

Flux-grown piezoelectric Materials: application to a-quartz analogues

Pascale Armand, Adrien Lignie, Marion Beaurain, Philippe Papet

▶ To cite this version:

Pascale Armand, Adrien Lignie, Marion Beaurain, Philippe Papet. Flux-grown piezoelectric Materials: application to a-quartz analogues. Crystals, 2014, 4, pp.168-189. 10.3390/cryst4020168 . hal-01011321

HAL Id: hal-01011321 https://hal.science/hal-01011321

Submitted on 25 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Review

Flux-Grown Piezoelectric Materials: Application to α-Quartz Analogues

Pascale Armand *, Adrien Lignie, Marion Beaurain and Philippe Papet

Institut Charles Gerhardt Montpellier, UMR5253, CNRS-UM2-ENSCM-UM1, C2M, UMII, CC 1504, Place E. Bataillon, 34095 Montpellier Cedex 5, France; E-Mails: adrien.lignie@univ-montp2.fr (A.L.); marion@artimachines.com (M.B.); philippe.papet@univ-montp2.fr (P.P.)

* Author to whom correspondence should be addressed; E-Mail: pascale.armand@univ-montp2.fr; Tel.: +33-4-67-14-33-19; Fax: +33-4-67-14-42-90.

Received: 22 April 2014; in revised form: 11 June 2014 / Accepted: 12 June 2014 / Published: 23 June 2014

Abstract: Using the slow-cooling method in selected MoO₃-based fluxes, single-crystals of GeO_2 and $GaPO_4$ materials with an α -quartz-like structure were grown at high temperatures ($T \ge 950$ °C). These piezoelectric materials were obtained in millimeter-size as well-faceted, visually colorless and transparent crystals. Compared to crystals grown by hydrothermal methods, infrared and Raman measurements revealed flux-grown samples without significant hydroxyl group contamination and thermal analyses demonstrated a total reversibility of the α -quartz $\leftrightarrow \beta$ -cristobalite phase transition for GaPO₄ and an absence of phase transition before melting for α -GeO₂. The elastic constants C_{IJ} (with I, J indices from 1 to 6) of these flux-grown piezoelectric crystals were experimentally determined at room and high temperatures. The ambient results for as-grown α -GaPO₄ were in good agreement with those obtained from hydrothermally-grown samples and the two longitudinal elastic constants measured versus temperature up to 850 $\,^{\circ}$ C showed a monotonous evolution. The extraction of the ambient piezoelectric stress contribution e₁₁ from the C_{11}^{D} to C_{11}^{E} difference gave for the piezoelectric strain coefficient d_{11} of flux-grown α -GeO₂ crystal a value of 5.7(2) pC/N, which is more than twice that of α -quartz. As the α-quartz structure of GeO₂ remained stable up to melting, a piezoelectric activity was observed up to 1000 $\,^{\circ}$ C.

Keywords: single crystal; GaPO₄; GeO₂; SiO₂; raman; infrared; Brillouin; growth from high temperature solution; differential scanning calorimetry (DSC); X-ray diffraction

1. Introduction

Piezoelectric materials that can operate under very high temperature without degradation are sought for the control of structure materials and control system in turbines, engines, nuclear reactors, *etc.* [1,2]. However, the use of a piezoelectric material at elevated temperature presents many challenges such as possible phase transition, chemical degradation or structural defect propagation which can cancel or lead to instability of the piezoelectric properties.

Non-pyroelectric single crystals with the α -quartz-like structure exhibiting both higher piezoelectric constants and a higher thermal stability as compared to α -quartz would be promising materials to build miniaturized high temperature piezoelectric-operated devices without cooling. In the XO₂ (X = Si, Ge) and MPO₄ (M = Fe, Al, Ga, B) family, the α -quartz-like structure is composed of either only XO₄ corner-shared tetrahedra or of both MO₄ and PO₄ tetrahedra forming a trigonal system [3–16]. The α -phase (*P*3₁21 or *P*3₂21, respectively left-handed or right-handed, *Z* = 3) is derived from the β -phase (*P*6₂22 or *P*6₄22) by a symmetry loss induced by a tilt of the tetrahedra around the *b*-axis. Two structural distortion parameters exist to quantify this phenomenon: the average intertetrahedral bridging angle θ (X–O–X or M–O–P) and the tetrahedral tilt angle δ [11,14,17–20]. Based on experimental characterizations and theoretical studies on α -quartz analogues, it was demonstrated that the higher piezoelectric properties of α -GaPO₄ and α -GeO₂ materials compared to α -SiO₂, α -FePO₄ and α -AlPO₄ compounds were directly related to their structural distortion with respect to the β -quartz structure type (for β -SiO₂ θ = 153.3° and δ = 0° at 575 °C) [11,14,17,21–27].

In addition, the well-known α - β phase transition, which appears around 573 °C in α -SiO₂ ($\theta = 144.2$ °) [19,26] does not occur when the tilt angle δ is over 22° (leading to θ under 136 °) [9,13,14,22,25]. In other words, the transition from an α phase to a β phase is absent for α -GeO₂ and α -GaPO₄ crystallized materials ($\theta = 130.04^{\circ}$ and $\theta = 134.60^{\circ}$, respectively) [13,14,17,22,28,29].

Under ambient conditions, GeO₂ exhibits two persistent forms of differing anion coordination around the central cation: the α -quartz-type modification (trigonal) with 4:2 coordination [16] and the rutile-type modification (tetragonal *P*4₂/mnm, *Z* = 2) with 6:3 coordination [4,11,30–34]. Naturally occurring, GeO₂ is known to be more stable in the rutile structure than in the α -quartz structure. The transformation from the rutile-like form to the α -quartz-type form has been reported to occur under normal atmospheric pressure in the 1024–1045 °C temperature range [11,35]. The kinetics of the allotropic transformation from a trigonal to a tetragonal structure is extremely low, and non-appreciable without the presence of any catalyst such as traces of GeO₂ rutile-like form, chlorides or water [11,36–39].

A transition from the thermodynamically stable α -quartz-like GaPO₄ phase to the β -cristobalite modification is known to occur above 960 °C [13,40–46]. This high temperature allotropic transition does not permit the growth of α -GaPO₄ crystals by conventional melt techniques. Single crystals of α -GaPO₄ were grown using epitaxial hydrothermal-based methods in a retrograde-solubility range at T < 250 °C and in the range of direct temperature dependence of solubility at T > 300 °C from highly corrosive acid solutions [40,43,47–62]. However, for gallium orthophosphate material, it seems quite difficult to obtain very high quality crystals with these solution-based growth methods. The presence of twins, dislocations and/or a quite high level of hydroxyl group incorporated via the growth medium tend to deteriorate the piezoelectric properties especially at high temperatures as physical properties are very sensitive to material perfection [43,49,50,57,63–73]. The OH impurities in α -GaPO₄ single crystals are

responsible for the "milky" appearance of the samples when exposed to high temperature (600 $^{\circ}$ C). This typical behavior is due to water trace precipitation effects and corresponds to the upper temperature limit of physical property measurements [65,69,74,75].

For GeO₂, the temperature region of existence of the stable trigonal phase goes from 1033 $^{\circ}$ C up to the melting point of 1116 $^{\circ}$ C [25,30,76]. When epitaxially-grown in the temperature region where it is metastable, the hydrothermally-grown alpha-quartz form of GeO₂ contains high OH impurities which rather easily catalyze its return to the thermodynamically stable rutile-like structure when heated as low as 180 $^{\circ}$ C [77–81].

In this context, it appeared that another suitable growth technique for oxides could be applied for the crystallization of α -GaPO₄ and α -GeO₂ materials to get single crystals with a high degree of structural and chemical perfection; the high temperature solution growth technique also known as the fluxed melt growth [82–85]. Using molten inorganic salts, or flux, playing the role of solvent, crystals of a compound can be obtained below its melting or transformation point. The principle of flux growth is based on the spontaneous nucleation that occurs when a supersaturation is obtained either upon cooling of a high temperature solution or by boiling away a volatile solvent at a fixed temperature [86]. The fluxed melt method presents some advantages compared to hydrothermal-based growth methods: the material can be crystallized at atmospheric pressure and the inorganic solvents used are water-free at high temperature.

This paper presents an overview of the main results obtained from several structural and physical characterizations undertaken on flux-grown α -GaPO₄ and α -GeO₂ piezoelectric crystals. When possible, the results are compared and discussed in the view of hydrothermally-grown α -quartz-like SiO₂, GeO₂ and GaPO₄.

2. Flux-Growth and Morphology

2.1. Flux-Grown α -GaPO₄

In high temperature solution growths, GaPO₄ presents direct solubility. Non-toxic sodium chloride with its melting point at 800 °C, is a suitable solvent to grow α -GaPO₄ single crystals under the temperature of the allotropic α -quartz to β -cristobalite phase transition [75]. A graphite crucible, filled with an appropriate mixture of GaPO₄ and NaCl was sealed in a silica ampoule under Argon. By cooling from 900 to 600 °C and pulling down the ampoule (12 mm day⁻¹) within a temperature gradient (2–5 °C cm⁻¹) or by using the gradient freeze method, α -GaPO₄ crystals having NaCl "foreign" phase as shown by X-ray powder diffraction diagrams were obtained. Thus, the accelerated crucible rotation technique was applied and relatively clear and unshaped α -GaPO₄ crystals containing flux inclusions were grown up to 5 × 5 × 2 mm³ in size with a rough surface.

From spontaneous crystallization with the slow cooling method $(1.2-5 \ \C h^{-1})$ between 950 and 600 \C , colorless, transparent and flux inclusion-free as-grown α -GaPO₄ crystals of millimeter-size have been obtained in MoO₃-based solvents X₂O:3MoO₃ (X = Li, K) [44,87–89]. The melting point of these molybdenum-based solvents are between 500 and 600 \C which allows α -GaPO₄ growth under the allotropic phase transition temperature [44,89]. The unseeded growth experiments were done under atmospheric conditions in Pt crucibles covered (but not sealed) with a lid containing a starting mixture

of α -GaPO₄ and X₂O:3MoO₃ (X = Li, K) powder in different weight ratios. Plate-like single crystals with very smooth surface roughness were grown in K₂O:3MoO₃ having a volume up to 6 × 4 × 1 mm³.

with very smooth surface roughness were grown in K₂O:3MoO₃ having a volume up to $6 \times 4 \times 1 \text{ mm}^3$. With Li₂O:3MoO₃ flux, the as-grown α -GaPO₄ crystals presented unshaped bulk morphology with a quite rough surface and volume up to $5 \times 2.5 \times 2 \text{ mm}^3$ [44,87,89].

With a slow cooling rate of 0.1 °C h⁻¹ from 950 to 750 °C, followed by a cooling rate of 2 °C h⁻¹ from 750 to 600 °C, in Li₂O:3MoO₃ flux, a visually high quality crystal of 8 mm long to 3 mm large and 2.5 mm thick ($V = 60 \text{ mm}^3$) presenting two smooth major faces was grown [89,90].

All these $X_2O:3MoO_3$ flux-grown α -GaPO₄ materials crystallized in the trigonal system without any secondary phase detectable and with lattice parameters in perfect agreement with those published on hydrothermally-grown α -GaPO₄ material [7,9].

2.2. Flux-Grown α -GeO₂

The first attempt at growing an α -GeO₂ crystal by the unseeded fluxed melt method was undertaken by Finch *et al.* [91] in the late sixties. Among many compounds explored as potential solvents, Li₂O:2MoO₃ and Li₂O:2WO₃ were selected. With the slow cooling growth technique from 1100 to 950 °C at 1 °C h⁻¹ or less, colorless and well developed α -GeO₂ crystals were grown up to 3 mm on the edge. Crystals from Li₂O:2MoO₃ contained impurities or defects. X-ray powder diffraction diagrams were consistent with the hexagonal modification of GeO₂. In the majority, crystals were predominantly bonded by {1011} rhombohedral faces with {1010} prism faces incompletely developed.

In the seventies using the top seeded solution growth (TSSG) method with $Li_2O:WO_3$ as flux, a colorless α -GeO₂ single-crystal with a maximum final diameter of 5 mm was obtained [92]. The as-grown crystal, which did not present the hexagonal-like morphology, was not sharply facetted and homogeneously transparent (white inclusions). The experimental procedure was quite unclear and some important parameters were missing. Concerning the chemical and structural quality of this TSSG-crystal, little information was given.

Recently, unseeded slow cooling growth experiments were performed from 970 to 600 °C at a cooling rate of 1 °C h⁻¹ with a solute to flux ratio of 10/90 by weight in a Pt covered crucible (not sealed) [93,94]. Using K₂W₂O₇ flux, the majority of the as-grown α -GeO₂ crystals contained yellow flux inclusions. Thus, other inorganic solvents were investigated in the MoO₃-based systems since they present low melting temperature and low evaporation at high temperatures (loss of mass <1% after two weeks at T > 700 °C for K₂Mo₄O₁₃ flux) [93,94]. Well-faceted and visually colorless and transparent α -GeO₂ single-crystals were obtained in fluxes such as K₂Mo₄O₁₃, Rb₂Mo₄O₁₃ and Rb₂Mo₂O₇. The as-grown crystals had no visible flux inclusions, bubbles or cracks and presented very smooth surface roughness [16,93,94]. The α -GeO₂ millimeter-size crystals, up to 3 mm, presented either an unshaped morphology or a pseudo-cubic shape as already found for natural α -quartz [95]. In the case of pseudo-cubic crystals, the positive r {1011} rhombohedral faces were prevalent with the restricted presence of the negative z {0111} rhombohedral faces while m {1010} faces were absent [93,94].

The crystal structure and quality of these flux-grown α -GeO₂ materials were studied by both powder and single-crystal X-ray diffraction at room temperature [16,93,94]. The refinements confirmed the crystallization of the α -quartz-type structure and the lattice parameters and volumes were in good agreement with the literature data [4,10,11,32,80]. The excellent final reliability factors of the refinements indicated that the as-grown α -GeO₂ crystals were of high quality precluding the presence of any considerable amount of twinning [16]. The value of the Flack coefficient which is an indicator of the presence of growth portions containing mirror-image was found close to zero. The uniform coloration of the natural faces under polarized light indicated the lack of optical domains in the flux-grown α -GeO₂ single crystals [16,93].

A colorless, well facetted, highly-transparent and large-size single crystal, up to 0.5 cm³, of the piezoelectric phase of GeO₂ was grown by TSSG from a high temperature solution using K₂Mo₄O₁₃ as solvent [27,93]. The obtained volume made this isometric flux-grown GeO₂ single crystal, Figure 1, with the metastable α -quartz like structure, the largest reported in the literature. The macroscopic hexagonal morphology, similar to the well-known morphology of α -SiO₂, was in accordance with an α -quartz-like structure and facilitated the identification of the different natural crystallographic faces [96–98].

Figure 1. Picture of an α -GeO₂ single crystal grown by the top seeded solution growth (TSSG) technique in K₂Mo₄O₁₃ flux.

3. Impurities Contamination

3.1. Flux-Grown α -GaPO₄

The OH contamination of the crystalline lattice during crystallization via growth medium, which decreases the Q-factor of the resonators, has been largely reported in the literature concerning α -GaPO₄ grown by the hydrothermal method [43,52,53,55,57,68,71,99,100].

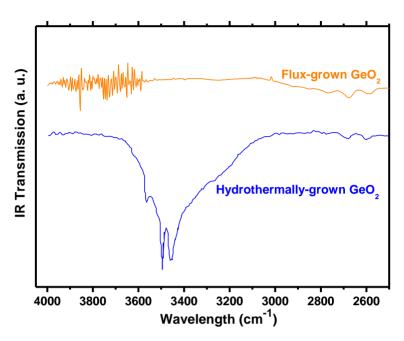
The visual estimation of the OH contamination of the α -GaPO₄ single crystals flux-grown from NaCl solvent was studied by annealing experiments [75]. The "milky" clouding was a direct estimation of the OH⁻ concentration; the higher the OH content, the more "milky" is the sample. These NaCl flux-grown α -GaPO₄ crystals presented slight clouding and thus significant OH contamination.

In a typical room temperature non-polarized infrared transmission spectrum of an α -GaPO₄ material containing significant OH-groups, a broad and intense band between 2500 and 3600 cm⁻¹ is observed (O–H infrared region) associated with H-bonded molecular water. This broad band is superimposed upon three well-separated peaks at 3167, 3290 and 3400 cm⁻¹ and sometimes upon a sharp absorption band at 3508 cm⁻¹ related to an isolated OH-group stretching band [43,55,65,68]. The amplitude of the peak centered around 3400 cm⁻¹ is attributed in one part to the absorption by the GaPO₄ lattice and in another part to O–H stretching vibrations [65].

For X₂O:3MoO₃ (X = Li, K) flux-grown α -GaPO₄ materials, the collection of the non-polarized infrared data was done in transmission mode at room temperature on as-grown samples, *i.e.*, not

polished samples. Only the three bands at 3167, 3290 and 3400 cm⁻¹ were registered. The OH content was materials [44,46,88–90,101]. Compared to the spectra of hydrothermally-grown GaPO₄, they did not present the characteristic broad and intense absorption band from 3600 to 2500 cm⁻¹ due to quite strong OH contamination estimated with the extinction coefficient α calculated at 3400 cm⁻¹ from the expression $\alpha = 1/d[\log(T_{3800}/T_{3400})] - \alpha_{3400}^*$ where *d* represents the sample thickness in cm, *T* represents the % IR transmission at respectively 3800 and 3400 cm⁻¹, and α_{3400}^* represents the absorption coefficient due to intrinsic lattice vibrations of α -GaPO₄ at 3400 cm⁻¹ [65]. The α_{3400}^* was estimated to be 0.078 cm⁻¹ based on hydrothermally-grown material [65,68,102].

The calculated value of the extinction coefficient α at 3400 cm⁻¹ was close to 0.03 cm⁻¹ for X₂O:3MoO₃ (X = Li, K) flux-grown GaPO₄ and close to 0.15 cm⁻¹ for hydrothermally-grown material [88]. Thus, the infrared spectra correspond to X₂O:3MoO₃ (X = Li, K) flux-grown α -GaPO₄ samples without significant OH-content in perfect accordance with the absence of "milky" clouding of the samples even after several times heating up to 850 °C [103].


Chemical analyses of $X_2O:3MoO_3$ (X = Li, K) flux-grown α -GaPO₄ crystals were done using glow discharge mass spectrometry (GDMS) and induced coupled plasma-atomic emission spectroscopy (ICP-AES) [89]. The results demonstrated the presence of foreign chemical elements coming from the solvent with a Mo-content as high as 0.3% for GaPO₄ crystals grown in K₂O:3MoO₃ flux. Na, Ca, Fe, Al and Si elements were also found with a major contamination from Al element (320 ppm to 0.13%).

3.2. Flux-Grown α -GeO₂

As for hydrothermally-grown α -GaPO₄ single crystals, OH contamination of the lattice was reported for hydrothermally-grown α -GeO₂ [43,79,80,94]. In a non-polarized infrared spectrum collected in the transmission mode of a hydrothermally-grown α -GeO₂ material containing significant OH-groups, Figure 2, a well-pronounced broad band between 2500 and 3800 cm⁻¹ is observed with maxima at about 3455, 3500 and 3562 cm⁻¹ attributed to Ge–OH vibration groups [43,79,81,94]. For both spontaneously nucleated MoO₃-based flux-grown α -GeO₂ samples and TSSG-grown α -GeO₂ oriented plates of simple crystallographic orientations, infrared spectra characterize OH-free flux-grown α -GeO₂ crystals [27,93] as evidenced by the absence of both a broad band and sharp peaks in the 2800–3500 cm⁻¹ range, Figure 2.

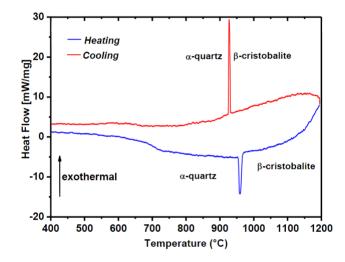
Room temperature non-polarized Raman spectra of commercial α -GeO₂ powder or α -GeO₂ stain-etch sample exhibited some features around 760–780 cm⁻¹ which were found to disappear once the sample was annealed in air above 400 °C [39,93,104–106]. These features have been assigned either to oxygen vacancy complexes or to water bound to Ge–O entities or to a Ge–O stretching vibration of a water-distorted GeO₄ entity [39,104,105].

The non-polarized Raman signal of a MoO₃-based flux-grown α -quartz GeO₂ single crystal was collected in the 50–4000 cm⁻¹ range and no other modes than the four non-degenerate A1 ones and the eight doubly-degenerate E modes predicted by group theory for α -quartz-type GeO₂ (D₃ point group) were observed [93,106–108]. In agreement with infrared measurements [27,93], neither hydroxyl groups nor water inclusions were detected by Raman spectroscopy. Furthermore, these MoO₃-based flux-grown α -GeO₂ samples were heated up to 1000 °C several times without presenting the well-known milky hue attributed to the release of water from hydroxyl impurities with increasing temperature [109].

Figure 2. Infrared transmission spectra of flux- and hydrothermally-grown α -GeO₂ single crystals.

Ambient polarized Raman measurements performed on flux-grown α -quartz GeO₂ single crystals along with state of the art density functional theory (DFT) based calculations were reported [93,106,107]. An excellent agreement was obtained between experimental and theoretical Raman lines for both wavenumbers and relative intensities which permitted to unambiguously assign the symmetry and the nature of α -quartz GeO₂ modes. This Raman study pointed out that high temperature flux-grown GeO₂ single crystals of α -quartz-like structure were of high structural quality (impurities would have resulted in shifts of the Raman lines or in additional bands), and that vibrations in the α -quartz GeO₂ structure were relatively quasi-harmonic as the calculated frequencies at -273 °C were almost the same as the experimental values at 25 °C.

Optical transmittance was measured in the UV-VIS-NIR region for a plate with a surface perpendicular to the *c* axis prepared from a MoO₃-based TSSG-grown α -GeO₂ single crystal [27]. The transmission spectrum was taken on an as-grown crystal plate of 330 µm in thickness. The transmission fraction, found to be over 97% in the VIS-NIR region, showed that the TSSG-grown α -GeO₂ crystal was of very good optical quality. The high chemical purity and the homogeneity of the TSSG-GeO₂ crystal were also revealed by the absence of absorption bands. The α -GeO₂ crystal exhibited transparency down to the UV region. Below 300 nm, a strong absorption was visible due to the fundamental absorption within the band gap with a cutoff at 205 nm.


Optical transmission was reported for hydrothermally-grown α -GeO₂ crystal [79]. The spectrum showed a considerable absorption in the 0.20–0.210 µm range associated with the presence of several bands [79].

4. Thermal Characterizations

4.1. Flux-Grown α -GaPO₄

Differential scanning calorimetric (DSC) experiments were done on flux-grown α -GaPO₄ single crystals crystallized via spontaneous nucleation in MoO₃-based fluxes as Li₂O:3MoO₃ and K₂O:3MoO₃ [44,46,89,90,101]. On heating runs up to 1200 °C (2–10 °C min⁻¹) of α -GaPO₄ as-grown single crystals or powdered samples, only a sharp endothermic peak appeared in the 950–964 °C temperature range, Figure 3, caused by the structural transition from the α -quartz GaPO₄ phase to the β -cristobalite modification stable above 960–980 °C [40–42].

Figure 3. Differential scanning calorimetric (DSC) curves of powdered flux-grown α -GaPO₄ crystals registered with a thermal cycle of 2 °C/min.

The successive cooling (-5 %/min) data registered from 1200 % back to room temperature of a sample containing some as-grown single crystals (different sizes and faces) presented a unique exothermic feature with double maxima at onset temperature of 937 % for the first thermal cycle, and at onset temperature of 925 % in the second cycle [101].

When the as-grown α -GaPO₄ crystals were powdered and sieved to a regular grain size (20 µm), the successive cooling (-2 or -10 °C/min) curves, from 1200 to 20 °C, showed only one exothermic peak in the 942–908 °C temperature range depending on the flux composition, Figure 3.

This exothermic feature corresponded to a total transformation of the β -cristobalite GaPO₄ phase into the α -quartz phase as confirmed by the X-ray powder pattern of the end product of the DSC analysis [44,46,89,90]. This was the first time that GaPO₄ had been found, after a DSC cycle, exclusively in the α -quartz modification after cooling from the β -cristobalite phase without annealing periods.

Effectively, concerning the hydrothermally-grown α -GaPO₄ material grown at 300 °C (direct solubility), the successive cooling curve (-10 °C/min) from 1200 °C back to 20 °C, showed two main exothermic peaks [43,90]: one with an onset temperature of 910 °C due to a partial transformation of the β -cristobalite GaPO₄ phase in α -quartz phase and a second, close to 578 °C, attributed to the β -cristobalite/ α -cristobalite transition [40–42].

For hydrothermally-grown α -GaPO₄ material grown at 230 °C (indirect solubility), only one strong exothermic peak was visible on the cooling curve close to 578 °C corresponding to a total transformation of the β -cristobalite to α -cristobalite [43]. The crystallization temperature of the α -GaPO₄ phase would be an important parameter to favor the reversible α -quartz/ β -cristobalite transition.

The thermal evolution of flux-grown α -GaPO₄ single crystals grown from 950 to 600 °C in MoO₃-based solvents was also followed by Raman spectroscopy [45]. A direct α -quartz/ β -cristobalite transition was observed at a temperature close to 980 °C upon heating. Back transformation to the α -quartz-type form was found to occur readily at 920 °C in perfect agreement with the DSC experiments [44,46,89,90,101].

The temperature dependence of the cell parameters of a α -GaPO₄ sample grown in a Li₂O-3MoO₃ flux over the temperature range 950–600 °C was determined from powder X-ray diffraction data collected from 30 to 900 °C [103]. The X-ray patterns remained the same from room temperature to 900 °C. Both the lattice parameters and unit cell volumes were found to increase markedly and nonlinearly (third degree polynomial) as a function of temperature. Therefore, no indication of a structural transition was pointed out in the studied temperature range (30–900 °C) in perfect agreement with previous reported results obtained from DSC [44,46,89,90,101] or Raman studies [45,89] concerning MoO₃-based flux-grown α -GaPO₄ crystals.

4.2. Flux-Grown α -GeO₂

In the temperature range from room temperature to 1200 °C, the DSC heating-curve of GeO₂ crystals with the α -quartz structure grown by the spontaneous nucleation method in selected fluxes (MoO₃-based compounds) showed no other peak than an endothermic feature attributed to the melting of the studied material at maximum of 1116 °C [93,94].

Powder X-ray patterns of flux-grown α -GeO₂ were registered at several temperatures from room temperature up to 1050 °C [93,109]. For each studied temperature, the whole diffraction pattern was assigned to the α -quartz phase of GeO₂. The very interesting results brought to light by these thermal analyses were that this high temperature flux-grown oxide material did not present a phase transition before melting (unlike SiO₂ with the well-known α -quartz/ β -quartz transformation close to 573 °C [19,28]) and that no secondary phases such as the GeO₂ rutile-like phase or flux-derived phases were detected.

Variable-temperature Raman spectroscopy measurements performed on high temperature flux-grown α -quartz GeO₂ single crystals in MoO₃-based solvents were reported [93,106]. Vibrations in α -GeO₂ were shown to be very slightly anharmonic as evidenced by the very low wavenumber shifts and the weak damping of the modes between room temperature and 1100 °C. In contrast with what has been observed for other α -quartz homeotypes like SiO₂ or AlPO₄, which undergo an α -quartz to β -quartz phase transition [19,28], neither phase transitions nor a second phase were detected by this Raman study from room temperature to 1100 °C. First-principle calculations with the ABINIT code [93,106,107] revealed the absence of the tetrahedral libration mode in the α -quartz-like structure of GeO₂ which explained the very low degree of thermally-induced dynamic disorder registered in the 30–1100 °C range and further confirmed that the piezoelectric properties of flux-grown α -GeO₂ should not be degraded significantly up to its melting point (1116 °C).

To confirm the thermal stability (aging), an as-grown α -GeO₂ single crystal obtained by spontaneous nucleation in MoO₃-based flux was annealed in air at high temperature (800–900 °C) over several months [27]. The impact of this thermal cycle on the α -quartz-like structure of GeO₂ was followed by Raman measurement. This long annealing process validated the excellent aging behavior under very high thermal stress of the α -quartz GeO₂ obtained from the flux method since no phase transition and no evolution of the visual transparency were detected. This important result could be directly related to the high crystalline quality of the α -GeO₂ single crystals accessible with the flux growth techniques (water-free, chemical inclusion-free and rutile phase-free) as illustrated by the optical transmission curve [27].

5. Elastic Constants

5.1. Ambient Conditions

Using Voigt's notation and taking into account the crystal symmetry, the α -quartz structure (point group 32) presents six independent elastic stiffness moduli C_{IJ} (I, J indices from 1 to 6): C_{11}, C_{33}, C_{44} , C_{66}, C_{12}, C_{13} and C_{14} ($2C_{66} = C_{11} - C_{12}$). To identify the crystalline orientation, α -quartz analogues use a standard Cartesian coordinate system where the *Z*-axis of α -quartz analogues coincides with the crystallographic *c*-axis; the *X*-axis matches the crystallographic *a*-axis and the *Y*-axis is normal to the *X* and *Z* axes (*b*-axis being in the *XY* plane at 120 ° from *a*-axis).

5.1.1. Flux-Grown α-GaPO₄

By the ultrasonic method, a determination of four out of six independent single-crystal elastic stiffness constants C_{IJ}^{E} at constant electric field was undertaken on millimeter suitable shaped plates obtained from as-grown α -GaPO₄ single crystals spontaneously crystallized by slowly cooling a Li₂O:3MoO₃ flux saturated with GaPO₄ [46,89,110]. The average size of the MoO₃-based flux-grown GaPO₄ single crystals was too small [44,46,89,90,101] to get all the orientations useful for the measurements of the whole elastic constant set (ex: C_{13}^{E}).

Single-crystal high-resolution Brillouin spectroscopy experiments were carried out to measure five out of six (C_{13}^{E} is missing) elastic constants C_{IJ}^{E} of flux-grown α -GaPO₄ material [90,103]. Optical quality single-crystals of α -GaPO₄ with millimeter size were flux-grown from X₂O:3MoO₃ (X = Li, K) solvent in unseeded experiments over the 950–600 °C temperature range. The Brillouin measurements were done, on one hand, on plates of simple X-, Y- and Z-orientation [90] and on other hand, on an as-grown α -GaPO₄ single crystal polished as a cube with 2 mm side length showing X (100), Y (010) and Z (001) faces [103].

Table 1 gives the resulting single crystal elastic stiffness constants C_{IJ}^{E} obtained on high temperature flux-grown α -GaPO₄ materials in MoO₃-based solvents. They are compared with a reported experimental set of data concerning the hydrothermally-grown GaPO₄ single crystals as well as with reported computed values [111].

The values of the flux-grown single crystal elastic stiffness constants C_{IJ}^{E} compared with those obtained by Brillouin or pulse-echo methods on hydrothermally-grown samples, Table 1, are in good accordance while large discrepancies exist with the computed values concerning C_{11}^{E} and C_{66}^{E} .

Elastic constant	Hydrothermal-Growth	Computed values (-273 °C)	Flux-Growth
C^{E}_{11}	66.58 [112]		64.01 [46,110]
	66.35 [67]	79.80 [111]	66.37 [90]
	66.60 [17]	//.00[111]	66.52 [103]
	66.58 [113]		00.52 [105]
$C^{E}_{12} = (C^{E}_{11} - 2C^{E}_{66})]$	21.81 [112]		13.51 [46,110]
	21.65 [67]	16.60 [111]	21.45 [90]
	21.80 [17]		21.45 [90] 21.04 [103]
	17.38 [113]		21.04 [103]
$ C^{E}_{14} $	3.91 [112]		5.52 [46,110]
	4.20 [67]	2 20 [111]	4.93 [90]
	3.90 [17]	3.20 [111]	
	5.14 [113]		5.53 [103]
C^{E}_{33}	102.13 [112]		
	101.31 [67]	106.30 [111]	103.29 [90]
	102.10 [17]	100.30 [111]	103.88 [103]
	102.13 [113]		
$C^{\mathrm{E}}_{}44}$	37.66 [112]		39.39 [46,110]
	37.80 [67]	39.90 [111]	37.85 [90]
	37.70 [17]	59.90 [111]	
	39.68 [113]		38.01 [103]
$C^{\rm E}_{66}$	22.38 [112]		21 25 [46 110]
	22.35 [67]	21 60 [111]	21.25 [46,110]
	22.40 [17]	31.60 [111]	22.46 [90]
	24.60 [113]		22.74 [103]

Table 1. Computed and experimental elastic stiffness constants C_{IJ}^{E} [GPa] of α -GaPO₄.

5.1.2. Flux-Grown α -GeO₂

The room temperature experimental values of single-crystal elastic stiffness constants C_{IJ}^{E} at constant electric field of flux-grown α -GeO₂ in MoO₃-based solvents were determined using Brillouin scattering, Table 2 [109]. In this work, three platelets were used, defined in the standard Cartesian coordinate system as *X*-plate, *Y*-plate and *Z*-plate which respectively correspond to the (100), (2–10) and (003) (*hkl*)-crystallographic planes.

These flux-grown α -GeO₂ C_{IJ} values are compared in Table 2 with recent computed [109,114,115] and experimental elastic constant data obtained from hydrothermally-grown crystals [23,24,116]. C^{D}_{IJ} are elastic stiffness constants at constant electric displacement *i.e.*, not corrected from the piezoelectric effect e_{11}^2/ϵ_{11} where e_{11} is the piezoelectric stress constant and ϵ_{11} the dielectric tensor at constant strain.

The crystal elastic constants values of the MoO₃-based flux-grown α -GeO₂ material present close similarities with most of the published C_{IJ} data on hydrothermally-grown α -GeO₂ crystals, Table 2. Therefore, the small discrepancy, registered more especially on the C_{11} and C_{14} moduli, was attributed to the strong reduction of the OH concentration in the lattice of flux-grown α -GeO₂ crystals which was believed to induce a slightly stiffer behavior [109]. The presence of OH-interactions in the crystal would increase its ionic character and consequently softer its elastic behavior. When compared with calculated elastic stiffness constants, the flux-grown α -GeO₂ elastic moduli presented very good agreement with computed values at 0 K of Lignie *et al.* [109], Table 2. The largest discrepancy was observed for the C_{66} (nearly 13% softer for the theoretical value) while very good accordance was found for the C_{12} and C_{14} elastic constants.

The numerical value of the e_{11}^2/ϵ_{11} piezoelectric term, deduced from the C_{11}^{D} to C_{11}^{E} difference, Table 2, is 1.29(2) GPa [109]. The authors deduced for the flux-grown α -GeO₂ material a d_{11} piezoelectric strain constant of 5.7(2) $\times 10^{-12}$ C/N which is in between the calculated and the reported experimental value from a hydrothermally-grown α -GeO₂ crystal, Table 3.

Elastic constant	Hydrothermal-Growth	Computed values	Flux-Growth [107]
$\begin{array}{c} C^{\mathrm{E}}_{11} \\ C^{\mathrm{D}}_{11} \end{array}$	64.00 [116] 64.80 [23] 66.40 [24] 64.13 [23]	62.90 [109] 69.90 [114] 56.15 [115]	68.1(1) 69.3(1)
C^{E}_{12}	22.00 [116] 21.30 [24]	25.50 [109] 8.40 [114] 12.03 [115]	25.1(1)
$C^{\rm E}_{13}$	32.00 [116]	25.70 [109] 4.10 [114] 19.39 [115]	_
$ C_{14}^{E} $	2.00 [116] 11.70 [23] 2.20 [24]	0.60 [109] 15.6 [114] 0 [115]	≈0
$C^{\rm E}_{33}$	118.0 [116] 116.0 [24]	116.80 [109] 91.60 [114] 99.05 [115]	118.8(2)
$C^{\rm E}_{44}$	37.00 [116] 37.84 [23] 26.80 [24]	35.00 [109] 38.40 [114] 39.99 [115]	38.6(1)
$C^{\mathrm{E}}_{}66}$ $C^{\mathrm{D}}_{}66}$	21.00 [116] 21.10 [23] 22.53 [24] 24.90–25.14 [23]	18.70 [109] 30.70 [114] 22.06 [115]	21.5(1) 22.7(1)

Table 2. Computed and experimental elastic stiffness constants C_{IJ} [GPa] of α -GeO₂.

Material	erial a-GeO2		a-SiO ₂	
Piezoelectric constant	Hydrothermal-Growth	Predicted values	Flux-Growth	Hydrothermal-Growth
	4.04 [23]	7.43 [109]		
$d_{11} (10^{-12} \text{ C/N})$	4.10 [24]	4.30 [117]	5.7(2) [109]	2.31 [17]
	8.7–9.4 [29]	6.00 [117]		

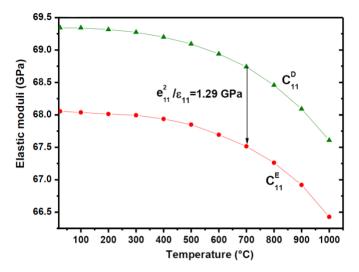
The flux-grown α -GeO₂ exhibits a d_{11} piezoelectric strain constant more than twice that of α -quartz SiO₂, Table 3, confirming the improvement of the piezoelectric properties with the structural distortion in the α -quartz analogues [17,117].

5.2. High Temperature

5.2.1. Flux-Grown α -GaPO₄

High-resolution Brillouin spectroscopy studies concerning the C_{IJ} elastic stiffness constant evolution with temperature of high-temperature flux-grown α -GaPO₄ single-crystals are reported in the literature [90,103]. Since for Brillouin scattering experiments, the samples have not to be coated with metal layers (electrodes), measurements at high temperatures are not affected by foreign chemical diffusion or bad electrical signal transmission.

Plates of *X* (100) and *Z* (001) simple orientations produced from α -GaPO₄ single crystals obtained by slow cooling from 950 to 600 °C in X₂O:3MoO₃ fluxes (X = Li, K) were used to follow the thermal evolution of C^{D}_{11} and C^{E}_{33} elastic constant [90]. C^{D}_{11} was measured from room temperature up to 1000 °C to follow the α -quartz/ β -cristobalite phase transition found close to 970 °C, in good agreement with other thermal studies [30,41,42,44,46,89,101]. C^{E}_{33} presented a monotonous decrease with temperature up to 850 °C while C^{D}_{11} presented a slight variation over the 20–500 °C temperature range followed by a stronger variation when approaching the phase transition temperature at 970 °C [90].


For the Brillouin scattering measurements using the backscattering geometry undertaken on a α -GaPO₄ crystal shaped as a cube with *X*-, *Y*- and *Z*-faces [103], the C_{11}^{E} , C_{33}^{E} , C_{44}^{E} and C_{12}^{E} constants showed monotonic elastic softening upon heating up to 850 °C while C_{66}^{E} and C_{14}^{E} showed continuous stiffening. Most of the C_{IJ} elastic stiffness constant derives by only a few percent upon heating, while C_{14}^{E} increases by about 50% and C_{12}^{E} decreases by about 35%. The first-order temperature coefficients $T_{CIJ}^{(1)}$ were negative for C_{11}^{E} , C_{33}^{E} , C_{44}^{E} and C_{12}^{E} elastic constants [103] in perfect agreement with previous reports on hydrothermally-grown α -GaPO₄ crystals [67,110,112,118].

5.2.2. Flux-Grown α -GeO₂

Different sets of C_{IJ} elastic stiffness constants at constant electric displacement and ambient conditions have been reported on flux- and hydrothermally-grown α -GeO₂ [23,24,109,116]. However, only one set of elastic data concerning their thermal evolution is reported in the literature [109]. It concerns a high resolution Brillouin scattering study of MoO₃-based flux-grown α -GeO₂ single crystals from room temperature up to 1000 °C. Any accident as discontinuity or phase transition was registered on the thermal evolution of the elastic constants in agreement with the conservation of the α -quartz-like structure of flux-grown GeO₂ material up to melting (1116 °C) [93,94]. The C_{11} , C_{33} , and C_{12} elastic constants show monotonic elastic softening upon heating while C_{44} and C_{66} show continuous stiffening.

The thermal evolution of the e_{11}^2/ϵ_{11} piezoelectric term, deduced from the difference between C_{11}^{D} and C_{11}^{E} , was found stable up to 1000 °C, Figure 4 [93,109] meaning that MoO₃-based flux-grown α -GeO₂ crystals exhibit piezoelectric activity even at very high temperature.

Figure 4. Thermal dependence of pure and piezoelectrically stiffened C_{11} elastic constant of flux-grown α -GeO₂. Errors are smaller than the symbol size.

6. Conclusions

In the family of α -quartz isotypes, high quality α -GaPO₄ and α -GeO₂ single crystals with a larger thermal stability and higher piezoelectric properties than α -quartz can potentially be used as piezoelectric materials for high temperatures applications. However if these single crystals are grown via hydrothermal-based methods, the presence of significant numbers of hydroxyl groups and structural defects in their network lead to a degradation of their physical properties and even to a phase transformation at relatively low temperature for α -GeO₂.

The main structural and chemical results obtained from infrared studies (OH-content), thermal behavior analysis and Brillouin scattering experiments on MoO₃-based flux-grown α -GaPO₄ and α -GeO₂ single-crystals have demonstrated OH-free high quality piezoelectric crystals and an improved thermal stability.

These results confirm on one hand the high potential of flux-grown α -GaPO₄ and α -GeO₂ single crystals as piezoelectric materials for high temperature applications and on the other hand a very powerful method of high temperature flux melted technique to grow high quality α -quartz isotype single crystals.

Moreover, as iso-structural to α -quartz, most of the device designs developed for α -quartz single crystal could be applied for α -GeO₂ with minor adaptations. The potential of α -GeO₂ single crystal for the realization of piezoelectric devices is also confirmed as its d_{11} piezoelectric constant at ambient temperature is found to be more than twice that of α -quartz. The piezoelectric property of α -GeO₂ is still conserved at high temperature as a significant piezoelectric contribution to C_{11} still exists at 1000 °C.

Author Contributions

Pascale Armand, Adrien Lignie and Marion Beaurain performed crystal growths of flux-grown piezoelectric materials, characterizations and data analysis. All author discussed the results and Pascale Armand wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

- 1. Zhang, S.; Yu, F. Piezoelectric materials for high temperature sensors. *J. Am. Ceram. Soc.* **2011**, *94*, 3153–3170.
- 2. Jiang, X.; Kim, K.; Zhang, S.; Johnson, J.; Salazar, F. High temperature piezoelectric sensing. *Sensors* **2014**, *14*, 144–169.
- 3. Smith, G.S.; Alexander, L.E. Refinement of the atomic parameters of α-quartz. *Acta Cryst.* **1963**, *16*, 462–471.
- 4. Smith, G.S.; Isaacs, P.B. The crystal structure of quartz-like GeO₂. Acta Cryst. **1964**, *17*, 842–846.
- 5. Le Page, Y.; Donnay, G. Refinement of the crystal structure of low-quartz. Acta Cryst. 1976, *B32*, 2456–2459.
- 6. Le Page, Y.; Calvert, L.D.; Gabe, E.J. Parameter variation in low-quartz between 94 and 298 K. *J. Phys. Chem. Solids* **1980**, *41*, 721–725.
- Goiffon, A.; Bayle, G.; Astier, R.; Jumas, J.-C.; Maurin, M.; Philippot, E. Cristallochimie des phases GaPO₄, AlAsO₄ et GaAsO₄. Etude compar ée des structures de type quartz-α. *Rev. Chim. Min ér.* 1983, 20, 338–350. (In French)
- 8. Goiffon, A.; Jumas, J.-C.; Philippot, E. Phases de type quartz α: Structure de FePO₄ et spectrom étrie Mössbauer du fer-57. *Rev. Chim. Min ér.* **1986**, *23*, 99–109. (In French)
- Goiffon, A.; Jumas, J.-C.; Maurin, M.; Philippot, E. Etude comparée à diverses températures (173, 293 et 373 K) des structures de type quartz α des phases MXO₄ (M^{III} = Al, Ga et X^V = P, As). *J. Solid State Chem.* **1986**, *61*, 384–396. (In French)
- Glinnemann, J.; King, H.E.; Schulz, H.; Hahn, Th.; la Placa, S.J.; Dacol, F. Crystal structures of the low-temperature quartz-type phases of SiO₂ and GeO₂ at elevated pressure. *Z. Kristall.* 1992, 198, 177–212.
- Haines, J.; Cambon, O.; Philippot, E.; Chapon, L.; Hull, S. A neutron diffraction study of the thermal stability of the α-quartz-type structure in germanium dioxide. *J. Solid State Chem.* 2002, *166*, 434–441.
- 12. Guillot, R.; Fertey, P.; Hansen, N.K.; All é, P.; Elka m, E.; Lecomte, C. Diffraction study of the piezoelectric properties of low quartz. *Eur. Phys. J. B* **2004**, *42*, 373–380.
- Haines, J.; Cambon, O.; Prudhomme, N.; Fraysse, G.; Keen, D.A.; Chapon, L.C.; Tucker, M.G. High-temperature, structural disorder, phase transitions, and piezoelectric properties of GaPO₄. *Phys. Rev. B* 2006, *73*, 014103:1–014103:10.
- Lab éguerie, P.; Harb, M.; Baraille, I.; R érat, M. Structural electronic, elastic, and piezoelectric properties of α-quartz and MXO₄ (M = Al, Ga, Fe; X = P, As) isomorph compounds: A DFT study. *Phys. Rev. B* 2010, *81*, 045107:1–045107:9.

- Giangrisostomi, E.; Minicucci, M.; Trapananti, A.; di Cicco, A. Multiple-scattering X-ray absorption analysis of quartz-like, rutile-like, and amorphous germanium dioxide. *Phys. Rev. B* 2011, 84, 214202:1–214202:8.
- 16. Lignie, A.; Granier, D.; Armand, P.; Haines, J.; Papet, P. Modulation of quartz-like GeO₂ structure by Si substitution: An X-ray diffraction study of $\text{Ge}_{1-x}\text{Si}_x\text{O}_2$ ($0 \le x < 0.2$) flux-grown single crystals. *J. Appl. Cryst.* **2012**, *45*, 272–278.
- Philippot, E.; Palmier, D.; Pintard, M.; Goiffon, A. A general survey of quartz and quartz-like materials: Packing distortions, temperature, and pressure effects. *J. Solid State Chem.* 1996, *123*, 1–13.
- Philippot, E.; Armand, P.; Yot, P.; Cambon, O.; Goiffon, A.; McIntyre, G.J.; Bordet, P. Neutron and X-ray structure refinements between 15 and 1073 K of piezoelectric gallium arsenate, GaAsO₄: Temperature and pressure behavior compared with other α-quartz materials. *J. Solid State Chem.* 1999, *146*, 114–123.
- 19. Grimm, H.; Dorner, B. On the mechanism of the α - β phase transformation of quartz. *J. Phys. Chem. Solids* **1975**, *36*, 407–413.
- 20. Zwijnenburg, M.A.; Huenerbein, R.; Bell, R.G.; Cora, F. A computational study into the (tetrahedral) distortion of TX₂ α -quartz materials: The effect of changing the chemical composition away from SiO₂. J. Solid State Chem. **2006**, 179, 3429–3436.
- 21. Kihara, K. An X-ray study of the temperature dependence of the quartz structure. *Eur. J. Mineral.* **1990**, *2*, 63–77.
- 22. Philippot, E.; Goiffon, A.; Ibanez, A.; Pintard, M. Structure deformations and existence of the α - β transition in MXO₄ quartz-like materials. *J. Solid State Chem.* **1994**, *110*, 356–362.
- Balitsy, D.V.; Sil'vestrova, O.Y.; Balitsky, V.S.; Pisarevsky, Y.V.; Pushcharovsky, D.Y.; Philippot, E. Elastic, piezoelectric, and dielectric properties of α-GeO₂ single crystals. *Crystallogr. Rep.* 2000, 45, 145–147.
- Pisarevsky, Y.V.; Silvestrova, O.Y.; Philippot, E.; Balitsky, D.V.; Pisharovsky, D.Y.; Balitsky, V.S. Piezoelectric, Dielectric and Elastic Properties of Germanium Dioxide Single Crystals. In Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, Kansas City, MO, USA, 7–9 June 2000.
- 25. Cambon, O.; Haines, J. Structure-piezoelectric Property Relationships in α-Quartz Isotypes: Design and Characterization of High Performance Piezoelectric Materials. In Proceedings of the 2003 IEEE International Frequency Control Symposium, Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, Tampa, FL, USA, 4–8 May 2003.
- 26. Cambon, O.; Haines, J.; Fraysse, G.; Détaint, J.; Capelle, B.; van der Lee, A. Piezoelectric characterization and thermal stability of a high-performance α-quartz-type material, gallium arsenate. *J. Appl. Phys.* **2005**, *97*, 074110:1–074110:7.
- Lignie, A.; M énaert, B.; Armand, P.; Pena, A.; Debray, J.; Papet, P. Top seeded solution growth and structural characterizations of α-quartz-like structure GeO₂ single crystal. *Cryst. Growth Des.* 2013, *13*, 4220–4225.
- Engel, G.F.; Krempl, P.W. Stability of α-phases of quartz-isomorphs. *Ferroelectrics* 1984, 54, 9–12.

- Kolodiev, B.N.; Makhina, I.B. GeO₂—A promising new piezoelectric. *Sov. Phys. Crystallogr.* 1989, 34, 455–456.
- Laubengayer, A.W.; Morton, D.S. The polymorphism of germanium dioxide. J. Am. Chem. Soc. 1932, 54, 2303–2320.
- 31. Baur, W.H.; Khan, A.A. Rutile-type compounds. IV. SiO₂, GeO₂ and a comparison with other rutile-type structures. *Acta Cryst.* **1971**, *B27*, 2133–2139.
- 32. Rao, K.V.K.; Naidu, S.V.N.; Iyengar, L. Precision lattice parameters and the coefficients of thermal expansion of hexagonal germanium dioxide. *J. Appl. Cryst.* **1973**, *6*, 136–138.
- 33. Yamanaka, T.; Kurashima, R.; Mimaki, J. X-ray diffraction study of bond character of rutile-type SiO₂, GeO₂ and SnO₂. *Z. Kristallogr.* **2000**, *215*, 424–428.
- 34. Micoulaut, M.; Cormier, L.; Henderson, G.S. The structure of amorphous, crystalline and liquid GeO₂. *J. Phys. Condens. Matter* **2006**, *18*, R753–R784.
- 35. Madon, M.; Gillet, P.; Julien, C.; Price, G.D. A vibrational study of phase transitions among the GeO₂ polymorphs. *Phys. Chem. Miner.* **1991**, *18*, 7–18.
- Kotera, Y.; Yonemura, M. Kinetics of the transformation of germanium oxide. *Trans. Faraday Soc.* 1963, 59, 147–155.
- 37. Newns, G.R.; Hanks, R. Thermal behavior of germanium dioxide. J. Chem. Soc. A 1966, 954–957.
- Sarver, J.F. Polymorphism and subsolidus equilibria in the system GeO₂-TiO₂. Am. J. Sci. 1961, 259, 709–718.
- Bielz, T.; Soisuwan, S.; Kaindl, R.; Tessadri, R.; Többens, D.M.; Klötzer, B.; Penner, S. A high-resolution diffraction and spectroscopic study of the low-temperature phase transformation of hexagonal to tetragonal GeO₂ with and without alkali hydroxide promotion. *J. Phys. Chem. C* 2011, *115*, 9706–9712.
- 40. Perloff, A. Temperature inversions of anhydrous gallium orthophosphate. J. Am. Ceram. Soc. 1956, 39, 83–88.
- 41. Barz, R.-U.; Schneider, J.; Gille, P. High-temperature phase transitions of gallium orthophosphate (GaPO₄). *Z. Kristallogr.* **1999**, *214*, 845–849.
- 42. Jacobs, K.; Hofmann, P.; Klimm, D.; Reichow, J.; Schneider, M. Structural phase transformations in crystalline gallium orthophosphate. *Solid State Chem.* **2000**, *149*, 180–188.
- 43. Pey, F. Synthèse et Caractérisations de Matériaux Homéotypes du Quartz. Ph.D. Thesis, UniversitéMontpellier II, Montpellier, France, October 2004. (In French)
- 44. Beaurain, M.; Armand, P.; Papet, P. Synthesis and characterization of α -GaPO₄ single crystals grown by the flux method. *J. Cryst. Growth* **2006**, *294*, 396–400.
- 45. Angot, E.; le Parc, R.; Levelut, C.; Beaurain, M.; Armand, P.; Cambon, O.; Haines, J. A high temperature Raman scattering study of the phase transitions in GaPO₄ and the AlPO₄-GaPO₄ system. *J. Phys. Condens. Matter* **2006**, *18*, 4315–4327.
- 46. Beaurain, M.; Armand, P.; Balitsky, D.; Papet, P. Physical Characterizations of α-GaPO₄ Single Crystals Grown by the Flux Method. In Proceedings of the 2007 Joint Meeting of the European Time and Frequency Forum (EFTF) and the IEEE International Frequency Control Symposium (IEEE-FCS), Geneva, Switzerland, 29 May–1 June 2007.

- 47. Hirano, S.; Miwa, K.; Naka, S. Hydrothermal synthesis of gallium orthophosphate crystals. *J. Cryst. Growth* **1986**, *79*, 215–218.
- 48. Hirano, S.; Kim, P. Hydrothermal synthesis of gallium orthophosphate crystals. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 275–278.
- 49. Engel, G.; Klapper, H.; Krempl, P.; Mang, H. Growth twinning in quartz-homeotypic gallium orthophosphate crystals. *J. Cryst. Growth* **1989**, *94*, 597–606.
- Cochez, M. Cristallog én èse et Caract érisations du Phosphate de Gallium, GaPO₄, Mat ériau Pi ézo électrique à Fort Coefficient de Couplage. Ph.D. Thesis, Universit é Montpellier II, Montpellier, France, September 1994. (In French)
- 51. Hirano, S.; Kim, P.C. Growth of gallium orthophosphate single crystals in acidic hydrothermal solutions. *J. Mater. Sci.* **1991**, *26*, 2805–2808.
- Philippot, E.; Ibanez, A.; Goiffon, A.; Cochez, M.; Zarka, A.; Capelle, B.; Schwartzel, J.; Déaint, J. A quartz-like material: Gallium phosphate (GaPO₄); crystal growth and characterization. *J. Cryst. Growth* 1993, *130*, 195–208.
- 53. Palmier, D.; Goiffon, A.; Capelle, B.; D taint, J.; Philippot, E. Crystal growth and characterization of quartz-like material: Gallium phosphate (GaPO₄). *J. Cryst. Growth* **1996**, *166*, 347–353.
- 54. Motchany, A.I.; Chvanski, P.P.; Leonyuk, N.I. Synthesis and solubility of GaPO₄ crystals in acid solutions under hydrothermal conditions. *J. Cryst. Growth* **2000**, *211*, 506–508.
- Yot, P.; Cambon, O.; Balitsky, D.; Goiffon, A.; Philippot, E.; Capelle, B.; D étaint, J. Advances in crystal growth and characterizations of gallium phosphate, GaPO₄. J. Cryst. Growth 2001, 224, 294–302.
- 56. Demianets, L.N. Gallium orthophosphate hydrothermal growth at high temperatures (320 ℃). *Ann. Chim. Sci. Mater.* **2001**, *26*, 67–74.
- 57. Jacobs, K.; Hofmann, P.; Reichow, J. Physico-chemical aspects of the hydrothermal growth of GaPO₄. *Ann. Chim. Sci. Mater.* **2001**, *26*, 85–90.
- 58. Barz, R.-U.; Grassl, M.; Gille, P. Study of anisotropic effects in hydrothermal growth of gallium orthophosphate single crystals. *Ann. Chim. Sci. Mater.* **2001**, *26*, 95–98.
- 59. Grassel, M.; Barz, R.-U.; Gille, P. Reducing inversion twinning in single crystal growth of GaPO₄. *Cryst. Res. Technol.* **2002**, *37*, 531–539.
- 60. Barz, R.-U.; Grassel, M.; Gille, P. Studies on the solubility of GaPO₄ in phosphoric acid. *J. Cryst. Growth* **2002**, *245*, 273–277.
- 61. Balitsky, D.V.; Philippot, E.; Papet, P.; Balitsky, V.S.; Pey, F. Comparative crystal growth of GaPO₄ crystals in the retrograde and direct solubility range by hydrothermal methods of temperature gradient. *J. Cryst. Growth* **2005**, *275*, e887–e894.
- 62. Byrappa, K.; Yoshimura, M. Hydrothermal Growth of Some Selected Crystals. In *Handbook of Hydrothermal Technology*, 2nd ed.; Noyes Publications: Park Ridge, NJ, USA; William Andrew Publishing, LLC: Norwich, NY, USA, 2001.
- Philippot, E.; Goiffon, A.; Maurin, M.; D daint, J.; Schwartzel, J.; Toudic, B.; Capelle, B.; Zarka, A. Evaluation of high quality berlinite crystals grown in sulphuric acid medium. *J. Cryst. Growth* 1990, *104*, 713–726.
- 64. Zvereva, O.V.; Demianets, L.N. Substrate orientation and hydrothermal growth of GaPO₄ single crystals. *Crystallogr. Rep.* **1995**, *40*, 990–993.

- 65. Krispel, F.; Krempl, P.W.; Knoll, P.; Wallnöfer, W. OH Impurities in Gallium Phosphate. In Proceedings of the 11th European Frequency and Time Forum, Neuchâtel, Switzerland, 4–6 March 1997.
- 66. D taint, J.; Zarka, A.; Capelle, B.; Palmier, D.; Philippot, E. Optimisation of the Design of the Resonators Using the New Materials: Application to Gallium Phosphate and Langasite. In Proceedings of the 1997 IEEE International, Orlando, FL, USA, 28–30 May 1997.
- 67. Palmier, D. Optimisation de la Cristallog én èse et de la Caract érisation des Propri ét és Pi ézo électriques du Phosphate de gallium. Ph.D. Thesis, Universit é Montpellier II, Montpellier, France, November 1996. (In French)
- 68. Marhino, E.; Palmier, D.; Goiffon, A.; Philippot, E. Spatial-OH impurity distribution in gallium phosphate crystals. *J. Mater. Sci.* **1998**, *33*, 2825–2830.
- 69. Wallnöfer, W.; Krempl, P.W.; Krispel, F.; Willfurth, V. Segregation forming and growth defect characterization by heat treatment of hydrothermally grown GaPO₄. J. Cryst. Growth **1999**, 198–199, 487–491.
- 70. Grassl, M.; Barz, R.-U.; Gille, P. Etch studies on GaPO₄ single crystals. *J. Cryst. Growth* **2000**, 220, 522–530.
- Jacobs, K.; Hofmann, P.; Klimm, D. OH impurities in GaPO₄ crystals: Correlation between infrared absorption and mass loss during thermal treatment. J. Cryst. Growth 2002, 237–239, 837–842.
- Prud'homme, N. Cristallisation-dissolution de GaPO₄: Phénomènes à l'interface Cristal-Solvant. Etude de la Dissolution Contrôl ée de GaPO₄ pour la R éalisation de R ésonateurs Pi ézo dectriques à Haute Fr équence. Ph.D. Thesis, Universit é Montpellier II, Montpellier, France, December 2005. (In French)
- 73. Hofmann, P.; Juda, U.; Jacobs, K. Characterization of etch figures on as-grown surfaces of GaPO₄ crystals. *J. Cryst. Growth* **2005**, *275*, e1883–e1888.
- 74. Defregger, S.; Engel, G.F.; Krempl, P.W. Linear and nonlinear optical properties of quartz-type GaPO₄. *Phys. Rev. B* **1991**, *43*, 6733–6738.
- 75. Barz, R.U.; Ghemen, S.V. Water-free gallium phosphate single-crystal growth from the flux. *J. Cryst. Growth* **2005**, 275, e921–e926.
- 76. Hill, V.G.; Chang, L.L.Y. Hydrothermal investigation of GeO₂. Am. Miner. **1968**, *53*, 1744–1748.
- 77. Roy, R.; Theokritoff, S. Crystal growth of metastable phases. J. Cryst. Growth 1972, 12, 69–72.
- 78. Demianets, L.N. Hydrothermal synthesis of new compounds. *Prog. Cryst. Growth Charact.* **1990**, *22*, 299–355.
- 79. Glushkova, T.M.; Kiselev, D.F.; Makhina, I.B.; Firsova, M.M.; Shtyrkova, A.P. Trigonal germanium dioxide: Its preparation and optical parameters. *Moscow Univ. Phys. Bull.* **1992**, *47*, 55–58.
- Balitsky, D.V.; Balitsky, V.S.; Pisarevley, Y.V.; Philippot, E.; Silvestrova, O.Y.; Pushcharovsky, D.Y. Growth of germanium dioxide single crystals with α-quartz structure and investigation of their crystal structure, optical, elastic, piezoelectric, dielectric and mechanical properties. *Ann. Chim. Sci. Mater.* 2001, *26*, 183–192.

- 81. Balitsky, D.V.; Balitsky, V.S.; Pushcharovsky, D.Y.; Bondarenko, G.V.; Kosenko, A.V. Growth and characterization of GeO₂ single crystals with the quartz structure. *J. Cryst. Growth* **1997**, *180*, 212–219.
- 82. Laurent, Y. Obtention de monocristaux au sein d'un flux fondu. *Rev. Chim. Miner.* **1969**, *6*, 1145–1186. (In French)
- Elwell, D.; Neate, B.W. Review: Mechanisms of crystal growth from fluxed melts. *J. Mater. Sci.* 1971, *6*, 1499–1519.
- 84. Tolksdorf, W. Crystal growth and epitaxy from high-temperature solutions. In *Synthesis, Crystal Growth and Characterization*; Lal, K., Ed.; North-Holland: Oxford, UK, 1982; pp. 197–211.
- 85. Nielse, J.W. Recent development in crystal growth from high-temperature solutions. In *Growth of Crystals*; Chernov, A.A., Ed.; Consultant Bureau: New York, NY, USA, 1984; Volume 12, pp. 143–154.
- 86. Roy, R.; White, W.B. High temperature solution (flux) and high pressure solution (hydrothermal) crystal growth. *J. Cryst. Growth* **1968**, *3*–*4*, 33–42.
- Beaurain, M.; Armand, P.; Papet, P. Growth of piezoelectric single crystals by the flux method. *J. Cryst. Growth* 2005, 2975, e279–e282.
- 88. Shvanskii, E.; Armand, P.; Balitsky, D.; Philippot, E.; Papet, E. Flux growth gallium orthophosphate crystals. *Ann. Chim. Sci. Mater.* **2006**, *31*, 97–102.
- Beaurain, M. Monocristaux de α-GaPO₄: Croissance par la Technique du Flux et Caract érisations Physiques. Ph.D. Thesis, Universit é Montpellier II, Montpellier, France, December 2006. (In French)
- Armand, P.; Beaurain, M.; Rufflé, B.; Ménaert, B.; Balitsky, D.; Clément, S.; Papet, P. Characterizations of piezoelectric GaPO₄ single crystals grown by the flux method. *J. Cryst. Growth* 2008, *310*, 1455–1459.
- 91. Finch, C.B.; Clark, G.W. Flux growth and characterization of hexagonal germanium dioxide single crystals. *Am. Miner.* **1968**, *53*, 1394–1398.
- 92. Goodrum, J.W. Solution top-seeding: Growth of GeO₂ polymorphs. J. Cryst. Growth **1972**, 13–14, 604–607.
- 93. Lignie, A. Matériaux Piézo dectriques Pour Applications Hautes Températures: Etude de la Croissance de Monocristaux de $Ge_{1-x}Si_xO_2$ ($0 \le x \le 0,2$) et de Leurs Propriétés. Ph.D. Thesis, Universit é Montpellier II, Montpellier, France, September 2012. (In French)
- 94. Lignie, A.; Armand, P.; Papet, P. Growth of piezoelectric water-free GeO₂ and SiO₂-substituted GeO₂ single-crystals. *Inorg. Chem.* **2011**, *50*, 9311–9317.
- 95. Tarr, W.A.; Lonsdale, J.T. Pseudo-cubic quartz crystals from Artesia, New Mexico. *Am. Miner.* **1929**, *14*, 50–53.
- 96. Hartman, P. Sur la morphologie des cristaux. Bull. Miner. 1978, 101, 195–201. (In French)
- 97. Iwasaki, H.; Iwasaki, F. Morphological variations of quartz crystals as deduced from computer experiments. J. Cryst. Growth 1995, 151, 348–358.
- 98. Philippot, E.; Goiffon, A.; Ibanez, A. Comparative crystal habit study of quartz and MPO₄ isomorphous compounds (M = Al, Ga). *J. Cryst. Growth* **1996**, *160*, 268–278.

- 99. Philippot, E.; Ibanez, A.; Goiffon, A.; Capelle, B.; Zarka, A.; Schwartzel, J.; D étaint, J. Crystal Growth and Physical Characterizations of GaPO₄. In Proceedings of the 6th European Frequency and Time Forum, Noordwijk, NL, USA, 17–19 March 1992.
- 100. Cochez, M.; Ibanez, A.; Goiffon, A.; Philippot, E. Crystal growth and infrared characterization of GaPO₄ in phosphoric-sulphuric media. *Eur. J. Solid State Inorg. Chem.* **1993**, *30*, 509–519.
- 101. Beaurain, M.; Armand, P.; Papet, P. Growth of α-GaPO₄ and α-GeO₂ single crystals by the flux method. *J. Phys. IV* **2005**, *126*, 23–26.
- 102. Krempl, P.W.; Krispel, F.; Wallnöfer, W.; Leuprecht, G. GaPO₄: A Critical Review of Material Data. In Proceedings of the Ninth European Frequency and Time Forum, Besançon, France, 8–10 March 1995.
- 103. Armand, P.; Beaurain, M.; Rufflé, B.; Ménaert, B.; Papet, P. Temperature dependence of single-crystal elastic constants of flux-grown α-GaPO₄. *Inorg. Chem.* **2009**, *48*, 4988–4996.
- 104. Sendova-Vassileva, M.; Tzenov, N.; Dimova-Malinovskia, D.; Rosenbauer, M.; Stutzmann, M.; Josepovits, K.V. Structural and luminescence studies of stain-etched and electrochemically etched germanium. *Thin Solid Films* 1995, 255, 282–285.
- 105. Kaindl, R.; Többens, D.M.; Penner, S.; Bielz, T.; Soisuwan, S.; Klötzer, B. Quantum mechanical calculations of the vibrational spectra of quartz- and rutile-type GeO₂. *Phys. Chem. Miner.* 2012, 39, 47–55.
- 106. Fraysse, G.; Lignie, A.; Armand, P.; Bourgogne, D.; Haines, J.; Ménaert, B.; Papet, P. Vibrational origin of the thermal stability in the highly distorted α-quartz type material GeO₂: An experimental and theoretical study. *Inorg. Chem.* 2013, 52, 7271–7279.
- 107. Hermet, P.; Fraysse, G.; Lignie, A.; Armand, P.; Papet, Ph. Density functional theory predictions of the nonlinear optical properties in α-quartz-type germanium dioxide. J. Phys. Chem. C 2012, 116, 8692–8698.
- 108. Hermet, P.; Lignie, A.; Fraysse, G.; Armand, P.; Papet, P. Thermodynamic properties of the α-quartz-type and rutile-type GeO₂ from first-principles calculations. *Phys. Chem. Chem. Phys.* 2013, 15, 15943–15948.
- 109. Lignie, A.; Zhou, W.; Armand, P.; Rufflé, B.; Mayet, R.; Debray, J.; Hermet, P.; Ménaert, B.; Thomas, P.; Papet, P. High-temperature elastic moduli of flux-grown α-GeO₂ single crystal. *ChemPhysChem* 2014, 15, 118–125.
- 110. Beaurain, M.; Armand, P.; Detaint, J.; M énaert, B.; Balitsky, D.; Papet, P. Elastic characterizations of the α-GaPO₄ single crystals grown by the flux method. *J. Phys. Condens. Matter* 2008, 20, 025226:1–025226:7.
- 111. Zhou, Y.; Liu, B. Theoretical investigation of mechanical and thermal properties of MPO₄ (M = Al, Ga). J. Eur. Ceram. Soc. 2013, 33, 2817–2821.
- 112. Krempl, P.W.; Schleinzer, G.; Wallnöfer, W. Gallium phosphate: A new piezoelectric crystal material for high-temperature sensorics. *Sens. Actuator A* **1997**, *61*, 361–363.
- 113. Krempl, P.W.; Krispel, F.; Wallnöfer, W. Industrial development and prospects of GaPO₄. *Ann. Chim. Sci. Mater.* **1997**, *22*, 623–626.
- 114. Ghobadi, E.; Capobianco, J.A. Crystal properties of α-quartz type GeO₂. *Phys. Chem. Chem. Phys.* 2000, *2*, 5761–5763.

- 115. Liu, Q.-J.; Liu, Z.-T.; Feng, L.-P.; Tian, H. First-principles study of structural, elastic, electronic and optical properties of rutile GeO₂ and α-quartz GeO₂. *Solid State Sci.* **2010**, *12*, 1748–1755.
- 116. Grimsditch, M.; Polian, A.; Brazhkin, V.; Balitskii, D. Elastic constants of α-GeO₂. J. Appl. Phys. 1998, 83, 3018–3020.
- 117. Krempl, P.W. Piezoelectricity in quartz analogues. J. Phys. IV 2005, 126, 95-100.
- 118. Wallnöfer, W.; Stadler, J.; Krempl, P. Temperature Dependence of Elastic Constants of GaPO₄ and Its Influence on BAW and SAW Devices. In Proceedings of the 7th European Frequency and Time Forum, Neuch atel, Switzerland, 16–18 March 1993.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).