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A Minimal Model Program for Q-Gorenstein varieties

Boris Pasquier∗

June 23, 2014

Abstract

The Minimal Model Program is constructed for projective varieties with at mostQ-factorial
terminal singularities. Here, we adapt the definitions of divisorial contractions and flips to
construct a Minimal Model Program for projective varieties with at most Q-Gorenstein termi-
nal singularities. This new construction can be naturally extended to klt pairs. In the family
of Q-Gorenstein spherical varieties, we answer positively to the questions of existence of flips
and of finiteness of sequences of flips.

Mathematics Subject Classification. 14E30 14M25 14M17

Keywords. Minimal Model Program.

1 Introduction

We only consider normal algebraic varieties over C.
The Minimal Model Program (MMP) is now well-known for projective varieties with at most

Q-factorial terminal singularities. Moreover, the first two main results of the theory, the Contrac-
tion Theorem and the Cone Theorem, are given for projective varieties with at most Q-Gorenstein
terminal singularities [KMM87]. It is then natural to ask if the MMP also works for Q-Gorenstein
projective varieties. With the study of toric varieties (for example), we can answer negatively to
this question: there exist divisorial contractions of extremal rays from a Q-Gorenstein variety to a
non-Q-Gorenstein variety and flips do not always exist. Nevertheless, still for toric varieties (and
more generally for horospherical varieties), we observed in [Pas13] that a program very similar to
the MMP works for Q-Gorenstein varieties. In this latter paper, where the MMP is reduced to
the study of a family of moment polytopes, the theory for Q-Gorenstein projective varieties even
seams to be more natural than the classical theory for Q-factorial projective varieties.

In this paper, we define a MMP for Q-Gorenstein projective varieties with terminal singular-
ities, and we give the first results of the theory.

Before to describe explicitly the results, we recall some basic definitions and notations.

∗Boris PASQUIER, E-mail: boris.pasquier@univ-montp2.fr
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Definition 1. • A normal variety X is Q-Gorenstein if its canonical divisor KX is Q-Cartier
(ie if there exists a multiple of KX that is Cartier).

• A normal Q-Gorenstein variety X has terminal singularities if there exists a desingulariza-
tion σ : V −→ X of X such that

KV = σ∗KX +
∑

E prime divisor of V

aEE,

with aE > 0 for any exceptional prime divisor E of σ (and aE = 0 otherwise).

• A contraction (ie a projective morphism φ : X −→ Y such that φ∗OX = OY ) is a small
contraction if its exceptional locus is at least of codimension 2.

Now, fix a normal Q-Gorenstein projective variety X with terminal singularities. We denote
by NE(X) the nef cone of curves of X and by NE(X)KX<0 (resp. NE(X)KX>0) the intersection
of the nef cone with the open half-space of curves negative (resp. positive) along the divisor KX .
Then, by the Cone Theorem, NE(X) = NE(X)KX>0 +

∑

i∈I Ri, where the set {Ri | i ∈ I} is
a discrete set of (extremal) rays of NE(X)KX<0. Fix a ray R of NE(X)KX<0. Then, by the
Contraction Theorem, there exists a unique contraction φ : X −→ Y , such that, for any curve C
of X, φ(C) is a point if and only if the class of C is in R.

We also need to introduce a new notion of flips.

Definition 2. Let X be a normal Q-Gorenstein projective variety, and φ : X −→ Y be a
birational contraction of a ray of NE(X)KX<0, such that Y is not Q-Gorenstein.

A Q-Gorenstein flip of φ is a small contraction φ : X+ −→ Y , where

• X+ is a normal Q-Gorenstein projective variety;

• and for any contracted curve C of X+, KX+ · C > 0.

In this paper, we prove the following result.

Theorem 1. Let X be a normal Q-Gorenstein projective variety with terminal singularities. Let
R be a ray of NE(X)KX<0 and denote by φ : X −→ Y the contraction of R. Suppose that φ is
birational.

• If Y is Q-Gorenstein, then Y has terminal singularities and φ contracts a Q-Cartier divisor.

• If Y is not Q-Gorenstein, then there exists a Q-Gorenstein flip of φ if and only if ⊕l≥0φ∗OX(lmKX)
is a finitely generated sheaf of OY -algebras. Moreover, if it exists, it is unique and X+ has
terminal singularities.

The proof of Theorem 1 is inspired by the proofs of the same results in the original MMP
[KMM87], which are also detailed in [Mat02].

The paper is organized as follows.
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In Section 2, we list several probably well-known and general results, which are very useful in
the rest of the paper.

Sections 3 and 4 are devoted to the proof of Theorem 1.
In Section 5, we illustrate the MMP for Q-Gorenstein projective varieties in an example of a

3-dimensional toric variety. In particular, we observe that a Q-Gorenstein flip is not necessarily
a contraction of an extremal ray.

In Section 6, we explain how to run a Q-Gorenstein log MMP.
And we conclude in Section 7 with open questions.

2 General lemmas

We begin by a very classical result.

Lemma 2. Let X be a normal variety, and let D be a Cartier divisor of X. Then the following
assertions are equivalent.

1. D is effective.

2. OX ⊂ OX(D).

3. OX(−D) ⊂ OX .

From Lemma 2, we deduce the following, probably well-known, result.

Lemma 3. Let φ : X −→ Y be a morphism between two normal varieties X and Y . Let D be
an effective Q-Cartier divisor of Y .

Then φ∗D is an effective Q-Cartier divisor of X.

Proof. Let m be a positive integer such that mD is Cartier. Since mD is effective, we have
OY ⊂ OY (mD). Then the image of φ∗(OY ) in φ∗(OY (mD)), is the pull-back by φ of the
image of OY in OY (mD). But all these invertible sheaves are subsheaves of the constant sheaf
K = C(X). Thus, φ∗(OY ) = OX is contained in φ∗(OY (mD)). Then φ∗(mD) is effective and
also is φ∗(D) := 1

m
φ∗(mD).

We know prove the key lemma of the paper.

Lemma 4. Let φ : X −→ Y be a surjective birational morphism between two normal varieties
X and Y . Let D be a Cartier divisor of X and denote by DY the Weil divisor φ∗D.

Suppose that the morphism φ∗φ∗OX(−D) −→ OX(−D) is surjective.
Then the image of φ∗OY (DY ) −→ K is contained in OX(D).
In particular, φ∗OX(D) = OY (DY ).

Note that DY is not necessarily Cartier, and OY (DY ) is the (not necessarily invertible) sub-
sheaf of the constant sheaf K = C(X) = C(Y ) defined by, for any open set U of Y ,

OY (DY )(U) = {f ∈ C(Y ) | div f|U +DY |U ≥ 0}.
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Proof. Consider the inclusion of sheaves of OY -modules φ∗OX(−D) ⊂ OY (−DY ). Tensoring by
OY (DY ), and composing by the natural morphism OY (DY )⊗OY

OY (−DY ) −→ OY , we get the
natural morphism of sheaves of OY -modules:

OY (DY )⊗OY
φ∗OX(−D) −→ OY .

The pull-back of this morphism

φ∗OY (DY )⊗OX
φ∗φ∗OX(−D) −→ OX

factors through the following surjective morphism

φ∗OY (DY )⊗OX
φ∗φ∗OX(−D) −→ φ∗OY (DY )⊗OX

OX(−D).

Then the image of φ∗OY (DY ) ⊗OX
OX(−D) in K is contained in OX . We tensor by the

invertible sheaf OX(D), and we get that φ∗OY (DY ) maps to OX(D).
To prove the last statement we use that, since φ is surjective and φ∗OX = OY , for any sheaf of

OY -modules F , we have φ∗φ
∗F = F . Hence, OY (DY ) = φ∗φ

∗OY (DY ) maps to φ∗OX(D). Both
are subsheaves of K, so we deduce that this map is an inclusion. The other inclusion is obvious,
so that φ∗OX(D) = OY (DY ).

From these lemmas, we get a useful corollary.

Corollary 5. Let φ : X −→ Y be a surjective birational morphism between two normal varieties
X and Y . Suppose that there exists a positive integer m such that mKX and mKY are Cartier
and such that the morphism φ∗φ∗OX(−mKX) −→ OX(−mKX) is surjective.

Then KX − φ∗KY is effective.

Proof. We apply Lemma 4 to D = mKX (and DY = mKY ). Since mKY is Cartier, then
φ∗OY (mKY ) is a subsheaf of K and the map φ∗OY (mKY ) −→ OX(mKX) is an inclusion. We
deduce that OX ⊂ OX(mKX)⊗OX

φ∗OY (−mKY ). And we apply Lemma 2 to conclude.

3 Q-Gorenstein divisorial contractions

In this section we study the contractions that play the role of divisorial contractions.

Definition 3. The contraction φ : X −→ Y is called a Q-Gorenstein divisorial contraction if it
is birational and Y is Q-Gorenstein.

The aim of this section is to prove that Y has the same singularities as X, and that φ contracts
a (not necessarily irreducible) Cartier divisor.

Theorem 6. Let X be a normal Q-Gorenstein projective variety with terminal singularities. Let
R be a ray of NE(X)KX<0 and denote by φ : X −→ Y the contraction of R.

If φ is a Q-Gorenstein divisorial contraction, then Y is Q-Gorenstein with terminal singular-
ities and φ contracts the (not zero) Cartier divisor E := KX − φ∗KY .
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Proof. By hypothesis, E is a Q-Cartier divisor of X such that E ·C < 0 for any curve C of class
in R. In particular E is not zero. Write E =

∑

i∈I aiEi where for any i ∈ I, where {Ei | i ∈ I}
is the set of irreducible exceptional divisors of φ.

Let σ : V −→ X be a desingularization of X. Denote by Fj , with j ∈ J the irreducible
exceptional divisors of σ, and for any i ∈ I, denote by Gi the strict transform of Ei by σ.
Write KV − σ∗KX =

∑

j∈J bjFj and σ∗(KX − φ∗KY ) =
∑

j∈J cjFj +
∑

i∈I aiGi. since X has
terminal singularities, for any j ∈ J , the rational numbers bj are positive. And, by Lemma 3 and
Corollary 5, for any i ∈ I and any j ∈ J , the rational numbers ai and cj are non-negative.

Hence, it is now enough to prove that the rational numbers ai are positive (or non-zero). Let
i0 ∈ I. There exists a curve C in V that is contracted by φ ◦ σ, contained in Gi0 but not in
Exc(σ) ∪

⋃

i∈I, i 6=i0
Gi. In particular, σ(C) is a curve of X that is contracted by φ, for any j ∈ J

we have Fj · C ≥ 0, and for any i ∈ I, i 6= i0 we have Gi · C ≥ 0. Then, on the one hand
(KX − φ∗KY ) · σ(C) = KX · σ(C) so that σ∗(KX − φ∗KY ) · C < 0, and on the other hand

σ∗(KX − φ∗KY ) · C =
∑

i∈I

ai(Gi · C) +
∑

j∈J

cj(Fj · C) ≥ ai0(Gi0 · C).

We deduce that ai0 cannot be zero (we necessarily have ai0 > 0 and Gi0 · C < 0).

Remark 1. In the proof of Theorem 6, we actually prove that E := KX−φ∗KY is an exceptional
and effective Q-Cartier divisor of X such that E · C < 0 for any curve C of X contracted by φ.
Also, E =

∑

i∈I aiEi where for any i ∈ I, ai is a positive rational number and where {Ei | i ∈ I}
is the set of exceptional divisors of φ.

4 Q-Gorenstein flips

In this section we interest at the existence of Q-Gorenstein flips (see Definition 2).
Note that, if φ : X −→ Y is a birational contraction of a ray of NE(X)KX<0 and m is

a positive integer such that mKX is Cartier, then by Lemma 4 applied to D = mKX (and
DY = mKY ), we have

⊕l≥0OY (lmKY ) = ⊕l≥0φ∗OX(lmKX).

We denote by A this sheaf of OY -algebras.
Then, we get an analogue result as in the classical MMP.

Theorem 7. There exists a Q-Gorenstein flip of φ if and only if A is finitely generated as sheaf of
OY -algebras. In that case, the Q-Gorenstein flip is unique, given by φ+ : X+ := Proj(A) −→ Y.

Moreover, if X has terminal singularities, then X+ has also terminal singularities.

Proof. Suppose that there exists a Q-Gorenstein flip φ+ : X+ −→ Y of φ. Since φ+ is a
small contraction, for any l ≥ 0 we have φ+

∗ (OX+(lKX+)) = OY (lKY ). In particular, A =
⊕l≥0φ∗OX+(lmKX+). But mKX+ is φ+-ample (because for any contracted curve C of X+,
KX+ · C > 0), hence Proj(A) is a finitely generated sheaf of OY -algebra and X+ = Proj(A).

5



Suppose now that A is finitely generated as sheaf of OY -algebras, and define X+ := Proj(A).
Denote by φ+ the corresponding morphism Proj(A) −→ Y. Then X+ is clearly a normal variety.

For the rest of the proof, we choosem sufficiently large such thatA is generated by φ∗OX(mKX),
which equals OY (mKY )); it does not change Proj(A). Then we denote by OX+(1) the φ+-very
ample invertible sheaf on X+ such that φ+

∗ OX+(1) = φ∗OX(mKX).
We know prove, by contradiction, that φ+ does not contract a divisor. Let E be an irreducible

exceptional divisor of φ+. We get the following exact sequence

0 −→ OX+ −→ OX+(E) −→ Coker −→ 0

where Coker cannot be zero. For a positive integer l, we apply the functor φ+
∗ (− ⊗ OX+(l)) to

this sequence, to obtain

0 −→ φ+
∗ OX+(l) −→ φ+

∗ (OX+(E) ⊗OX+(l)) −→ φ+
∗ (Coker ⊗OX+(l)) −→ R1φ+

∗ OX+(l) −→ · · ·

Choose l sufficiently large such that R1φ+
∗ OX+(l) = 0 and such that the map (φ+)∗φ+

∗ (Coker⊗
OX+(l)) −→ Coker ⊗OX+(l) is surjective (it is possible because OX+(1) is φ+-ample). Then

0 −→ φ+
∗ OX+(l) −→ φ+

∗ (OX+(E)⊗OX+(l)) −→ φ+
∗ (Coker ⊗OX+(l)) −→ 0.

We claim that the first map of the above sequence is surjective. Indeed, since E is exceptional,
for any open set U of Y , we have the following commutative diagram:

OX(lmKY )(U) OX(lmKY )(U\φ
+(E))

φ+
∗ OX+(l)(U) �

�
//

� _

��

φ+
∗ OX+(l)(U\φ+(E))

φ+
∗ (OX+(E)⊗OX+(l))(U) �

�
// φ+

∗ (OX+(E)⊗OX+(l))(U\φ+(E)),

where all inclusions have to be equalities.
Hence, φ+

∗ (Coker⊗OX+(l)) = 0. But φ+∗φ+
∗ (Coker⊗OX+(l)) surjects to Coker ⊗OX+(l), so

Coker ⊗OX+(l) = 0 and then Coker = 0. We get a contraction.
Now, since φ+ is a small contraction, we get that O(mKX+) is isomorphic to OX+(1) so

that X+ is clearly Q-Gorenstein and KX+ is φ+-ample (ie for any contracted curve C of X+,
KX+ · C > 0).

Suppose now that X has terminal singularities. We consider a common desingularization of
X and X+:

V
σ

��⑦⑦
⑦⑦
⑦⑦
⑦⑦

σ+

!!❈
❈❈

❈❈
❈❈

X

φ
  
❅❅

❅❅
❅❅

❅❅
X+

φ+
}}④④
④④
④④
④④

Y
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Since mKX+ is φ+-ample, we have

σ+∗OX+(mKX+) = σ+∗(Im(φ+∗φ+
∗ OX+(mKX+) −→ OX+(mKX+)))

= Im(σ+∗φ+∗φ+
∗ OX+(mKX+) −→ σ+∗OX+(mKX+))).

But σ+∗φ+∗φ+
∗ OX+(mKX+) = (φ+ ◦ σ+)∗OY (mKY ) = (φ ◦ σ)∗φ∗OX(mKX) = (φ ◦ σ)∗(φ ◦

σ)∗σ
∗OX(mKX). Thus, σ+∗OX+(mKX+) is contained in σ∗OX(mKX). In particular, by Lemma 2,

the divisor σ∗KX − σ+∗KX+ is effective.
Hence, the divisor KV − σ+∗KX+ = (KV − σ∗KX) + (σ∗KX − σ+∗KX+) is effective, and

moreover, it has positive coefficient in the irreducible divisors of V contracted by σ (because X
has terminal singularities). It remains to prove that it has positive coefficient in the irreducible
divisors of V contracted by σ+.

Let E be an irreducible divisor of V contracted by σ+, but not contracted by σ (if it exists).
The irreducible divisor σ(E) of X is contracted by φ. Then there exists a curve C in E that
is contracted by σ+ but not by σ. In particular, σ(C) is a curve of X contracted by φ. On
the one hand σ+∗KX+ · C = 0, and on the other hand KX · σ(C) < 0 so that σ∗KX · C < 0.
Hence, (σ∗KX − σ+∗KX+) · C < 0. We can choose the curve C such that it is contained in no
other exceptional divisor of σ and σ+. Then we conclude as in the proof of Theorem 6, that the
coefficient in E of σ∗KX − σ+∗KX+ is not zero.

Corollary 8 (Corollary of the proof of Theorem 7). Let φ+ : X+ −→ Y be a Q-Gorenstein flip of
an extremal contraction φ : X −→ Y . Let V be a commun desingularization of X and X+. Denote
σ : V −→ X and σ+ : V −→ X+. Then KV = σ∗KX +

∑

i∈I aiEi = σ+∗KX+ +
∑

i∈I a
+
i Ei, such

that, for any i ∈ I, a+i ≥ ai. Moreover, there exists i0 ∈ I with a+i0 > ai0 .

Note that the set {Ei | i ∈ I} is the union of the sets of irreducible exceptional divisors of σ
and σ+, the hypothesis of Corollary 8 implies that for any i ∈ I, a+i > 0, ai ≥ 0 and ai = 0 if and
only if Ei is not an exceptional divisor of σ.

Proof. It is enough to prove that, the effective divisor σ∗KX − σ+∗KX+ is not zero. Let C be a
curve of V contracted by φ ◦σ = φ+ ◦σ+ but not by σ. Then, by hypothesis on φ, σ∗KX ·C < 0.
If C is contracted by φ+, we have σ+∗KX+ · C = 0, and if not, we have σ+∗KX+ · C > 0. In any
cases, σ+∗KX+ ·C ≥ 0 so that (σ∗KX − σ+∗KX+) ·C > 0. In particular σ∗KX − σ+∗KX+ is not
zero.

This corollary will be useful to prove the finiteness of sequences of Q-Gorenstein flips in the
family of Q-Gorenstein spherical varieties.

5 An example

Here, we give an example of the Q-Gorenstein MMP for a 3-dimensional toric variety. For the
basics of theory of toric varieties, the reader can see [Ful93] or [Oda88].

• In Z3 ⊂ Q3, we consider the six following vectors:

e1 = (−1,−1, 1), e2 = (1,−1, 1), e3 = (1, 1, 2),
e4 = (−1, 1, 2), e5 = (0, 1, 1), e6 = (0, 0,−1).
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We denote by C(ei1 , . . . , eik) the cone in Q3 generated by ei1 , . . . , eik . Then

F := {C(e1, e2, e3, e4), C(e3, e4, e5), C(e1, e2, e6), C(e1, e4, e6), C(e2, e3, e6), C(e3, e5, e6), C(e4, e5, e6)}

is a complete fan of Z3. We denote by X the toric variety of fan F.
Note that since F contains a non-simplicial cone, the variety X is not Q-factorial.
Denote by X1, X2, X3, X4, X5 and X6 the (C∗)3-stable irreducible divisors respectively

associated to the rays of F generated by e1, e2, e3, e4, e5 and e6. We can compute that

Pic(X)Q :=

{

∑6
i=1 aiXi |

a1 − a2 + a3 − a4 = 0
a1, a2, a3, a4, a5, a6 ∈ Q

}
/

〈 X1 −X2 −X3 +X4,
X1 +X2 −X3 −X4 −X5,

X1 +X2 + 2X3 + 2X4 +X5 −X6

〉

.

In particular, −KX =
∑6

i=1Xi is Q-Cartier.
We know that NE(X) is generated by the classes of (C∗)3-stable (and rational) curves C12,

C14, C16, C23, C26, C34 ,C35, C36, C45, C46, C56, where Cij denotes the (C∗)3-stable curve
associated to the 2-codimensional cone of F generated by ei and ej .

We choose the basis (X1+X2,X1−X3) of Pic(X)Q and we compute the classes of these curves
in the corresponding dual basis:

[C12] = (1
3
, 0), [C14] = (1

6
, 0), [C16] = (1

2
, 0), [C23] = (1

6
, 0),

[C26] = (1
2
, 0), [C34] = (1

3
, 1
2
), [C35] = (0,−1

2
), [C36] = (1

2
, 1
2
),

[C45] = (0,−1
2
), [C46] = (1

2
, 1
2
), [C56] = (0,−1).

In particular, the cone NE(X) is generated by (2, 3) and (0,−1), ie by [C34] and [C35].
Note also that −KX is linearly equivalent to 5(X1 +X2) − 2(X1 −X3) so that it is positive

on all effective curves. Hence, in order to run the (Q-Gorenstein) MMP, we need to choose one
of the two extremal rays in NE(X)KX<0.

• First, consider the contraction φ : X −→ Y of the extremal ray generated by [C35]. We
remark that this ray contains the classes of C35, C45, and C56. Then Y is the 3-dimensional toric
variety whose fan is

FY := {C(e1, e2, e3, e4), C(e3, e4, e6), C(e1, e2, e6), C(e1, e4, e6), C(e2, e3, e6)}.

We still denote by X1, X2, X3, X4 and X6 the (C∗)3-stable irreducible divisors of Y . And we
compute that

Pic(Y)Q :=

{

∑4
i=1 aiXi + a6X6 |

a1 − a2 + a3 − a4 = 0
a1, a2, a3, a4, a6 ∈ Q

}
/

〈 X1 −X2 −X3 +X4,
X1 +X2 −X3 −X4,

X1 +X2 + 2X3 + 2X4 −X6

〉

.

In particular, −KY =
∑4

i=1 Xi +X6 is Q-Cartier (and generates Pic(Y)Q). The contraction φ is
a Q-Gorenstein divisorial contraction.
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• Now, consider the contraction φ : X −→ Y of the extremal ray generated by [C34]. Then
Y is the 3-dimensional toric variety whose fan is

FY := {C(e1, e2, e3, e4, e5), C(e1, e2, e6), C(e1, e4, e6), C(e2, e3, e6), C(e3, e5, e6), C(e4, e5, e6)}.

We still denote by X1, X2, X3, X4, X5 and X6 the (C∗)3-stable irreducible divisors of Y . And
we compute that

Pic(Y)Q :=







∑6
i=1 aiXi |

a1 − a2 + a3 − a4 = 0
a1 − 3a2 + 4a3 − 6a5 = 0
a1, a2, a3, a4, a5, a6 ∈ Q







/

〈 X1 −X2 −X3 +X4,
X1 +X2 −X3 −X4 −X5,

X1 +X2 + 2X3 + 2X4 +X5 −X6

〉

.

In particular, −KY =
∑6

i=1 Xi is not Q-Cartier.
The Q-Gorenstein flip of φ is given by the Q-factorial 3-dimensional toric variety X+ whose

fan is

FX+ := {C(e1, e2, e3), C(e1, e3, e5), C(e1, e4, e5),

C(e1, e2, e6), C(e1, e4, e6), C(e2, e3, e6), C(e3, e5, e6), C(e4, e5, e6)},

and the (C∗)3-equivariant map φ+ : X+ −→ Y . We still denote by X1, X2, X3, X4, X5 and X6

the (C∗)3-stable irreducible divisors of X+. In the basis dual to (X1,X2,X3), the classes of the
(C∗)3-stable curves of X+ are

[C12] = (1
3
, 0, 1

3
), [C13] = (−1

2
, 1
2
,−2

3
), [C14] = (1

2
, 0, 0), [C15] = (−1

3
, 0, 1

3
),

[C16] = (0, 1
2
, 0), [C23] = (1

6
, 0, 1

6
), [C26] = (1

2
, 0, 1

2
), [C35] = (1

3
, 0, 1

3
),

[C36] = (0, 1
2
,−1

2
), [C45] = (1, 0, 0), [C46] = (1

2
, 0, 0), [C56] = (0, 0, 1).

We deduce that the cone NE(X+) is generated by (−3, 3,−4), (1, 0, 0) and (−1, 0, 1). More-
over, since −KX+ is linearly equivalent to 3X1 + 5X2 + 2X3, there are two extremal rays in
NE(X+)K

X+>0, respectively generated by [C13] and [C15]. The map φ+ is the contraction of the
2-dimensional face of NE(X) generated by [C13] and [C15].

For more examples, we refer to [Pas13] where a Q-Gorenstein flip of a contraction that con-
tracts a divisor is given.

6 Log Q-Gorenstein MMP

As for Q-factorial varieties, we can run a Q-Gorenstein MMP for klt pairs (X,D).
Let X be a normal variety and let D be an effective Q-divisor such that KX +D is Q-Cartier.

Definition 4. The pair (X,D) is said to be klt (Kawamata log terminal) if D there exists a
desingularization σ : V −→ X of X such that KV = σ∗(KX +D)+

∑

i∈I aiEi where the Ei’s are
irreducible divisors of V and for any i ∈ I, ai > −1.
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Remark 2. 1. If a pair (X,D) is klt, then the above property is true for every desingulariza-
tion of X.

2. The condition ”for any i ∈ I, ai > −1” can be replaced by: ⌊D⌋ = 0 and for any i ∈ I such
that Ei is exceptional for σ, ai > −1.

Suppose now that (X,D) is klt.
By [KMM87], the Contraction Theorem and the Cone Theorem are still valid. In particular,

for any ray R of NE(X)KX+D<0, there exists a unique contraction φ : X −→ Y , such that,
for any curve C of X, φ(C) is a point if and only if the class of C is in R. Moreover, we have
equivalent results of Theorems 6 and 7.

Theorem 9. We denote by DY the Q-divisor φ∗D of Y . And we fix m ≥ 1 such that m(KX +D)
is Cartier.

1. If KY +DY is Q-Cartier, then the pair (Y,DY ) is klt and E := KX +D − φ∗(KY +DY )
is an exceptional and effective Q-Cartier divisor such that E.C < 0 for any curve C of X
contracted by φ.

2. The sheaf of OY -algebras A :=
⊕

l≥0 φ∗OX(lm(KX +D)) equals
⊕

l≥0 OY (lm(KY +DY )).

3. If KY + DY is not Q-Cartier, A is finitely generated if and only if there exists a small
contraction φ+ : X+ −→ Y such that the pair (X+, (φ+

∗ )
−1DY ) is klt and for any curve C+

of X+ contracted by φ+, (KX+ + (φ+
∗ )

−1DY ) · C
+ > 0. In that case, X+ is Proj(A) over

Y .

The proof is very similar to the proofs of Theorems 6 and 7. The key of the proof of (1) is
that, as in Corollary 5, the divisor KX + D − φ∗(KY + DY ) is effective. Lemma 4, applied to
m(KX +D) (and (m(KY +DY )) directly gives (2). And to prove (3), we do the same proof as
in Theorem 7, by replacing KX by KX + D, KY by KY +DY and KX+ by KX+ + (φ+

∗ )
−1DY

(excepting the last paragraph, which is not necessary).

7 Open questions

The same questions as in the classical MMP can be done.

Question 1. Do Q-Gorenstein flips always exist? Or equivalently, in the case where Y is not
Q-Gorenstein, is A :=

⊕

l≥0 φ∗OX(lmKX) =
⊕

l≥0 OY (lmKY ) finitely generated as sheaf of OY -
algebras?

Question 2. Are sequences of Q-Gorenstein flips always finite?

We can answer positively these two questions in the case of spherical varieties.
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Let G be a connected reductive algebraic group (over C). A normal G-variety is spherical if
there exists an open orbit in X under the action of a Borel subgroup of G.

Let H be a spherical subgroup of G (ie such that there exists a Borel subgroup of G satisfying
that BH is open in G). A G/H-embedding is a normal G-variety containing an open G-orbit
isomorphic to G/H. (A G/H-embedding is a spherical G-variety, and inversely a spherical G-
variety is a G/H-embedding for some spherical subgroup H of G.)

Proposition 10. 1. ([Bri93, Lemme 4.3]) Let X and Y be two spherical G-varieties and let φ
be a proper G-equivariant morphism. Then for any Cartier divisor D of X, the OY -algebra
⊕

l≥0 φ∗OX(lD) is finitely generated.

2. Let X be a G/H-embeddings (ie a normal G-variety containing an open G-orbit isomorphic
to G/H). There are only finitely many varieties Z that can be obtained from X by Q-
Gorenstein flips (and these varieties are still G/H-embeddings). Moreover, there exists a
commun desingularization for all these varieties, ie there exist a smooth G/H-embedding V
and birational proper G-equivariant morphisms σZ : V −→ Z, for any Z.

The second part of the proposition is a consequence of the classification of G/H-embeddings
in terms of colored fans and the fact that a Q-Gorenstein flip adds no divisor.

Hence, in the family of spherical varieties, we immediately get the existence of Q-Gorenstein
flips, and the finiteness of sequences of Q-Gorenstein flips is a consequence of 2 of Proposition 10
and Corollary 8.

Question 3. Let φ : X −→ Y be a contraction of an extremal ray of NE(X)KX<0 such that
dim(Y ) < dim(X). If X is Q-Gorenstein, Y is unfortunately not necessarily Q-Gorenstein. But
can we give some properties about the fibers of these contractions?
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