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Abstract 

We discuss the feasibility of a soft-x-ray distributed feedback laser (DFL) pumped by an x-

ray free electron laser (X-FEL). The DFL under consideration is a Mg/SiC bi-layered Bragg 

reflector pumped by a single X-FEL bunch at 57.4 eV, stimulating the Mg L2,3 emission at 

49 eV corresponding to the 3s-3d -> 2p1/2,3/2 transition. Based on a model developed by Yariv 

and Yeh and an extended coupled-wave theory, we show that it would be possible to obtain a 

threshold gain compatible with the pumping provided by available X-FEL facilities. 

 

Keywords: Soft-x-ray distributed feedback laser, Multilayer Bragg reflector, X-ray free 

electron laser. 
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1. Introduction 

Achieving a soft-x-ray laser with a well-defined photon energy, a narrow bandwidth 

and without spectral jitter remains a challenge at the present time. X-ray free electron lasers 

(X-FEL) have provided a huge step towards this goal, but some problems remain with this 

kind of laser, in particular concerning the spectral jitter and the spectral purity. This has been 

partially solved by the new facilities using the seeded self-amplification of spontaneous 

emission scheme, such as the FERMI facility. However, solid-state laser with optical 

resonator continues to be an interesting way for x-ray lasing as they are naturally free of 

spectral jitter. 

In the soft-x-ray domain, there are two main obstacles in the way of lasing when using 

the scheme of stimulated radiation from an active solid-state medium: the first involves the 

pumping required to achieve the critical inversion and the second is the optical feedback. 

Considerations of the feasibility of x-ray laser [1] show that lasing in the conventional 

geometry, that is cavity with external reflectors, as proposed by different 

authors [2,3],requires considerable pump power. Using the distributed feedback provided by a 

Bragg reflector seems to be the preferred method [4–6]. At the present time, the availability of 

both X-FEL and efficient artificial Bragg reflectors should allow one to circumvent the 

problems of inversion and feedback. 

The high flux available in each FEL pulse enables to achieve the population 

inversion : typical softx-ray FELs can deliver 1013 photons per shot,which isenough to make 

stimulated emission the dominating effect with respect to the spontaneous emission and the 

non-radiative decay channels (Auger process).The critical flux for inversion is estimated to 

be1011 photons per shot. Recently M. Beyeet al. [7] have demonstrated using the FLASH FEL 

facility, that under appropriate conditions, stimulated emission from crystalline silicon can be 

produced around 90 eV corresponding to the Si L2,3 characteristic emission. Previously 

stimulation of emission from a single fluorescence line in a rare gas was demonstrated [8]. 

These successful experiments reinforce the idea that FEL radiation is appropriate for pumping 

softx-ray (solid-state) laser. 

Periodic multilayers, developed since the eighties, should offer means to achieve the 

optical feedback in the soft-x-ray regime. It is now possible to fabricate efficient multilayers 

with periodic lattice spacing d suited to satisfy the Bragg condition in the softx-ray range. 

Multilayer optical cavity has many advantages : it provides a distributed feedback reducing 

the required pumping power [4–6]; it gives a shorter transit time than a standard cavity with 
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external mirrors and eliminates the problem of alignment of multiple elements [9,10]. The 

spontaneous emission produced within a multilayer and diffracted under the Bragg condition 

has been recently observed using synchrotron radiation [11] : the synchrotron radiation from 

BEAR beamline (ELETTRA) excited the Mg K and Co L lines in Mg/Co multilayers 

which were Bragg-diffracted by the lattice. From these results, one expects that stimulated 

radiation can, in a same way, be Bragg-diffracted by the multilayer lattice. Thus, in principle, 

the two above mentioned obstacles can be overcome and the door seems open to consider the 

feasibility of DFL laser. That is what we propose to do in this work. 

2. Our model of softx-ray distributed feedback laser 

In this paper, in order to discuss the feasibility of a softx-ray distributed feedback laser 

(DFL) with the means at disposal atthe present time, we consider the following practical case. 

The pumping is achieved by an X-FEL offering the features of FERMI facility [12]while the 

optical feedback is provided by a Mg/SiC bi-layered Bragg reflector (see Figure 1). A single 

X-FEL bunch of the 12th harmonic at 57.4 eVcreates holes in the 2p1/2and 2p3/2innershellsof 

Mg atoms (whose binding energies are 49.6 and 49.2 eV respectively) inthe corresponding 

Mg layers; the pumping is so intense (1013 photons/bunch) that inversion of population 

occursin a way similar to the one reported in Ref. [7] and gives rise to the stimulatedMg 

L2,3emission bandat 49 eV corresponding to the 3s-3d -> 2p1/2,3/2 transition.This emission 

band is quite large for solid Mg, about 6 eV, because it describes the density of occupied 

valence states.This large width possibly have an influence on the threshold inversion and gain 

but will not be considered. This band could also give rise to a small spectral tunability of the 

laser  while the ultimate performance of the laser in terms of spectral linewidth should be 

given by the Schawlow-Townes formula [13] 

In the stack, the SiC layers are passive and absorbing, and their losses need to be 

overcome by the gain of the active Mg layers according to the principle of the DFL. This 

problem will beaddressed in the following parts of this paper. 



 4 

 
Fig 1: General scheme of the proposed experiment. Here the Bragg outgoing angle  is 
different from the  angle corresponding to the empirical condition given by Beye et al. [7]. 
 

Mg/SiC periodic structure acts as a Bragg reflector to ensure the feedback ; it is 

designed so that the Bragg outgoing angle  (see Figure 1) for the Mg L2,3 

emission,coincides with the optimal outgoing angle  for stimulated emission. This angle  
can be found from the empirical considerations given in Ref. [7] ; it is given by Arcsin(Li/Ls) 

where Li and Lsare the attenuation lengths of the incident and stimulated radiations, 

respectively. For a Mgx(SiC)1-x compound (having the same composition of the designed 

multilayer) with x=0.5, the angle  is around 21.7°. The corresponding Bragg angle  (equal 

to)is achieved by a d spacing (bilayer thickness) equal to 35 nm and aratio equal to 0.53 

(Mg layer thickness = d= 18.55 nm and SiC thickness = (1-)d = 16.45 nm). This goal is not 

problematic since the angular reflection bandwidth of such a multilayer is large enough 

(around 7° for 10 bilayers) to include an uncertainty of a few degrees on the value. 

Moreover a peak reflectivity close to 67% is expected at 49 eV for an ideal structure.The 

spectral bandwith is estimated to be around 7 eV. In practice one should avoid that the Bragg 

angle  coincides with the incoming angle of the X-FEL pumping radiation, because the 

detection of the lasing radiation should be affected by the specularly reflected X-FEL 

radiation. 

The choice of the materials is motivated by the following considerations : 

- Mg/SiCmultilayers have alreadybeen fabricated and they present a relatively high 

efficiency in the spectral domain of interest [14]; 
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- The elements (Si, C) of the absorbing passive layers do not give rise to emission lines 

upon an excitation at 57.5 eV and their absorption coefficients are rather low at 49 eV. 

The periodic multilayer can be described as a stack of bilayersmade up with a layer 1 

(SiC) which is passive from the lasing point of view (absorbing medium with no gain inside) 

and with a layer 2 (Mg) which is active (having an effective gain resulting from the 

occurrence of the stimulated emission). Each type of layer is characterized by a complex 

optical index: �∗ ߱ =  � ߱ +  (߱)ߙ �

            (1) 

Let us recall that in case of passive absorbing media, the imaginary term ߙ ߱ = �(߱) is 

related to the linear absorbing coefficient ߤ(߱) by the relationship : � =
ߣ ߤ
ߨ 4 =

ܿ ߤ
2 ߱ 

            (2) 

In the previous formula,  stands for the radiation angular frequency related to the photon 

energy E by the Planck law, is the vacuum wavelength of the radiation andc is the vacuum 

light velocity. The complex value of �∗ ߱  for the absorbing media can be found in 

Ref. [15]. For active (amplifying) media, the material gain coefficient � ߱ will appear in the 

imaginary part of the complex optical index; thus in active absorbing media the sign of the 

imaginary part of �∗ ߱ can be opposite to the sign of the imaginary part in passive absorbing 

media, depending on the sign of the net gain ߙ ߱ =  � ߱ −  � ߱ . 
 The problem of deterioration of the multilayer stack under FEL irradiation has to be 

considered but we expect the Mg/SiC multilayer to withstand FEL irradiation or at least to 

minimize its damages. Indeed, as pointed in Ref. [7], one can expect only a few damagesin 

the Mg layers because the number of Auger processes, which are responsible of most of the 

damages, is substantially decreased since the number of core holes is reduced by the 

stimulated emission. Moreover, owing to the periodicity of the structure, close to the Bragg 

conditions, the anti-nodes of the electric field are located within the SiC layers, thus limiting 

the energy deposit by the stimulated beam. To minimize the energy deposited by the incident 

beam, the sample can be oriented so that the standing wave taking place within the stack is 

also so that the anti-nodes of the electric field are located within the SiC layers.Moreover, 

from thermodynamics considerations it has been shown that the duration of the optical 

properties of the various layers and thus the periodicity of the stack can exceed the 
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fluorescence lifetime [10]. So, even if some damage should occur,its time scale would be 

longer than the one of the x-ray pulse [16–18]. 

3.Stimulated emission with a X-FEL pumping: atomic physics 

considerations 

First,let us consider the lasing process from the point of view of atomicphysics as 

previously done by Yariv [1], without consideration ofthe optical feedback. Let us estimate 

the inversion density at which the gain g becomes equal to the lossin a bulk Mg medium. The 

Mg absorption coefficient (cm-1) at the exciting X-FEL photon energy (57.4 eV) is : ߤ =  ߬ � 

           (3) 

N being the atomic density in the medium (at/cm3) and  the atomic absorption cross-section 

(345 10-20 cm2/at [15]). The density N and the inversion densityN (density of atoms in the 

inverted state minus the density in the absorbing one)at which the gain g and the loss  

compensate (gsatisfy: 

 ߬ � =  ȟ� 
݁2

4 ȟ߭ ܿ ݉ �0

 

           (4) 

the right-hand side term being the gain as given in Ref. [19];e and m the charge and the mass 

of electron respectively, �0  the vacuum permittivity and ȟ߭  the transition frequency line 

width. Numerically in SI units, one gets: ȟ�� =  ߬ 
4  ܿ ݉ �0݁2

ȟ߭ =  1.3 10−16ȟ߭ 

           (5) 

Taking into account the width of the L3 level of Mg (0.03 eV [20]), ȟ߭ is estimated to be 

7.3 1012 Hz so that : ȟ�� ≈ 10−3 

           (6) 

This value of the fractional inversion density represents the minimum inversion to overcome 

the losses. Then it is possible to estimate the magnitude of pumping. Under steady state, the 

pumping surface power density Ppump can be estimated to be : ��݉ݑ� =  
�݁�� �݉ݑ�ܧ ߪ�݁߱  
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           (7) 

where Nex is the threshold density of excited atoms, the absorption cross-section per atomat 

the pumping photon energy Epumpand ex the total relaxation rateofthe laser (excited) level 

given by the transition line width. For our case involving the L3 level of Mg excited with an 

X-FEL photon energy equal to 57.4 eV, from Eq. (7), Ppump is given by: ��݉ݑ� ≅  
ȟ�� ߪ�݁߱�݉ݑ�ܧ  ≈ 2 1010  �/ܿ݉2 

           (8) 

This value is lower than the surface peak power density expected at the FEL-1 beamline of 

FERMI facility which can be estimated to be around 7 1012 W/cm2 (5 GW in a 300 m 

spot) [21]. Let us finish this section by a consideration on the laser linewidth. Assuming the 

validity of the Schawlow-Townes formula, the ultimate spectral bandwidth would be around 

5 eV assuming a spectral bandwith of the cavity equal to 7 eV and a power of the laser around 

10-2 W. 

4. Lasing energy and threshold gainfrom the Yariv-Yeh model 

We now consider lasing in Mg layers within a Mg/SiC periodic multilayer medium 

forming a DFL. The problem of the determination of the threshold gain (ThG) of a DFL in a 

multilayer resonator has been considered by Yariv and Yeh (Y-Y approach) in Refs. [4] 

and[22]. They obtain the ThG value by calculating the coordinates of the poles of the 

reflecting power R of the structure in the 2- planewhere 2 isthe termin the active layer 2, 

see Eq. (1). These authors assert (without a proof)that these coordinates give the lasing 

frequencies and the corresponding values of the ThG. 

For a structure based on N bi-layered unit cells, the reflectivity RN is given 

by [6,23,24]: ܴ�(߱) = 1−��(߱) ܣ1−��(߱) ܥ   −  ��−2

 2

 

            (9) 

where UN denotes the Chebychev polynomials and A and Carecoefficients whose expressions 

can be found in the previous references. The poles correspond to the zeros (in terms of 

frequencies) of the denominator in Eq. (9) ; obviously at these poles, RN tends towards 

infinity. We have computed RNfor the structure under consideration in this paper and 
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described in Section 1,and plotted it versus the photon energy E and the term 2. The results 

are givenin Figure 2. 

 
   (a)       (b) 

Fig 2: (a) Reflectivity of the Mg/SiC multilayer described in Section 1 as a function of the 
photon energy and the net gain in the Mg layers. (b) Zoom, showing the location of the pole 
in reflectivity. The brighter the colour, the higher is the reflectivity. 

 

Domains displayed in white area correspond to large values ofRN and their center 

gives the lasing condition. Such a lasing condition is foundnear the first Bragg region at 

E = 45.61 eV with a ThG value 2 = 17.8 10-3that is a value of 2 = 78600 cm-1. 

5. Lasing energy and threshold gainfrom the coupled-wave theory 

 The coupled-wave (CW) theory was initially implemented by Kogelnik and Shank to 

determine both the resonant frequencies and gain threshold criteria [25]; they considered a 

symmetric device (valid for Bragg diffraction at angle near /2) and didnot take into account 

reflections at theexternal boundaries. The model was extended by Chinn [26]to the case of 

non-zero reflectivity at the extremities of the lasing medium. In this work, we consider the 

general case ofa non-symmetric device and non-zero reflectivity at the facets. In this model, 

one assumes a spatial modulation (along the stack axis z)of the refractive index݊∗ ߱, �  and 

of the material gain � ߱, � of the form: ݊∗ ߱, � =  ݊∗ ߱ + ȟ݊∗  ߱, �  cos 2 ܤߚ  �  
           (10) � ߱, � = �  ߱ +  ȟ� ߱, � cos 2 ܤߚ  � + ߰�  

           (11) 
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where ܤߚ ≝  
ߨ݀

= ߚ  −  ߚߜ 

          (12) 

Here the refractive index ݊∗ ߱, � includes the absorbing term �(߱)only in its imaginary part; 

in this sense it must be distinguished from the optical index �∗ ߱ , see Eq. (1). The 

quantityߚ = 0ߚ ∗݊ = ݊∗ ߱ܿ
 
 is the propagation constant of a wave of frequency  ; the term ߚߜ 

is called the detuning parameter. The length L of the structure is given by the product Nd 

where N is the number of bilayers. In a general model, ߰�  is the dephasing between the 

index݊ ∗ ߱, � and the amplitude gain constant � ߱, �  profile; in our numerical simulations, 

we consider only a system with no dephasing, i.e.߰� = 0. 

In the CW model, one introduces the coupling coefficientsߢ+ and ߢ−given by: ߢ+ = ߢ − �ߢ �  ݁�߰� −ߢ  = ߢ− + �߰−�݁ �ߢ �  

           (13) 

with the coupling constant ߢ =  0ȟ݊∗/2ߚ

           (14) 

and 

= �ߢ        ȟ�/4 

           (15) 

The coupling taking into account the gain is described by the quantity: ȟߚ = ߚߜ  − � �
2

 

           (16) 

According to the principle of the CW model, one considers that two counter-waves R 

and S are coupled by backward Bragg scatteringand the electric field within the structure, is 

written: ܧ � = �ܤߚ �−݁ � ܴ +  �ܤߚ �+݁ � ܵ

           (17) 

The calculations giving the expressions of R(z),S(z),the resonant frequencies (lasing photon 

energies) and the gain threshold are detailed in Appendix A.The lasing condition, that is the 

gain threshold, is given by : 
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 Ȟ+ − 1  �ܤߚ� 2݁�ߩ −  Ȟ−ܤߚ� 2݁ �ߩ�  Ȟ− − 1  0ߩ − = +0Ȟߩ �ߛ 2−݁  

           (18) 

where  is an eigenvalue given as a solution of the eigenequation of the coupled-wave system 

of equations (see Appendix A) : ߛ = ±� ȟ2ߚ −  +ߢ−ߢ

 are the reflection coefficient at z = 0 and z = L respectively and the terms Ȟ+,Ȟ−are �ߩ and 0ߩ (19)            

related to the coupling coefficientsߢ+  and ߢ− , to the detuning parameter ߚߜand to the 

eigenvaluesby : Ȟ− ≝  
ܴ−ܵ− =  

ߛ �+ߢ − + ȟߚ 

           (20) 

and Ȟ+ ≝  
ܵ+ܴ+

=  
ߛ �−ߢ + ȟߚ 

           (21) 

The eigenvalues  can be found numerically by combining Eqs. (18) and (19).Let us note that 

Eq. (18) reduces to: Ȟ+Ȟ− = �ߛ 2−݁  

           (22) 

for the case of vanishing reflection at the boundaries, that is: − ߛ � +ߢ−ߢ + ȟ2 ߚ
= �ߛ 2−݁  

           (23) 

which by using Eq. (19), leads to: 

ߛ  =   � ȟߚ th  �ߛ

           (24) 

that is the formula (19) given by Kogelnik and Shank in [25].Always in the case of vanishing 

reflection at the boundaries, by combining Eqs. (19) and (24), it follows that the eigenvalues  
satisfy the transcendental equation : ߛ = +ߢ−ߢ  � ±  sinh  �ߛ

           (25) 
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similar to formula(18) in Ref. [25]. Let us emphazise that the assumption of vanishing 

reflection at the boundaries holds in the x-ray regime above the critical angle. By solving 

numerically Eqs. (18) and (19), we found a value of the threshold gain 2 around 20 10-3 at a 

lasing energy of 42 eV in fair agreement with the value obtained from the Y-Y mode, 18 10-3. 

It is valuable to note that the lasing condition given by Eq. (18) is equivalent to find 

the poles of the reflection or transmission coefficientsobtained in the framework ofthe CW 

theory asshown in Appendix B.The structure acts as an oscillator since it gives finite output 

fields without input. This can be considered as a justification of the Y-Y approach 

implemented in Section 4. 

6. Conclusions 

 From atomic physics considerations, it appears that the power density delivered by 

available X-FELs such as FERMI is sufficient to generate stimulated emission in a low-Z 

element such as Mg, in agreement with the experimental results obtained by Beye et al. [7]. In 

the DFL scheme,the threshold gain deduced from the Y-Y model or the CW theory, that 

amounts to be around 20 103 cm-1. 

The calculations presented in this work show the feasibility of a softx-ray DFL based 

on superlattices such as the Mg/SiC system under consideration and excited by an X-FEL 

having the features of FERMI. More elaborated systems with non-uniform gain and 

coupling [27] should make it possible to lower the threshold gain. This case will be studied in 

a forthcoming paper. 

The present calculations were performed for ultra-soft x-ray incident and stimulated 

radiations. Let us note that there exist now (or are under construction) some X-FEL sources 

whose photon energy can be as high as 10 keV (0.12 nm). Under these conditions it would be 

possible to use a single crystal as the optical cavity, as previously envisaged [5,10,28], to 

obtain aDFL laser working in a harder x-ray range. For example, instead of making the 

Beye’s experiment with the Si L2,3 characteristic emission, it could be possible to consider to 

use the Si K emission (2p – 1s transition). Its energy is 1740 eV (0.71 nm) and the Si 1s 

binding energy is 1840 eV (0.67 nm). Thus, by using an incident photon energy equal to or 

larger than the Si 1s binding energy and a Si crystal whose planes parallel to the surface are 

(110)and have a2d equal to 0.77 nm, it would be possible to detect the Si Kstimulated 

emission in the Bragg condition near a glancing angle of 68°, whereas the angle for 
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stimulated emission given by the criterion on the attenuation lengths [7] leads to an angle of 

6°. 
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Appendix A 

Introducing Eq. (11) in the scalar wave equation and neglecting the second spatial 

derivatives according to the principle of the CW model, one obtains forR(z) and S(z) the 

coupled linear system of equations :   ܴ (�) ܵ(�)
 =   ȟߚ −ߢ+ߢ −ȟߚ  ܴ(�)ܵ(�)

  

          (A.1) 

where the dot stands for the derivative with respect to z.The general solution of the system 

(A.1) can be expressed from the two eigenmodes,  ܴ(�)ܵ(�)
 = �ߛ݁ +ܵ+ܴ   + �ߛ−݁ −ܵ−ܴ    

           (A.2) 

Introducing the reflection coefficientsȞ− given by Eqs. (14) and (15) respectively,we get:  ܴ(�)ܵ(�)
 =  ܴ+  1Ȟ+ ݁ߛ� + ܵ−  Ȟ−

1
�ߛ−݁   

           (A.3) 

Using Eq. (A.2) at z = 0 gives:  ܴ(0)ܵ(0)
 =  1 Ȟ−Ȟ+ 1

  ܴ+ܵ−  

           (A.4) 

It is then possible to relate the field at each boundary:  ܴ(�)ܵ(�)
 =  �  ܴ(0)ܵ(0)

  

           (A.5) 

with �11 =  
�ߛ݁ − +Ȟ−Ȟ�ߛ−݁

1 − Ȟ−Ȟ+
 

�12 =  
Ȟ− ݁−ߛ� −  �ߛ݁

1 − Ȟ−Ȟ+
 

�21 =  
Ȟ+ ݁+ߛ� −  �ߛ−݁

1 − Ȟ−Ȟ+
 

�22 =  
�ߛ−݁ − +Ȟ−Ȟ�ߛ+݁

1 − Ȟ−Ȟ+
 

           (A.6) 

One considers now that some non-vanishing reflection exists at the boundaries z = 0 

and z =L.The boundary conditions are : 
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i/At z= L, ܵ � ݁−�ܤߚ� =  �ܤߚ�݁ � ܴ�ߩ 

           (A.7) 

that is, taking into account Eqs. (A2-A5) ܴ+ ܤߚ� 2݁�ߩ� − Ȟ− ݁2 ߛ� − ܵ− 1 −  Ȟ−݁2 �ܤߚ� = 0 

           (A.8) 

where ߩ� is the reflection coefficient at z = L. 

ii/At z = 0, ܴ 0 =   0 0ܵߩ 

           (A.9) 

that is, ܴ+ 1 − + +0Ȟߩ ܵ− Ȟ− − = 0ߩ 0 

           (A.11) 

where 0ߩ is the reflection coefficient at z = 0. 

The lasing condition can be obtained by considering that there are non-trivial solutions 

of the system of equations  formed by Eqs. (A.9) and (A.10) if  ݐ݁ܦ Σ = 0 

           (A.11) 

The lasing condition given by Eq. (A.11) can be written explicitly as follows :  Ȟ+ − 1  �ܤߚ� 2݁�ߩ −  Ȟ−݁2 �ܤߚ�  Ȟ− − 1  0ߩ − = +0Ȟߩ �ߛ 2−݁  

           (A.12) 

From Eqs. (A.2), (14) and (15)  ܴ(�)ܵ(�)
 =   1

1Ȟ+

�ߛ݁+ܴ  +   Ȟ−
1

�ߛ−݁−ܵ   

           (A.13) 

Moreover, by inverting Eq. (A.3)and taking into account Eq. (A.9), we get:  ܴ+ܵ− =
ܵ 0 

1 − Ȟ−Ȟ+
 1 −Ȟ−−Ȟ+ 1

0ߩ  

1
  

           (A.14) 

Inserting Eq. (A.14) in Eq. (A.13) gives the following expressionsfor the field R(z) and S(z) 

after dropping an arbitrary amplitude factor: ܴ � =
1

1 − Ȟ−Ȟ+
0ߩ   − Ȟ− ݁ߛ� + Ȟ− 1 − �ߛ−݁ +0Ȟߩ   
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ܵ � =  
1

1 − Ȟ−Ȟ+
 1Ȟ+

0ߩ  − Ȟ− ݁ߛ� +  1 − �ߛ−݁ +0Ȟߩ   
           (A.15) 

For zero-reflectivity at z = 0 ܴ � =
Ȟ− Ȟ−Ȟ+ − �ߛ݁  1 − �ߛ−݁   

ܵ � =  
1Ȟ+ Ȟ−Ȟ+ − 1  Ȟ−݁ߛ� − Ȟ+݁−ߛ�   

Appendix B 

The Fresnel formula in matrix form [24] leads to :  ܴ+ܵ− �=� =  
1 1 − 1  �ߩ   �ߩ−�ߩ− 1

  �ܤߚ�−݁(�)ܵ�ܤߚ�݁ � ܴ  

           (B.1) 

and  ܴ(0)ܵ(0)
 =  

1 1 − 1  0ߩ   0ߩ0ߩ 1
  ܴ+ܵ− �=0

 

           (B.2) 

Using Eqs. (B.1) and (B.2), it comes :  ܴ+ܵ− �=� =   �  ܴ+ܵ− �=0

 

           (B.3) 

where  � =  
1 1 − 1 1 �ߩ   − 1  0ߩ   �ߩ−�ߩ− 1

�ܤߚ�݁   0

0 1  �  �ܤߚ�−݁ 0ߩ0ߩ 1
  

           (B.4) 

Consequently, the global transmission coefficient  is: ߬ ≝  ܴ+�=�ܴ+�=0

 ܵ−�=�=0

=  
22�[�]ݐ݁ܦ

 

           (B.5) 

while the global reflection coefficient  is : ߩ ≝  ܵ−�=0ܴ+�=0

 ܵ−�=�=0

=  
−�21�22

 

           (B.6) 
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The condition �22 = 0 is identical to Eq. (A.12). 


