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Abstract. Let Ω be a C2 bounded domain of Rn, n > 2, and fix Q = (0, T ) × Ω with T > 0. We consider
the stability in the inverse problem of determining a time-dependent coefficient of order zero q, appearing
in a Dirichlet initial-boundary value problem for a wave equation ∂2

t u − ∆xu + q(t, x)u = 0 in Q, from
partial observations on ∂Q. The observation is given by a boundary operator associated to the wave equa-
tion. Using suitable geometric optics solutions and Carleman estimates, we prove a stability estimate in the
determination of q from the boundary operator.

Keywords: Inverse problems, wave equation, scalar time-dependent potential, Carleman estimates, stabil-
ity inequality.

Mathematics subject classification 2010 : 35R30, 35L05.

1. Introduction

1.1. Statement of the problem. In the present paper we consider a C2 bounded domain Ω of Rn, n > 2.
We set Σ = (0, T )× ∂Ω and Q = (0, T )× Ω with 0 < T < ∞. We introduce the following initial-boundary
value problem (IBVP in short) for the wave equation ∂2

t u−∆xu+ q(t, x)u = 0, in Q,
u(0, ·) = v0, ∂tu(0, ·) = v1, in Ω,
u = g, on Σ,

(1.1)

where the potential q ∈ L∞(Q) is assumed to be real valued. We study the inverse problem of determining
q from observations of the solutions of (1.1) on ∂Q. For v0 = v1 = 0, we associate to (1.1) the hyperbolic
Dirichlet-Neumann (DN in short) Λq : g 7→ ∂νu with u the solution of (1.1) and ν the outward unit normal
vector to Ω. It is well known that for T > Diam(Ω) the DN map Λq determines uniquely a time-independent
potential q (e.g. [34]). In contrast to time-independent potentials, due to domain of dependence arguments,
there is no hope to recover the restriction of a general time dependent potential q on the set

D = {(t, x) ∈ Q : 0 < t < Diam(Ω)/2, dist(x, ∂Ω) > t}
from the DN map Λq (see [27, Subsection 1.1]). In light of this obstruction to uniqueness, it seems that the
minimal data that allows to recover globally a general time-dependent potential q so far (at finite time) is
given by [27, Theorem 1] where uniqueness is stated. The main goal of the present paper is to prove stability
in the recovery of a general time-dependent potential q from similar data.

Practically, our inverse problem is to determine physical properties such as the time evolving density of
an inhomogeneous medium by probing it with disturbances generated on the boundary and at initial time.
The data is the response of the medium to these disturbances, measured on the boundary and at the end
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of the experiment, and the purpose is to recover the function which measures the property of the medium.
Note that time-dependent potential can also be considered for models where the evolution in time of the
perturbation can not be avoided.

We also remark that, according to [22], the determination of time-dependent potentials can be an
important tool for the determination of a semilinear term appearing in a semilinear hyperbolic equation
from boundary measurements.

1.2. Existing papers. In recent years the problem of recovering coefficients for hyperbolic equations from
boundary measurements has attracted many attention. Many authors have considered this problem with an
observation given by the DN map Λq. In [34], the authors proved that the DN map determines uniquely
a time-independent potential and in [21] Isakov considered the determination of a coefficient of order zero
and a damping coefficient. These results are concerned with measurements on the whole boundary. The
uniqueness by local DN map has been considered in [12]. The stability estimate in the case where the DN map
is considered on the whole lateral boundary was treated by Stefanov and Uhlmann [38, 39]. The uniqueness
and Hölder stability estimate in a subdomain were established by Isakov and Sun [23] and, assuming that the
coefficients are known in a neighborhood of the boundary, Bellassoued, Choulli and Yamamoto [3] proved a
log-type stability estimate in the case where the Neumann data are observed in an arbitrary subdomain of the
boundary. We mention also [31], where the stability issue have been considered for large class of coefficients.
In a recent work [26] extended the results of [34] to determine a large class of time-independent coefficients
of order zero in an unbounded cylindrical domain. It has been proved that only measurements on a bounded
subset are required for the determination of some class of coefficients including periodic coefficients and
compactly supported coefficients.

Let us also mention that the method using Carleman inequalities was first considered by Bukhgeim
and Klibanov [6]. For the application of Carleman estimates to the problem of recovering time-independent
coefficients for hyperbolic equations we refer to [2, 19, 25].

All the above mentioned results are concerned only with time-independent coefficients. Several authors
considered the problem of determining time-dependent coefficients for hyperbolic equations. In [37], Ste-
fanov proved unique determination of a time-dependent potential for the wave equation from the knowledge
of scattering data. The result of [37] is equivalent to the consideration of the problem with boundary mea-
surements. In [35], Ramm and Sjöstrand considered the problem of determining a time-dependent coefficient
q from the DN map Λq associated to (1.1). For this purpose, they considered the problem on the infinite
time-space cylindrical domain Rt × Ω instead of Q (t ∈ R instead of 0 < t < T < ∞) and their DN map
was associated to solutions vanishing for large negative time. Then, under suitable additional assumptions,
[35] proved a result of uniqueness. The result of [35] has been extended to more general coefficients by [36]
where stability estimate is also stated for compactly supported coefficients provided T is sufficiently large.
In [33], Rakesh and Ramm considered the same problem at finite time on Q, with T > Diam(Ω), and they
proved a uniqueness result for the determination of q restricted to the subset S of Q, made of lines with
angle 45◦ with the t-axis and which meet the planes t = 0 and t = T outside Q, from the DN map Λq. In [20,
Theorem 4.2], Isakov established a result of uniqueness for a time-dependent potential on the whole domain
Q from observations of the solution on ∂Q. Applying a result of unique continuation borrowed from [41],
Eskin [13] proved that the DN map uniquely determines time-dependent coefficients that are analytic with
respect to the time variable t. In some recent work, [43] proved stability in the recovery of X-ray transforms
of time-dependent potentials on a Riemannian manifold. We also mention that [5], proved log-type stability
in the recovery of time-dependent potentials from the data considered by [33] and [20]. Finally in [27], the
author proved determination of general time dependent potentials from, roughly speaking, half of the data
considered by [20].

Let us also remark that [8, 9, 10, 14] consider the problem of determining a time-dependent coefficient
for parabolic and Schrödinger equations and derive stability estimate for these problems.
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1.3. Main result. In order to state our main result, we first introduce some intermediate tools and notations.
For all ω ∈ Sn−1 = {y ∈ Rn : |y| = 1} we introduce the ω-illuminated and the ω-shadowed faces

∂Ω−,ω = {x ∈ ∂Ω : ν(x) · ω 6 0}, ∂Ω+,ω = {x ∈ ∂Ω : ν(x) · ω > 0}

of ∂Ω. We associate to ∂Ω±,ω the part of the lateral boundary Σ given by Σ±,ω = (0, T ) × ∂Ω±,ω. From
now on we fix ω0 ∈ Sn−1 and we consider F = (0, T )× F ′ (resp G = (0, T )×G′) with F ′ (resp G′) an open
neighborhood of ∂Ω+,ω0

(resp ∂Ω−,ω0
) in ∂Ω.

We denote by � the differential operator ∂2
t −∆x. According to [27, Proposition 4], we can extend the

trace maps
τ0,1v = v|Σ, τ0,2v = v|t=0, τ0,3v = ∂tv|t=0, v ∈ C∞(Q)

on H�(Q) = {u ∈ L2(Q) : �u ∈ L2(Q)}. Then we define

HF (∂Q) := {(τ0,1u, τ0,3u) : u ∈ H�(Q), τ0,2u = 0, suppτ0,1u ⊂ F}.

We refer to [27, Section 2] (see also Section 2) for more details about these spaces and the definition of
‖.‖HF (∂Q). In view of [27, Section 2], we can associate to (1.1) with v0 = 0 the boundary operator

Bq : HF (∂Q) 3 (g, v1) 7→ (∂νu|G, u|t=T ) (1.2)

where u solves (1.1) with v0 = 0. We refer to [27, Proposition 2] (see also Section 2) for a more rigorous
definition of this operator. In Section 2, we prove that for every q1, q2 ∈ L∞(Q) the operator

Bq1 −Bq2 : HF (∂Q)→ L2(G)×H1(Ω)

is bounded. Then our main result can be stated as follows.

Theorem 1. Let p > n+ 1 and q1, q2 ∈W 1,p(Q) . Assume that the conditions

q1(t, x) = q2(t, x), (t, x) ∈ Σ (1.3)

‖q1‖W 1,p(Q) + ‖q2‖W 1,p(Q) 6M

are fulfilled. Then, there exist C and γ∗, depending on n, p, M , T , Ω, F ′, G′, such that

‖q1 − q2‖H−1(Q) 6 Ch (‖Bq1 −Bq2‖) (1.4)

with

h(γ) =

 γ, γ > γ∗,
ln(|ln γ|)−1, 0 < γ < γ∗,
0, γ = 0.

Here ‖Bq1 −Bq2‖ stands for the norm of Bq1 −Bq2 as an element of B(HF (∂Q);L2(G)×H1(Ω)).

Let us observe that this stability estimate is the first that is stated with the data considered in [27],
where uniqueness is proved with conditions that seems to be one of the weakest so far. Moreover, it appears
that with the paper of [5], this paper is the first where stability is stated for global determination of general
time dependent potentials appearing in a wave equation from boundary measurements.

The main tools in our analysis are suitable geometric optics (GO in short) solutions, Carleman estimates
and results of stability in analytic continuation. More precisely, following the approach of [27] combined with
arguments used by [4, 11, 16] (see also [7, 24, 32] for the original aproach in the case of elliptic equations),
we consider suitable geometric optics solutions for our problem associated to Carleman estimate with linear
weight. In contrast to [27], we recover the time dependent potential not from its Fourier transform but from
its light-ray transform (see the proof of Theorem 1). This approach make it possible to derive stability even
in the case n = 2. Note also that contrary to [27], for the stability issue it is necessary to consider GO lying
in H2(Q) (and not only in H1(Q)).
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1.4. Outline. This paper is organized as follows. In Section 2 we treat the direct problem. We recall some
properties of solutions of (1.1) and we give a result of smoothing for the difference of boundary operators
Bq1 −Bq2 associated to this problem. In Section 3, using some results of [8, 17, 18], we build GO solutions,
similar to [4, 27], associated to (1.1) and lying in H2(Q). In Section 4, we recall some results of [27] about
Carleman estimates for the wave equation with linear weight and GO solutions vanishing on parts of the
boundary. Then combining these tools with the GO solutions of Section 3 we prove Theorem 1.

2. Functional spaces

In this section following [27] we recall some properties of the IBVP (1.1). According to [27, Proposition
1], for any (g, v1) ∈ HF (∂Q) the IBVP (1.1) with q = v0 = 0 admits a unique solution P0(g, v1) and we can
define ‖·‖HF (∂Q) by

‖(g, v1)‖HF (∂Q) = ‖P0(g, v1)‖L2(Q) .

Applying [27, Proposition 4], we can extend the map

τ1,1v = ∂νv|Σ, τ1,2v = v|t=T , v ∈ C∞(Q)

on H�(Q). Then, in light of [27, Proposition 2], we can define the boundary operator

Bq : HF (∂Q) 3 (g, v1) 7→ (τ1,1u|G, τ1,2u)

with u ∈ L2(Q) the unique weak solution of the IBVP (1.1) with v0 = 0. Moreover, in view of [27, Proposition
2], Bq is bounded from HF (∂Q) to H−3(0, T ;H−

1
2 (G′))×H−2(Ω).

Now consider the operator Bq1 −Bq2 for q1, q2 ∈ L∞(Q). We have the following smoothing result.

Proposition 1. Let q1, q2 ∈ L∞(Q). Then the operator Bq1 −Bq2 is a bounded operator from HF (∂Q) to
L2(G)×H1(Ω).

Proof. For j = 1, 2, let uj be the unique solution of the IBVP (1.1) for q = qj , v0 = 0 and suppg ⊂ F . Then,
u = u1 − u2 solves  ∂2

t u−∆xu+ q1u = (q2 − q1)u2, (t, x) ∈ Q,
u|t=0 = ∂tu|t=0 = 0,

u|Σ = 0.

Since (q2 − q1)u2 ∈ L2(Q), in view of [3, Theorem A.2] (see also [28, Theorem 2.1] for q = 0), u ∈
C1([0, T ];L2(Ω)) ∩ C([0, T ];H1

0 (Ω)) with ∂νu ∈ L2(Σ). Moreover, we have the following energy estimate

‖u‖C1([0,T ];L2(Ω)) + ‖u‖C([0,T ];H1
0 (Ω)) + ‖∂νu‖L2(Σ) 6 C ‖q1 − q2‖L∞(Q) ‖u2‖L2(Q) .

It follows τ1,1u|G ∈ L2(G), τ1,2u ∈ H1(Ω) and [27, Proposition 2] implies

‖τ1,1u‖L2(G) + ‖τ1,2u‖H1(Ω) 6 C ‖(g, v1)‖HF (∂Q) ,

where C depends on Ω, T and M > ‖q1‖L∞(Q) +‖q2‖L∞(Q). Finally, we complete the proof by recalling that

(τ1,1u|G, τ1,2u) = (τ1,1u1|G, τ1,2u1)− (τ1,1u2|G, τ1,2u2) = (Bq1 −Bq2)(g, v1).

�

3. Smooth geometric optics solutions without boundary conditions

The goal of this section is to build GO solutions u ∈ H2(Q) associated to the equation

∂2
t u−∆xu+ q(t, x)u = 0 in Q. (3.1)

More precisely, for λ > 0, ω ∈ Sn−1 = {y ∈ Rn : |y| = 1}, ϕ ∈ C∞(Rn) we consider solutions of this equation
of the form

u = e−λ(t+x·ω)(χ(t, x) + w(t, x)) (3.2)
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with u ∈ H2(Q) and χ(t, x) = ϕ(x + tω). Here w is the remainder term in the asymptotic expansion of u
with respect to λ and we have

‖w‖H1(Q) 6
C

λ

with C > 0 independent of λ. In order to build such GO solutions, we first introduce some well known
results of Hörmander about solutions of PDEs with constant coefficients of the form P (D)u = f in Q with
P a polynomial of n+ 1 variables with complex valued coefficients and D = −i(∂t, ∂x).

3.1. Solutions of PDEs with constant coefficients. We start this subsection by recalling some properties
of solutions of PDEs of the form P (D)u = f with constant coefficients. For P a polynomial of n+1 variable,
let P̃ be defined by

P̃ (µ, ξ) =

(∑
k∈N

∑
α∈Nn

∣∣∂kµ∂αξ P (µ, ξ)
∣∣2) 1

2

, µ ∈ R, ξ ∈ Rn.

Theorem 2. (Theorem 7.3.10, [17]) For every P 6= 0 polynomial of n+1 variables one can find a distribution
of finite order EP ∈ D′(R1+n) such that P (D)EP = δ.

Such distributions EP are called fundamental solutions of P . Note that

EP ∗ (P (D)u) = u, u ∈ E ′(R1+n),

P (D)(EP ∗ f) = f, f ∈ E ′(R1+n),

where E ′(R1+n) is the set of distributions with compact support. Thus, for all f ∈ E ′(R1+n), u = EP ∗ f
is a solution of P (D)u = f . Let us give some information about the regularity of such a solution. For this
purpose we need the following definitions introduced in [18].

Definition 1. A positive function κ defined in R1+n will be called a temperate weight function if there exist
positive constants C and N such that

κ(ζ + η) 6 C(1 + |ζ|)Nκ(η), ζ, η ∈ R1+n.

The set of all such functions κ will be denoted by K.

Notice that, for all polynomial of n+ 1 variables P , P̃ ∈ K.

Definition 2. If κ ∈ K and 1 6 p 6∞, we denote by Bp,κ the set of all temperate distribution u ∈ S ′(R1+n)
such that its Fourier transform û is a function and

‖u‖p,κ =

(
1

(2π)1+n

∫
Rn

∫
R
|κ(µ, ξ)û(µ, ξ)|p dµdξ

) 1
p

<∞.

When p =∞ we shall interpret ‖u‖p,κ as ess. sup|κ(µ, ξ)û(µ, ξ)|. We denote by Blocp,κ the set of u ∈ S ′(R1+n)

such that for all χ ∈ C∞0 (R1+n) we have χu ∈ Bp,κ.

Remark 1. Let
κ1(µ, ξ) = (1 + |(µ, ξ)|2)

1
2 , µ ∈ R, ξ ∈ Rn.

Then, in view of [18, Example 10.1.2], one can easily show that κ1 ∈ K and B2,κ1 = H1(R1+n).

Remark 2. In view of [18, Theorem 10.1.12], for κ′1, κ′2 ∈ K, κ = κ′1 · κ′2, u1 ∈ Bp,κ′1 ∩ E
′(R1+n) and

u2 ∈ B∞,κ′2 , we have u1 ∗ u2 ∈ Bp,κ and

‖u1 ∗ u2‖Bp,κ 6 ‖u1‖Bp,κ′1
‖u2‖B∞,κ′2

. (3.3)
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Theorem 3. (Theorem 10.21, [18]) Every polynomial of n+ 1 variables P 6= 0, has a fundamental solution
EP ∈ Bloc∞,P̃ such that EP

cosh(|(t,x)|) ∈ B∞,P̃ and∥∥∥∥ EP
cosh(|(t, x)|)

∥∥∥∥
B∞,P̃

6 C (3.4)

with C > 0 a constant depending only on the degree of P .

Such a fundamental solution will be denoted by regular fundamental solution. Let us remark that in
our construction of geometric optics solutions we need to consider an operator E such that P (D)E = Id for
some polynomial of n+1 variables P 6= 0. Using the properties of regular fundamental solutions, Hörmander
proved in [18, Theorem 10.3.7] that such a operator exists and it is a bounded operator of L2(X) for X a
bounded open set of R1+n. In contrast to elliptic equations and parabolic equations (see [8, Subsection 2.1
and 3.6]), for hyperbolic equations we can not build GO lying in H2(Q) by applying the result of [18]. What
we can actually build from this result is GO lying in H1(Q) (e.g. [26, Proposition 3]) . Therefore, we need
to consider the following.

Proposition 2. Let P 6= 0 be a polynomial of n+ 1 variables. Then there exists an operator

E : H1(Q)→ H1(Q)

such that:
(1) P (D)Ef = f, f ∈ H1(Q),
(2) for all polynomial of n+ 1 variables S such that S̃

P̃
is bounded, we have S(D)E ∈ B(H1(Q)), and

‖S(D)E‖B(H1(Q)) 6 C sup
(µ,ξ)∈R×Rn

|S(µ, ξ)|
P̃ (µ, ξ)

, k = 0, 1, (3.5)

where C > 0 depends only on the degree of P , Ω and T .

Proof. Let f ∈ H1(Q). In view of [40, Theorem 5, p 181], there exists an extension operator E ∈
B
(
H1(Q), H1(R1+n)

)
such that Ef|Q = f . Set χ ∈ C∞0 (R1+n) and R > 0 such that χ = 1 on a neigh-

borhood of Q and suppχ ⊂ BR with BR the ball of radius R and of center 0 of R1+n. Let EP be a regular
fundamental solution of P . Now consider the operator

E : f 7−→ (EP ∗ (χEf))|Q .

Clearly we have
P (D)EP ∗ (χEf) = χEf

and it follows that
P (D)Ef = (χEf)|Q = f

which proves (1). Now let us show (2). For this purpose, let ψ ∈ C∞0 (R1+n) be such that ψ = 1 on the
closure of BR −BR = {x− y : x, y ∈ BR} and notice that

(EP ∗ (χEf))|Q = ((ψEP ) ∗ (χEf))|Q . (3.6)

Moreover, the Fourier transform F(S(D)ψEP ) of S(D)ψEP satisfies

|F(S(D)ψEP )(µ, ξ)| 6 |S(µ, ξ)|
P̃ (µ, ξ)

P̃ (µ, ξ)

∣∣∣∣F (ψ cosh(|(t, x)|) EP
cosh(|(t, x)|)

)
(µ, ξ)

∣∣∣∣ , µ ∈ R, ξ ∈ Rn.

Here F denotes the Fourier transform in the sense of S ′(R1+n). Then, since ψ cosh(|(t, x)|) ∈ C∞0 (R1+n),
from [8, Lemma 2.1] we deduce that

ψ cosh(|(t, x)|) EP
cosh(|(t, x)|)

∈ B∞,P̃
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and ∥∥∥∥ψ cosh(|(t, x)|) EP
cosh(|(t, x)|)

∥∥∥∥
B∞,P̃

6 C1

∥∥∥∥ EP
cosh(|(t, x)|)

∥∥∥∥
B∞,P̃

6 C ′

with C ′ > 0 a constant depending only on the degree of P and χ. It follows that S(D)ψEP ∈ B∞,1 and

‖S(D)ψEP ‖B∞,1 6 C
′ sup
(µ,ξ)∈R×Rn

|S(µ, ξ)|
P̃ (µ, ξ)

.

In view of Remark 2, since χEf ∈ H1(R1+n) = B2,κ1
with κ1 introduced in Remark 1, we have S(D)(ψEP )∗

(χEf) = (S(D)ψEP ) ∗ (χEf) ∈ B2,κ1
and

‖S(D)(ψEP ) ∗ (χEf)‖H1(R1+n) = ‖S(D)(ψEP ) ∗ (χEf)‖B2,κ1

6 ‖S(D)ψEP ‖B∞,1 ‖χEf‖H1(R1+n))

6 C sup
(µ,ξ)∈R×Rn

|S(µ, ξ)|
P̃ (µ, ξ)

‖f‖H1(Q)

with C > 0 a constant depending only on the degree of P , χ, Ω and T . Thus, in view of (3.6), we have
S(D)Ef ∈ H1(Q) and

‖S(D)Ef‖H1(Q) 6 ‖(ψEP ) ∗ (χEf)‖H1(Q) 6 C sup
(µ,ξ)∈R×Rn

|S(µ, ξ)|
P̃ (µ, ξ)

‖f‖H1(Q) .

�

Armed with this result, we are now in position to build GO of the form (3.2) lying in H2(Q).

3.2. Construction of geometric optics solutions. The goal of this subsection is to apply the results of
the previous subsection in order to build geometric optics of the form (3.2). For this purpose, for all s ∈ R
and all ω ∈ Sn−1, we consider the operators Ps,ω defined by Ps,ω = e−s(t+x·ω)�es(t+x·ω). One can check that

Ps,ω = ps,ω(Dt, Dx) = �+ 2s(∂t − ω · ∇x)

with Dt = −i∂t, Dx = −i∇x and ps,ω(µ, ξ) = −µ2 + |ξ|2 +2is(µ−ω ·ξ), µ ∈ R, ξ ∈ Rn. Applying Proposition
2 to P−λ,ω we obtain the following intermediate result.

Lemma 1. For every λ > 1 and ω ∈ Sn−1 there exists a bounded operator Eλ,ω : H1(Q) → H1(Q) such
that:

P−λ,ωEλ,ωf = f, f ∈ H1(Q), (3.7)

‖Eλ,ω‖B(H1(Q)) 6 Cλ
−1, (3.8)

Eλ,ω ∈ B(H1(Q);H2(Q)) and ‖Eλ,ω‖B(H1(Q);H2(Q)) 6 C (3.9)

with C > depending only on T and Ω.

Proof. In light of Proposition 2, there exists a bounded operator Eλ,ω : H1(Q) → H1(Q), defined from a
fundamental solution associated to P−λ,ω, such that (3.7) is fulfilled. In addition, for all differential operator
Q(Dt, Dx) such that Q(µ,ξ)

p̃−λ,ω(µ,ξ) is bounded, we have Q(Dt, Dx)Eλ,ω ∈ B(H1(Q)) and

‖Q(Dt, Dx)Eλ,ω‖B(H1(Q)) 6 C sup
(µ,ξ)∈R1+n

|Q(µ, ξ)|
p̃−λ,ω(µ, ξ)

, (3.10)

where p̃−λ,ω is given by

p̃−λ,ω(µ, ξ) =

(∑
k∈N

∑
α∈Nn

|∂kµ∂αξ p−λ,ω(µ, ξ)|2
) 1

2
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and C > 0 depends only on Ω, T . Note that p̃−λ,ω(µ, ξ) > |I∂µp−λ,ω(µ, ξ)| = 2λ. Therefore, (3.10) implies

‖Eλ,ω‖B(H1(Q)) 6 C sup
(µ,ξ)∈R1+n

1

p̃−λ,ω(µ, ξ)
6 Cλ−1

and (3.8) is fulfilled. In a same way, we have p̃−λ,ω(µ, ξ) > |R∂µp−λ,ω(µ, ξ)| = 2|µ| and p̃−λ,ω(µ, ξ) >
|R∂ξip−λ,ω(µ, ξ)| = 2|ξi|, i = 1, . . . , n and ξ = (ξ1, . . . , ξn). Therefore, in view of condition (2) of Proposition
2, for all h ∈ H1(Q), we have ∂tEλ,ωh, ∂x1

Eλ,ωh, . . . , ∂xnEλ,ωh ∈ H1(Q) with

‖∂tEλ,ωh‖H1(Q)+

n∑
j=1

∥∥∂xjEλ,ωh∥∥H1(Q)
6 C

(
sup

(µ,ξ)∈R1+n

|µ|+ |ξ1|+ . . .+ |ξn|
p̃−λ,ω(µ, ξ)

)
‖h‖H1(Q) 6 C(n+1) ‖h‖H1(Q) .

Thus, we get Eλ,ω ∈ B(H1(Q);H2(Q)) with

‖Eλ,ω‖B(H1(Q);H2(Q)) 6 C sup
(µ,ξ)∈R1+n

|µ|+ |ξ1|+ . . .+ |ξn|
p̃−λ,ω(µ, ξ)

6 C(n+ 1)

and (3.9) is proved. �

In light of this result, we are now in position to build geometric optics solutions of the form (3.2) lying
in H2(Q).

Theorem 4. Let q ∈W 1,p(Q), with p > n+ 1, be such that ‖q‖W 1,p(Q) 6M , ω ∈ Sn−1, λ > 1. Then, there
exists λ0 > 1 such that for λ > λ0 ‖χ‖H3(Q) the equation (3.1) admits a solution u ∈ H2(Q) of the form
(3.2) with

‖w‖Hk(Q) 6 Cλ
k−2 ‖χ‖H3(Q) , k = 1, 2, (3.11)

where C and λ0 depend on Ω, T , M , n, p.

Proof. We start by recalling that

�e−λ(t+x·ω)χ(t, x) = e−λ(t+x·ω)�χ(t, x), (t, x) ∈ Q.
Thus, w should be a solution of

∂2
tw −∆xw − 2λ(∂t − ω · ∇x)w = − ((�+ q)χ(t, x) + qw) . (3.12)

Note that since q ∈ W 1,p(Q) with p > n + 1, using the Sobolev embedding theorem (e.g. [15, Theorem
1.4.4.1]) and Hölder inequality, one can check for all w ∈ H1(Q), qw ∈ H1(Q) with

‖qw‖H1(Q) 6 CM ‖w‖H1(Q) (3.13)

with C depending only on T , Ω, n, p. Therefore, according to Lemma 1, we can define w as a solution of
the equation

w = −Eλ,ω ((�+ q)χ(t, x) + qw) , w ∈ H1(Q)

with Eλ,ω ∈ B(H1(Q)) given by Lemma 1. For this purpose, we will use a standard fixed point argument
associated to the map

G : H1(Q) → H1(Q),

F 7→ −Eλ,ω [(�+ q)χ(t, x) + qF ] .

Indeed, in view of (3.8), fixing M1 > 0, there exists λ0 > 1 such that for λ > λ0 ‖χ‖H3(Q) the map G admits
a unique fixed point w in {u ∈ H1(Q) : ‖u‖H1(Q) 6 M1}. In addition, condition (3.8)-(3.9) imply that
w ∈ H2(Q) fulfills (3.11). This completes the proof. �

4. Stability estimate

This section is devoted to the proof of Theorem 1. We start by collecting some tools of [27] that will
play an important role in the proof of Theorem 1.



DETERMINATION OF A TIME-DEPENDENT COEFFICIENT FOR WAVE EQUATIONS 9

4.1. Carleman estimate and geometric optics solutions vanishing on parts of the boundary. The
goal of this section is to recall some useful tools for the proof of Theorem 1. We first consider the following
Carleman estimate.

Theorem 5. (Theorem 2, [27]) Let q ∈ L∞(Q), ω ∈ Sn−1 and u ∈ C2(Q). If u satisfies the condition

u|Σ = 0, u|t=0 = ∂tu|t=0 = 0 (4.1)

then there exists λ1 > 1 depending only on Ω, T and M > ‖q‖L∞(Q) such that the estimate

λ
∫

Ω
e−2λ(T+ω·x)

∣∣∂tu|t=T ∣∣2 dx+ λ
∫

Σ+,ω
e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ λ2

∫
Q
e−2λ(t+ω·x) |u|2 dxdt

6 C
(∫

Q
e−2λ(t+ω·x)

∣∣(∂2
t −∆x + q)u

∣∣2 dxdt+ λ3
∫

Ω
e−2λ(T+ω·x)

∣∣u|t=T ∣∣2 dx+ λ
∫

Ω
e−2λ(T+ω·x)

∣∣∇xu|t=T ∣∣2 dx)
+Cλ

∫
Σ−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)| dσ(x)dt

(4.2)
holds true for λ > λ1 with C and λ1 depending only on Ω, T and M > ‖q‖L∞(Q).

We precise that this Carleman estimate has been proved in [27] following some arguments of [4].
From now on, for all y ∈ Sn−1 and all r > 0, we set

∂Ω+,r,y = {x ∈ ∂Ω : ν(x) · y > r}, ∂Ω−,r,y = {x ∈ ∂Ω : ν(x) · y 6 r}
and Σ±,r,y = (0, T )×∂Ω±,r,y. Here and in the remaining of this text we always assume, without mentioning it,
that y and r are chosen in such way that ∂Ω±,r,±y contain a non-empty relatively open subset of ∂Ω. Without
lost of generality we can assume that there exists 0 < ε < 1 such that for all ω ∈ {y ∈ Sn−1 : |y − ω0| 6 ε}
we have ∂Ω−,ε,−ω ⊂ F ′. We consider u ∈ H�(Q) satisfying (∂2

t −∆x + q(t, x))u = 0 in Q,
u|t=0 = 0,
u = 0, on Σ+,ε/2,−ω,

(4.3)

of the form
u(t, x) = eλ(t+ω·x) (χ(t, x) + z(t, x)) , (t, x) ∈ Q. (4.4)

Here ω ∈ {y ∈ Sn−1 : |y − ω0| 6 ε}, χ(t, x) = ϕ(x + tω), z ∈ e−λ(t+ω·x)H�(Q) fulfills: z(0, x) = −χ(0, x) ,
x ∈ Ω, z = −χ(t, x) on Σ+,ε/2,−ω and

‖z‖L2(Q) 6 Cλ
− 1

2 ‖χ‖H2(Q) (4.5)
with C depending on F ′, Ω, T , p, n and M . Since Σ \ F ⊂ Σ+,ε,−ω and since Σ+,ε/2,−ω is a neighborhood
of Σ+,ε,−ω in Σ, it is clear that condition (4.3) implies (τ0,1u, τ0,3u) ∈ HF (∂Q) (recall that for v ∈ C∞(Q),
τ0,1v = v|Σ, τ0,3v = ∂tv|t=0). Repeating some arguments of [27, Theorem 3], we prove the following.

Theorem 6. Let q ∈ L∞(Q). For all λ > λ1, with λ1 the constant of Theorem 5, there exists a solution
u ∈ H�(Q) of (4.3) of the form (4.4) with z satisfying (4.5).

Proof. Note first that z must satisfy
z ∈ L2(Q)
(∂2
t −∆x + q)(eλ(t+ω·x)z) = −eλ(t+ω·x)(�+ q)χ(t, x) in Q

z(0, x) = −χ(0, x), x ∈ Ω,
z = −χ(t, x) on Σ+,ε/2,−ω.

(4.6)

Let ψ ∈ C∞0 (Rn) be such that suppψ ∩ ∂Ω ⊂ {x ∈ ∂Ω : ω · ν(x) < −ε/3} and ψ = 1 on {x ∈ ∂Ω :
ω · ν(x) < −ε/2} = ∂Ω+,ε/2,−ω. Choose v−(t, x) = −eλ(t+ω·x)ψ(x)χ(t, x), v(t, x) = −eλ(t+ω·x)(�+ q)χ(t, x)

and v0(x) = −eλω·xχ(0, x). Then, in view of [27, Lemma 3], there exists w ∈ H�(Q) such that (∂2
t −∆x + q)w = v(t, x) = −eλ(t+ω·x)(�+ q)χ(t, x) in Q,

w(0, x) = v0(x) = −eλω·xχ(0, x), x ∈ Ω,
w(t, x) = v−(t, x) = −eλ(t+ω·x)ψ(x)χ(t, x), (t, x) ∈ Σ−,ω.
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For z = e−λ(t+ω·x)w condition (4.6) will be fulfilled. Moreover, in light of [27, Lemma 3], we have (4.5). �

Armed with these results we are now in position to complete the proof of Theorem 1.

4.2. Proof of Theorem 1. In this subsection we complete the proof of Theorem 1. We start with two
intermediate results. From now on we set q = q2−q1 on Q and assume that q = 0 on R1+n \Q. Without lost
of generality we assume that 0 ∈ Ω and that for all ω ∈ {y ∈ Sn−1 : |y−ω0| 6 ε} we have ∂Ω−,ε,ω ⊂ G′ with
ε introduced in the previous subsection (see 2 lines before (4.3)). Let us consider the light-ray transform of
q (see [35] and [37]) given by

Rq(x, ω) =

∫
R
q(t, x+ tω)dt, x ∈ Rn, ω ∈ Sn−1.

Using the Carleman estimate introduced in (4.2) and the geometric optics solutions of Theorem 4 and
Theorem 6, we obtain the following estimate of Rq.

Lemma 2. Assume that the conditions of Theorem 1 are fulfilled. Then, there exists λ2 > 1, such that for
all λ > λ2, ω ∈ {y ∈ Sn−1 : |y − ω0| 6 ε}, we have

‖Rq(·, ω)‖L1(Rn) 6 C
(
λ−

α
4+2α + edλ ‖Bq1 −Bq2‖

)
(4.7)

with α = 1− n+1
p and d,C depending only on Ω, M , T , F ′, G′, p, n.

Proof. Let ϕ ∈ C∞0 (Rn) be such that 0 6 ϕ 6 1, suppϕ ⊂ {x ∈ Rn : |x| 6 1}, ‖ϕ‖L2(Rn) = 1. For 0 < δ < 1,
we set

χδ(t, x, y) = δ−n/2ϕ
(
δ−1(y − x− tω)

)
, t ∈ R, x ∈ Rn, y ∈ Rn.

Note that
‖χδ(., ., y)‖Hk(Q) 6 Cδ

−k, y ∈ Rn (4.8)

with C independent of δ and y. We fix λ2 = max(Cλ0 + 1, λ1)
α+3
α with λ0 the constant introduced in

Theorem 4, λ1 the constant introduced in Theorem 5 and C the constant of the previous estimate. Let
ω ∈ {y ∈ Sn−1 : |y − ω0| 6 ε} and let λ > λ2 with λ > δ−α−3, ω ∈ {y ∈ Sn−1 : |y − ω0| 6 ε}. Then, we have

λ > λ
α
α+3

2 λ
3

α+3 > λ0Cδ
−3 > λ0 ‖χδ(., ., y)‖H3(Q) , y ∈ Rn

and, in view of Theorem 4, we can introduce

u1(t, x) = e−λ(t+x·ω) (χδ(t, x, y) + w(t, x)) , (t, x) ∈ Q, y ∈ Rn,

where u1 ∈ H2(Q) satisfies ∂2
t u1 −∆xu1 + q1u1 = 0 and w satisfies (3.11). Moreover, in view of Theorem 6,

we consider u2 ∈ H�(Q) a solution of (4.3) with q = q2 of the form

u2(t, x) = eλ(t+x·ω) (χδ(t, x, y) + z(t, x)) , (t, x) ∈ Q, y ∈ Rn

with z satisfying (4.5), such that suppτ0,1u2 ⊂ F and τ0,2u2 = 0. Let w1 be the solution of
∂2
tw1 −∆xw1 + q1w1 = 0 in Q,
w1|t=0 = 0, ∂tw1|t=0 = τ0,3u2 on Ω,
w1|Σ = τ0,1u2.

(4.9)

Then, u = w1 − u2 solves  ∂2
t u−∆xu+ q1u = (q2 − q1)u2 in Q,
u(0, x) = ∂tu(0, x) = 0 on Ω,
u = 0 on Σ

(4.10)

and since (q2 − q1)u2 ∈ L2(Q), in view of [3, Theorem A.2], we deduce that u ∈ C1([0, T ];L2(Ω)) ∩
C([0, T ];H1

0 (Ω)) with ∂νu ∈ L2(Σ). Moreover we have

‖u‖C1([0,T ];L2(Ω)) + ‖u‖C([0,T ];H1
0 (Ω)) + ‖∂νu‖L2(Σ) 6 2CM ‖u2‖L2(Q) .
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Applying the Green formula with respect to x ∈ Ω and integration by parts with respect to t ∈ (0, T ), we
find ∫

Q

qu2u1dxdt =

∫
Q

(∂2
t −∆x + q1)uu1dxdt

= −
∫
G

∂νuu1dσ(x)dt−
∫

Σ\G
∂νuu1dσ(x)dt

+

∫
Ω

∂tu(T, x)u1(T, x)dx−
∫

Ω

u(T, x)∂tu1(T, x)dx.

(4.11)

Combining (4.8) and (3.11), we find

‖u1‖H2(Q) 6 Cδ
−3ecλ (4.12)

with c = T + Diam(Ω) + 1, C depending on M , T , Ω, n, p. Moreover, in view of estimate (3.11), we have

‖w‖L2(Σ) 6 C ‖w‖L2(0,T ;H1(Ω)) 6 C ‖w‖H1(Q) 6 C,

where C depends on Ω, T , n, p and M . Applying this estimate, (4.8), (4.12) and the Cauchy Schwarz
inequality, we obtain∣∣∣∣∣

∫
Σ\G

∂νuu1dσ(x)dt

∣∣∣∣∣ 6
∫

Σ+,ε,ω

∣∣∣∂νue−λ(t+x·ω)(χδ + w)
∣∣∣ dtdσ(x)

6 Cδ−1

(∫
Σ+,ε,ω

∣∣∣e−λ(t+x·ω)∂νu
∣∣∣2 dσ(x)dt

) 1
2

,

∣∣∣∣∫
G

∂νuu1dσ(x)dt

∣∣∣∣ 6 Cδ−1ecλ ‖∂νu‖L2(G)

for some C depending only on Ω, T , n, p and M . Here we use the fact that Σ \G ⊂ Σ+,ε,ω In the same way,
(3.11) imply ∥∥w|t=T∥∥L2(Ω)

6 C ‖w‖H1(0,T ;L2(Ω)) 6 C ‖w‖H1(Q) 6 C

and ∥∥∂tw|t=T∥∥L2(Ω)
6 C ‖w‖H2(0,T ;L2(Ω)) 6 C ‖w‖H2(Q) 6 Cδ

−3

with C a generic constant depending on Ω, T , M , n, p. Thus, we obtain∣∣∣∣∫
Ω

∂tu(T, x)u1(T, x)dx

∣∣∣∣ 6 C (∫
Ω

∣∣∣e−λ(T+x·ω)∂tu(T, x)
∣∣∣2 dx) 1

2

,

∣∣∣∣∫
Ω

u(T, x)∂tu1(T, x)dx

∣∣∣∣ 6 Cδ−3ecλ
(∫

Ω

|u(T, x)|2dx
) 1

2

.

In view of these estimates and (4.11), we have∣∣∣∫Q qu2u1dxdt
∣∣∣2

6 Cδ−1
(∫

Ω

∣∣e−λ(T+x·ω)∂tu(T, x)
∣∣2 dx+

∫
Σ+,ε,ω

∣∣e−λ(t+x·ω)∂νu
∣∣2 dσ(x)dt

)
Cδ−6e2cλ

(
‖∂νu‖2L2(G) +

∥∥u|t=T∥∥2

H1(Ω)

) (4.13)
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where C depends on Ω, T , M , n, p. On the other hand, the Carleman estimate (4.2) and the fact that
∂Ω+,ε,ω ⊂ ∂Ω+,ω imply∫

Σ+,ε,ω

∣∣e−λ(t+x·ω)∂νu
∣∣2 dσ(x)dt+

∫
Ω

∣∣e−λ(T+x·ω)∂tu(T, x)
∣∣2 dx

6 ε−1
(∫

Σ+,ω

∣∣e−λ(t+x·ω)∂νu
∣∣2 ω · ν(x)dσ(x)dt+

∫
Ω

∣∣e−λ(T+x·ω)∂tu(T, x)
∣∣2 dx)

6 ε−1C
λ

(∫
Q

∣∣e−λ(t+x·ω)(∂2
t −∆x + q1)u

∣∣2 dxdt+
∫

Σ−,ω

∣∣e−λ(t+x·ω)∂νu
∣∣2 |ω · ν(x)| dσ(x)dt

)
+ε−1C

(
λ3
∫

Ω
e−2λ(T+x·ω)

∣∣u|t=T ∣∣2 dx+ λ
∫

Ω
e−2λ(T+x·ω)

∣∣∇xu|t=T ∣∣2 dx)
6 ε−1C

λ

(∫
Q

∣∣∣|q|2 (χδ(t, x, y) + |z|)2
∣∣∣2 dxdt)+ Cδ−6e2cλ(‖∂νu‖2L2(G) + ‖ut=T ‖2H1(Ω))

Combining this with (4.13), we obtain∣∣∣∣∫
Q

qu1u2dxdt

∣∣∣∣2 6 C

λ
+ Cδ−6e2cλ(‖∂νu‖2L2(G) + ‖ut=T ‖2H1(Ω)) (4.14)

with C depending only on Ω, T , G′, M , n, p. On the other hand, we have∫
Q

qu1u2dxdt =

∫
R1+n

q(t, x)χ2
δ(t, x, y)dxdt+

∫
Q

Z(t, x)dxdt

with Z = q(zχδ + wχδ + zw). Then, in view of (3.11) and (4.5), an application of the Cauchy-Schwarz
inequality yields ∣∣∣∣∫

Q

Z(t, x)dxdt

∣∣∣∣ 6 C(δ−2λ−
1
2 + δ−3λ−1)

with C depending on Ω, T , G′, M . Combining this estimate with (4.14), we obtain

|Vδ,q(y)|2 6 C
(
δ−4λ−1 + δ−6λ−2 + δ−6e2cλ(‖∂νu‖2L2(G) + ‖ut=T ‖2H1(Ω))

)
with

Vδ,q(y) =

∫
R1+n

q(t, x)δ−nϕ2(δ−1(y−x−tω))dxdt =

∫
Rn

(∫
R
q(t, x+ tω)dt

)
δ−nϕ2(δ−1(y−x))dx, y ∈ Rn.

On the other hand, one can check that suppVδ,q ⊂ {y : |y| 6 T + Diam(Ω) + 1} and from the previous
estimate we get

‖Vδ,q‖L1(Rn) 6 C
[
δ−2λ−1/2 + δ−3λ−1 + δ−3ecλ

(
‖∂νu‖L2(G) + ‖ut=T ‖H1(Ω)

)]
(4.15)

In order to complete the proof of the lemma we only need to check that this estimate implies (4.7). For
this purpose using the fact that q ∈ W 1,p(Q) with p > n+ 1, by the Sobolev embedding theorem (e.g. [15,
Theorem 1.4.4.1]) we have q ∈ Cα(Q) with ‖q‖Cα(Q) 6 CM with C depending on Ω, n, p and T . Moreover,
applying (1.3), we deduce that for all t ∈ R, q(t, ·) ∈ Cα(Rn). Thus, using the fact that

Rq(x, ω) =

∫ T

0

q(t, x+ tω)dt,

we deduce that Rq(·, ω) ∈ Cα(Rn) and suppRq(·, ω) ⊂ {x ∈ Rn : |x| 6 Diam(Ω) + T}. Combining this with
the fact that

Vδ,q(y) =

∫
Rn
Rq(y − δu, ω)ϕ2(u)du,

we obtain
‖Vδ,q −Rq(·, ω)‖L1(Rn) 6 Cδ

α
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with C depending on Ω, T , M , p and n. Combining this with (4.15) we deduce (4.7) by using the fact that

‖∂νu‖2L2(G) + ‖ut=T ‖2H1(Ω) 6 ‖Bq1 −Bq2‖
2 ‖(τ0,1u2, τ0,3u2)‖2HF (∂Q)

6 C ‖Bq1 −Bq2‖
2 ‖u2‖2H�(Q)

6 C ‖Bq1 −Bq2‖
2 ‖u2‖2L2(Q)

6 Cδ−4e2cλ ‖Bq1 −Bq2‖
2

and by choosing δ = λ−
1

4+2α and d = 2c+ 1. Here we have used (4.5) and the fact that

‖u2‖2H�(Q) = (1 + ‖q2‖2L∞(Q)) ‖u2‖2L2(Q) .

This completes the proof of the lemma. �

From now on, for all r > 0, we denote by Br the set Br = {z ∈ R1+n : |z| < r}. Let us recall the
following result, which follows from [1, Theorem 3] (see also [42]), on the continuous dependence in the
analytic continuation problem.

Proposition 3. Let ρ > 0 and assume that f : B2ρ ⊂ R1+n → C is a real analytic function satisfying∥∥∂βf∥∥
L∞(B2ρ)

6
Nβ!

(ρλ)|β|
, β ∈ N1+n

for some N > 0 and 0 < λ 6 1. Further let E ⊂ B ρ
2
be a measurable set with strictly positive Lebesgue

measure. Then,

‖f‖L∞(Bρ) 6 C(N)(1−b)
(
‖f‖L∞(E)

)b
,

where b ∈ (0, 1), C > 0 depend on λ, |E| and ρ.

Armed with Lemma 2, we will use Proposition 3 to complete the proof of Theorem 1.
Proof of Theorem 1. We set U = {y ∈ Sn−1 : |y − ω0| 6 ε}. For all ξ ∈ Rn we introduce

a(ξ) = inf
ω∈U

ξ · ω, b(ξ) = sup
ω∈U

ξ · ω.

Consider the set E1 = {(τ, ξ) : ξ ∈ Rn, a(ξ) 6 τ 6 b(ξ)} and note that for all (τ, ξ) ∈ E1 there exists ω ∈ U
such that τ = ξ · ω. It is clear that

(2π)−n/2
∫
Rn
Rq(x, ω)e−ix·ξdx = (2π)−n/2

∫
Rn+1

q(t, x)e−i(tω·ξ+x·ξ)dtdx = (2π)F(q)(ω · ξ, ξ), ξ ∈ Rn,

where F(q) is the Fourier transform of q given by

F(q)(τ, ξ) = (2π)−(n+1)/2

∫
Rn+1

q(t, x)e−i(tτ+x·ξ)dtdx.

Thus, we get
|F(q)(τ, ξ)| 6 (2π)−(n+1)/2 sup

ω∈U
‖Rq(., ω)‖L1(Rn) , (τ, ξ) ∈ E1.

Combining this with (4.7) we obtain

|F(q)(τ, ξ)| 6 C
(
λ−

α
4+2α + edλ ‖Bq1 −Bq2‖

)
, (τ, ξ) ∈ E1. (4.16)

We set for fixed R > 0, which will be made precise later, and (τ, ξ) ∈ R1+n,

H(τ, ξ) = F(q)(R(τ, ξ)) = (2π)−
(1+n)

2

∫
R1+n

q(t, x)e−iR(τ,ξ)·(t,x)dxdt.

Since suppq ⊂ Q and 0 ∈ Ω, H is real analytic and∣∣∂βH(τ, ξ)
∣∣ 6 C ‖q‖L1(Q)R

|β|

([max(T,Diam(Ω))]−1)|β|
6 C ‖q‖L1(Q)

R|β|

β!([max(T,Diam(Ω))]−1)|β|
β!, β ∈ N1+n
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with C depending on T and Ω. Moreover, we have

‖q‖L1(Q) 6 2M(T |Ω|)1− 1
p

and one can check that
R|β|

β!
6 e(1+n)R.

Applying these estimates, we obtain∣∣∂βH(τ, ξ)
∣∣ 6 C e(1+n)Rβ!

([max(T,Diam(Ω))]−1)|β|
, β ∈ N1+n (4.17)

with C depending on M , Ω, n, p and T . Set ρ = [max(T,Diam(Ω))]−1 + 1, E = E1 ∩ {ζ ∈ R1+n : |ζ| <
min(ρ2 , 1)} with N = Ce(1+n)R and λ = [max(T,Diam(Ω))]−1

ρ . In view of (4.17), we have

∥∥∂βH∥∥
L∞(B2ρ)

6 C
e(1+n)Rβ!

([max(T,Diam(Ω))]−1)|β|
=

Nβ!

(ρλ)|β|
, β ∈ N1+n.

Since for all (τ, ξ) ∈ E1 we have |(τ, ξ)|2 6 2|ξ|2, one can check that

A = {(τ, ξ) : (τ, ξ) ∈ E1, ξ/|ξ| ∈ U, |ξ| < r} ⊂ E

with r = min(ρ/2,1)√
2

. On the other hand, for all (τ, ξ) ∈ A, we have b(ξ) = |ξ| and for any ω ∈ U \ {ξ/|ξ|}
we have ω · ξ < |ξ| = b(ξ). Therefore, for all (τ, ξ) ∈ A we have a(ξ) < b(ξ) and, by fixing W = {ξ ∈ Rn :
ξ/|ξ| ∈ U, |ξ| < r}, we get

|A| =
∫
A
dτdξ =

∫
W

∫ b(ξ)

a(ξ)

dτdξ =

∫
W

(b(ξ)− a(ξ))dτdξ > 0.

Here we have used the fact that a, b ∈ C(Rn) and the fact that |W | > 0. Thus, we have |E| > 0. Moreover,
one can easily check that for all (τ, ξ) ∈ E1, r > 0, (rτ, rξ) ∈ E1. Then, since E ⊂ B ρ

2
, 0 < λ < 1 and ρ > 1,

applying Proposition 3 to H we obtain

|F(q)(R(τ, ξ))| = |H(τ, ξ)| 6 ‖H‖L∞(Bρ) 6 Ce
(1+n)R(1−b)

(
‖H‖L∞(E)

)b
, |(τ, ξ)| < 1,

where C > 0 and 0 < b < 1 depend only on Ω, T , M , F ′ and G′. But, estimate (4.16) implies that

|H(τ, ξ)|2 = |F(q)(R(τ, ξ))|2 6 C
(
λ−

2α
4+2α + e2dλ ‖Bq1 −Bq2‖

2
)
, (τ, ξ) ∈ E

and we deduce

|F(q)(τ, ξ)|2 6 Ce2(1+n)(1−b)R
(
λ−

2α
4+2α + e2dλ ‖Bq1 −Bq2‖

2
)b
, |(τ, ξ)| < R. (4.18)

Note that

‖q‖
2
b

H−1(R1+n) 6 C

(∫
R1+n

(1 + |(τ, ξ)|2)−1|F(q)(τ, ξ)|2dξdτ
) 1
b

. (4.19)

We shall make precise below, ∫
BR

(1 + |(τ, ξ)|2)−1|F(q)(τ, ξ)|2dξdτ

and ∫
R1+n\BR

(1 + |(τ, ξ)|2)−1|F(q)(τ, ξ)|2dξdτ
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separately. We start by examining the last integral. The Parseval-Plancherel theorem and the Sobolev
embedding theorem imply∫

R3\BR
(1 + |(τ, ξ)|2)−1|F(q)(τ, ξ)|2dξdτ 6 1

R2

∫
R1+n\BR

|F(q)(τ, ξ)|2dξdτ

6
1

R2

∫
R1+n

|F(q)(τ, ξ)|2dξdτ =
1

R2

∫
R1+n

|q(t, x)|2dtdx

6
4(T |Ω|)

p−2
p M2

R2
.

We end up getting that ∫
R1+n\BR

(1 + |(τ, ξ)|2)−1|F(q)(τ, ξ)|2dξdτ 6 C

R2
. (4.20)

Further, in light of (4.18), we get∫
BR

(1 + |(τ, ξ)|2)−1|F(q)(τ, ξ)|2dξdτ 6 CR1+ne2(1+n)(1−b)R
(
λ−

2α
4+2α + e2dλ ‖Bq1 −Bq2‖

2
)b
, (4.21)

upon eventually substituting C for some suitable algebraic expression of C.
Last, putting (4.20)–(4.21) together we find out that

‖q‖
2
b

H−1(R1+n) 6 C

(
1

R2
+R1+ne2(1+n)(1−b)R

(
λ−

2α
4+2α + e2dλ ‖Bq1 −Bq2‖

2
)b) 1

b

6 C
(
R−

2
b + λ−

2α
4+2αR

n+1
b e2(1+n)( 1−b

b )R +R
n+1
b e2(1+n)( 1−b

b )Re2dλ ‖Bq1 −Bq2‖
2
)
,

(4.22)

for λ > λ2 where the constant C > 0 depends only on Ω, T , F ′, G′, n, p and M . Here we have used the fact
that x 7→ x

1
b is convex on (0,+∞) since b ∈ (0, 1). Now let R1 > 1 be such that

R
n+3
b e2(1+n)R( 1−b

b ) > λ
2α

4+2α

2 , R > R1.

Then, choosing λ
2α

4+2α = R
n+3
b e2(1+n)R( 1−b

b ) we have λ > λ2 and λ−
2α

4+2αR
n+1
b e2(1+n)( 1−b

b )R = R−
2
b . With

this value of λ we obtain

‖q‖
2
b

H−1(R1+n) 6 C
(
R−

2
b +R

n+1
b e2(1+n)( 1−b

b )Rexp
(

2dR
(n+3)(4+2α)

2αb e(4+2α)(1+n)R( 1−b
αb )
)
‖Bq1 −Bq2‖

2
)
.

(4.23)
On the other hand, we have

R
n+1
b e2(1+n)( 1−b

b )Rexp
(

2dR
(n+3)(4+2α)

2αb e(4+2α)(1+n)R( 1−b
αb )
)

6 exp
(
R
n+1
b + 2(1 + n)

(
1−b
b

)
R+ 2dR

(n+3)(4+2α)
2αb e(4+2α)(1+n)R( 1−b

αb )
)

6 exp
(
e
n+1
b R + e2(1+n)( 1−b

b )R + e[2d+
(n+3)(4+2α)

2αb +(4+2α)(1+n)( 1−b
αb )]R

)
6 exp

(
3e[n+1

b +2(1+n)( 1−b
b )+2d+

(n+3)(4+2α)
2αb +(4+2α)(1+n)( 1−b

αb )]R
)

6 exp
(
e[3+n+1

b +2(1+n)( 1−b
b )+2d+

(n+3)(4+2α)
2αb +(4+2α)(1+n)( 1−b

αb )]R
)
.

Setting A = 3 + n+1
b + 2(1 + n)( 1−b

b ) + 2d+ (n+3)(4+2α)
2αb + (4 + 2α)(1 + n)( 1−b

αb ), (4.23) leads to

‖q‖
2
b

H−1(R1+n) 6 C
(
R−

2
b + ee

AR

‖Bq1 −Bq2‖
2
)
, R > R1. (4.24)

Set γ = ‖Bq1 −Bq2‖ and γ∗ = e−e
AR1 . For γ > γ∗ we have

‖q‖H−1(Q) 6 C‖q‖L∞(Q) 6
2CM

γ∗
γ. (4.25)
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For 0 < γ < γ∗, by taking R = R2 = 1
A ln(|ln γ|) in (4.24), which is permitted since R2 > R1, we find out

that

‖q‖H−1(Q) 6 ‖q‖H−1(R1+n) 6 C ln(|ln γ|)−1
(

ln(|ln γ|) 2
b γ +A

2
b

) b
2

.

Now, since sup
0<γ6γ∗

(
ln(|ln γ|) 2

b γ +A
2
b

) b
2

is just another constant depending only on Ω, T , F ′, G′, n, p and

M , we obtain
‖q‖H−1(Q) 6 C ln(|ln γ|)−1, 0 < γ < γ∗.

Combining this estimate with (4.25) we deduce (1.4). �
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