2L2

for any a > −1/2 and where ϕ̄N (x) = ϕ(x)+C(1+N−1+N2−ℓ)〈x〉2(ℓ−k) has the same asymptotic
behavior as ϕ(x) when |x| → ∞ and ϕ̄N decreases as N increases. We can choose N large enough
such that

ϕ̄N (x)−NχR(x) ≤ a, ∀x ∈ R
2,

which yields that Bε is a-hypo-dissipative for any a > −1/2. �

We introduce the space

(4.18) Y := Y1 × Y2, Y1 := H1
k ∩ L2

k,0 ∩ L2
rad, Y2 := H1 ∩ L2

rad,

endowed with the norm

(4.19) ‖(f, u)‖2Y := ‖(f, u)‖2X + ‖∇f‖2L2
k
+ ‖∇u‖2L2.

A consequence of the definition of the operator A in (4.10) is the following result.

Lemma 4.5. There hold A ∈ B(X) and A ∈ B(Y ).

Proof. The proof is straightforward so we omit it. �

Lemma 4.6. We can choose N and R large enough such that Bε is a-hypo-dissipative in Y for
any a ∈ (−1/2, 0), i.e.

‖SBε(t)‖B(Y ) ≤ Ceat.

Moreover we also have

‖SBε(t)‖B(X,Y ) ≤ C t−1/2 eat.
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Proof. We introduce the following norm,

(4.20) ‖(f, u)‖2Y∗
:= ‖(f, u)‖2X∗

+ η1‖∇f‖2L2
k
+ η1‖∇(u− κf )‖2L2 ,

which is equivalent to (4.19) for any η1 > 0 thanks to Lemma A.2. Observe that

‖∇u‖L2 ≤ ‖∇(u− κf )‖L2 + C‖f‖L2
ℓ
,

with the same ℓ ∈ (2, k) of Lemma 4.4, and also that

‖∇2u‖L2 ≤ ‖∇2(u− κf )‖L2 + ‖∇2κf‖L2 ≤ ‖∇2(u− κf )‖L2 + ‖f‖L2.

Consider now the equation ∂t(f, u) = Bε(f, u) = Λε(f, u)−A(f, u).

Step 1. For i = 1, 2, ∂iu verifies

∂t(∂iu) =
1

ε
∆(∂iu) +

1

ε
∂if +

1

2
x · ∇(∂iu) +

1

2
∂iu.

We have then

1

2

d

dt
‖∂i(u− κf )‖2L2 =

∫

∂i(u− κf )∂t{∂iu− ∂iκf}

=
1

ε

∫

∂i(u− κf )∆{∂i(u− κf )}+
1

2

∫

∂i(u − κf)∂iu

+
1

2

∫

∂i(u− κf )x · ∇{∂i(u− κf )} +
1

2

∫

∂i(u − κf )x · ∇{∂iκf}

−
∫

∂i(u− κf )Ki ∗ (∂tf)

=: T1 + T2 + T3 + T4 + T5.

For the first term we easily get

T1 = −1

ε
‖∇{∂i(u− κf )}‖2L2,

moreover for the second one we obtain

T2 ≤ C‖∇(u − κf)‖2L2 + C‖∇u‖2L2 ≤ C‖∇(u− κf )‖2L2 + C‖f‖2L2
ℓ
.

We easily see that

T3 = −1

2
‖∂i(u− κf)‖2L2 ≤ 0,

and also that, for the fourth term,

T4 ≤ C‖∇(u− κf )‖2L2 + C‖D2κf‖2L2
1
≤ C‖∇(u− κf )‖2L2 + C‖f‖2L2

1
.

For the last term T5 we use the equation satisfied by f to write

T5 = −
∫

∂i(u − κf)Ki ∗
{

∆f +
1

2
∇(xf)−∇(f∇Vε)−∇(Gε∇u)−NχR[f ]

}

=: T51 + T52 + T53 + T54 + T55,

and we estimate each term. We have

T51 ≤ C‖∇(u − κf )‖2L2 + C‖∇f‖2L2

and

T52 ≤ C‖∇(u− κf )‖2L2 + C‖∇2κ ∗ (xf)‖2L2 ≤ C‖∇(u− κf )‖2L2 + C‖f‖2L2
1
.

Moreover, using that ∇Vε ∈ L∞ we get

T53 ≤ C‖∇(u− κf )‖2L2 + C‖∇2κ ∗ (f∇Vε)‖2L2

≤ C‖∇(u− κf )‖2L2 + C‖f∇Vε‖2L2

≤ C‖∇(u− κf )‖2L2 + C‖f‖2L2,
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and arguing as above with Gε ∈ L∞ we also obtain

T54 ≤ C‖∇(u − κf )‖2L2 + C‖∇2κ ∗ (Gε∇u)‖2L2

≤ C‖∇(u − κf )‖2L2 + C‖Gε∇u‖2L2

≤ C‖∇(u − κf )‖2L2 + C‖∇u‖2L2

≤ C‖∇(u − κf )‖2L2 + C‖f‖2L2
ℓ
.

For the last term, using Lemma A.2 we have

T55 ≤ C‖∇(u− κf )‖2L2 + CN2‖K ∗ χR[f ]‖2L2

≤ C‖∇(u− κf )‖2L2 + CN2‖f‖2L2
ℓ

Gathering previous estimates we finally obtain
(4.21)
1

2

d

dt
‖∇(u− κf )‖2L2 ≤ −1

ε
‖∇2(u− κf )‖2L2 + C(1 +N2)‖f‖2L2

ℓ
+ C‖∇f‖2L2 + C‖∇(u− κf )‖2L2 .

Step 2. The equation satisfied by ∂if is

∂t(∂if) = Bε,1(∂if, ∂iu)−
1

2
∂if −∇(f∇(∂iVε))−∇(∂jGε∇u)−N(∂iχR)f +N〈χRf〉∂iχ1,

hence it follows

1

2

d

dt
‖∂if‖2L2

k
=

∫

Bε,1(∂if, ∂iu) ∂if 〈x〉2k − 1

2
‖∂if‖2L2

k
−
∫

∇(f∇(∂iVε)) ∂if 〈x〉2k −
∫

∇(∂jGε∇u) ∂if 〈x〉2k

−N

∫

(∂iχR)f∂if〈x〉2k +N〈χRf〉
∫

(∂iχ1) ∂if 〈x〉2k

=: A1 +A2 +A3 +A4 +A5 +A6.

Arguing as in Lemma 4.4 (step 1) we obtain for any δ > 0,

A1 ≤ −(1− δ)‖∇(∂if)‖2L2
k
+ C(δ)‖∇2(u − κf)‖2L2

+

∫

{

ϕ(x) + [C(δ) + C N R1−ℓ]〈x〉2(ℓ−k) −NχR(x)
}

|∂if |2〈x〉2k.

Next we compute

A3 :=

∫

f∇(∂iVε) · ∇(∂if)〈x〉2k +

∫

f∇(∂iVε) · ∇〈x〉2k ∂if

≤ εC(δ)‖f‖2L2
k
+ δ‖∇f‖2L2

k
+ δ‖∇2f‖2L2

k
,

using that ∆Vε = −Gε − (ε/2)x · ∇Vε and Lemma 4.1. We also have

A4 =

∫

∂iGε∇u · ∇(∂if)〈x〉2k +

∫

∂iGε∇u · ∇〈x〉2k ∂jf

≤ C(δ)‖∇u‖2L2 + δ‖∇f‖2L2
k−1/2

+ δ‖∇2f‖2L2
k

≤ C(δ)‖∇(u − κf )‖2L2 + C(δ)‖f‖2L2
ℓ
+ δ‖∇f‖2L2

k−1/2
+ δ‖∇2f‖2L2

k
,

and we easily get

A5 ≤ N
C

R

∫

1R/2≤|x|≤2R f
2〈x〉2k +N

C

R

∫

1R/2≤|x|≤2R |∂if |2〈x〉2k.

For the last term

A6 ≤ N〈χRf〉
∫

(∂iχ1) ∂if 〈x〉2k

≤ CN ‖f‖L2 ‖∂if‖L2
k
≤ C(δ)N2 ‖f‖2L2 + δ‖∂if‖2L2

k
.
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Finally, putting together the above estimates, we obtain
(4.22)
1

2

d

dt
‖∇f‖2L2

k
≤ −(1− δ)‖∇2f‖2L2

k
+ C(δ)‖∇(u − κf )‖2L2 + C(δ)‖∇2(u− κf )‖2L2

+

∫
{

εC(δ) +N
C

R
1R/2≤|x|≤2R + C(δ)〈x〉2(ℓ−k) + C(δ)N2〈x〉−2k

}

|f |2〈x〉2k

+

∫
{

ϕ(x) − 1

2
+ δ +N

C

R
1R/2≤|x|≤2R + [C(δ) + CNR1−ℓ]〈x〉2(ℓ−k) −NχR

}

|∇f |2〈x〉2k.

Step 3. Gathering previous estimates (4.21) and (4.22) together with (4.17) it follows that
(4.23)
1

2

d

dt
‖(f, u)‖2Y∗

≤
∫

{

ϕ(x) + η1εC(δ) + η1C
N

R
1R/2≤|x|≤2R + η1C(δ)N

2〈x〉−2k

+ [η1C(δ) + η1C(1 +N2) + C(δ)(1 + ηN2) + C
N

Rℓ−1
]〈x〉2(ℓ−k) −NχR

}

f2〈x〉2k

+ η1

∫
{

ϕ(x) − 1

2
+ δ + C

N

R
1R/2≤|x|≤2R + [C(δ) + C

N

Rℓ−1
]〈x〉2(ℓ−k) + C〈x〉−2k −NχR

}

|∇f |2〈x〉2k

− (1− δ)‖∇f‖2L2
k
− η

(

1

2
− δ

)

‖u− κf‖2L2 − η1(1− δ)‖∇2f‖2L2
k

− η

(

1

ε
− C(δ)− η1

η
C(δ)

)

‖∇(u− κf )‖2L2 − η1

(

1

ε
− C(δ)

)

‖∇2(u− κf )‖2L2 .

Now we conclude as in step 3 of the proof of Lemma 4.4. We choose first δ ∈ (0, 1) small enough
and next ε ∈ (0, 1) small enough, then for η1 = η = N−3 and R = N it follows

(4.24)

1

2

d

dt
‖(f, u)‖2Y∗

≤
∫

{ϕ1
N (x)−NχR}f2〈x〉2k + η1

∫

{

ϕ2
N (x) −NχR

}

|∇f |2〈x〉2k

+ a‖∇f‖2L2
k
+ aη‖u− κf‖2L2 + aη1‖∇2f‖2L2

k

+ aη1‖∇(u− κf )‖2L2 + aη1‖∇2(u− κf )‖2L2 ,

for any a > −1/2, where

ϕ1
N (x) := ϕ(x)+CN−3+CN−11R/2≤|x|≤2R+(C+CN−1+CN−3+CN2−ℓ)〈x〉2(ℓ−k)+CN−1〈x〉−2k

and
ϕ2
N (x) := ϕ(x) + C1R/2≤|x|≤2R + (C + CN2−ℓ)〈x〉2(ℓ−k) + C〈x〉−2k

have the same asymptotic behaviour as ϕ(x) when |x| → ∞ and ϕi
N is decreasing as a function of

N . Hence picking N large enough such that

ϕi
N (x)−NχR(x) ≤ a, ∀x ∈ R

2,

we deduce that, for some constant K > 0,

(4.25)
1

2

d

dt
‖(f, u)‖2Y∗

≤ a‖(f, u)‖2Y∗
−K(‖∇2f‖2L2

k
+ ‖∇2(u− κf )‖2L2),

from which Bε is a-hypo-dissipative in Y . Moreover, using the interpolation inequality

‖g‖2H1
k
. ‖g‖H2

k
‖g‖L2

k

it follows from (4.25) that

1

2

d

dt
‖(f, u)‖2Y∗

≤ a‖(f, u)‖2Y∗
−K‖(f, u)‖4Y∗

‖(f, u)‖−2
X∗
,

hence by standard arguments we get the estimate

‖SBε(t)(f, u)‖Y ≤ C t−1/2 eat‖(f, u)‖X ,
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concluding the proof. �

Proof of Proposition 4.3. The domain D(Λε) of the operator Λε : D(Λε) ⊂ X → X is given by

D(Λε) = H2
k ∩ L2

k,0 ∩ L2
rad ×H2 ∩ L2

rad

and we recall that X = L2
k,0 ∩ L2

rad × L2
rad and Y = H1

k ∩ L2
k,0 ∩ L2

rad ×H1 ∩ L2
rad (see equations

(4.8) and (4.18)). We define a family of interpolation spaces

Xη := H2η
k ∩ L2

k,0 ∩ L2
rad ×H2η ∩ L2

rad, η ∈ [0, 1],

so that X0 = X , X1 = D(Λε) and X1/2 = Y . Thanks to classical interpolation results we have
Y = X1/2 ⊂ D(Λη

ε ) for any η ∈ [0, 1/2), see [22, 23, 26]. Now we fix some η ∈ (0, 1/2) and we have
Y ⊂ D(Λη

ε ) ⊂ X .
Recalling the results from Lemma 4.4, Lemma 4.5, Lemma 4.6 and (4.10) we have, for any

a > −1/2,

SBε(t) : X → X, with ‖SBε(t)‖B(X) ≤ C eat,

SBε(t) : Y → Y, with ‖SBε(t)‖B(Y ) ≤ C eat,

SBε(t) : X → Y, with ‖SBε(t)‖B(X,Y ) ≤ C t−1/2 eat,

moreover A ∈ B(X) ∩ B(Y ) and

ASBε(t) : X → Y, with ‖ASBε(t)‖B(X,Y ) ≤ C t−1/2 eat.

First of all, we already obtain from previous estimates that

(4.26) ∀ ℓ ≥ 0, ‖SBε ∗ (ASBε)
(∗ℓ)(t)‖B(X) ≤ C eat,

Moreover, from [18, Lemma 2.17] there exists n ∈ N such that

‖(ASBε)
∗(n)(t)‖B(X,Y ) ≤ C eat,

which together with the fact SBε(t) : D(Λη
ε ) → D(Λη

ε ) with ‖SBε(t)‖B(D(Λη
ε )) ≤ C eat (by interpo-

lation of the same results in X and Y ), yield

(4.27) ‖SBε ∗ (ASBε)
(∗n)(t)‖B(X,D(Λη

ε )) ≤ C eat.

Gathering that last estimate with (4.26), we can apply [26, Theorem 2.1] which yields, for some
r∗ > 0,

Σ(Λε) ∩∆a ⊂ B(0, r∗) on X.

Now we define Y = H1
k ∩ L2

k,0 ∩ L2
rad ×H1

k ∩ L2
rad ⊂ Y . From previous estimates we also obtain

(4.28)

∫ ∞

0

‖(ASBε)
∗(n+1)(t)‖

B(X,Y ) e
−at dt ≤ C,

where Y ⊂ X with compact embedding. Hence, thanks to (4.26)-(4.27)-(4.28), we are able to
apply [26, Theorem 3.1] that implies

Σ(Λε) ∩∆a ⊂ Σd(Λε) on X,

and that concludes the proof. �



KELLER-SEGEL EQUATION 27

4.3. Localization of the spectrum for the linearized operator in a radially symmetric
setting. We recall that we consider a radially symmetric setting and we have already defined the
space X in (4.8). We establish in this subsection the following localization of the spectrum of Λε.

Theorem 4.7. There exists ε∗ > 0 such that in X there holds

Σ(Λε) ∩∆−1/3 = ∅ for any ε ∈ (0, ε∗).

As a consequence, there exists C such that

‖SΛε(t)‖B(X) ≤ C e−t/3 ∀ t ≥ 0, ∀ ε ∈ (0, ε∗).

The difficulty is that Λε is not a perturbation of some fixed operator Λ and we cannot apply
directly the perturbation theory developed in [25, 32]. However, we are able to identify the limit
of RΛε as ε→ 0 which is enough to conclude.

We introduce the notations

Af := ∆f +∇(
1

2
x f − f ∇Vε), Bu := −∇(Gε ∇u)

Cu := ∆u, Du :=
1

2
x · ∇u,

so that the linearized equation writes

∂tf = Af +Bu, ∂tu =
1

ε
(Cu + f) +Du.(4.29)

The important point is that at a very formal level, the limit system (as ε → 0) is the linearized
parabolic-elliptic system

(4.30) ∂tf = A0f +B0u, Cu = −f,
where

A0f := ∆f +∇(
1

2
x f − f ∇V ), B0u := −∇(G∇u),

with G and V defined in (4.1), which simplifies into a single equation

(4.31) ∂tf = (A0 +B0(−C)−1)f =: Ωf.

Observe that the last equation is nothing but the linearized equation associated to parabolic-
elliptic Keller-Segel equation which has been studied in [8, 9, 14] and it has been proved therein
that the associated semigroup is exponentially stable in several weighted Lebesgue spaces. In the
sequel we explain why the linearized parabolic-parabolic system inherits that exponential stability
at least for ε > 0 small enough.

We recall the following result which is an immediate consequence of [9, Section 6.1] and [14,
Theorem 4.3].

Theorem 4.8. There exists a constant C such that

∀h ∈ L2
k,0 ‖eΩth‖L2

k
≤ C e−t‖h‖L2

k
,

hence it follows
RΩ ∈ H(∆−1;B(X1)) and then Σ(Ω) ∩∆−1 = ∅.

In order to formalize the link between the linearized parabolic-parabolic equation and the lin-
earized parabolic-elliptic equation we write the linearized parabolic-parabolic system (4.29) into
the matrix form

d

dt

(

f
u

)

= Λε

(

f
u

)

, Λε :=

(

A B
ε−1 ε−1C +D

)

.

In order to analysis the spectrum of Λε, for any z ∈ C, we denote

Λε(z) = Λε − z =

(

a b
c d

)

with
a = A(z) = A− z, b = B, c := ε−1I, d := ε−1C +D(z), D(z) = D − z.
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One can readily verify that for z ∈ C such that d = d(z) is invertible as well as its Schur’s
complement

sε = sε(z) := a− bd−1c = A−B(C + εD)−1

is invertible, the resolvent of Λε is given by

RΛε(z) = Λε(z)
−1 =

(

s−1
ε −s−1

ε bd−1

−d−1cs−1
ε d−1 + d−1cs−1

ε bd−1

)

=:

(

RΛε
11 RΛε

12

RΛε

21 RΛε

22

)

.

Then at least formally, we see that

(4.32) RΛε(z)−→
ε→0

(

RΩ(z) 0
−C−1RΩ(z) 0

)

.

Indeed, on the one hand, we have

RΛε
11 = s−1

ε = {A− z −B(ε−1C +D − z)−1ε−1I}−1

= {A− z −B(C + εD − εz)−1}−1 −−−→
ε→0

(A0 −B0C
−1 − z)−1 = RΩ(z).

and
RΛε

21 = −d−1cs−1 = −(ε−1C +D − z)−1ε−1I{A− z −B(C + εD − εz)−1}−1

= −(C + εD − εz)−1{A− z −B(C + ε(D − z))−1}−1

−−−→
ε→0

−C−1(A0 −B0C
−1 − z)−1 = −C−1RΩ(z).

In the same way, we have

RΛε
12 = −s−1bd−1 = −ε{A− z − B(C + εD − εz)−1}−1B(C + εD − εz)−1

as well as

RΛε
22 = d−1 + d−1cs−1bd−1

= ε(C + εD − εz)−1 + ε(C + εD − εz)−1{A− z −B(C + εD − εz)−1}−1B(C + εD − εz)−1,

and then both last terms vanishes in the limit ε→ 0.

In fact, we will not try to prove that convergence (4.32) rigorously holds, but we will just prove
the following result. We define

Oρ := ∆−1/3 ∩B(0, ρ).

Proposition 4.9. For any ρ > 0 there exists ε∗ρ > 0 such that in X there holds

RΛε ∈ H(Oρ;B(X)) for any ε ∈ (0, ε∗ρ).

Before proving Proposition 4.9 we establish some estimates on the terms involved in RΛε .

Lemma 4.10. Define

s̃(z) := B(C + εD(z))−1(−D(z))C−1.

For any ρ > 0, there exists ε∗ρ > 0 such that

sup
z∈Oρ

sup
ε∈(0,ε∗ρ)

‖s̃(z)‖B(X1) ≤ C.

Proof of Lemma 4.10. On the one hand, from Lemma A.1 and Lemma A.2 we have

(−D(z))C−1 : L2
k,0 ∩ L2

rad → L2
rad

is bounded uniformly for z ∈ Oρ. More precisely, for f ∈ L2
k,0 we write

f = f0 + f1 + f2; fi = λiFi, i = 1, 2,

where we define the coefficients by

λ1 =

∫ ∞

0

f(r) r2 r dr, λ2 =

∫ ∞

0

f(r) r4 r dr,
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and the functions Fi by

F1(r) =

(

−1

8
r4 +

5

4
r2 − 3

2

)

e−r2/2, F2(r) =

(

1

64
r4 − 1

8
r2 +

1

8

)

e−r2/2,

so that it holds
∫ ∞

0

F1(r) (1, r
2, r4) r dr = (0, 1, 0),

∫ ∞

0

F2(r) (1, r
2, r4) r dr = (0, 0, 1),

and hence f0 ∈ L2
k,5.

We may solve the equation

Cu = ∆u = f, u radially symmetric, u′(0) = u′(∞) = 0,

by writing

u = u0 + u1 + u2, ∆ui = fi, u′i(0) = u′i(∞) = 0

where ui, i = 1, 2, is defined by the relation

ru′i(r) :=

∫ r

0

σfi(σ) dσ,

so that 〈r〉|u′i| ≤ C and |u| ≤ C log(1 + 〈r〉), and u0 ∈ L2
rad ∩ L2

5, ∇u0 ∈ L2
5 is the unique

solution to the above Poisson equation as given by Lemma A.1 and Lemma A.2. As a consequence,
g0 := D(z)u0 ∈ L2

4,1 and gi := ru′i + zui satisfy the estimates gi e
−r/2 ∈ L∞ for i = 1, 2. Thanks

to Lemmas B.1 and B.2 and using the notation of appendix B, we have vi := L−1
ε gi which satisfy

‖v0‖Ḣ1∩Ḣ2 ≤ C ‖g0‖L2
4,1

while vi satisfy the estimates, for i = 1, 2,

‖vi e−(1+ε|z|)r‖L∞ + ‖v′i e−(1+ε|z|)r‖L∞ ≤ C‖gi e−r/2‖L∞ .

Finally we solve the equation wi := Bvi which means

wi = Gε∆vi +∇Gε · ∇vi = Gε(v
′′
i +

1

r
v′i) + r G′

εv
′
i,

then the previous estimates together with the bound (4.2) yield w = w0 +w1+w2 ∈ L2
k,0 ∩L2

rad =
X1. �

Lemma 4.11. With the above notations, for any ρ > 0, there exists Cρ such that

(4.33) sup
z∈Oρ

‖d−1(z)‖B(X2) ≤ Cρ

Proof of Lemma 4.11. Consider the equation

(4.34) d(z)v = ε−1∆v +
1

2
x · ∇v − z v = u,

for z ∈ ∆a ∩B(0, ρ). Multiplying the equation by v̄ and the conjugated equation by v, we find

1

ε

∫

|∇v|2 +
(1

2
+ ℜez

)

∫

|v|2 = −1

2

∫

vū − 1

2

∫

v̄u(4.35)

≤ ‖u‖L2 ‖v‖L2

and then
(1

2
+ ℜez

)

‖v‖L2 ≤ ‖u‖L2.

�

Lemma 4.12. With the above notations, for any ρ > 0, there exists Ck,a,ρ > 0 such that

(4.36) sup
z∈Oρ

‖bd−1(z)‖B(X2,X1) ≤ Ck,a,ρ

√
ε→ 0.
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Proof of Lemma 4.12. Consider the equation (4.34) again. Coming back to (4.35), we have

(4.37) ‖∇v‖L2 ≤
√

ε
1
2 + ℜez‖u‖L2.

Next, multiplying the equation (4.34) by x · ∇v̄ and the conjugated equation by x · ∇v, we find
∫

|x · ∇v|2 =

∫

(u− zv)(x · ∇v̄) + (ū− z̄v̄)(x · ∇v)

which in turn implies
‖x · ∇v‖L2 ≤ Ca,r.

Coming back to (4.34) and together with (4.37), we have proved

(4.38) ‖∆v‖L2 + ‖∇v‖L2 ≤ Ca,r

√
ε‖u‖L2.

We then immediately conclude to (4.36). �

Lemma 4.13. With the above notations, for any ρ > 0, there exists Ck,ρ > 0 such that

(4.39) sup
z∈Oρ

‖cd−1(z)‖B(X1,X2) ≤ Ck,ρ.

Proof of Lemma 4.13. We use appendix B. �

Proof of Proposition 4.9. We split the proof into four steps.

Step 1. We prove that

(4.40) ∀ ε ∈ (0, ε∗ρ) RΛε
11 = s−1

ε ∈ H(Oρ;B(X1)).

We write
sε(z) = A(z)−BC−1 − [B(C + εD(z))−1 −BC−1] =: s0(z)− εs̃(z)

and then
sε(z)− Ω(z) = [s0(z)− Ω(z)]− εs̃(z)

with

s0(z) = A(z)−BC−1, Ω(z) = Ω− z = A0(z)−B0C
−1, s̃(z) := B(C + εD(z))−1(−D(z))C−1.

Remark that

s0(z)− Ω(z) = s0 − Ω = −∇(·∇(Vε − V ))−∇((Gε −G)∇(∆−1·))
does not depend on z, and thanks to Corollary 4.2 we easily get

‖s0 − Ω‖B(Y1,X1) ≤ η(ε) with η(ε) → 0 as ε→ 0,

where we recall that Y1 = H1
k ∩ L2

k,0 ∩ L2
rad, see (4.18). Moreover, using Lemma 4.10 we get that

sup
z∈Oρ

sup
ε∈(0,ε∗ρ)

‖s̃‖B(X1) ≤ C

from which we deduce, for any z ∈ Oρ and ε ∈ (0, ε∗ρ),

‖sε(z)− Ω(z)‖B(Y1,X1) ≤ η(ε) + Cε,

Then, arguing as is [32, Lemma 2.16], the operator

Tε(z) := (−1)n(sε − Ω)RΩ(z) (A11RBε
11 (z))

n,

satisfies
‖Tε(z)‖B(X1) ≤ η′(ε) ∀ z ∈ Oρ, η′(ε) → 0 as ε→ 0,

where

RBε =:

(

RBε
11 RBε

12

RBε
21 RBε

22

)

, A =:

(

A11 0
0 0

)

,

and the integer n is defined in the proof of Proposition 4.3. As a consequence, the operators
I + Tε(z) and sε(z) are invertible for any z ∈ Oρ, and furthermore

RΛε
11 (z) = sε(z)

−1 = Uε(z)(1 + Tε(z))−1,
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where

Uε(z) =

n−1
∑

j=0

(−1)jRBε
11 (z)(A11RBε

11 (z))
j + (−1)nRΩ(z)(A11RBε

11 (z))
n.

We immediately conclude to (4.40) because Σ(Ω) ∩∆a = ∅ on X1 and ‖RΩ(z)‖B(X1) ≤ C for any
z ∈ Oρ from Theorem 4.8.

Step 2. We have

(4.41) ∀ ε ∈ (0, ε∗ρ) RΛε
12 := −s−1

ε bd−1 ∈ H(Oρ;B(X2, X1))

as an immediate consequence of Lemmas 4.10 and 4.12.

Step 3. We also have

(4.42) ∀ ε ∈ (0, ε∗ρ) RΛε
21 := −d−1cs−1

ε ∈ H(Oρ;B(X1, X2))

as a consequence of Lemmas 4.10 and 4.13.

Step 4. We finally have

(4.43) ∀ ε ∈ (0, ε∗ρ) RΛε
22 := d−1 + d−1cs−1

ε bd−1 ∈ H(Oρ;B(X2))

as an immediate consequence of Step 1 together with Lemmas 4.12 and 4.13. �

Proof of Theorem 4.7. The proof is a consequence of Proposition 4.3, Proposition 4.9 and Theo-
rem 4.8 together with [26, Theorem 2.1]. �

5. Nonlinear exponential stability of self-similar solutions

5.1. Linear stability in higher-order norms. Define

(5.1) Z := Z1 × Z2, Z1 := H1
k ∩ L2

k,0 ∩ L2
rad, Z2 := H2 ∩ L2

rad,

associated to the norm

(5.2) ‖(f, u)‖2Z := ‖(f, u)‖2Y + ‖∇2u‖2L2.

We shall prove that the same linear stability estimate in X from Theorem 4.7 also holds in Z,
as stated in the following result.

Proposition 5.1. There exists ε∗ > 0 such that there holds in Z

Σ(Λε) ∩∆−1/3 = ∅, ∀ ε ∈ (0, ε∗).

As a consequence we have

‖SΛε(t)‖B(Z) ≤ Ce−t/3, ∀ t ≥ 0, ∀ ε ∈ (0, ε∗).

Lemma 5.2. (1) A ∈ B(Z).
(2) There exist N,R large enough such that the operator Bε is a-hypo-dissipative in Z, i.e.

‖SBε(t)‖B(Z) ≤ Ceat.

Moreover we have the following estimate

‖SBε(t)‖B(X,Z) ≤ C t−1 eat.

Proof. Point (1) is straightforward from (4.10) and we omit the proof. For point (2), consider the
equation ∂t(f, u) = Bε(f, u). First of all, observe that the norm ‖ · ‖Z is equivalent to

(5.3) ‖(f, u)‖2Z∗
:= ‖(f, u)‖2Y∗

+ η2‖∇2(u− κf )‖2L2

for any η2 > 0. We write

∂t(∂iju) =
1

ε
∆(∂ij(u − κf)) + ∂iju+

1

2
x · ∇(∂iju)
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and then we compute

1

2

d

dt

∫

|∂ij(u − κf )|2 =

∫

∂ij(u− κf)∂t{∂ij(u− κf )}

=

∫

∂ij(u− κf)
1

ε
∆(∂ij(u− κf )) +

∫

∂ij(u− κf )∂iju

+

∫

∂ij(u− κf )
1

2
x · ∇(∂ij(u − κf)) +

∫

∂ij(u− κf )
1

2
x · ∇(∂ijκf )

−
∫

∂ij(u− κf )∂ijκ ∗ (∂tf)

=: B1 + · · ·+B5.

We easily obtain

B1 = −1

ε
‖∇{∂ij(u− κf )}‖2L2,

moreover

B2 ≤ C‖∇2(u− κf )‖2L2 + C‖∇2u‖2L2 ≤ C‖∇2(u− κf )‖2L2 + C‖f‖2L2,

by integration by parts B3 ≤ 0 and also

B4 ≤ C‖∇2(u− κf )‖2L2 + C‖∇3κ ∗ f‖2L2
1
≤ C‖∇2(u − κf)‖2L2 + C‖∇f‖2L2

1
.

For the last term we get

B5 = −
∫

∂ij(u− κf )∂ijκ ∗
{

∆f +
1

2
∇(xf) −∇(f∇Vε)−∇(Gε∇u)−NχR[f ]

}

=: B51 + · · ·+B55.

We have

B51 ≤ C(δ)‖∇2(u− κf )‖2L2 + δ‖∇2f‖2L2

and

B52 ≤ C‖∇2(u − κf )‖2L2 + C‖∇2κ ∗ ∇(xf)‖2L2 ≤ C‖∇2(u− κf )‖2L2 + C‖∇f‖2L2
1
+ C‖f‖2L2.

Moreover, using that ∇Vε,∆Vε ∈ L∞ we get

B53 ≤ C‖∇2(u− κf )‖2L2 + C‖∇2κ ∗ ∇(f∇Vε)‖2L2

≤ C‖∇2(u− κf )‖2L2 + C‖∇(f∇Vε)‖2L2

≤ C‖∇2(u− κf )‖2L2 + C‖∇f‖2L2 + C‖f‖2L2,

and arguing as above with Gε,∇Gε ∈ L∞ we also obtain

B54 ≤ C‖∇2(u − κf)‖2L2 + C‖∇2κ ∗ ∇(Gε∇u)‖2L2

≤ C‖∇2(u − κf)‖2L2 + C‖∇(Gε∇u)‖2L2

≤ C‖∇2(u − κf)‖2L2 + C‖∇2u‖2L2 + C‖∇u‖2L2

≤ C‖∇2(u − κf)‖2L2 + C‖f‖2L2
ℓ
,

where we recall ℓ ∈ (2, k) is the same as in Lemma 4.4. For the last term we easily obtain

B55 ≤ C‖∇2(u− κf )‖2L2 + C‖NχR[f ]‖2L2 ≤ C‖∇2(u− κf )‖2L2 + CN2‖f‖2L2.

All the above estimates yield

(5.4)

1

2

d

dt
‖∇2(u− κf )‖2L2 ≤ −1

ε
‖∇3(u − κf̃)‖2L2 + C(δ)‖∇2(u− κf̃ )‖2L2

+ C‖f‖2L2
ℓ
+ CN2‖f‖2L2 + C‖∇f‖2L2

1
+ δ‖∇2f‖2L2.
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Putting together last equation with (4.23) we get
(5.5)

1

2

d

dt
‖(f, u)‖2Z∗

≤
∫

{

ϕ(x) + η1εC(δ) + η1C
N

R
1R/2≤|x|≤2R + η1C(δ)N

2〈x〉−2k + η2CN
2〈x〉−2k

+ [η1C(δ) + η1C(1 +N2) + C(δ)(1 + ηN2) + C
N

Rℓ−1
+ η2C]〈x〉2(ℓ−k) −NχR

}

f2〈x〉2k

+ η1

∫

{

ϕ(x)− 1

2
+ δ + C

N

R
1R/2≤|x|≤2R + [C(δ) + C

N

Rℓ−1
]〈x〉2(ℓ−k)

+ C〈x〉−2k +
η2
η1
C〈x〉2(1−k) −NχR

}

|∇f |2〈x〉2k

− (1− δ)‖∇f‖2L2
k
− η

(

1

2
− δ

)

‖u− κf‖2L2 − η1

(

1− δ − η2
η1
δ

)

‖∇2f‖2L2
k

− η

(

1

ε
− C(δ)− η1

η
C(δ)

)

‖∇(u− κf )‖2L2 − η1

(

1

ε
− C(δ) − η2

η1
C(δ)

)

‖∇2(u− κf )‖2L2

− 1

ε
‖∇3(u − κf̃ )‖2L2 .

We can now conclude exactly as in the proof of Lemma 4.4 and Lemma 4.6, and we obtain that
for any a > −1/2,

(5.6)
1

2

d

dt
‖(f, u)‖2Z∗

≤ a‖(f, u)‖2Z∗
−K(‖∇2f‖2L2

k
+ ‖∇3(u − κf)‖2L2),

for some constant K > 0, from which Bε is a-hypo-dissipative in Z.
From (5.6) and the interpolation inequalities

‖f‖2H1
k
. ‖f‖H2

k
‖f‖L2

k
, ‖u‖2H2 . ‖u‖4/3H3 ‖u‖2/3L2

it follows that
1

2

d

dt
‖(f, u)‖2Z∗

≤ a‖(f, u)‖2Z∗
−K‖(f, u)‖−1

X∗
‖(f, u)‖3Z∗

,

from which we obtain by standard arguments

‖SBε(t)(f, u)‖Z ≤ C t−1 eat ‖(f, u)‖X .
�

Proof of Proposition 5.1. From Lemma 4.4, Lemma 4.5, Lemma 5.2 and [18, Lemma 2.17] it follows
that there is n ∈ N such that

‖(ASBε)
∗n(t)‖B(X,Z) ≤ C eat.

Then the proof of the linear stability result in Z is a consequence of last estimate, Lemma 5.2,
Theorem 4.7 and the “extension theorem” [24, Theorem 1.1].

�

5.2. Dissipative norm. We define the new norm

|||(f, u)|||2Z := η‖(f, u)‖2Z +

∫ ∞

0

‖SΛε(τ)(f, u)‖2Z dτ

for some η > 0. Thanks to Proposition 5.1, the norm ||| · |||Z is equivalent to ‖ · ‖Z for any η > 0.
Moreover, considering the equation ∂t(f, u) = Λε(f, u) we obtain from Proposition 5.1, Lemma 5.2
and arguing as in [18, 14] that, for some η > 0 small enough, it holds

(5.7)
d

dt
|||(f, u)|||2Z ≤ −K|||(f, u)|||2Z −K{‖∇2f‖2L2

k
+ ‖∇3u‖2L2} =: −K‖(f, u)‖2

Z̃
,

for some constant K > 0.
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5.3. The nonlinear problem : Proof of theorem 1.4. We focus now on the nonlinear parabolic-
parabolic Keller-Segel system (1.15)-(1.16) in self-similar variables and we prove Theorem 1.4.
Consider (g, v) solution to (1.15)-(1.16) and define f := g −Gε and u := v − Vε, which satisfy

(5.8)
∂tf = Λε,1(f, u)−∇ · (f∇u)
∂tu = Λε,2(f, u),

together with the initial condition (f, u)|t=0 = (f0, u0) := (g0, v0)−(Gε, Vε), that satisfies moreover
‖(g0, v0)− (Gε, Vε)‖Z ≤ δ∗.

We split the proof into three parts.

5.3.1. A priori estimate.

Lemma 5.3. The solution (ft, ut) to (5.8) satisfies the following differential inequality

(5.9)
d

dt
|||(f, u)|||2Z ≤ (−K + C|||(f, u)|||Z) ‖(f, u)‖2Z̃ ,

where ‖ · ‖Z̃ is defined in (5.7).

Proof. Since
‖(f, u)‖2Z = ‖f‖2H1

k
+ ‖u‖2H2 ,

we obtain from (5.8) that, denoting Q(f, u) = (−∇ · (f∇u), 0),
1

2

d

dt
|||(f, u)|||2Z = η〈(f, u),Λε(f, u)〉+

∫ ∞

0

〈S(τ)(f, u), S(τ)Λε(f, u)〉 dτ

+ η〈(f, u), Q(f, u)〉+
∫ ∞

0

〈S(τ)(f, u), S(τ)Q(f, u)〉 dτ =: I1 + I2.

For the first (linear) term we have already obtained in (5.7) that

I1 := η〈(f, u),Λε(f, u)〉+
∫ ∞

0

〈S(τ)(f, u), S(τ)Λε(f, u)〉 dτ

≤ −K
{

|||(f, u)|||2Z + ‖∇2f‖2L2
k
+ ‖∇3u‖2L2

}

=: −K‖(f, u)‖2
Z̃
.

For the second (nonlinear) term we use the linear stability in Z from Proposition 5.1 to obtain

I2 := η〈(f, u), Q(f, u)〉+
∫ ∞

0

〈S(τ)(f, u), S(τ)Q(f, u)〉 dτ

≤ η‖(f, u)‖Z ‖Q(f, u)‖Z +

∫ ∞

0

‖S(τ)(f, u)‖Z ‖S(τ)Q(f, u)‖Z dτ

≤ η‖(f, u)‖Z ‖Q(f, u)‖Z + C

∫ ∞

0

eat‖(f, u)‖Z eat‖Q(f, u)‖Z dτ

≤ C‖(f, u)‖Z ‖Q(f, u)‖Z.
Now we have to compute

‖Q(f, u)‖2Z = ‖(−∇ · (f∇u), 0)‖2Z = ‖∇ · (f∇u)‖2L2
k
+ ‖∇ · (f∇u)‖2

Ḣ1
k

.

We split ∇ · (f∇u) = f∆u+∇f · ∇u and compute

‖f∆u‖2L2
k
=

∫

f2|∆u|2〈x〉2k . ‖∇2u‖2L2 ‖〈x〉kf‖2L∞

. ‖∇2u‖2L2 ‖f‖2H2
k
. ‖(f, u)‖2Z ‖(f, u)‖2

Z̃
,

where we have used the embedding H2(R2) →֒ L∞(R2). Moreover we get

‖∇f · ∇u‖2L2
k
=

∫

|∇f |2|∇u|2〈x〉2k . ‖∇u‖2L∞ ‖∇f‖2L2
k

. ‖u‖2H3 ‖∇f‖2L2
k
. ‖(f, u)‖2

Z̃
‖(f, u)‖2Z .
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Furthermore we obtain

‖∇(f∆u)‖2L2
k
.

∫

f2|∇3u|2〈x〉2k +

∫

|∇f |2|∇2u|2〈x〉2k

. ‖∇3u‖2L2 ‖〈x〉kf‖2L∞ + ‖〈x〉k∇f‖2L4 ‖∇2u‖2L4

. ‖∇3u‖2L2 ‖f‖2H2
k
+ ‖f‖L2

k
‖f‖H2

k
‖∇u‖L2 ‖∇3u‖2L2

. ‖(f, u)‖4
Z̃
,

where we have used Glagliardo-Niremberg-Sobolev inequality ‖h‖2L4(R2) . ‖h‖L2(R2) ‖∇h‖L2(R2).

For the last term we get

‖∇(∇f · ∇u)‖2L2
k
.

∫

|∇f |2|∇2u|2〈x〉2k +

∫

|∇2f |2|∇u|2〈x〉2k

. ‖〈x〉k∇f‖2L4 ‖∇2u‖2L4 + ‖∇u‖2L∞ ‖∇2f‖2L2
k

. ‖f‖L2
k
‖f‖H2

k
‖∇u‖L2 ‖∇3u‖2L2 + ‖u‖2H3 ‖∇2f‖2H2

k

. ‖(f, u)‖4
Z̃
.

Finally, gathering the above estimates, the solution (f, u) of (5.8) verifies

d

dt
|||(f, u)|||2Z ≤ −K‖(f, u)‖2

Z̃
+ C‖(f, u)‖Z ‖(f, u)‖2

Z̃
≤ (−K + C|||(f, u)|||Z) ‖(f, u)‖2Z̃ ,

which concludes the proof.
�

5.3.2. Existence. In this section we prove the existence of solutions to (5.8). They are solutions to
the Keller-Segel equation (1.1) which satisfy some strong and uniform in time estimates.

Proposition 5.4. There is δ > 0 such that if |||(f0, u0)|||Z ≤ δ then there exists a solution (f, u) ∈
C([0, T ];Z) to (5.8) that verifies, for any t ∈ [0, T ],

(5.10) sup
t∈[0,T ]

|||(f, u)(t)|||2Z +K

∫ t

0

‖(f, u)(τ)‖2
Z̃
dτ ≤ 2δ2.

Proof. We split the proof into several steps following the argument presented in [18, Theorem 5.3].

Step 1. Consider the iterative scheme

∂t(f
n, un) = Λε(f

n, un) +Q(fn−1, un), ∀n ≥ 1

and
∂t(f

0, u0) = Λε(f
0, u0),

with initial condition (fn, un)|t=0 = (f0, u0) for all n ∈ N and ‖(f0, u0)‖Z ≤ δ for some δ > 0
small enough to be chosen later. For any n ≥ 0, (fn, un) is well-defined in C([0, T ];Z) thanks to
Proposition 5.1. For any n ≥ 0 we claim that the following estimate holds true

(5.11) ∀ t ≥ 0, An(t) := |||(fn, un)(t)|||2Z +K

∫ t

0

‖(fn, un)(τ)‖2
Z̃
dτ ≤ 2δ2.

It is true for n = 0 from (5.7). Now we assume that (5.11) holds for some n− 1 and we shall prove
that it implies (5.11) for n. From the proof of Lemma 5.3 we obtain

d

dt
|||(fn, un)|||2Z ≤ −K‖(fn, un)‖2

Z̃
+ C|||(fn, un)|||Z ‖(fn, un)‖Z̃ ‖(fn−1, un−1)‖Z̃

then integrating from 0 to t and using Holdër’s inequality it follows that

An(t) ≤ |||(f0, u0)|||2Z + C sup
0≤τ≤t

|||(fn, un)(τ)|||Z
(
∫ t

0

‖(fn, un)(τ)‖2
Z̃
dτ

)1/2 (∫ t

0

‖(fn−1, un−1)(τ)‖2
Z̃
dτ

)1/2

≤ |||(f0, u0)|||2Z + CAn(t) [An−1(t)]1/2

≤ |||(f0, u0)|||2Z + CδAn(t),
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from which we conclude if δ > 0 is small enough such that Cδ ≤ 1/2.

Step 2. Denote (Fn, Un) := (fn+1 − fn, un+1 − un) that verifies

∂t(F
n, Un) = Λε(F

n, Un) +Q(Fn−1, un+1) +Q(fn−1, Un), ∀n ≥ 1

and

∂t(F
0, U0) = Λε(F

0, U0) +Q(f0, u1),

with initial condition (F0, U0) = (0, 0) for all n ≥ 0. For any n ≥ 0 we claim that

(5.12) ∀ t ≥ 0, Bn(t) := |||(Fn, Un)(t)|||2Z +K

∫ t

0

‖(Fn, Un)(τ)‖2
Z̃
dτ ≤ (Cδ)2n.

When n = 0, arguing as above we obtain

d

dt
|||(F 0, U0)(t)|||2Z +K‖(F 0, U0)‖2

Z̃
≤ C|||(F 0, U0)|||Z ‖(f1, u1)‖Z̃ ‖(f0, u0)‖Z̃

which together with the bounds on (f1, u1) and (f0, u0) obtained before yield

B0(t) ≤ Cδ2 ≤ δ, ∀ t ≥ 0,

for δ > 0 small enough. We now assume (5.12) for some n − 1 and prove it for n. Arguing in a
similar way as before, we estimate

Bn(t) ≤ |||(F0, U0)(t)|||2Z + C

∫ t

0

‖(Fn−1, Un−1)(τ)‖Z̃ |||(fn+1, un+1)(τ)|||Z̃?? |||(Fn, Un)(τ)|||Z dτ

+ C

∫ t

0

‖(fn−1, un−1)(τ)‖Z̃ ‖(Fn, Un)(τ)‖Z̃ |||(Fn, Un)(τ)|||Z dτ

≤ C δ [Bn(t)]1/2 [Bn−1(t)]1/2 + C δ Bn(t),

and using the induction hypothesis

Bn(t) ≤ C δn [Bn(t)]1/2 + C δ Bn(t),

from which we conclude to (5.12) if δ > 0 is small enough.
Therefore the sequence {(fn, un)}n is a Cauchy sequence in C([0, T ];Z) for any T > 0. The

limit (f, u) := limn→∞(fn, un) is a solution of (5.8) in a weak sense. Passing to the limit n → ∞
in (5.11) we get the stability estimate for the solution (f, u) constructed above

sup
t≥0

|||(f, u)(t)|||2Z +K

∫ t

0

‖(f, u)(τ)‖2
Z̃
dτ ≤ 2δ2.

�

5.3.3. Sharp exponential convergence to the equilibrium. We now complete the proof of Theorem 1.4
following [18]. Applying Lemma 5.3 to the solution (f, u) constructed above and using the estimate
(5.10) we obtain

d

dt
|||(f, u)|||2Z ≤ (−K + C|||(f, u)|||Z) ‖(f, u)‖2Z̃ ≤ (−K + C′δ) ‖(f, u)‖2

Z̃
≤ (−K + C′δ)C′′‖(f, u)‖2Z,

and if δ > 0 is small enough so that −K + C′δ ≤ −K/2, this implies an exponential decay to the
equilibrium

|||(f, u)(t)|||Z ≤ e−
KC′′

2 t |||(f0, u0)|||Z .
Finally, we can recover the optimal decay rate O(eat) of the linearized semigroup in Proposition 5.1
by performing a bootstrap argument as in [18, Proof of Theorem 5.3], which concludes the proof.
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Appendix A. Estimates on the solutions to the Poisson equation

In this section, we give some technical (and we believe standard) estimates on the solutions to
the Poisson equation in R2 that are useful in the paper. We recall the notations

κ(z) = − 1

2π
log |z|, K(z) := ∇κ(z) = − 1

2π

z

|z|2
and

κf := κ ∗ f, Kf := K ∗ f,
so that there holds

κf ∈ C2(R2), |κf | ≤ C (1 + log〈x〉), −∆κf = f.

Lemma A.1. For any k > 3, j ≥ 1, k > j + 2, there exists Ck,j such that

(A.1) ‖κ ∗ f‖L2
j
≤ C‖f‖L2

k
∀ f ∈ L2

k,j .

Proof of Lemma A.1. Consider f ∈ L2
k,j , k > 3, so that f̂ ∈ C2, and ∂αξ f̂(0) = 0 for any |α| ≤ j

thanks to the moments condition, hence

f̂(ξ) =
∑

|α|=j+1

1

α!
∂αξ f̂(η) ξ

α,

for some η between 0 and ξ. In Fourier variables the Laplace equation writes |ξ|2κ̂f(ξ) = f̂(ξ), and
then

∫

|κf |2 =

∫

|κ̂f |2 =

∫ |f̂ |2
|ξ|4 .

All together, we have
∫ |f̂ |2

|ξ|4 ≤
∫

Bc
1

|f̂ |2
|ξ|4 +

∫

B1

sup
η∈B1

|Dj+1f̂(η)|2 dξ

≤ ‖f‖2L2 + C‖f‖2L1
j+1

≤ ‖f‖2L2 + C‖f‖2L2
k
≤ C‖f‖2L2

k
,

where we used ‖g‖L1 . ‖g‖L2
r
for r > 1 with g = 〈x〉j+1f in the last line, which gives k > j+2. �

Lemma A.2. For any k > 2, j ≥ 0, k > j + 2, there exists Ck,j such that

(A.2) ‖K ∗ f‖L2
j
≤ C‖f‖L2

k
∀ f ∈ L2

k,j.

Proof of Lemma A.2. The proof is similar to the Lemma above, writing in Fourier variables |ξ|2κ̂f (ξ) =
f̂(ξ), observing that

∫

|∇κf |2 =

∫

|ξ|2|κ̂f |2 =

∫ |f̂ |2
|ξ|2

and using the moments conditions.
�

Appendix B. Estimates on the c−1d operator

With the notations of section 4.3, we consider the equation

(B.1) Lεu := c−1du = ∆u+
ε

2
x · ∇u− εzu = f

with z ∈ ∆−1/2.

Lemma B.1. For any f ∈ L2
k,0, k > 2, z ∈ ∆−1/2, there exists a solution u ∈ H2 to the equation

Lεuε = f and there exists a constant C (which does not depend on ε > 0 and z ∈ ∆−1/2\{0}) such
that

‖∇u‖L2 + ‖∆u‖L2 ≤ C ‖f‖L2
k
.
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Proof. Multiplying equation (B.1) by ū and ∆ū and its conjugate by u and ∆u, we find
∫

|∇u|2 + ε
(1

2
+ ℜez

)

∫

|u|2 = −1

2

∫

(fū+ f̄u)

and

(B.2)

∫

|∆u|2 + (εℜez)
∫

|∇u|2 =
1

2

∫

f∆ū+
1

2

∫

f̄∆u.

Writing

u(x) = u(y) +

∫ 1

0

∇u(zs) (x− y) ds, zs := y + s (y − x),

we have

u(x) = 〈u〉1 +
∫

B(0,1)

∫ 1

0

∇u(zs) (x− y) dsdy, 〈u〉1 :=

∫

B(0,1)

u(y) dy,

and then from the first equation and the moment condition

∫

|∇u|2 ≤ −
∫

R2

∫

B(0,1)

∫ 1

0

f(x)∇u(zs) · (x− y) dsdydx

≤ 1

2α

∫

R2

∫

B(0,1)

∫ 1

0

|f(x)|2 〈x〉2ℓ |x− y|2 dsdydx

+
α

2

∫

R2

∫ 1/2

0

{

∫

B(0,1)

|∇u(sx+ (1− s)y)|2 dy
}

ds
dx

〈x〉2ℓ

+
α

2

∫

B(0,1)

∫ 1

1/2

{

∫

R2

|∇u(sx+ (1− s)y)|2 dx
}

dsdy

≤ 1

α

{

∫

B(0,1)

dy
}

∫

R2

|f(x)|2 〈x〉2(ℓ+1) dx

+
α

2

∫

R2

dx

〈x〉2ℓ
∫ 1/2

0

ds

(1− s)2

∫

R2

|∇u(z)|2 dz

+
α

2

{

∫

B(0,1)

dy
}

∫ 1

1/2

ds

s2

∫

R2

|∇u(z)|2 dz,

and we deduce that
∫

|∇u|2 ≤ C

∫

R2

|f(x)|2 〈x〉2k dx

by choosing ℓ = k − 1 and α > 0 small enough. We conclude by gathering that last estimate
together with (B.1).

�

Lemma B.2. There exists a constant C such that for any ε ∈ (0, 1), any z ∈ ∆−1/2 and any
radially symmetric function f the equation

Lεu = f, u radially symmetric, u(0) = u′(0) = 0,

has a unique solution which furthermore satisfies

(B.3) ‖u e−(1+ε|z|)r‖L∞ + ‖u′ e−(1+ε|z|)r‖L∞ ≤ C ‖f e−r/2‖L∞ .

Proof. We may write the equation as

(B.4) u′′ +
(1

r
+ ε r

)

u′ + εzu = f, ∀ r > 0,
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with the additional boundary conditions u(0) = u′(0) = 0. Defining U := |u|2 + |u′|2, we have

U ′ = uū′ + u′ū+ u′ū′′ + u′′ū′

≤ 2(1 + ε|z|) |u| |u′| −
(1

r
+ ε r

)

|u′|2 + 2 |u′| |f |

≤ (2 + ε|z|)U + |f |2,
from which we immediately get (B.3) thanks to Gronwall lemma. �
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Université Paris-Dauphine

CEREMADE, UMR CNRS 7534
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Stéphane Mischler
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