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1. Introduction

Graph/hypergraph based methods have played an important

ABSTRACT

In the last few years, hypergraph-based methods have gained considerable attention in the resolution
of real-world clustering problems, since such a mode of representation can handle higher-order
relationships between elements compared to the standard graph theory. The most popular and
promising approach to hypergraph clustering arises from concepts in spectral hypergraph theory
[53], and clustering is configured as a hypergraph cut problem where an appropriate objective function
has to be optimized. The spectral relaxation of this optimization problem allows to get a clustering that
is close to the optimum, but this approach generally suffers from its high computational demands,
especially in real-world problems where the size of the data involved in their resolution becomes too
large. A natural way to overcome this limitation is to operate a reduction of the hypergraph, where
spectral clustering should be applied over a hypergraph of smaller size. In this paper, we introduce two
novel hypergraph reduction algorithms that are able to maintain the hypergraph structure as accurate
as possible. These algorithms allowed us to design a new approach devoted to hypergraph clustering,
based on the multilevel paradigm that operates in three steps: (i) hypergraph reduction; (ii) initial
spectral clustering of the reduced hypergraph and (iii) clustering refinement. The accuracy of our
hypergraph clustering framework has been demonstrated by extensive experiments with comparison
to other hypergraph clustering algorithms, and have been successfully applied to image segmentation,
for which an appropriate hypergraph-based model have been designed. The low running times
displayed by our algorithm also demonstrates that the latter, unlike the standard spectral clustering
approach, can handle datasets of considerable size.

presents a graph (a) and a hypergraph (b) that model the same
image. The graph consists of a Region Adjacency Graph (RAG) in
which each vertex represents a distinct region of the image, and

role in Computer Vision and Pattern Recognition (CVPR) due to
their ability to represent relational patterns. For an overview of
recent literature, we refer the reader to a number of special issues
that appeared on the subject [45,48] and some interesting and
recent articles [46,4,32,10].

In many situations, a graph-based representation is incom-
plete, as only binary relations between nodes can be represented
through graph edges. An extension is provided by hypergraphs,
where each edge is a subset of the set of nodes [5,9]. Hence
higher-order relations between nodes can be directly modeled in
a hypergraph, by the means of hyperedges. For instance, Fig. 1
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two vertices are linked by a graph edge if their corresponding
regions are neighbors in the image. One can see that this
representation can only involve pairwise neighboring relation-
ships between regions, as the human eye clearly identifies that
the region 3, for example, has common boundaries with regions
2 and 4. This kind of information is not provided by graph edges,
while they can easily be represented through hyperedges. If you
look at Fig. 1(b), the neighboring relationship between regions 2,
3 and 4 is modeled by the means of the red hyperedge. The
hypergraph displayed in Fig. 1(b) only presents regions adjacen-
cies of degree three to clarify the hypergraph visualization, but
hypergraphs can deal with hyperedge of arbitrary sizes. More
examples showing the benefits of hypergraphs in CVPR domain
can be found in [9].

A large body of theoretical work on hypergraphs has been
published in various domains such as pattern recognition, VLSI
design, database design, software engineering, parallel scientific



Fig. 1. Graph (a) and hypergraph (b) examples. The graph in (a) illustrates a Regions Adjacency Graph (RAG). The hypergraph (b) presents a RAG and also the vertices that

share some corners. (a) Graph: G=(V,e); (b) hypergraph H = (V,E).

computing and machine learning. Hypergraphs have also been
recently introduced in computer vision, and the next section
presents an overview of the contributions of hypergraph theory in
this field.

1.1. Hypergraph theory and computer vision: a short overview

To the best of our knowledge, the first attempt for represent-
ing visual objects using hypergraphs dates back to Wong et al. In
[50], the authors defined a framework for 3D object recognition.
They used a 3D object model based on a hypergraph representa-
tion. Object synthesis and recognition tasks are performed by
merging and partitioning the hyperedge and vertex set, and the
hypergraphs are not characterized in a mathematically consistent
way.

In [5], Bretto et al. introduced a hypergraph model for image
representation by defining a new Image Neighborhood Hyper-
graph (INH). The INH model have then been exploited to success-
fully solve the problem of image segmentation by finding
intersecting families to detect grayscale homogeneous regions.
Using the INH representation, Rital et al. expanded the hyper-
graph applications to other computer vision problems. Using
hypergraph properties, they proposed noise removal [43] and
edge detection [44] solutions. In this paper, the INH model serves
as a basis for image data representation. Bunke et al. [9] have
developed a hypergraph matching algorithm for object recogni-
tion, where consistency checks are conducted on hyperedges. The
computational paradigm underlying their method is based on tree
search operations. Since Chung’s [15] definition of the Laplacian
matrix for k-uniform hypergraphs, there have been several
attempts to develop matrix representations of hypergraphs
[35,52]. These hypergraph representations have found wide-
spread applications in categorical data analysis. In [1], Agarwal
et al. related hypergraph based learning to graph based learning.
They approximated the hypergraph with a clique averaging and
used a graph cut algorithm to partition an image database. The
graph algorithm is based on the notion of the normalized graph
Laplacian matrix. In [53], Zhou et al. generalized this notion to the
hypergraph case, in order to provide a spectral hypergraph
clustering algorithm that showed encouraging classification
results on categorical data. A supervised bi-partitioning approach
using Zhou algorithm is used by Ding et al. [20] for object-
background segmentation problems. Ren et al. have showed that
a matrix representation is also suitable for image processing [40],
and have proposed an improved hypergraph Laplacian matrix
based on the developments of Zhou et al.’s method [53]. However,
this method is based on a relatively impoverished spectral
characterization and overlooks much of the details of the

hypergraph structure. Recently, other applications have emerged
and expanded the application area of hypergraphs. Gillibert et al.
used another model based on rectangle hyperedge [8] to define an
efficient lossless image compression algorithm. In [29], Huang
et al. used a hypergraph in a video segmentation application. The
hypergraph theory is often used as a solution for partitioning
large masses of data, especially in VLSI design [31], parallel
scientificcomputing [11] and database design [33].

1.2. Graph and hypergraph clustering

Clustering is closely related to unsupervised learning in
pattern recognition systems [22]. A basic task in unsupervised
learning is to group patterns on the basis of a similarity (or
dissimilarity) criteria where groups (or clusters) are sets of similar
patterns. In graph clustering, graph theory can provide the
necessary definitions and mathematical formalism, resulting in
an important support for the analysis of clustering models.
According to [45], graph clustering groups vertices of a graph
into clusters, based on the edge structure of the graph. The
resulting vertex partition should have the property that within
each cluster the vertices are highly connected whereas there are
only few edges between clusters. Reviews on graph clustering can
be found in [45,26,38]. The main graph clustering formulations
are based on graph cut and partitioning problems [13,46]. An
alternative to heuristically solve these problems is to use spectral
clustering algorithms. The basic idea is to construct a weighted
graph from the initial data set where each node represents a
pattern and each weighted edge simply takes into account the
similarity between two patterns. In this framework the clustering
problem can be seen as a graph cut problem, which can be tackled
by means of the spectral graph theory. The core of this theory is
the eigenvalue decomposition of the Laplacian matrix of the
weighted graph obtained from data. In fact, there is a close
relationship between the second smallest eigenvalue of the
Laplacian and the graph cut [25].

Like graphs, hypergraphs may be partitioned such that a cut
metric is minimized. The most extensive and large scale use of
hypergraph partitioning algorithms, however, occurs in the field
of VLSI design and synthesis. A typical application involves the
partitioning of large circuits into k roughly equally sized parts in a
manner that minimizes the connectivity between the parts. The
circuit elements are the vertices of the hypergraph and the nets
that connect these circuit elements are the hyperedges [2].
Several serial and parallel hypergraph partitioning techniques
have been extensively studied [31,49,14] and tools support exists
(e.g. hMETIS [31], PaToH [12], Parkway [49] and PT-Scotch [14]).
These partitioning techniques showed a very great efficiency in



distributed databases and VLSI circuit fields. For an overview of
recent heuristic hypergraph partitioning algorithms, we refer the
reader to [3]. Hypergraph cut metrics provide a more accurate
model than graph partitioning in many cases of practical
interest. For example, in the row-wise decomposition of a sparse
matrix for parallel matrix-vector multiplication, a hypergraph
model provides an exact measure of communication cost,
whereas a graph model can only provide an upper bound
[12,49]. Recently, Zhou et al. generalized the normalized graph
Laplacian matrix to the hypergraph case that have showed
encouraging results on categorical data [53]. The spectral meth-
ods have been shown very effective for solving the partitioning
problem, but it is computationally expensive, especially with
massive grid graphs or hypergraphs. On the other hand, heuristic
methods offer linear-time execution algorithms but provide
under-optimal solutions. Consequently, the partitioning algo-
rithms must be carefully designed and implemented to increase
the quality of the optimization.

1.3. Our contribution

Most contributions using hypergraph are focused on hyper-
graph representation and/or the use of hypergraph properties.
The drawbacks of most of these approaches are twofold: the loss
of information and the computational complexity resulting
respectively on how a hypergraph representation is computed
and when the hypergraph properties are exploited. Loss of
information comes from that most of the approaches approximate
a hypergraph by a graph such as clique-graph, line graph and then
use graph algorithms to solve their problems [1,29]. The compu-
tational complexity is generally due to the amount of nodes
embedded in the hypergraph, and for most of them exploiting
directly the properties of the initial hypergraph representation
without including a reduction strategy is difficult to apply in
practice. Moreover, hypergraphs offer a representation that is
richer in knowledge than graphs, and in particular the number of
relationships is not bounded. Recently, in computer vision pro-
blems, many authors operate in the superpixels [28,29] domain
rather than the pixels [53,20] one in order to minimize the size of
the data. Often this reduction step is ignored and entrusted to
other algorithms [46,16,23].

In this paper, we consider these two problems, and we propose
a new strategy for hypergraph clustering. We have clearly
identified a new approach to perform clustering using the
multilevel paradigm developed initially by Karypis [31]. The
proposed approach operates in three phases: hypergraph reduc-
tion, initial clustering, and clustering refinement. During the
reduction phase, a sequence of successive smaller hypergraphs
is constructed. The members of the sequence approximate
the original hypergraph at successive coarser scales of resolution.
This is the most important phase of the multilevel paradigm, and
its overall success relies on being able to find reasonable
methods for obtaining these reduced hypergraphs. Consequently,
the core of our hypergraph clustering framework is based on the
definition of a brand new hypergraph reduction process that is
the main contribution of our paper. The algorithm has been
successfully applied to solve a widely discussed problem in
computer vision: image segmentation, for which a suitable
hypergraph model is used.

A preliminary version of this work can be found in [21,7]. In
[21], we developed a hypergraph clustering approach that takes
advantage from both multilevel and spectral partitioning techni-
ques. This algorithm exploited an INH model to provide an image
segmentation application. In [7], a new hypergraph reduction
algorithm has been designed and exploited for image superpixels
generation. The superpixels served as a basis for a satellite image

content classification process that has the advantage to handle
high-resolution images. In this paper, we extend the results
introduced in [7] by proposing a new hypergraph reduction
algorithm, and studying its mathematical properties. These prop-
erties allowed us to develop our hypergraph clustering algorithm
by following the idea introduced in [21], as well as its application
to image segmentation.

The remainder of this paper is organized as follows: we first
introduce some basic notions on hypergraphs in Section 2. The
proposed hypergraph reduction algorithms are introduced in
Section 4, as well as some useful mathematical properties. In
Section 5, we define the major steps of our hypergraph clustering
algorithm. In Section 6, an application of our clustering framework to
color image segmentation is given. Experimental results are illu-
strated in Section 7. Conclusions and perspectives are discussed in
Section 8.

2. Preliminaries

LetI={1,2,...,m} with m > 0. A hypergraph H = (V;E) on a set
V is a family E=(e);.; of nonempty subsets of V called
hyperedges, with |J;_,e;=V. A weighted hypergraph is a hyper-
graph that has a positive number w(e) associated with each
hyperedge e, called the weight of hyperedge e. Denote a weighted
hypergraph by H=(V;E;w). For a vertex veV, its degree is
defined by 3=, ), . w(e). The cardinality of V is denoted by |V/|.
For a hyperedge ecE, its degree is defined to be d(e)=|e|. A
hyperedge e; is isolated if and only if Vjel,j #1, if e; ne; # 0, then
Ej < e;.

A hypergraph H can be represented by a |V| x |E| matrix H
with entries h(ij)=1 if v;ee; and 0 otherwise, called the
incidence matrix of H. Then d(v;)= Ze,- <ew(eph(,j) and
o(e)) =>_,, . yh(ij). Let D, and D, denote the diagonal matrices
containing the vertex and hyperedge degrees respectively, and let
W denote the diagonal matrix containing the weights of hyper-
edges. Then the adjacency matrix A of hypergraph H is defined as
A=HWHT-D,, where H' is the transpose of H.

Given a subset of vertices S c V, the volume of S is defined by
volS=>", _sd(v). The complementary of S is noted S°. We say that
a hyperedge e is cut if it contains vertices from S and S°¢
simultaneously. So, we define the hyperedge boundary &S as the
set of hyperedges containing vertices from S which are cut, i.e.
0S={eeElenS0,enS s 0). Thus, the volume of &S is given by
volaS =3, . ;swW(e)|enS|lenSe|/d(e).

The line graph L(H) = (E;A) of a hypergraph H is the graph
whose vertex set is the set of hyperedges of the hypergraph, with
two edges adjacent when they have a nonempty intersection. In
other words, the line graph of a hypergraph is the intersection graph
of a family of finite sets. It is a generalization of the line graph of
a graph.

Given a graph G = (V;E), where V is a set of vertices, and E is a
set of unordered pairs of members of V called edges. The
hypergraph having the vertices of G as vertices and the neighbor-
hood of these vertices as hyperedges (including these vertices) is
called the neighborhood hypergraph of graph G. To each G we can
associate a neighborhood hypergraph Hg = (V;(E, = {v} U I'(v)))
where I'(v) = {v' e V,{v,V'} e E}.

Let Hy = (V1;Eq) and H, = (V5; E,) be two hypergraphs. A map f
from V; to V5 is a morphism or homomorphism if it verifies the
following properties:

ecEi=f(e)={f(v)vee}caek, 1)

Let H=(V;E) be a hypergraph, a partial hypergraph of H is a
subfamily (e)); ., of (&), with J = I. A subhypergraph on X of the



hypergraph H is the hypergraph H(X) = (X; (e; N X # 0); ), (with
XcV).

We say that there is a hyperpath between vertices v, and vy
when there is an alternative sequence of distinct vertices and
hyperedges vi,e1,vz2,e2,...,6,_1,V such that {v;v;,q}<e for
1 <i<k-1. A hypergraph is connected if there is a hyperpath
for every pair of vertices.

The excentricity €(v) of a vertex v in a connected graph G is the
maximum graph distance between v and any other vertex u of G.

3. Previous work on hypergraph reduction

As stated in Section 1.3, the reduction process is the most
important part of a multilevel partitioning algorithm, and the
overall success of the algorithm depends on the ability of the
reduction step to preserve as much as possible the structural
properties of the initial hypergraph. In the following, some
previous work in this direction is presented. For more informa-
tion, we refer the reader to [31].

Edge Coarsening (EC). The simplest way to group the vertices is
to select pairs of vertices that are present in the same hyperedges,
as illustrated in Fig. 2(a). These pairs of vertices can be formed
by finding a maximal matching of the vertices that are
connected via hyperedges, in which each hyperedge has been
replaced by its clique representation. The vertices are visited in a
random order. For each vertex v, all unmatched vertices that
belong to hyperedges incident to v are considered, and the one
that is connected via the edge with the largest weight is matched
with v.

Hyperedge Coarsening (HC). In this scheme, a set of indepen-
dent hyperedges is selected and the vertices that belong
to individual hyperedges are contracted together, as illustrated
in Fig. 2(b). The list of hyperedges is sorted by descending
weights, giving favor to the selection of hyperedges with large
weights.

Modified Hyperedge Coarsening (MHC). After the hyperedges to
be contracted have been selected using the HC scheme, the list
of hyperedges is traversed again, and for each hyperedge that has
not yet been contracted, the vertices that do not belong to
any other contracted hyperedge are contracted together (see
Fig. 2(c)).

First Choice (FC). The FC coarsening scheme is derived from the
EC coarsening scheme by relaxing the requirement that a vertex is
matched only with another unmatched vertex. Specifically, in the
FC coarsening scheme, the vertices are again visited in a random
order. However, for each vertex v, all vertices (both matched and
unmatched) that belong to hyperedges incident to v are consid-
ered, and the one that is connected via the edge with the largest
weight is matched with v, breaking ties in favor of unmatched
vertices. As a result, each group of vertices to be merged together
can contain an arbitrarily large number of vertices.

There are other coarsening methods used to reduce the
hypergraph size. For example, the Greedy First-Choice (GFC)
scheme, and the Hybrid First-Choice (HFC) scheme. In the GFC
scheme vertices are grouped based on the FC scheme, but the
grouping is biased in favor of faster reduction in the number of
the hyperedges that remain in the coarse hypergraphs, while HFC
is a combination of the FC and GFC schemes. For more informa-
tion about these coarsening approaches, see [31].

4. The proposed Hypergraph Reduction (HR) algorithms

In this section, our proposed hypergraph reduction
algorithms are described and some basic properties are given.

(1) (2) (3)

D €H @

Fig. 2. Hypergraph reduction approaches developed by Karypis et al. [31]. (a) Edge
Coarsening (EC): independent pairs of vertices are selected (2) and both vertices of a
single pair are merged together (3). (b) Hyperedge Coarsening (HC): a set of
independent hyperedges is selected (2) and all vertices that belong to the same
hyperedge are merged together (3). (c) Modified Hyperedge Coarsening (MHC): after
applying a HC coarsening (2 and 3), all vertices that has not been merged yet and that
belong to the same hyperedge are merged together. Here the three vertices that belong
to the central hyperedge are merged after the HC reduction step (3).

This section also provides the mathematical formalism and
proofs that allow the utilization of a reduction algorithm in a
partitioning manner such as the proposed hypergraph clustering
framework.

4.1. The proposed HR using Intersecting Hyperedges (HR-IH)
algorithm

4.1.1. Basic concept

In this section, we illustrate a hypergraph reduction algorithm
which reduces a simple hypergraph. The full proposed hyper-
graph reduction algorithm of H = (V;E) is described in Algorithm
1 for a given order on E. The basic idea of the proposed algorithm
can be summarized as follows:

Step 1. For a given order on E, we compute the set of intersecting
hyperedges W of H. For each hyperedge e; ¢E, we generate W,
as the set of hyperedges intersecting with e; ie. W, =
{ejeElejne; #0). W=, (W) is the set of intersecting
hyperedges.

Step 2. From W, we keep only a subset B of W that covers the
hypergraph H, i.e. that every hyperedge in E must have a none-
mpty intersection with at least one W,, from B. More formally we
compute B W such as Uy, .sWe, =E.

Step 3. From B, we generate the Reduced Hypergraph
RH = (RV;RE). Each W,, of B stand for a vertex we, of RH. From
RH and using the W, the set of hyperedges RE is generated in the
following way: each vertex we, € RV (that corresponds to a set of
intersecting hyperedges W,,) will create an hyperedge that will
contain all the vertices w, for which the corresponding W,
shares at least one hyperedge with W,.

Algorithm 1. HR-IH: Hypergraph Reduction using Intersecting
Hyperedges.

Data: H= (V;E = {ej,e3,...,em)}), E is ordered.
Result: RH = (RV; RE) be the reduced
hypergraph of H.



begin
W =0,
Step 1. The set of intersecting hyperedges;
foreach e; e E do
We, = 0;
foreach ¢; c E do
if e n €j #* (b then
|We, =W, U{ej};

end
end
W =WuU{We};
end
B:=0;i=1;

Step 2. The covering of the set of intersecting hyperedges;
while E +# () do

U:=EW,;
if |U| < |E| then
|B:=BU{W,}
end
E=EW,;
i=1i+1;
end
Step 3. The RH generation;
RV = 0;

foreach W, B do
|[RV =RV U {we,};
end
The set of hyperedges of RE;
RE = 0;
foreach W, B do
A, = 0;
foreach W, € B do
if W, nWe, #0 then

‘Ae, = Ae, ) {Wej}
end
end
RE = REU {A.};
end
RH = (RV;RE)
end

4.1.2. The recursive reduction process
The hypergraph reduction algorithm can be applied recur-
sively. We define by induction the following process:

(i) R"H=H
(ii) R*'H=RR'H, i> 1.

This procedure creates successive smaller hypergraphs, each
hypergraph R'H should be denoted by its level i. By construction,
the initial hypergraph H is at level 0 (R°H = H). In the following, if
no indication is given about the level corresponding to a hyper-
graph R'H, we will note H=R'H and R'"*'H = RH for the sake of
simplicity. An example of the algorithm HR-IH is presented in
Fig. 3. We reduce the initial hypergraph using three different
hyperedge orders: {eq,e2,e3}, {e2,e1,e3} and {es,ez,e1}. Each column
in Fig. 3 represents one distinct order. We can see after a second
reduction in the first and third columns that the reduction
converges to a unique solution (modulo the linear order). The

HR-IH algorithm presents several interesting properties that will
be studied in the next section.

4.1.3. Basic properties

Proposition 1. The algorithm creates a neighborhood hypergraph;
its complexity is in O(m?), where m is the cardinality of the
hyperedge set of the hypergraph.

Proof. We can build a graph I = (RV;A) in the following way:

1. The set of vertices is RV.
2. Let we,,we; € RV, we put an edge between we, and We, iff
We, N W, # 0, (except when i=j).

Let A, be a hyperedge of RH, A ={we; We;, such that
We, N We, # 0}. Consequently Ae, = {we,} U I'(we,).

Now let we eRV; W e '(We)=We NW,, # be={w,,)
UI'(We,) =Ae,.

Standard algorithms can compute the intersection of two sets S;
and S, with a complexity O(|S;|+|S;|). If we assume that the
cardinality of any hyperedge is bounded by a constant M, then the
intersection of two hyperedges e; and e; can be built in O(M), then
0(1). The complexity of the algorithm is also bounded by the Step
1, which computes the set of intersecting hyperedges and consists
of a double loop over the whole set of hyperedges. Consequently,
the complexity of the algorithm is in O(m?). O

Since E is linearly ordered B is also linearly ordered. This order
will be called Reduction Algorithm Order (RAO). This one is linear:
e; < eje=>W, < paoWe. S0 (B; <pao) is a poset totally ordered. We
will denote by V(We) =k, . w, (V;V el

Proposition 2. Let H=(V;E) and RH = (RV;RE) be its reduction,
then there is a morphism from H to RH.

Proof. Let h be defined by
h:V—B

vi— min

{(We,,v; e V(We))
je(1,2,..|B|} J J

Since B is linearly ordered and H is without repeated hyperedge
then h is a map. There is a bijection g from B onto RV,
consequently f=goh is a map from V to RV. Let e;e E and
vj € e;; hence f(vj) = min, (15, {We, V; € V(We)} = We,. Because
vje V(W) we have eeWe. Let vgee, vj#vq f(vg=
min, . 15,15 {We, Vg € V(We)} = We,. Because vg € V(We,),
e; € W,,. Consequently W,, N W, # 0 and W, ,W,, € A,,. By reason-
ing in the same way for all vertices of e; we can show that
fle) ={fvi),vieej} CA,. O

The presence of a morphism between the vertices of H and RH
ensures that to any vertex of H, we can associate a vertex of RH in
the reduction. Thereby, any partition or clustering over the
vertices of RH can be projected onto the vertices of H to give rise
to a partition or clustering over them.

Proposition 3. Let H=(V;E) be a simple hypergraph and
RH = (RV; RE) be its reduced hypergraph. We have:

(i) |E| = |RE| if and only if for all e  E, e is an isolated hyperedge.
(ii) |E| > |RE| if and only if |[E| >1 and H contains a connected
component with more than 2 hyperedges.

Proof. Suppose that any hyperedge of H is isolated. Because H is
simple, then for all e; e E and for all e; €E, i #j, ;N e;=0. For all
eeE, Ae={W,} hence |E| = |RE|.



iteration 1

column 1

column 2

iteration 2

65

’

lRE

column 3

Fig. 3. Hypergraph reduction algorithm using Intersecting Hyperedges (HR-IH) with three orders. Column 1 illustrates the {ej,e;,e3} order. Column 2 illustrates the
{ey,e1,e3} order. Column 3 illustrates the {e3,e,,e;} order. In the columns 1 and 3, we apply two iterations of the HR-IH algorithm.

Now assume that |E|=|RE|. We are going to proceed by
induction on |E|.

If |[E| =1 itis true; assume now that the assertion is true for any
hypergraph with |E| =m-1, m> 1.

Let H=(V;E) be a hypergraph with |E| = m such that |E| = |RE]|.
So there is a bijection between E and RE: Ve eE,f(e) =A. € RE;
hence this bijection gives rise to a bijection between E\{e} and
RE\{f(e)}. By induction hypothesis the partial hypergraph
H' = (V';E\{e}) has all its hyperedges which are isolated. Suppose
now that there is aeE, a#e such that ane##0; there is a
bijection from E\{a} to RE\{f(a)} and by induction hypothesis
H' = (V';E\{a}) has all its hyperedges isolated. Consequently there
is just the hyperedge a such that ane#@. So that either
We={a,e} or Wg;={a,e}, hence we have f(e)=Ac={W.}=
{W,} =As =f(a); hence a=e, contradiction.

Without losing generality, we will suppose that H is a con-
nected hypergraph with [E|>1. From Proposition 1, |B|=
|V'| = |RE|; from loop Construction of the covering of the set of
intersecting hyperedges we cannot have |B| < |E|, (because H is
connected with |E| > 1); consequently |RE| < |E|.

Assume now that |E| > |RE| then |E| > 1, because the trivial
hypergraph (without vertex) is not considered here. Moreover

el e2 e3 e4

Fig. 4. The hypergraph above is connected. If we follow the given hyperedge order
in Step 2 of Algorithm 1, we obtain We, = {eq,e,} and W, = {e3,e4}. Consequently,
in RH we have two vertices and two hyperedges A., = {W,,} and A., = {W,,} which
are loops. So H is a connected hypergraph but RH is not.

from (i) there is a connected component with 2 hyperedges at
least. O

Proposition 3 means that excepting the particular case where
each hyperedge of H is isolated, the size of RE is always smaller
than the size of E. Since the algorithm produces a neighborhood
hypergraph, the same stands for the size of the vertex sets of H
and RH. Consequently, the hypergraph size is effectively reduced
by our algorithm.

The hyperedges set order given in Algorithm 1 can generate
some problems, especially for connected components (see Fig. 4).



4.2. The proposed HR using Minimum Spanning Tree (HR-MST)
algorithm

4.2.1. Basic concept

Remark 1. By using the loop defined in Algorithm 1 (Step 1) we
can construct the neighborhood hypergraph of the line graph L(H)
of H; this hypergraph will be denoted by Hyw.

Using Remark 1 and in order to rectify the problem caused by
the hyperedges set order, we introduce a HR-MST reduction
algorithm. Both step 1 and step 2 in Algorithm 1 are replaced
by the generation of a partial hypergraph H' of H;y,. We assume
that H is connected. The generation of H' of Hyy, is illustrated in
Algorithm 2. The reduced hypergraph RH(RV,RE) has the same set
of vertices than the partial hypergraph. From RH and using the
W,,, we generate the set of hyperedges RE in the same way than
Algorithm 1 (see Section 1).

Algorithm 2. Partial hypergraph H' of Hyg).

Data: L(H) = (E;A) and Hyy),

Result: Partial hypergraph H' of Hyy,

begin

Height function of the set of edges of L(H) = (E;A);

For e e E calculate T, a minimum spanning tree of L(H);
The excentricity ¢(e) is taken in T;

if ¢(e) =1 then

RV = {w,};

V' = {e};
else

RV = {w,};

foreach i=1 to ¢(e) do

foreach ¢ € E, e’ # e such that d(e,e’) < 2i do
Vi=V'ule);
if d(e,e’) = 2i then
|[RV =RV U {we};
end

end

E=EV’;

end

ifE +# 0 then

foreach ¢’ ¢ E do

|[RV =RV U {we};

end

end

end

H' = (RV;RE = (Ge)e c gy);

end

4.2.2. Basic properties

Proposition 4. If H=(V;E) is a connected hypergraph then
RH = (RV; RE) is also a connected hypergraph.

Proof. Let W,,W, corresponding to we,we, € RV. We have
e;e We, and e; e W,,. Because H is connected for xee; and yeeg;
there is a chain fromx toy : x =vie1v,e, ... VeV, =Y. Itis easy
to show that L(H) is connected, consequently T, is. We have two
cases:

1. xeey and vy =Yy ee, are on the same “branch” of T,: by
construction of Algorithm 2 there are W,, > e, W, > e, ...
We, >€.,1, belonging to RV such that W, nW,, #0,

We, NWe, #0,... W, N W,, # 0. Consequently there is a chain
from we, to w,,; in H'.

2. xeer and v, 1 =Y e e, are on two different “branches” of T,
and there is a chain from x to a vertex u e e and from u to y; in
the same way than above there is a chain from we, to w,
inH 0O.

Proposition 4 shows that the connectivity problem introduced
by the HR-IH algorithm has been solved by the HR-MST algo-
rithm. It also does not involve any hyperedge order.

Remark 2. If RH is connected then H is also connected.

Proposition 5. Let H = (V;E) be a hypergraph with two hyperedges
at least. H c H is a connected component of H if and only if there is
i>1 such the reduction of H' gives rise to an isolated hyperedge in
RH.

Proof. From Proposition 3 R*'H has less hyperedges than R'H,
j = 0; Moreover from Proposition 4 if RH is connected then R*'H
is connected, j>0; the hypergraph H being finite the result
follows.

Now assume that there is a i > 1 such that R'H’ has an isolated
hyperedge. Hence R'H’ is connected so is R”~'H’, by reiterating this
process we show that H' is connected. O

Proposition 5 states that every connected component in a
hypergraph will be reduced by an isolated hyperedge after a
certain number of iterations. Since an isolated hyperedge cannot
be reduced, this ensures that the recursive process will end.

Proposition 6. Let H; = (V; E) and H, = (S;A) be two hypergraphs. If
H; L H, then there is a reduction RH, such that RH; L RH,.

Proof. Let f be the isomorphism between H; and Hs. Let us reorder
the set of hyperedges of H, in the following way: (f(e;)=

ar:f(ex)=az:...;fem)=am), ai€A, ie{1,2,...,m}. Because f is an
isomorphism we have

lai| = |f(e)| = |ei

With the same notation from the algorithm

, Vvie{l,2,...m}

We, = {ei = ek] 'ekz' T 'ekt}

(eine, #0, Vie(l1,2,...t})

Hence e; N e, # 0 <f(e; Ney) # 0<=f(e;) Nf(ex) #9. So we have
|We,| = [{f(ex,)f€r,)r - - f(ex )} = [Wree,|

Let us W={W,,ie{l,...m}} and W' ={Wy,,,ie{1,2,...m}}. Let
us h:W—W’, defined by h(We)=Wye,. If W =W, then
Wree,) = Wy, hence h is a mapping. It is surjective and injective,
so it is a bijection. This bijection induces a bijection from RV to RS;
we will call it g (we identify W,, with the vertex w,,). Now let A,
be a hyperedge of RH;, then

Ae, = {We, = We',1 -We,2 y e We,k}

with We NWe, #0 for je(l,2,...k}}. Hence g(WeNW )=

J J
gWe)nN g(We,j ) # 0. Consequently g(We,j )= Wf(e,j ) € Ase,)- Because
|Ae,| = |Asee,| & is an isomorphism from RH; to RH,. O

The result of Proposition 6 is important because it ensures that
the reduction of two isomorph hypergraphs will also be iso-
morph. By extension, the reduction of a single hypergraph
converges to a unique solution, modulo possible isomorphisms.



Proposition 7. Let H=(V;E) be a hypergraph and RH be its
reduction. Any partition in partial subhypergraphs of RH = (RV; RE)
gives rise to a partition of H.

Proof. Let (RH));. (12, 1 be a partition of RH in partial subhyper-
graphs, where RH; = (RV;; RE)).

Let f be the morphism defined in the proof of Proposition 2. We
have

—1 -1 -1 —1
FRV)=f (ig(gv___k)Rvi)aE“lil JOwRo= U ey

12,1

is a partition in partial subhypergraphs of H. O

Finally, Proposition 7 states that any clustering or partition
over the vertices of RH can be projected onto the vertices of H,
thanks to the morphism defined in Proposition 2.

5. Our k-way Reductive Hypergraph Clustering (RHC)
framework

The previous section described two new hypergraph reduction
algorithms. We can exploit them in a hypergraph k-clustering
process based on the multilevel paradigm that consists of the
following steps (see Fig. 5):

1. Set up a hypergraph H(V;E) = R°H(R°V; R°E).

2. Beginning with i=0, successively reduce R'H(R'V;RE) to
R*+THR'*'V;R*1E) following the recursive process defined in
Section 4.1.2, until a stopping condition is achieved. This proce-
dure creates a sequence of successively smaller hypergraphs. The
smallest (or coarsest) hypergraph is denoted by RH.

3. Compute an initial k-partitioning (or k-clustering) in the
coarsest hypergraph RH.

4. Project the initial k-clustering of RH to the next level finer
hypergraphs and use a refinement heuristic to improve the
clustering, until one is available over the initial hypergraph H.

A more detailed description of these steps is given in the
following sections.

5.1. Hypergraph reduction

The hypergraph to be clustered will first be reduced by our
previously described hypergraph reduction processes, namely
HR-IH or HR-MST. As stated by Proposition 6, the reduced
hypergraphs associated respectively to two isomorph hyper-
graphs are also isomorph. This means that our reduction
algorithm is stable and converges to a wunique solution
(modulo possible isomorphisms). The stopping condition will be
defined by the reduction ratio |R'V|/|R*'V|, where |R'V| and
\Ri+1V\ denote respectively the cardinality of the vertex set of the
initial and the reduced hypergraph of one iteration of the
reduction algorithm (i.e. two successive coarser hypergraphs). It
controls the number of reduction steps and the size of the final
reduced hypergraph: when this value falls below a fixed thresh-
old r (call it the minimal reduction ratio), the reduction stops to
prevent from a too large amount of loss of information. In order to
project the initial clustering of the coarsest hypergraph RH onto
the initial hypergraph H, it is necessary to define a mapping of any
vertex of H to a single vertex of RH. In the case of a generic
hypergraph, such a mapping is given by the morphism defined in
Proposition 2. In the special case of a neighborhood hypergraph,
this mapping is straightforward because a vertex in RH corre-
sponds to a set of hyperedges in H, and any vertex of H is
associated to only one hyperedge in H (it is called the center of
this hyperedge).

5.2. Initial hypergraph clustering

Given a reduced hypergraph RH, our goal is to partition the
vertices v of RH into k disjoint subsets V; (i=0,...,k), such that an
objective function is minimized. In this paper, this function will be
the Normalized Hypergraph Cut, as defined in [53]. Using the
definitions introduced in Section 2, the optimal natural partition of

RHi

Fig. 5. RHC block diagram. After a reduction step where vertices of the initial hypergraph are merged to form levels of successively smaller hypergraphs, an initial spectral k-
clustering (in this case k=3)is carried out over the smallest hypergraph. The clustering is then successively projected over the next level finer hypergraphs until a clustering
is available over the initial hypergraph. At each level, the clustering is refined by trying to move vertices to different clusters if it improves the hypergraph normalized cut.



a hypergraph in two disjoint subsets of vertices S and S° is given by

. 1 1

arsgénvmc(S) =vol 6S (m + m) 2)

The purpose of this function is to minimize the weights of the
hyperedge that are cut, i.e. that contain vertices of different
partitions, and to maximize the sum of the hyperedge weights
through a same partition. Since the combinatorial problem given
by Eq. (2) can be relaxed into a real-valued optimization one, we
can compute the Hypergraph Laplacian Matrix [53] (I denotes the
identity matrix)

L=1-D,'*HWD,'H'D,!/? 3)

The eigenvector corresponding to the second smallest eigenvalue
of this matrix gives a real value for each vertex of the hypergraph,
and the thresholding of these values to 0 produces an optimal
bisection of the hypergraph, as shown in [53]. Thus, we can
recursively bipartition a hypergraph until k sections are obtained.
However, the method to compute a direct k-partitioning is
preferred, because it takes advantage of the information con-
tained in the k eigenvectors corresponding to the k smallest
eigenvalues of the Laplacian matrix. Furthermore, it is computa-
tionally more efficient. These k eigenvectors provide coordinates
for each vertex in a k-dimensional system. A k-clustering can be
applied to these coordinates with a simple k-means algorithm
[30] in order to get a k-partition. This hypergraph k-clustering
algorithm is similar to the one proposed by Zhou et al. [53], and
consequently our RHC framework reduces to Zhou algorithm
when the hypergraph reduction step is omitted.

5.3. Clustering improvement and refinement

In this phase, the partitioning of the reduced hypergraph is
successively projected to the next finer level hypergraph, and a
partitioning refinement algorithm is used to optimize a given
function. Most of these algorithms are based on the Fiduccia-
Mattheyses (FM) [24] refinement heuristic algorithm. Proposition
7 states that a partition over a reduced hypergraph gives rise to a
partition over the initial hypergraph, so such an operation can be
legally applied among the different hypergraph levels. We will
use in this paper the greedy refinement algorithm given by
Karypis [31] that is more suitable to the refinement of a
k-clustering. In this process, each vertex is visited only one time
and we consider all the possible cluster migrations of this vertex.
If such a migration can improve the objective function, it is
applied and the other vertices are considered. In this contribution,
the function to minimize will be the Hypergraph Normalized Cut
given by Eq. (2).

6. Application to image segmentation

In the previous sections, we have presented a hypergraph
clustering algorithm based on a novel hypergraph reduction
process. Since this algorithm is generic, a practical application
can be found only if one is able to build a relevant hypergraph
model to represent the data of the application and a given relation
among it. In this context, and to evaluate our hypergraph
partitioning approach, we embedded it in a widely discussed
computer vision problem: color image segmentation. In this
section we show how we can model the data involved in this
application by the means of hypergraphs. When such a model is
available, one can exploit our hypergraph clustering algorithm to
define a new image segmentation algorithm.

Let I: V= Z?>—>F< 7" be an image. Elements of V are called
pixels, elements of F are called features. A distance d on V defines

a grid (a connected, regular graph, without both loop and multi-
edge, associated with a regular lattice L of R"). In this contribu-
tion, we will be concerned only with 8-connected grids defined by
the distance d(v,v') = max{|x—x'|, |y—y'|}, where (x,y) and (x.y")
denote respectively the spatial coordinates of v and v’ on the grid.
Thus, we define the -neighborhood of a pixel veV by

T'yw)={v eV |[dw,v) < B} “4)

Let p be a similarity measure on F, we have a neighborhood
relation on an image defined for each pixel v by

I p()={v' ey(v) | p(F(v),F(v')) > 2} (5)

Here 8 and A are real values, called respectively spatial thresh-
old and feature threshold. This neighborhood relation defines a
graph on V. Recall that to each graph G we can associate its
neighborhood hypergraph Hg. Consequently, to each image we
can associate a hypergraph called Image Neighborhood Hypergraph
(INH) [6]

Hr,, = (Vi(} U T, 3(0)ycv) (6)

The spatial and color neighborhood I' 5""” is generated in

S
following Eq. (5). This requires the definition of a distinct
similarity measure for color feature. Throughout this paper, all
the similarity measures will be normalized by a Gaussian kernel
PE(Fv),F()) = exp(—d" (F(),F(v'))/cF), where dF is a distance
measure over F, and of is computed as the standard deviation
of df over 200 random pairs of vertices in V. We define the color
distance d° as the Euclidean distance in Lab color space [47]. In
the case of grayscale images, d“(v,v') = |I(v)-I(v')|, where I(v)
denotes the gray level of pixel v.

7. Simulations and discussions
7.1. Experimental protocol

Graph and hypergraph clustering algorithms are difficult to
evaluate since many of existing approaches are reliable in a
certain context and are generally designed for a particular
application. In fact, clustering algorithms are mainly evaluated
and compared to others throughout this application, with no
indication if the same approach may be effective when trans-
posed to another application, or for generic graph or hypergraph
clustering purposes. For this reason, and in order to assess the
effectiveness of the proposed RHC approach, we first evaluate its
performances in a generic hypergraph clustering problem, and
then in the context of color image segmentation. In the following,
the minimal reduction ratio r involved in our algorithm has been
fixed to 1.5 after some experiments. In HR-MST, the weight of the
edges of the line graph between the hyperedges e; and e, is given
by w({e1,e2}) =1/]e1 Nez| (see Fig. 6). The reason for this choice
comes from an intuitive idea that two hyperedges sharing a large
number of vertices are more likely to connect vertices from a
single cluster in the hypergraph, and thus may be linked by an
edge associated with a small weight (recall that the objective of
the MST computation is to minimize the total edge weight over
the whole tree). In the following, we work exclusively with
unweighted hypergraphs (i.e. Ve € E,w(e) = 1). All the experiments
were performed on a machine with the following characteristics:
Intel Xeon 2.67 GHz, 4 GB RAM.

7.2. Evaluation of hypergraph clustering

The simplest way to judge the quality of a hypergraph
clustering algorithm is to compare the partition obtained on a



Fig. 6. An edge of the line graph (connecting two hyperedges) will be weighted by
the number of vertices shared by the corresponding hyperedges. The weight is
then converted to a distance by taking its multiplicative inverse.

hypergraph where the cluster structure is known to the ground
truth partition. For the sake of generality, such a hypergraph must
be randomly generated to ensure that the algorithm is not specific
to a given application or hypergraph structure. Unfortunately,
such a generative model does not exist at that time in the case of
hypergraphs. But recall that from every arbitrary graph, we can
build a neighborhood hypergraph. Hence, gathering a hypergraph
clustering benchmark becomes straightforward because several
computer-generated graph algorithms have been introduced for
this purpose. In particular, the planted ¢-partition model [17] has
become quite popular in the last years. A special case of the
planted partition model designed by Girvan and Newman [27] has
also gained a standard status and is a widely used class of graphs
in the graph clustering community. Such a graph is defined by £
equally sized clusters of g vertices. Each vertex is randomly linked
by an edge to another vertex with a probability p;, if the two
vertex belong to the same group, and a probability po,: otherwise.
Those properties lead to graphs where each vertex has approx-
imatively the same degree, which is not representative of real-
world problems. Recently, Lancichinetti et al. [34] designed an
algorithm to generate graphs based over the planted partition
model. In particular, the cluster sizes and the vertex degrees are
chosen randomly from a power law distribution. The complexity
of the clustering solution can be easily given by the mixing
parameter ¢, which represents the fraction of the incident edges
of a vertex that connects it to another vertex of a different cluster.
We consider that the graph has a community structure when
At < 0.5. This class of graphs (called the LFR benchmark) is more
adequate to represent real-world problems, and consequently we
will use it to evaluate our hypergraph clustering algorithm. Note
that the exploitation of a graph benchmark is also interesting
because it allows us to directly compare graph-based and hyper-
graph-based methods.

Each graph generated by this method is then converted to a
neighborhood hypergraph with the definition given in Section 2.
The performance of a clustering algorithm is then evaluated by
comparing the partition obtained by the algorithm and the
ground truth planted partition of the hypergraph. Such a compar-
ison measure is the normalized mutual information (I,,o;m) [19]
that represents the amount of information shared by the two
partitions and serves as a similarity measure. Values are com-
prised between 0 and 1, when the value 1 indicates that the two
provided partitions are identical. The graphs used in these
experiments are built following three parameters: the number
of vertices N, the number of clusters k and the mixing parameter
/¢ that adapts the complexity of the solution. For each set of
parameters, a certain number of graphs (5 in our experiments) are
generated and different clustering algorithms are applied over the
resulting neighborhood hypergraphs. The I, values associated
with the partitions obtained with a single algorithm are then

averaged over all the hypergraphs to provide one value per couple
algorithm/set of parameters. Different algorithms have been
compared:

e Zhou [53]: Zhou’s standard spectral hypergraph clustering
algorithm.

e Hmetis [31]: a hypergraph partitioning tool based on the
multilevel paradigm. It is still widely considered as the best
existing software in VLSI domain [3].

e FC, EC, MHC: our RHC framework but using standard hyper-
graph reduction algorithms typically used for hypergraph
partitioning [31] (see Section 3).

o HR-MST: our proposed RHC algorithm, using our proposed HR-
MST hypergraph reduction approach.

e HR-IH: our proposed RHC algorithm, using our proposed HR-
[H hypergraph reduction approach.

e Graph: the typical Shi and Malik’s spectral graph partitioning
algorithm [46]. Yu et al. direct k-clustering version [51] was
used along these experiments.

The considered algorithms only need in general to set the
number of clusters k, except for Hmetis that also take two
additional parameters: the reduction algorithm to use in its
multilevel implementation, and the balance parameter (an integer
greater than 5). The purpose of the latter is to control the relative
sizes of the different clusters, for instance specifying a value of b
means that the size of a single partition should not be more than
b% greater than the average size. FC will be used as the reduction
algorithm (as advised in [31]). As the variation of the balance
parameter did not influence the results of Hmetis in preliminar
experiments, it will be set at a large value (typically 10 000) in
order to allow clusters of variable size.

In order to evaluate the behavior of the different algorithms
according to the nature of the data, one parameter of the graph
generation process is varied at a time. The two other parameters
are fixed at standard values N=10 000, k=10 and A; =0.2. The
values of 10 000 and 10 have been chosen after some experi-
ments that suggested that those values allow to get the most
stable clustering results among different graphs generated with
the same parameters. The value of 0.2 for A; is suggested as a
standard value by the designers of the LFR benchmark [34]. For
more clarity, the results are split between those obtained with the
RHC framework using different hypergraph reduction algorithms,
and a comparison between our RHC framework (using HR-MST)
and the other clustering softwares mentioned above.

We will start by examining the influence of the A; parameter.
From the curves in Fig. 7(a), we can see that the proposed HR-MST
algorithm provides the best partitions within the RHC framework,
because its curve is always above the curves that correspond to
the other hypergraph reduction algorithms. In particular, HR-MST
is better than the FC algorithm, which is widely considered as the
most efficient in VLSI [31] and image segmentation [21] domains.
This result demonstrates that it is also the case with application
to generic data. The weak performances of the HR-IH and MHC
algorithms can be explained by the fact that when the /;
parameter becomes high (4; > 0.3), two vertices from different
clusters are more likely to belong to the same hyperedge, and the
clustering results are biased because HR-IH and MHC tend to
merge vertices that are found in the same hyperedges. On the
contrary, the other algorithms take care of the connectivity
between the vertices and are more prone to merge vertices that
are strongly connected (i.e. connected with a large number of
hyperedges), reducing the clustering errors. In particular, the
computation of the MST of the line graph has the ability to
neglect the pairs of hyperedges that share a small number of
vertices. Finally, two hyperedges order are considered in the HR-
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[H algorithm: random and sorted (in this case, hyperedges are
visited by descending weights, then size). The results show that
despite the connectivity problem introduced by the algorithm
(see Section 4.1.3), the hyperedge order has a small influence over
the clustering results. Although, the sorted order allows to get a
slightly better performance. It is also important to note that the
results for HR-IH remain strongly relevant when the data is
well correlated (i.e. A;<0.3). In conclusion, we should note
that the HR-MST algorithm does not need the user to define a
hyperedge order.

We will now compare the results of our RHC framework (using
HR-MST) with other graph/hypergraph clustering software. By
looking at the curves of Fig. 7(b), we can see that despite the
implicit loss of information introduced by the hypergraph reduc-
tion, the solution found by our HR-MST algorithm is often very
close to the solution provided by Zhou'’s direct spectral hyper-
graph clustering method (without a hypergraph reduction step),
and outperforms the other algorithms. Furthermore, in many
cases the solution is better when we consider hypergraphs with
a clear community structure (4, <0.4). It is also interesting to
note that the Hmetis algorithm, based only on heuristic methods,
fails to detect the community structure when the solution com-
plexity becomes high. This can be explained by the random
behavior of those techniques, especially in the initial partitioning
phase where a randomly computed initial partition is not

sufficient to obtain a good clustering. In addition, we can observe
that the curves associated with the hypergraph-based algorithms
(excluding the particular case of Hmetis) are in general always
above the curve representing the performance of the spectral
graph-based clustering approach, despite the fact that it is still
regarded as the best direct graph k-clustering algorithm. This
shows particularly the advantage of using a hypergraph-based
method which exploits a richer model of data representation.

If the spectral-based graph/hypergraph clustering methods are
able in general to provide the best partitioning results, this is not
always verified when the size of the data becomes high and
difficult to handle. This result is shown in Fig. 8(b), that repre-
sents the I, values obtained when the number of vertices in the
hypergraph varies (k=10 and A; = 0.2). One can observe that the
performance of the spectral methods gradually decrease when the
size of the data (i.e. the number of vertices to consider) increases.
On the contrary, the other algorithms (based on the multilevel
paradigm with a reduction step) are less prone to this phenom-
enon. This result demonstrates that a hypergraph reduction step,
associated with an initial spectral clustering and a refinement
step, becomes very effective relatively to a direct spectral cluster-
ing when the size of the problem becomes high. In particular, our
proposed method exploiting our HR-MST algorithm achieved the
best performance (see Fig. 8(a) for a comparison between the
reduction algorithms). This result indicates that a multilevel



approach can be very efficient for large datasets, such as image or
video segmentation when the number of elements involved
cannot be handled by a typical spectral clustering algorithm.

To illustrate this statement, the Hmetis algorithm has been
shown very effective for partitioning hypergraphs obtained from
real data, particularly in VLSI design [31] and image segmentation
[42] with the INH model. In fact, spectral algorithms achieve in
general the best results for generic hypergraph clustering pur-
poses (as demonstrated above) and small datasets in application
to categorical data classification [53]. However, Fig. 9 demon-
strates that Zhou's spectral algorithm is not appropriate in the
case of image segmentation via an INH model, while Hmetis and
our proposed RHC algorithms achieve reliable results. In addition,
the complexity of a spectral algorithm becomes problematic in
application to real data. In Fig. 9, the size of the original image has
been reduced by a factor of 2 in order to compute a segmentation
with Zhou algorithm in a reasonable amount of time. Despite this
rescaling, the segmentation using Zhou algorithm takes 29.38 s,
compared to 0.96 s with our proposed approach (using the HR-
MST reduction process) and 0.64 s with Hmetis.

Fig. 10 presents the I, values obtained when the number of
clusters k varies. We can remark that the different algorithms
share the same behavior: the quality of the clustering decreases
when k increases, which is a coherent result when we suppose
that a solution with a large number of clusters is harder to find
than a solution with a smaller number of clusters. In fact, we did

not observe specific differences of behavior between the different
algorithms for this parameter.

Finally, Fig. 11 presents the computation times obtained with
different algorithms when N and k vary. First, it is important to
note that Zhou algorithm (results for Shi and Malik graph
algorithm are not presented because they are very close to those
obtained with Zhou algorithm) is the one that comes along with
the heaviest computational burden. In particular, its complexity
depends highly on the number of vertices N (it seems to be the
case at a lower scale for the other algorithms) and the number of
clusters k. The latter result does not stand for the algorithms that
adopt a multilevel approach, for which computation times are
very stationary. The important thing to note is that the HR-IH
algorithm is by far the fastest algorithm, and that HR-MST, in
addition of being the algorithm that provides the best clustering
results, displays reasonable computation times, despite the expli-
cit building of the MST and the line graph of the hypergraph. In
conclusion, one should prefer to use our HR-IH algorithm in a
problem where the main objective is to speed up the clustering
(if it involves datasets of considerable size, like high-definition
images for instance). The HR-IH algorithm have already shown
very promising results in an application for image superpixels
generation [7] showing that it can be very efficient when a
relevant hypergraph representation of the date is exploited. The
HR-MST algorithm seems to be a good compromise between the
quality of the clustering and the algorithm complexity.

Fig. 9. (a) Original color image (321 x 481 pixels) from the Berkeley Segmentation Database [36], and segmentation results for (b) Zhou algorithm, (c) Hmetis algorithm
and (d) our proposed RHC (using the HR-MST reduction process) algorithm (with the number of clusters k=8). Segmentation results are obtained by partitioning an INH
built with parameters 4 =0.85 and =1 (see Section 6). The segments boundaries are displayed in red and superimposed to the original image. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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7.3. Results of color image segmentation

We will now evaluate our hypergraph clustering algorithm using
HR-MST (namely RHC) in the field of color image segmentation.
Experiments have been carried out over a subset of 30 images of the
well-known Berkeley Segmentation DataBase (BSDB) [36], that
provides a set of nature scenes images with human ground-truth
segmentations. We limited our experiments to 30 images, because
the INH representation involved in our segmentation algorithm (see
Section 5) is at that time not able to handle texture. It is also the case
for the other algorithms that are compared in this section. As a
consequence, only images from the BSDB that display little texture
have been selected. The INH model is generated with the standard
spatial threshold value f = 1, which has been shown to have a small
influence on the segmentation results [21].

We will give some comparison results with three other image
segmentation algorithms:

e NCut: it uses a graph representation of images and is based
upon Shi and Malik’s NCut framework [46]. The segmentation
is treated as a graph partitioning problem, solved by the
computation of eigenvectors of a normalized graph Laplacian
matrix. This computation is speeded up by working on a
multiscale decomposition of the graph [18]. This implementa-
tion involves only color features in the computation of the
edge weights (as well as in our INH model).

e Hmetis: This algorithm [42] exploits a hypergraph representa-
tion of images, and attempts to find a partitioning of the
hypergraph to get a segmentation, based on the heuristic
multilevel hypergraph partitioning framework introduced in
[31]. The hypergraph partitioning is provided by the hMETIS
package [31].

e Mean Shift: The standard Mean Shift image segmentation
algorithm [16]. We will use a speeded up version of the
algorithm [39].

The idea behind the choice of the two first approaches is to
demonstrate the advantages of a hypergraph-based image repre-
sentation compared to a graph-based one (NCut), despite the fact
that the NCut algorithm computes a k-partitioning of a graph that
is close to the optimum. In addition, we wanted to compare the
ability of our hypergraph clustering approach based on the
combination of a hypergraph reduction algorithm and spectral
hypergraph partitioning techniques, to an approach that is exclu-
sively based on heuristic methods (Hmetis). For this purpose, it is
important to use the same hypergraph representation in our

proposed (RHC using HR-MST) and Hmetis frameworks to judge
the quality of the different hypergraph partitioning algorithms
according to a fixed set of parameters. The use of Hmetis is also
motivated by the fact that it has been found particularly mean-
ingful in the context of image segmentation [42], and that a direct
spectral hypergraph partitioning approach such as Zhou algo-
rithm [53] is not appropriate within this application (see Section
7.2). Finally, the results are compared to those provided by Mean
Shift, a well-known and standard segmentation algorithm in the
computer vision domain, in order to judge the reliability of our
hypergraph clustering algorithm in this field.

NCut only needs the user to set up the number of segments k. For
each algorithm (excluding the MS approach that automatically
computes the number of segments), different values of the number
of segments k were tested (from 2 to 20). In addition to this
parameter, our algorithm also requires the color threshold A in
order to build the INH (see Section 6). It is also true for Hmetis that
uses the same hypergraph representation. Discussions about the
influence of this parameter in the segmentation results can be found
in [8,21,42]. In these experiments, A will be computed in an adaptive

way at each pixel, X(v):(HF(v’)H/o(HF(v’)H))V,Erﬂ(v) designing the

color threshold at pixel v, while [IF(v))ll and o(IF(v)ll) design
respectively the mean and the standard deviation of the magnitudes
of the color vectors of each pixel (including v) in the
p-neighborhood of v (see Section 6). As in Section 7.2, the reduction
approach adopted for Hmetis will be the FC algorithm, and the
balance parameter will be set to a large value (typically 10 000) in
order to allow the presence of segments of different sizes in the
images. Two algorithms specify the behavior of the Mean Shift
algorithm, namely the spatial and color bandwidth parameters that
control the precision of the segment detection for the color and
spatial features respectively (see [16] for more details). As suggested
in [39], we tested values from ranges [5,10] for the color bandwidth
and [4,256] for the spatial bandwidth. Best results occur in general
for the smallest values in the specified ranges. Since our goal was
not to discuss about the relative influence of each parameter, the
parameters of the different algorithms were set in order to capture
the best segmentation after some experiments, which provided a
result for each couple image/algorithm. All algorithm results are
compared with human boundary maps obtained from the Berkeley
image segmentation database [36]. For quantitative comparison, the
performance of the four considered algorithms was analyzed in
terms of precision and recall [41]. The precision and recall measures
are particularly meaningful in the context of boundary detection
when we consider applications that make use of boundary maps,
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Fig. 12. Results of segmentations of images from the BSDB obtained with NCut [18], Hmetis [42], Mean Shift [39] and our proposed algorithm (using HR-MST). F-scores

and computation times are displayed for each result.

such as stereo or object recognition. It is reasonable to characterize
higher level processing in terms of how much true signal is required
to succeed R (recall), and how much noise can be tolerated P
(precision). A particular application can define a relative cost o
between these quantities, which focus attention at a specific point
on the precision-recall curve. The F-score [41], defined as
F =PR/aR+ (1aP) captures this trade-off as the weighted harmonic
mean of P and R. The F-score is valued between 0 and 1, where
larger values are more desirable. We set o to 0.5 in our experiments
as in [37]. It is important to note that all F-scores displayed in this
paper are automatically computed using the benchmark software
available on Berkeley's website.!

Fig. 12 shows some examples of segmentation results obtained
on images from the BSDB subset with RHC (using HR-MST), NCut,
Hmetis and Mean Shift algorithms, along with their associated
F-scores and computation time. The segment boundaries are colored
in red and superimposed to the original color image. Average F-
scores and computation times obtained with the different algo-
rithms over the whole 30 images subset of the BSDB are reported in
Table 1. We can observe from these values that our segmentation
algorithm displays the highest evaluation measures, and conse-
quently outperforms the others. In particular, a hypergraph repre-
sentation tends to detect more accurately the boundaries of the
image, as the NCut approach often fails at detecting small objects

1 (http://[www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ »

Table 1
Average F-score values (standard deviation is also displayed) and computation
times obtained from different image segmentation algorithms over the BSDB
subset.

Algorithm F-score Time (s)
Proposed (RHC using HR-MST) 0.74 +£0.117 431
Mean Shift 0.69 + 0.147 0.54
Hmetis 0.68 + 0.099 3.54
NCut 0.64+0.115 44.28

(take for instance the animals in the image of the third column in
Fig. 12). This can be explained by the fact that representations
involving multi-dimensional relationships (by the means of hyper-
edges) between elements is closer to the human visual grouping
system than a graph-based representation that simply takes into
account pairwise relationships. In addition, our proposed hyper-
graph clustering algorithm gives better results than the Hmetis
algorithm, even when we consider that exactly the same hypergraph
representation is used in both cases. In particular, the Hmetis
algorithm has a tendency to isolate small regions in the image
(resulting in thick boundaries). This is due to the presence of small
connected components in the INH, and can be explained by the use
of local thresholding in hyperedges generation. This phenomenon
appears in the noisy or textured images, showing that the proposed
hypergraph representation is not suitable for such images. Our
algorithm also performs well compared to the Mean Shift algorithm,
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