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Abstract. We consider the stability in the inverse problem consisting of the determination of a time-

dependent coefficient of order zero q, appearing in a Dirichlet initial-boundary value problem for a wave
equation ∂2

t
u−∆u+ q(t, x)u = 0 in Q = (0, T )×Ω with Ω a bounded C2 domain of Rn, n > 3, from partial

observations on ∂Q. The observation is given by a boundary operator associated to the wave equation.
Using suitable complex geometric optics solutions and a Carleman estimate, we prove a stability estimate
in the determination of q from the boundary operator.
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1. Introduction

1.1. Statement of the problem. In the present paper we consider Ω a C2 bounded domain of Rn, n > 3.
We set Σ = (0, T )× ∂Ω and Q = (0, T )× Ω with T > 0. We introduce the following initial-boundary value
problem (IBVP in short) for the wave equation







∂2t u−∆u+ q(t, x)u = 0, in Q,
u(0, ·) = v0, ∂tu(0, ·) = v1, in Ω,
u = g, on Σ,

(1.1)

where the potential q ∈ L∞(Q). We prove that problem (1.1) is well posed in some appropriate space. More
precisely, in Section 2 we introduce the space H(∂Q) and prove that, for (g, v0, v1) ∈ H(∂Q), problem (1.1)
admits a unique weak solution u ∈ L2(Q) with

‖u‖L2(Q) 6 C ‖(g, v0, v1)‖H(∂Q) .

We associate to (1.1) the boundary operator

Bq : (g, v0, v1) 7→ (∂νu|Σ, u|t=T , ∂tu|t=T )

with u the solution of (1.1) and ν the outward unit normal vector to ∂Ω. Here u is the solution of (1.1) and,
for u sufficiently smooth, ∂νu(x) = ∇u(x) · ν(x). See also Section 2 for a rigorous definition of this operator.
Consider, for all y ∈ S

n−1 = {y ∈ R
n : |y| = 1}, the set

∂Ω+,y = {x ∈ ∂Ω : ν(x) · y > 0}, ∂Ω−,y = {x ∈ ∂Ω : ν(x) · y 6 0}
and for ε > 0

∂Ω+,ε,y = {x ∈ ∂Ω : ν(x) · y > ε}, ∂Ω−,ε,y = {x ∈ ∂Ω : ν(x) · y 6 ε}
with ν the outward unit normal vector to ∂Ω. Note also that

∂Ω+,ε,−y = {x ∈ ∂Ω : ν(x) · y < −ε}, ∂Ω−,ε,−y = {x ∈ ∂Ω : ν(x) · y > −ε}.
We introduce

Σ±,y = (0, T )× ∂Ω±,y, Σ±,ε,y = (0, T )× ∂Ω±,ε,y

and the closed subspace Fy,ε of H(∂Q) defined by

Fy,ε = {(g, v0, v1) ∈ H(∂Q) : v0 = 0, suppg ⊂ Σ−,ε,−y}.
Let ω0 ∈ S

n−1, ε0 > 0. The main purpose of this paper is to prove a stability estimate in the determination
of the time-dependent potential q from the partial boundary operator

B∗
q = B∗

q,ω0,ε0
: Fω0,ε0 ∋ (g, 0, v1) 7→ (∂νu|Σ−,ε0,ω0

, u|t=T ). (1.2)

Physically speaking, our inverse problem consists of determining properties such as density of an inho-
mogeneous medium, that evolves over time, by probing it with disturbances generated on the boundary and
at initial time. The data is the response of the medium to these disturbances, measured on the boundary
and at final time, and the purpose is to recover the function which measures the property of the medium.

1.2. Existing papers. In recent years the problem of recovering coefficients for hyperbolic equations from
boundary measurements has attracted many attention. Many authors have considered this problem with an
observation given by the reduced boundary operator

Λq : g 7→ ∂νu|Σ,

where u solves (1.1) with v0 = v1 = 0. This operator is usually called the Dirichlet to Neumann map (DN
map in short). In [27], the authors proved that the DN map uniquely determines the time-independent
potential in a wave equation. Isakov [17] considered the determination of a coefficient of order zero and a
damping coefficient. Note that all these results are concerned with measurements on the whole boundary.
The uniqueness by local DN map has been considered by [10]. The stability estimate in the case where the DN
map is considered on the whole lateral boundary was treated by Stefanov and Uhlmann [32]. The uniqueness
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and Hölder stability estimate in a subdomain were established by Isakov and Sun [18] and, assuming that the
coefficients are known in a neighborhood of the boundary, Bellassoued, Choulli and Yamamoto [3] proved
a log-type stability estimate in the case where the Neumann data are observed in an arbitrary subdomain
of the boundary. In some recent work [21] extended the results of [27] to determination of large class of
time-independent coefficient of order zero in an infinite cylindrical domain, also called cylindrical waveguide,
and he proved that only measurements on a bounded subset are required for the determination of some class
of coefficients including periodic coefficients and compactly supported coefficients.

Let us also mention that the method using Carleman inequalities was first considered by Bukhgeim
and Klibanov [4]. For the application of Carleman estimate to the problem of recovering time-independent
coefficients for hyperbolic equations we refer to [2], [16] and [20].

All the above mentioned results are concerned only with time-independent coefficients. Several authors
considered the problem of determining time-dependent coefficients for hyperbolic equations. In [30], Stefanov
proved unique determination of a time-dependent potential for the wave equation from scattering data.
The result of [30] is equivalent to the consideration of the problem with boundary measurements (see also
[31] where this problem is explicitly addressed). In [28], Ramm and Sjöstrand considered the problem of
determining the time-dependent coefficient q from the DN map Λq associated to (1.1). For this purpose,
they considered the problem (1.1) on the infinite time-space cylindrical domain R × Ω instead of Q (t ∈ R

instead of 0 < t < T < ∞). Then, with some additional assumptions [28] proved a result of uniqueness.
In [26], Rakesh and Ramm considered the same problem at finite time on Q, with T > Diam(Ω), and they
proved a result of uniqueness for the determination of q restricted to the subset S of Q, consisting of the
lines which make 45 degree with the t-axis and which meet the planes t = 0 and t = T outside Q, from
the DN map Λq. Applying a result of unique continuation due to [34], Eskin [11] proved that the DN map
uniquely determines time-dependent coefficients that are analytic wrt the time variable t. In some recent
work, [29] extended the result of [28] to more general coefficients and he proved a result of stability for
compactly supported coefficients provided T is sufficiently large. One of the main point in the strategy
of these authors consists of using geometric optics solutions concentrate near lines in order to recover the
X-ray transform of the coefficient q from the DN map Λq. For time dependent coefficients this approach
requires measurements on the infinite time-space cylindrical domain R × Ω, otherwise one can only expect
the determination of the coefficients restricted to a subdomain of Q when the coefficients in consideration are
not analytic wrt t. Indeed, even with the knowledge of Bq restricted to zero initial data v0 = v1 = 0, from
domain of dependence argument there is no hope to determine q on the whole domain Q. In contrast to this
approach, Isakov [17] used complex geometric optics similar to the one used by [33] for elliptic equations, and
he proved results of density of products of solutions for different PDE including wave equations. Applying
these results, in Theorem 4.2 of [17], Isakov established a result of uniqueness for a time-dependent coefficient
of order zero. For problem (1.1) this last result can be stated as uniqueness in the determination of q, on the
whole domain Q, from the boundary operator Bq (see also [6] and [8] for results of stability for parabolic and
Schrödinger equations). In the present paper, we prove that the knowledge of the partial boundary operator
B∗

q is sufficient for the determination of the time-dependent potential q on the whole domain Q. Moreover,
we derive a stability estimate for this inverse problem. In contrast to the result of [17], which seems to be
the only result of determination of a time-dependent coefficient, that is not analytic wrt to t, on the whole
domain Q, in the present paper we consider only initial data (v0, v1) with v0 = 0 and Dirichlet boundary
condition g supported on some part of Σ (which, roughly speaking, corresponds to half of the boundary)
and we measure u|t=T and ∂νu on some part of Σ (which, roughly speaking, corresponds to the other half
of the boundary).

We also mention that [6], [7] and [12] considered the problem of determining a time-dependent coefficient
for parabolic equations and they derived stability estimate for this problem.

1.3. Main result. In order to express the main result of this paper we first remark (see Section 2) that for
every q1, q2 ∈ L∞(Q) the operator

B∗
q1

−B∗
q2

: Fω0,ε0 → L2(Σ−,ε0,ω0)×H1(Ω)
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is bounded. Then our main result can be stated as follows.

Theorem 1. Let q1, q2 ∈W 1,∞(Q) . Assume that

‖q1‖W 1,∞(Q) + ‖q2‖W 1,∞(Q) 6M.

Then, for all ω0 ∈ S
n−1 and ε0 > 0 we have

‖q1 − q2‖L2(Q) 6 h
(
∥

∥B∗
q1

−B∗
q2

∥

∥

)

(1.3)

with

h(γ) =







C γ
γ∗ , γ > γ∗,

C ln(|ln γ|)− 1
2 , 0 < γ < γ∗,

0, γ = 0.

Here
∥

∥B∗
q1

−B∗
q2

∥

∥ stands for the norm of B∗
q1
−B∗

q2
as an element of B(Fω,ε0 , L

2(Σ−,ε0,ω)×H1(Ω)). Moreover,

C is a positive constant depending on M , Ω, T , ε0, ω0 and γ∗ = e−eAR2
, with A and R2 two constant

introduced in Section 5 which depend on M , T , Ω, ε0, ω0.

Let us observe that the stability estimate (1.3) can be improved into a log-type stability estimate if we
replace B∗

q by the full boundary operator Bq. Indeed, by combining the results of Section 3 with arguments
of [6] (see subsection 3.6) and [8], one can prove a log-type stability estimate in the determination of q from
Bq.

Let us remark that in this paper we only treat the case n > 3. Nevertheless, we believe that with
additional technical arguments one can extend our result to the case n = 2. For n = 2, the main difficulty
comes from the choice for ζj , j = 1, 2, in Proposition 4.

The main tools in our analysis are suitable complex geometric optics (CGO in short) solutions and
Carleman estimates. More precisely, in this paper we adapt to the wave equation some arguments used by
many authors for elliptic equations (e.g. [5], [13], [19], [25]). This approach seems quite natural since we
want to determine a coefficient that depends on every variable of our equation.

1.4. Outline. This paper is organized as follows. In Section 2 we treat the direct problem. We show that
problem (1.1) is well posed in some appropriate space and we define the boundary operator Bq associated
to this problem. In Section 3, using some results of [6], [14] and [15], we build suitable CGO solutions
associated to (1.1) without condition on ∂Q. In Section 4, we establish a Carleman estimate for the wave
equation with linear weight. In Section 5, we use the Carleman estimate introduced in Section 4 to build
CGO solutions associated to (1.1) that vanish on parts of ∂Q. More precisely, we build CGO u which are
solutions of (1.1) with (g, v0, v1) ∈ Fω0,ε0 . In Section 6 we prove Theorem 1. We prove also some auxiliary
results in the appendix.

2. Functional space

In this section we study the IBVP (1.1). We define the space H(∂Q) and its topology. We define also
the boundary operator Bq in some appropriate spaces. We first introduce the space

J = {u ∈ L2(Q) : (∂2t −∆)u = 0}
and topologize it as a closed subset of L2(Q). We work with the space

H�(Q) = {u ∈ L2(Q) : �u = (∂2t −∆)u ∈ L2(Q)},
with the norm

‖u‖2H�(Q) = ‖u‖2L2(Q) +
∥

∥(∂2t −∆)u
∥

∥

2

L2(Q)
.

Here and in all this paper we denote by � the differential operator defined by �u = (∂2t −∆)u. Repeating
some arguments of Theorem 6.4 in chapter 2 of [23] we prove in the appendix (see Theorem 7) that H�(Q)
embedded continuously into the closure of C∞(Q) in the space

K�(Q) = {u ∈ H−1(0, T ;L2(Ω)) : �u = (∂2t −∆)u ∈ L2(Q)}
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topologized by the norm

‖u‖2K�(Q) = ‖u‖2H−1(0,T ;L2(Ω)) +
∥

∥(∂2t −∆)u
∥

∥

2

L2(Q)
.

Then, following Theorem 6.5 in chapter 2 of [23], we prove in the appendix that the maps

T0w = (w|Σ, w|t=0, ∂tw|t=0), T1w = (∂νw|Σ, w|t=T , ∂tw|t=T ), w ∈ C∞(Q),

can be extended continuously to T0 : H�(Q) → H−3(0, T ;H− 1
2 (∂Ω)) ×H−2(Ω) ×H−4(Ω), T1 : H�(Q) →

H−3(0, T ;H− 3
2 (∂Ω))×H−2(Ω)×H−4(Ω) (see Proposition 7). Therefore, we can define

H(∂Q) = {T0u : u ∈ H�(Q)} ⊂ H−3(0, T ;H− 1
2 (∂Ω))×H−2(Ω)×H−4(Ω).

Following [25], in order to define an appropriate topology on H(∂Q) we consider the restriction of T0 to the
space J .

Proposition 1. The restriction of T0 to J is one to one and onto.

Proof. Let u, v ∈ J with T0u = T0v. Then w = u− v solves






∂2tw −∆w = 0, (t, x) ∈ Q,

wt=0 = ∂tw|t=0 = 0,
w|Σ = 0

and the uniqueness of solutions of this IBVP implies that w = 0. Thus, the restriction of T0 to J is one to
one. Now let (g, v0, v1) ∈ H(∂Q). There exists F ∈ H�(Q) such that T0F = (g, v0, v1). Consider the IBVP







∂2t v −∆v = −(∂2t −∆)F, (t, x) ∈ Q,

v|t=0 = ∂tv|t=0 = 0,
v|Σ = 0.

Since −(∂2t −∆)F ∈ L2(Q), from the theory introduced in Section 8 of Chapter 3 of [23] we deduce that this
IBVP admits a unique solution v ∈ C1([0, T ];L2(Ω)) ∩ C([0, T ];H1

0 (Ω)). Then, u = v + F ∈ L2(Q) satisfies
(∂2t −∆)u = 0 and T0u = T0v + T0F = (g, v0, v1). Thus T0 is onto. �

We set P0 the inverse of T0 : J → H(∂Q) and we define the norm of H(∂Q) by

‖(g, v0, v1)‖H(∂Q) = ‖P0(g, v0, v1)‖L2(Q) .

We are now in position to state the well possedness of the IBVP (1.1).

Proposition 2. Let (g, v0, v1) ∈ H(∂Q) and q ∈ L∞(Q). Then the IBVP (1.1) admits a unique solution
u ∈ L2(Q) satisfying

‖u‖L2(Q) 6 C ‖(g, v0, v1)‖H(∂Q) (2.1)

and the boundary operator Bq : (g, v0, v1) 7→ T1u is a bounded operator from H(∂Q) to H−3(0, T ;H− 3
2 (∂Ω))×

H−2(Ω)×H−4(Ω).

Proof. We split u into two term u = v + P0(g, v0, v1) where v solves






∂2t v −∆v + qv = −qP0(g, v0, v1), (t, x) ∈ Q,

v|t=0 = ∂tv|t=0 = 0,
v|Σ = 0.

(2.2)

Since P0(g, v0, v1) ∈ L2(Q), the IBVP (2.2) admits a unique solution v ∈ C1([0, T ];L2(Ω))∩C([0, T ];H1
0 (Ω))

(e.g. Section 8 of Chapter 3 of [23]) satisfying

‖v‖C1([0,T ];L2(Ω)) + ‖v‖C([0,T ];H1
0 (Ω)) 6 C ‖−qP0(g, v0, v1)‖L2(Q) 6 C ‖q‖L∞(Q) ‖P0(g, v0, v1)‖L2(Q) . (2.3)

Therefore, u = v + P0(g, v0, v1) is the unique solution of (1.1) and estimate (2.3) implies (2.1). Now let
us show the last part of the proposition. For this purpose fix (g, v0, v1) ∈ H(∂Q) and consider u the
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solution of (1.1). Note first that u ∈ L2(Q) and (∂2t − ∆)u = −qu ∈ L2(Q). Thus u ∈ H�(Q) and

T1u ∈ H−3(0, T ;H− 3
2 (∂Ω))×H−2(Ω)×H−4(Ω) with

‖T1u‖2 6 C2 ‖u‖2H�(Q) = C2(‖u‖2L2(Q) + ‖qu‖2L2(Q)) 6 C2(1 + ‖q‖2L∞(Q)) ‖u‖
2
L2(Q) .

Combining this with (2.1) we deduce that Bq is a bounded operator from H(∂Q) to H−3(0, T ;H− 3
2 (∂Ω))×

H−2(Ω)×H−4(Ω). �

Consider the operator Bq1 −Bq2 for q1, q2 ∈ L∞(Q). We have the following regularity result.

Proposition 3. Let q1, q2 ∈ L∞(Q). Then the operator Bq1 − Bq2 is a bounded operator from H(∂Q) to
L2(Σ)×H1(Ω)× L2(Ω).

Proof. Let u1, u2 be respectively the unique solution of the IBVP (1.1) for q = q1 and q = q2. Then
u = u1 − u2 solves







∂2t u−∆u+ q1u = (q2 − q1)u2, (t, x) ∈ Q,

u|t=0 = ∂tu|t=0 = 0,
u|Σ = 0.

Since (q2 − q1)u2 ∈ L2(Q), in view of Theorem A.2 in [3] (see also Theorem 2.1 in [22] for q = 0), u ∈
C1([0, T ];L2(Ω)) ∩ C([0, T ];H1

0 (Ω)) with ∂νu ∈ L2(Σ). Moreover we have the following energy estimate

‖u‖C1([0,T ];L2(Ω)) + ‖u‖C([0,T ];H1
0 (Ω)) + ‖∂νu‖L2(Σ) 6 C ‖q1 − q2‖L∞(Q) ‖u2‖L2(Q) .

Note that in Theorem A.2 of [3] the authors consider only the case q is independent of t but their arguments
still work when q is time-dependent. Combining this estimate with (2.1), we deduce that T1u ∈ L2(Σ) ×
H1(Ω)× L2(Ω) with

‖T1u‖L2(Σ)×H1(Ω)×L2(Ω) 6 C ‖(g, v0, v1)‖H(∂Q) ,

where C depends on Ω, T and M > ‖q1‖L∞(Q)+‖q2‖L∞(Q). Finally, we complete the proof by recalling that

T1u = T1u1 − T1u2 = (Bq1 −Bq2)(g, v0, v1).

�

According to Proposition 2 and 3, for every q1, q2 ∈ L∞(Q), the partial boundary operators B∗
qj

are well

defined as bounded operator from Fω0,ε0 to H−3(0, T ;H− 3
2 (∂Ω−,ε0,ω0

)) ×H−2(Ω). Moreover the operator
B∗

q1
−B∗

q2
is bounded from Fω0,ε0 to L2(Σ−,ε0,ω0)×H1(Ω).

3. Complex geometric optics solutions

The goal of this section is to build CGO u associated to the equation

∂2t u−∆u+ q(t, x)u = 0 on Q.

More precisely we consider solutions of this equation of the form

u = eζ1·(t,x)(1 + w(t, x)) (3.1)

with u ∈ H2(Q). Here ζ1 ∈ C
1+n and it is chosen in such way that (∂2t − ∆)eζ1·(t,x) = 0. Moreover, ζ1

depends on some parameter r > 0 and the remainder term w in the asymptotic expansion of u wrt r satisfies

‖w‖L2(Q) 6
C

r

with C > 0 independent of r. In order to build such CGO, we first introduce some well known results
of Hörmander about solutions of PDE’s with constant coefficients of the form P (D)u = f on Q with
P ∈ C[X0, X1, . . . , Xn] a polynomial with complex coefficient and D = −i(∂t, ∂x).
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3.1. Solutions of PDE with constant coefficients. We start this subsection by recalling some properties
of solutions of PDE’s of the form P (D)u = f with constant coefficients. Let P ∈ C[X0, X1, . . . , Xn] and P̃

defined by

P̃ =

(

∑

α∈N1+n

∣

∣

∣
∂α(t,x)P (t, x)

∣

∣

∣

2
)

1
2

.

Theorem 2. (Theorem 7.3.10, [14])For every P ∈ C[X0, X1, . . . , Xn] with P 6= 0 one can find a distribution
of finite order EP ∈ D′(R1+n) such that P (D)EP = δ.

Such distributions EP are called fundamental solutions of P . Note that

EP ∗ (P (D)u) = u, u ∈ E ′(R1+n),

P (D)(EP ∗ f) = f, f ∈ E ′(R1+n),

where E ′(R1+n) is the set of distributions with compact support. Thus, for all f ∈ E ′(R1+n), u = EP ∗ f
is a solution of P (D)u = f . Let us give some information about the regularity of such a solution. For this
purpose we need the following definitions introduced in [15].

Definition 1. A positive function κ defined in R
1+n will be called a temperate weight function if there exist

positive constants C and N such that

κ(ξ + η) 6 C(1 + |ξ|)Nκ(η), ξ, η ∈ R
1+n.

The set of all such functions κ will be denoted by K.

Notice that, for all P ∈ C[X0, X1, . . . , Xn], P̃ ∈ K.

Definition 2. If κ ∈ K and 1 6 p 6 ∞, we denote by Bp,κ the set of all temperate distribution u ∈ S ′(R1+n)
such that û is a function and

‖u‖p,κ =

(

1

(2π)1+n

∫

R1+n

|κ(ξ)û(ξ)|p dξ

)
1
p

<∞.

When p = ∞ we shall interpret ‖u‖p,κ as ess. sup|κ(ξ)û(ξ)|. We denote by Bloc
p,κ the set of u ∈ S ′(R1+n)

such that for all χ ∈ C∞
0 (R1+n) we have χu ∈ Bp,κ.

Remark 1. Let

κ1(τ, η) = (1 + |(τ, η)|2) 1
2 , τ ∈ R, η ∈ R

n.

Then, in view of Example 10.1.2 of [15], one can easily show that κ1 ∈ K and B2,κ1
= H1(R1+n).

Remark 2. In view of Theorem 10.1.12 of [15], for κ′1, κ
′
2 ∈ K, κ = κ′1 · κ′2, u1 ∈ Bp,κ′

1
∩ E ′(R1+n) and

u2 ∈ B∞,κ′
2
, we have u1 ∗ u2 ∈ Bp,κ and

‖u1 ∗ u2‖Bp,κ
6 ‖u1‖Bp,κ′

1

‖u2‖B
∞,κ′

2

. (3.2)

Theorem 3. (Theorem 10.21, [15]) Every P ∈ C[X0, X1, . . . , Xn], with P 6= 0, has a fundamental solution
EP ∈ Bloc

∞,P̃
such that EP

cosh(|(t,x)|) ∈ B∞,P̃ and

∥

∥

∥

∥

EP

cosh(|(t, x)|)

∥

∥

∥

∥

B
∞,P̃

6 C (3.3)

with C > 0 a constant depending only on the degree of P .



8 YAVAR KIAN

Such a fundamental solution will be denoted by regular fundamental solution. Let us remark that in our
construction of complex geometric optics solutions we need to consider an operator E such that P (D)E = Id
for some P ∈ C[X0, X1, . . . , Xn]. Using the properties of regular fundamental solutions, Hörmander proved
in Theorem 10.3.7 of [15] that such operator exists and it is a bounded operator of L2(X) for X a bounded
open set of R1+n. In contrast to elliptic equations and parabolic equations (see Subsection 2.1 and 3.6 of
[6]), we can not build CGO lying in H2(Q) by applying the result of Hörmander. What we can actually
build from this result is CGO lying in H1(Q). Therefore, we need to extend the result of Hörmander in the
following way.

Theorem 4. Let P ∈ C[X0, X1, . . . , Xn] with P 6= 0. Then there exists an operator

E : H1(Q) → H1(Q)

such that:

(1) P (D)Ef = f, f ∈ H1(Q),

(2) for all S ∈ C[X0, X1, . . . , Xn] such that S̃

P̃
is bounded, we have S(D)E ∈ B(H1(Q)), and

‖S(D)E‖B(H1(Q)) 6 C sup
ξ∈R1+n

|S(ξ)|
P̃ (ξ)

, k = 0, 1, (3.4)

where C > 0 depends only on the degree of P , Ω and T .

Proof. Let f ∈ H1(Q). In view of Theorem 2.2 and 8.1 in Chapter 1 of [23], there exists an extension operator
E ∈ B

(

H1(Q), H1(R1+n)
)

such that Ef|Q = f . Here we consider the extension operator E introduced by

[23]. Set χ ∈ C∞
0 (R1+n) and R > 0 such that χ = 1 on a neighborhood of Q and suppχ ⊂ BR with BR the

ball of radius R and of center 0 of R1+n. Let EP be a regular fundamental solution of P . Now consider the
operator

E : f 7−→ (EP ∗ (χEf))|Q .
Clearly we have

P (D)EP ∗ (χEf) = χEf
and it follows that

P (D)Ef = (χEf)|Q = f

which proves (1). Now let us show (2). For this purpose, let ψ ∈ C∞
0 (R1+n) be such that ψ = 1 on the

closure of BR −BR = {x− y : x, y ∈ BR} and notice that

(EP ∗ (χEf))|Q = ((ψEP ) ∗ (χEf))|Q . (3.5)

Note that

|F(S(D)ψEP )| 6
|S(ξ)|
P̃ (ξ)

P̃ (ξ)

∣

∣

∣

∣

F
(

ψ cosh(|(t, x)|) EP

cosh(|(t, x)|)

)∣

∣

∣

∣

.

Then, since ψ cosh(|(t, x)|) ∈ C∞
0 (R1+n), from Lemma 2.1 of [6] we deduce that

ψ cosh(|(t, x)|) EP

cosh(|(t, x)|) ∈ B∞,P̃

and
∥

∥

∥

∥

ψ cosh(|(t, x)|) EP

cosh(|(t, x)|)

∥

∥

∥

∥

B
∞,P̃

6 C1

∥

∥

∥

∥

EP

cosh(|(t, x)|)

∥

∥

∥

∥

B
∞,P̃

6 C ′

with C ′ > 0 a constant depending only on the degree of P and χ. It follows

‖S(D)ψEP ‖B∞,1
6 C ′ sup

ξ∈R1+n

|S(ξ)|
P̃ (ξ)

.
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In view of Remark 2, since χEf ∈ H1(R1+n) = B2,κ1
with κ1 introduced in Remark 1, we have S(D)(ψEP )∗

(χEf) = (S(D)ψEP ) ∗ (χEf) ∈ B2,κ1 and

‖S(D)(ψEP ) ∗ (χEf)‖H1(R1+n) = ‖S(D)(ψEP ) ∗ (χEf)‖B2,κ1

6 ‖S(D)ψEP ‖B∞,1
‖χEf‖H1(R1+n))

6 C sup
ξ∈R1+n

|S(ξ)|
P̃ (ξ)

‖f‖H1(Q)

with C > 0 a constant depending only on the degree of P , χ, Ω and T . Thus, in view of (3.5), we have
S(D)Ef ∈ H1(Q) and

‖S(D)Ef‖H1(Q) 6 ‖(ψEP ) ∗ (χEf)‖H1(Q) 6 C sup
ξ∈R1+n

|S(ξ)|
P̃ (ξ)

‖f‖H1(Q) .

�

Armed with this result, we are now in position to build CGO of the form (3.1) lying in H2(Q).

3.2. Construction of complex geometric optics solutions. For every 1 6 c 6 2 and ω ∈ S
n−1 we set

ξ0 =
1

√

1 + (1 + c)2
, ξ′ =

1 + c
√

1 + (1 + c)2
ω, ξ = (ξ0, ξ

′). (3.6)

Note that here ξ ∈ S
n and we have

2√
10

6 |ξ′| 6 3√
5
,

1√
10

6 ξ0 6
1√
5
. (3.7)

Now let us consider the following.

Proposition 4. Let 1 6 c 6 2 and ω ∈ S
n−1 and let ξ ∈ S

n be defined by (3.6). Then, for every r > 0,
(l, y) ∈ R× R

n satisfying

lξ0 − y · ξ′ = 0 = (l, y) · (−ξ0, ξ′), (3.8)

r >

√

√

√

√

√

√

∣

∣

∣

∣

(

l
2

)2 −
(

|y|
2

)2
∣

∣

∣

∣

(

1− 1
(1+c)2

)

|ξ′|2
, (3.9)

there exists θ ∈ R
n such that for

ζ1 = −rξ − i

2
(l, y)− i(0, θ), (3.10)

ζ2 = rξ − i

2
(l, y) + i(0, θ), (3.11)

we have
{

(∂2t −∆)eζj ·(t,x) = 0, j = 1, 2,

eζ1·(t,x)eζ2·(t,x) = e−i(l,y)·(t,x).
(3.12)

Proof. Choose θ ∈ R
n such that θ · η = θ · ξ′ = 0. Notice that

(∂2t −∆)eζ1·(t,x) =

[

r2(ξ20 − |ξ′|2)−
(

l

2

)2

+

( |y|
2

)2

− ir(l, y) · (−ξ0, ξ′) + |θ|2
]

eζ1·(t,x).

Applying (3.6) and (3.8), we obtain

(∂2t −∆)eζ1·(t,x) =

[

−r2
(

1− 1

(1 + c)2

)

|ξ′|2 −
(

l

2

)2

+

( |y|
2

)2

+ |θ|2
]

eζ1·(t,x)
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and, in view of (3.9), we can choose

|θ|2 = r2
(

1− 1

(1 + c)2

)

|ξ′|2 +
(

l

2

)2

−
( |y|

2

)2

> 0.

Then, we obtain

(∂2t −∆)eζ1·(t,x) = 0.

In the same way we prove that

(∂2t −∆)eζ2·(t,x) =

[

−r2
(

1− 1

(1 + c)2

)

|ξ′|2 −
(

l

2

)2

+

( |y|
2

)2

+ |θ|2
]

eζ2·(t,x) = 0

and we deduce (3.12). �

Proposition 5. Let q ∈ W 1,∞(Q), 1 6 c 6 2, ω ∈ S
n−1, ξ ∈ S

n be defined by (3.6) and ζ1 be defined by
(3.10). Then, there exists r0 > 1 such that for r > r0 the equation ∂2t u − ∆u + qu = 0 admits a solution
u ∈ H2(Q) of the form (3.1) with

‖w‖H1(Q) 6
C

r
, (3.13)

where C and r0 depend on Ω, T , M > ‖q‖W 1,∞(Q). Moreover, for |(l, y)| 6 Br, this solution u satisfies the
estimate

‖u‖H2(Q) 6 Ceδr, r > r0. (3.14)

Here C depends on Ω, T , M > ‖q‖W 1,∞(Q), B and δ depends on Ω and T .

Proof. First notice that, in view of (3.12), w should be a solution of

∂2tw −∆w + 2ζ1 · (∂t,−∇x)w = −q(1 + w). (3.15)

Set P ∈ C[X0, X1, . . . , Xn] defined by

P (µ, η) = |η|2 − µ2 + 2iζ1 · (µ,−η), µ ∈ R, η ∈ R
n.

In view of Theorem 4, there exists E ∈ B(H1(Q)) such that

P (D)EF = (∂2t −∆+ 2ζ1 · (∂t,−∇x))EF = F, F ∈ H1(Q). (3.16)

Moreover, for every S ∈ C[X0, X1, . . . , Xn] such that S̃

P̃
is bounded, we have S(D)E ∈ B(H1(Q)) and

‖S(D)E‖B(H1(Q)) 6 K sup
(µ,η)∈Rn+1

|S(µ, η)|
P̃ (µ, η)

, (3.17)

where K > 0 depends only on Ω and T . Applying estimate (3.17) for S = 1 we deduce

‖E‖B(H1(Q)) 6 K sup
(µ,η)∈Rn+1

1

P̃ (µ, η)
6 K sup

(µ,η)∈Rn+1

1

|∂ηP (µ, η)|
.

But ∂ηP (µ, η) = 2η + 2i(rξ′ + i(y2 + θ)) and |∂ηP (µ, η)| > |I∂ηP (µ, η)| = 2 |ξ′| r. Therefore, using (3.7), we
find

‖E‖B(H1(Q)) 6
K

2 |ξ′| r 6
K
√
10

4r
. (3.18)

Now consider the map
G : H1(Q) → H1(Q),

F 7→ −E [q(1 + F )] .

Combining estimate (3.18) with a standard fixed point argument, we deduce that there exists r0 > 0 such
that for r > r0 the map G admits a unique fix point w ∈ H1(Q) satisfying (3.13). Since w satisfies
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w = −E [q(1 + w)], from (3.16) we deduce that it is a solution of (3.15). It remains to show that w ∈ H2(Q)
and prove estimate (3.14). For this purpose, note that

sup
(µ,η)∈Rn+1

|η|
∣

∣

∣
P̃ (µ, η)

∣

∣

∣

6 sup
(µ,η)∈Rn+1

|η|
|∂ηP (µ, η)|

= sup
(µ,η)∈Rn+1

|η|
∣

∣2η + 2i(rξ′ + i(y2 + θ))
∣

∣

6 max

(

1,

√
10 |ζ1|
2r

)

,

sup
(µ,η)∈Rn+1

|µ|
∣

∣

∣
P̃ (µ, η)

∣

∣

∣

6 sup
(µ,η)∈Rn+1

|µ|
|∂µP (µ, η)|

= sup
(µ,η)∈Rn+1

|µ|
∣

∣2µ+ 2i(rξ0 +
il
2 ))
∣

∣

6 max

(

1,

√
10 |ζ1|
r

)

.

Here we have used (3.7). Combining these estimates with (3.17), we deduce that ∂tw,∇xw ∈ H1(Q) which
implies that w ∈ H2(Q) and we have

‖w‖H2(Q) 6 C

(

1 +
2 |ζ1|
2 |ξ′| r +

2 |ζ1|
2 |ξ0| r

)

(1 + ‖w‖H1(Q)) 6 C

(

1 +
|ζ1|
r

)

with C a generic constant depending on Ω, T and M > ‖q‖W 1,∞(Q). Therefore, u defined by (3.1) is an

H2(Q)-solution of ∂2t u−∆u+ qu = 0 satisfying

‖u‖H2(Q) 6 C

(

1 +
|ζ1|
r

)

(1 + |ζ1|)2 sup
(t,x)∈Q

erξ·(t,x)

which implies (3.14). �

4. Carleman estimate

This section is devoted to the proof of a Carleman estimate with linear weight. For this purpose we fix
ξ = (ξ0, ξ

′) ∈ S
n satisfying (3.6). The main result of this section can be stated as follows.

Theorem 5. Let q ∈ L∞(Q) and u ∈ C2(Q). If u satisfies the condition

u|Σ = 0, u|t=0 = ∂tu|t=0 = 0 (4.1)

then the estimate

r
∫

Ω
e−2rξ·(T,x)

∣

∣∂tu|t=T

∣

∣

2
dx+ r

∫

Σ+,ω
e−2rξ·(t,x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ r2

∫

Q
e−2rξ·(t,x) |u|2 dxdt

6 C
(

∫

Q
e−2rξ·(t,x)

∣

∣(∂2t −∆+ q)u
∣

∣

2
dxdt+ r5

∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

+Cr
∫

Σ−,ω
e−2rξ·(t,x) |∂νu|2 |ω · ν(x)| dσ(x)dt

(4.2)
holds true for r > r1 > 1 with C and r1 depending only on Ω, T and M > ‖q‖L∞(Q). If u satisfies the

condition

u|Σ = 0, u|t=T = ∂tu|t=T = 0 (4.3)

then the estimate

r
∫

Ω
e2rξ·(0,x)

∣

∣∂tu|t=0

∣

∣

2
dx+ r

∫

Σ−,ω
e2rξ·(t,x) |∂νu|2 |ω · ν(x)| dσ(x)dt+ r2

∫

Q
e2rξ·(t,x) |u|2 dxdt

6 C
(

∫

Q
e2rξ·(t,x)

∣

∣(∂2t −∆+ q)u
∣

∣

2
dxdt+ r5

∫

Ω
e−2rξ·(0,x)

∣

∣u|t=0

∣

∣

2
dx+ r3

∫

Ω
e2rξ·(0,x)

∣

∣ω · ∇xu|t=0

∣

∣

2
dx
)

+Cr
∫

Σ+,ω
e2rξ·(t,x) |∂νu|2 |ω · ν(x)| dσ(x)dt

(4.4)
holds true for r > r1 > 0.

In order to prove these results, we introduce the weighted operator

Ps = e−sξ·(t,x)(∂2t −∆)esξ·(t,x), s ∈ R.

Then, we consider the following Carleman estimate associated to P±r, r > 0.
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Lemma 1. Let v ∈ C2(Q) and r > 1. If v satisfies the condition

v|Σ = 0, v|t=0 = ∂tv|t=0 = 0 (4.5)

then the estimate

r
∫

Ω

∣

∣∂tv|t=T

∣

∣

2
+ r

∫

Σ+,ω
|∂νv|2 |ω · ν(x)| dσ(x)dt+ r2

∫

Q
|v|2 dxdt

6 C
(

∫

Q
|Prv|2 dxdt+ r3

∫

Ω

∣

∣ω · ∇xv|t=T

∣

∣

2
dx+ r

∫

Σ−,ω
|∂νv|2 |ω · ν(x)| dσ(x)dt

) (4.6)

holds true for C depending only on Ω and T . If v satisfies the condition

v|Σ = 0, v|t=T = ∂tv|t=T = 0 (4.7)

then the estimate

r
∫

Ω

∣

∣∂tv|t=0

∣

∣

2
dx+ r

∫

Σ−,ω
|∂νv|2 |ω · ν(x)| dσ(x)dt+ r2

∫

Q
|v|2 dxdt

6 C
(

∫

Q
|P−rv|2 dxdt+ r3

∫

Ω

∣

∣ω · ∇xv|t=0

∣

∣

2
dx+ r

∫

Σ+,ω
|∂νv|2 |ω · ν(x)| dσ(x)dt

) (4.8)

holds true.

Proof. Since the differential operator Ps, s ∈ R, is real valued, without lost of generality we can assume that
v is real valued. We start with the proof of (4.6). Note first that Pr can be decomposed into Pr = Q1 +Q2

with Q1 = ∂2t −∆+ r2(ξ20 − |ξ′|2), Q2 = rξ0∂t − rξ′ · ∇x. Therefore we have

‖Q2v‖2L2(Q) + 2 〈Q1v,Q2v〉 6 ‖Prv‖2L2(Q) .

Here we denote by 〈., .〉 the scalar product in L2(Q). In view of this estimate, (4.6) follows from

C1

(

r

∫

Ω

∣

∣∂tv|t=T

∣

∣

2
+ r

∫

Σ+,ω

|∂νv|2 |ω · ν(x)| dσ(x)dt+ r2
∫

Q

|v|2 dxdt
)

6 ‖Q2v‖2L2(Q) + 2 〈Q1v,Q2v〉

+ C2

(

r3
∫

Ω

∣

∣ω · ∇xv|t=T

∣

∣

2
dx+ r

∫

Σ−,ω

|∂νv|2 |ω · ν(x)| dσ(x)dt
)

(4.9)

with C1, C2 > 0 depending only on Ω and T . We will prove the above estimate by applying suitably the
Green formula on Q. We start by decomposing the following terms

〈Q1v,Q2v〉
= rξ0

∫

Q
∂2t v∂tv − rξ0

∫

Q
∆v∂tv + r3ξ0(ξ

2
0 − |ξ′|2)

∫

Q
v∂tv − r

∫

Q
∂2t vξ

′ · ∇v
+r
∫

Q
∆vξ′ · ∇v − r3(ξ20 − |ξ′|2)

∫

Q
vξ′ · ∇v

= A+B + C +D + E + F.

For A: integrating wrt t ∈ (0, T ) we get
∫

Q

∂2t v∂tv =
1

2

∫

Q

∂t(∂tv)
2 =

1

2

∫

Ω

(∂tv|t=T )
2dx.

For B: applying the Green formula wrt x ∈ Ω we find
∫

Q

∆v∂tv = −
∫

Q

∇v∂t∇v = −1

2

∫

Q

∂t |∇v|2 = −1

2

∫

Ω

∣

∣∇v|t=T

∣

∣

2
.

For C: integrating wrt t ∈ (0, T ) we obtain
∫

Q

∂tvv =
1

2

∫

Q

∂t(v)
2 =

1

2

∫

Ω

(v|t=T )
2dx.
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For D: integrating by parts wrt t ∈ (0, T ) and applying the Green formula wrt x ∈ Ω we get
∫

Q

∂2t vξ
′ · ∇v = −

∫

Q

∂tvξ
′ · ∇∂tv +

∫

Ω

∂tv|t=T (ξ
′ · ∇v|t=T )

= −1

2

∫ T

0

∫

Ω

divx((∂tv)
2ξ′)dxdt+

∫

Ω

∂tv|t=T (ξ
′ · ∇v|t=T )

= −1

2

∫ T

0

∫

∂Ω

(∂tv)
2ν(x) · ξ′dσ(x)dt+

∫

Ω

∂tv|t=T (ξ
′ · ∇v|t=T )

=

∫

Ω

(∂tv|t=T )(ξ
′ · ∇v|t=T ).

For E and F : applying a well known argument of [5] (see the proof of Lemma 2.1 in [5]) we obtain
∫

Q

∆vξ′ · ∇v =
1

2

∫

Σ

|∂νv|2 ξ′ · ν(x)dσ(x)dt,
∫

Q

vξ′ · ∇v = 0.

Combining all these results, we deduce that

〈Q1v,Q2v〉 =
rξ0

2

∫

Ω

(∂tv|t=T )
2dx+

rξ0

2

∫

Ω

∣

∣∇v|t=T

∣

∣

2
dx+

r3(ξ20 − |ξ′|2)ξ0
2

∫

Ω

(v|t=T )
2dx

− r

∫

Ω

(∂tv|t=T )(ξ
′ · ∇v|t=T )dx+

|ξ′| r
2

∫

Σ

|∂νv|2 ω · ν(x)dσ(x)dt.

(4.10)

For the fourth term on the rhs, applying the Cauchy-Schwarz inequality we get
∣

∣

∣

∣

−r
∫

Ω

(∂tv|t=T )(ξ
′ · ∇v|t=T )dx

∣

∣

∣

∣

6
rξ20
8

∫

Ω

∣

∣∂tv|t=T

∣

∣

2
+

32r

ξ20

∫

Ω

∣

∣ξ′ · ∇v|t=T

∣

∣

2
dx.

On the other hand, in view of (4.5), an application of some suitable Poincarré inequality (see [9] vol. 2 pp
125-126 and Proposition 2.2 in [5]) yields

∫

Ω

(v|t=T )
2dx 6 C

∫

Ω

∣

∣ξ′ · ∇v|t=T

∣

∣

2
dx

with C depending on Ω. Therefore, in view of (3.7), the third term on the rhs of (4.10) can be majored by
∣

∣

∣

∣

∣

r3(ξ20 − |ξ′|2)ξ0
2

∫

Ω

(v|t=T )
2dx

∣

∣

∣

∣

∣

6 Cr3
∫

Ω

∣

∣ω · ∇v|t=T

∣

∣

2
dx

with C a generic constant depending only on Ω. Now let us consider the following Poincarré inequality.

Lemma 2. Let θ = (θ0, θ
′) ∈ R× R

n be such that θ ∈ S
n and θ0 > 0. Then, for all w ∈ H1(0, T ;L2(Ω)) ∩

L2(0, T ;H1
0 (Ω)) satisfying w|t=0 = 0, we have

‖w‖L2(Q) 6

(

T

θ0

)2

‖θ · ∇t,xw‖L2(Q) . (4.11)

For instance we admit the result of this lemma, whose proof is postponed to the end of the present
demonstration. Recall that Q2v = rθ · ∇t,xv with θ = (ξ0,−ξ′) ∈ S

n and ξ0 > 0. Thus, applying Lemma 2
we obtain

r2

C

∫

Q

|v|2 dxdt 6 ‖Q2v‖2L2(Q)

with C > 0 depending on T . Here we have used (3.7). Combining all these estimates with (4.10) we deduce
(4.9), for r > 1, and by the same way (4.6). Now let us consider (4.8). For this purpose note that for v
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satisfying (4.7), w defined by w(t, x) = v(T − t, x) satisfies (4.5). Thus applying (4.6) to w with ξ′ replaced
by −ξ′ we obtain (4.8). �

Now that we have completed the proof of Lemma 1 let us show Lemma 2.

Proof of Lemma 2. We first assume that w ∈ C∞([0, T ]; C∞
0 (Ω)) with w equal to zero on a neighbor-

hood of t = 0. Let w1 be defined by
{

w1(t, x) = w(t, x), (t, x) ∈ Q,

w1(t, x) = 0, (t, x) ∈ (−∞, T )× R
n \Q.

Since w = 0 on a neighborhood of t = 0, one can check that w1 ∈ C∞((−∞, T ) × R
n). Fix (t, x) ∈

(−∞, T )× R
n and consider the map

h(s) = w1((t, x) + sθ), s ∈ (−∞, 0).

Note that h is C1 in (−∞, 0) and since w1|t60 = 0 we have h(s) = 0 for s 6 − T
θ0

. Therefore, we find

w1((t, x) + sθ) = h(s) =

∫ s

− T
θ0

h′(τ)dτ =

∫ s

− T
θ0

θ · ∇t,xw1((t, x) + τθ)dτ, − T

θ0
< s < 0.

Then, we get

|w1((t, x) + sθ)|2 =

∣

∣

∣

∣

∣

∫ s

− T
θ0

θ · ∇t,xw1((t, x) + τθ)dτ

∣

∣

∣

∣

∣

2

, − T

θ0
< s < 0

and applying the Cauchy Schwarz inequality we find

|w1((t, x) + sθ)|2 6 (s+
T

θ0
)

∫ s

− T
θ0

|θ · ∇t,xw1((t, x) + τθ)|2 dτ 6
T

θ0

∫ s

− T
θ0

|θ · ∇t,xw1((t, x) + τθ)|2 dτ.

Integrating this last expression wrt (t, x) ∈ (−∞, T − sθ0)×R
n and applying the Fubini theorem, we obtain

∫ T−sθ0

−∞

∫

Rn

|w1((t, x) + sθ)|2 dxdt 6 T

θ0

∫ s

− T
θ0

∫ T−sθ0

−∞

∫

Rn

|θ · ∇t,xw1((t, x) + τθ)|2 dxdtdτ, − T

θ0
< s < 0.

(4.12)
For the lhs of this inequality, making the substitution (u, y) = (t, x) + sθ we obtain

∫ T−sθ0

−∞

∫

Rn

|w1((t, x) + sθ)|2 dxdt =
∫ T

−∞

∫

Rn

|w1(u, y)|2 dydu =

∫

Q

|w|2 dxdt.

For the rhs of (4.12), making the substitution (u, y) = (t, x) + τθ, for τ < s, we obtain
∫ T−sθ0

−∞

∫

Rn

|θ · ∇t,xw1((t, x) + τθ)|2 dxdt =
∫ T+(τ−s)θ0

−∞

∫

Rn

|θ · ∇t,xw1(u, y)|2 dydu

then, using the fact that T + (τ − s)θ0 < T , we get
∫ T−sθ0

−∞

∫

Rn

|θ · ∇t,xw1((t, x) + τθ)|2 dxdt 6
∫ T

−∞

∫

Rn

|θ · ∇t,xw1(t, x)|2 dxdt 6
∫

Q

|θ · ∇t,xw(t, x)|2 dxdt.

Combining these estimates with (4.12) we obtain
∫

Q

|w|2 dxdt 6 T

θ0

∫ s

− T
θ0

∫

Q

|θ · ∇t,xw(t, x)|2 dxdtdτ 6

(

T

θ0

)2 ∫

Q

|θ · ∇t,xw(t, x)|2 dxdt.

By density (e.g. pp 10 of [24]), we deduce that this estimate holds for all w ∈ H1(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))

satisfying w|t=0 = 0. �
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In light of Lemma 1, we are now in position to prove Theorem 5.
Proof of Theorem 5. Let us first consider the case q = 0. Note that for u satisfying (4.1), v = e−rξ·(t,x)u

satisfies (4.5). Moreover, we have
∫

Q

e−2rξ·(t,x)
∣

∣(∂2t −∆)u
∣

∣

2
dxdt =

∫

Q

|Prv|2 dxdt

and from (4.1)

∂νv|Σ = e−rξ·(t,x)∂νu|Σ.

Finally, using the fact that

∂tu = ∂t(e
rξ·(t,x)v) = rξ0u+ erξ·(t,x)∂tv, ω · ∇xv = e−rξ·(t,x)(ω · ∇xu− r |ξ′|u),

we obtain
∫

Ω

e−2rξ·(T,x)
∣

∣∂tu|t=T

∣

∣

2
dx 6 2

∫

Ω

∣

∣∂tv|t=T

∣

∣

2
dx+ 2r2

∫

Ω

e−2rξ·(T,x)
∣

∣u|t=T

∣

∣

2
dx,

∫

Ω

∣

∣ω · ∇v|t=T

∣

∣

2
dx 6 2r2

∫

Ω

e−2rξ·(T,x)
∣

∣u|t=T

∣

∣

2
dx+ 2

∫

Ω

e−2rξ·(T,x)
∣

∣ω · ∇u|t=T

∣

∣

2
dx.

Thus, applying the Carleman estimate (4.6) to v, we deduce (4.2). For q 6= 0, we have
∣

∣∂2t u−∆u
∣

∣

2
=
∣

∣∂2t u−∆u+ qu− qu
∣

∣

2
6 2

∣

∣(∂2t −∆+ q)u
∣

∣

2
+ 2 ‖q‖2L∞(Q) |u|

2

and hence if we choose r1 > 2C ‖q‖2L∞(Q), replacing C by

C1 = sup
r>r1

Cr2

r2 − 2C ‖q‖2L∞(Q)

<∞,

we deduce (4.2) from the same estimate when q = 0. Using similar arguments, we prove (4.4). �

Remark 3. Note that, by density, estimate (4.2) can be extended to function u ∈ C1([0, T ];L2(Ω)) ∩
C([0, T ];H1(Ω)) satisfying (4.5), (∂2t −∆)u ∈ L2(Q) and ∂νu ∈ L2(Σ).

5. Geometric optics solutions vanishing on part of the boundary

In this section we fix q ∈ L∞(Q). The goal of this section is to use the Carleman estimate (4.4) in order
to build solutions u ∈ H�(Q) to







(∂2t −∆+ q(t, x))u = 0 in Q,
u|t=0 = 0,
u|Σ−,ε,−ω

= 0,
(5.1)

of the form

u(t, x) = eζ2·(t,x) (1 + z(t, x)) , (t, x) ∈ Q, (5.2)

where ξ is defined by (3.6), ζ2 ∈ C
1+n is defined by (3.11) and satisfy (3.12), z ∈ e−ζ2·(t,x)H�(Q) fulfills

z(t, x) = −1, (t, x) ∈ Σ−,ε,−ω ∪ {0} × Ω,

‖z‖L2(Q) 6 Cr−
1
2 . (5.3)

The main result of this section can be stated as follows.

Theorem 6. Let q ∈ L∞(Q). For all r > r1, with r1 the constant of Theorem 5, there is a solution
u ∈ H�(Q) of (5.1) of the form (5.2) with z satisfying (5.3). Moreover, we have

‖T0u‖H(∂Q) 6 Ceδr (5.4)

with C and δ depending on Ω, T and M > ‖q‖L∞(Q), ε and ω.
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In order to prove existence of such solutions of (5.1) we need some preliminary tools and an intermediate
result.

5.1. Weighted space. In this subsection we give the definition of some weighted spaces. We set s ∈ R and
we denote by γ the function defined on ∂Ω by

γ(x) = |ω · ν(x)| , x ∈ ∂Ω.

We introduce the spaces Ls(Q), Ls(Ω), and for all non negative measurable function h on ∂Ω the spaces
Ls,h,± defined respectively by

Ls(Q) = esξ·(t,x)L2(Q), Ls(Ω) = esξ·(0,x)L2(Ω), Ls,h,± = {f : esξ·(t,x)h(x)f ∈ L2(Σ±,ω)}
with the associated norm

‖u‖s =
(
∫

Q

e2sξ·(t,x) |u|2 dxdt
)

1
2

, u ∈ Ls(Q),

‖u‖s,0 =

(
∫

Ω

e2sξ·(0,x) |u|2 dx
)

1
2

, u ∈ Ls(Ω),

‖u‖s,h,± =

(

∫

Σ±,ω

e2sξ·(t,x)h(x) |u|2 dσ(x)dt
)

1
2

, u, v ∈ Ls,h,±.

5.2. Intermediate result. We set the space

D = {v ∈ C2(Q) : v|Σ = 0, v|t=T = ∂tv|t=T = v|t=0 = 0}
and, in view of Theorem 5, applying the Carleman estimate (4.4) to any f ∈ D we obtain

r ‖f‖r + r
1
2

∥

∥∂tf|t=0

∥

∥

r,0
+ r

1
2 ‖∂νf‖r,γ,− 6 C(

∥

∥(∂2t −∆+ q)f
∥

∥

r
+ ‖∂νf‖r,rγ,+), r > r1. (5.5)

We introduce also the space

M = {((∂2t −∆+ q)v, ∂νv|Σ+,ω
) : v ∈ D}

and we think of M as a subspace of Lr(Q)× Lr,rγ,+. We consider the following intermediate result.

Lemma 3. Given r > r1, with r1 the constant of Theorem 5, and

v ∈ L−r(Q), v− ∈ L−r,γ−1,−, v0 ∈ L−r(Ω),

there exists u ∈ L−r(Q) such that:
1) (∂2t −∆+ q)u = v,
2)u|Σ−,ω

= v−, u|t=0 = v0,

3)‖u‖−r 6 C
(

r−1 ‖v‖−r + r−
1
2 ‖v−‖−r,γ−1,− + r−

1
2 ‖v0‖−r,0

)

with C depending on Ω, T ,

M > ‖q‖L∞(Q).

Proof. Define a linear function K on M by

K[((�+ q)f, ∂νf|Σ+,ω
)] = 〈f, v〉L2(Q) − 〈∂νf, v−〉L2(Σ−,ω) +

〈

∂tf|t=0, v0
〉

L2(Ω)
, f ∈ D.

Using (5.5), for all f ∈ D, we obtain
∣

∣K[((�+ q)f, ∂νf|Σ+,ω
)]
∣

∣

6 ‖f‖r ‖v‖−r + ‖∂νf‖r,γ,− ‖v−‖−r,γ−1,− +
∥

∥∂tf|t=0

∥

∥

r,0
‖v0‖−r,0

6 r−1 ‖v‖−r (r ‖f‖r) + r−
1
2 ‖v−‖−r,γ−1,−

(

r
1
2 ‖∂νf‖r,γ,−

)

+ r−
1
2 ‖v0‖−r,0

(

r
1
2

∥

∥∂tf|t=0

∥

∥

r,0

)

6 C
(

r−1 ‖v‖−r + r−
1
2 ‖v−‖−r,γ−1,− + r−

1
2 ‖v0‖−r,0

)(

‖(�+ q)f‖r + ‖∂νf‖r,rγ,+
)

6 2C
(

r−1 ‖v‖−r + r−
1
2 ‖v−‖−r,γ−1,− + r−

1
2 ‖v0‖−r,0

)

∥

∥((�+ q)f, ∂νf|Σ+,ω
)
∥

∥

Lr(Q)×Lr,rγ,+
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with C the constant of (5.5). Thus, applying the Hahn Banach theorem we deduce that K can be extended
to a continuous linear form, also denoted by K, on Lr(Q)× Lr,rγ,+ satisfying

‖K‖ 6 C
(

r−1 ‖v‖−r + r−
1
2 ‖v−‖−r,γ−1,− + r−

1
2 ‖v0‖−r,0

)

. (5.6)

Thus, there exists

(u, u+) ∈ L−r(Q)× Lr,(rγ)−1,+

such that for all f ∈ D we have

K[((�+ q)f, ∂νf|Σ+,ω
)] = 〈(�+ q)f, u〉L2(Q) − 〈∂νf, u+〉L2(Σ+,ω) .

Therefore, for all f ∈ D we have

〈(�+ q)f, u〉L2(Q) − 〈∂νf, u+〉L2(Σ+,ω)

= 〈f, v〉L2(Q) − 〈∂νf, v−〉L2(Σ−,ω) +
〈

∂tf|t=0, v0
〉

L2(Ω)
.

(5.7)

Note first that, since L±r(Q) embedded continuously into L2(Q), we have u ∈ L2(Q). Therefore, taking
f ∈ C∞

0 (Q) shows 1). For condition 2), using the fact that L±r(Q) embedded continuously into L2(Q) we
deduce that u ∈ H�(Q) and we can define the trace u|Σ and u|t=0. Thus, allowing f ∈ D to be arbitrary
shows that u|Σ−,ω

= v−, u|t=0 = v0 and u|Σ+,ω
= −u+. Finally, condition 3) follows from the fact that

‖u‖−r 6 ‖K‖ 6 C
(

r−1 ‖v‖−r + r−
1
2 ‖v−‖−r,γ−1,− + r−

1
2 ‖v0‖−r,0

)

.

�

Armed with this lemma we are now in position to prove Theorem 6.

5.3. Proof of Theorem 6. Note first that z must satisfy














z ∈ L2(Q)
(∂2t −∆+ q)(eζ2·(t,x)z) = −q(t, x)eζ2·(t,x) in Q,
z(0, x) = −1 x ∈ Ω,
z(t, x) = −1 (t, x) ∈ Σ+,ε,−ω.

(5.8)

Let ψ ∈ C∞
0 (Rn) be such that suppψ∩∂Ω ⊂ {x ∈ ∂Ω : ν(x) ·ω < − ε

2} satisfying ψ = 1 on ∂Ω+,ε,−ω. Choose

v−(t, x) = −eζ2·(t,x)ψ(x), (t, x) ∈ Σ−,ω. Since v−(t, x) = 0 for ν(x) · ω > − ε
2 we have v− ∈ L−r,γ−1,−. Fix

also v(t, x) = −q(t, x)eζ2·(t,x) and v0(x) = −eζ2·(0,x), (t, x) ∈ Q. From Lemma 3, we deduce that there exists
w ∈ H�(Q) such that







(∂2t −∆+ q)w = v(t, x) = −q(t, x)eζ2·(t,x) in Q,
w(0, x) = v0(x) = −eζ2·(0,x) x ∈ Ω,
w(t, x) = v−(t, x) = −eζ2·(t,x)ψ(x) (t, x) ∈ Σ−,ω.

Then, for z = e−ζ2·(t,x)w condition (5.8) will be fulfilled. Moreover, combining condition 3) of Lemma 3 with
the fact that

(ζ2 − rξ) · (t, x) ∈ iR, (t, x) ∈ R× R
n,

we deduce (5.3). Using the fact that eζ2·(t,x)z = w ∈ H�(Q), we deduce that u defined by (5.2) is lying in
H�(Q) and is a solution of (5.1) with T0u ∈ Fω,ε. Moreover, in view of estimate (5.3), we have

‖T0u‖H(∂Q) 6 C(‖u‖L2(Q) +
∥

∥(∂2t −∆)u
∥

∥

L2(Q)
)

6 C(‖u‖L2(Q) + ‖qu‖L2(Q)) 6 Ceδr

with C depending on Ω, T , M , ω, ε, and δ = sup
(t,x)∈Q

|(t, x)|. This last estimate implies (5.4). �
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6. Stability estimate

This section is devoted to the proof of Theorem 1. We start with an intermediate result. From now on
we set q = q2 − q1 on Q and we assume that q = 0 on R

1+n \Q. Using the Carleman estimate introduced in
the previous section and the geometric optics solutions of Section 3 and Section 5, we obtain the following.

Lemma 4. Assume that the condition of Theorem 1 are fulfilled. Let ε = ε0
2 and ω ∈ {z ∈ S

n−1 : |z − ω0| 6
ε}. Then, there exists r2 > max (r0, r1), with r0 introduced in Proposition 5 and r1 the constant of Theorem
5, such that for all r > r2, ξ ∈ S

n of the form (3.6) with 1 6 c 6 2, (l, y) ∈ R × R
n satisfying (3.8), (3.9)

and |(l, y)| 6 Br, we have
∣

∣

∣

∣

∫

R1+n

q(t, x)e−i(l,y)·(t,x)dtdx

∣

∣

∣

∣

2

6 C

(

1

r
+ edr

∥

∥B∗
q1

−B∗
q2

∥

∥

2
)

(6.1)

with d, C depending only on Ω, M , T , ε0, B, ω0.

Proof. Let ζj , j = 1, 2, be defined by (3.10), (3.11) and satisfy (3.12). According to Proposition 5, we can
introduce

u1(t, x) = eζ1·(t,x) (1 + w(t, x)) , (t, x) ∈ Q,

where u1 ∈ H2(Q) satisfies ∂2t u1 −∆u1 + q1u1 = 0 and w satisfies (3.13). Moreover, in view of Theorem 6,
we consider u2 ∈ H�(Q) solution of (5.1) with q = q2 of the form

u2(t, x) = eζ2·(t,x) (1 + z(t, x)) , (t, x) ∈ Q

with z satisfying (5.3), such that T0u2 ∈ Fε,ω and u2 fulfills (5.4). Let w1 be the solution of
{

∂2tw1 −∆w1 + q1w1 = 0 in Q,
T0w1 = T0u2, (6.2)

Then, u = w1 − u2 solves






∂2t −∆u+ q1u = (q2 − q1)u2 in Q,
u(0, x) = ∂tu(0, x) = 0 on Ω
u = 0 on Σ,

(6.3)

and since (q2 − q1)u2 ∈ L2(Q), in view of Theorem A.2 in [3], we deduce that u ∈ C1([0, T ];L2(Ω)) ∩
C([0, T ];H1

0 (Ω)) with ∂νu ∈ L2(Σ). Moreover we have

‖u‖C1([0,T ];L2(Ω)) + ‖u‖C([0,T ];H1
0 (Ω)) + ‖∂νu‖L2(Σ) 6 2CM ‖u2‖L2(Q) .

Applying the Green formula wrt x ∈ Ω and integration by parts wrt t ∈ (0, T ), we find
∫

Q

qu2u1dxdt =

∫

Q

(∂2t −∆+ q1)uu1dxdt

=

∫

Q

u(∂2t −∆+ q1)u1 −
∫

Σ

∂νuu1dσ(x)dt

+

∫

Ω

∂tu(T, x)u1(T, x)dx−
∫

Ω

u(T, x)∂tu1(T, x)dx

= −
∫

Σ

∂νuu1dσ(x)dt+

∫

Ω

∂tu(T, x)u1(T, x)dx−
∫

Ω

u(T, x)∂tu1(T, x)dx

= −
∫

Σ+,ε,ω

∂νuu1dσ(x)dt−
∫

Σ−,ε,ω

∂νuu1dσ(x)dt

+

∫

Ω

∂tu(T, x)u1(T, x)dx−
∫

Ω

u(T, x)∂tu1(T, x)dx.

(6.4)

In view of estimate (3.13), we have

‖w‖L2(Σ) 6 C ‖w‖
L2(0,T ;H

1
2 (Ω))

6 C ‖w‖H1(Q) 6 C
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with C depending on Ω, T and M . Applying this estimate and the Cauchy Schwarz inequality, we obtain
∣

∣

∣

∣

∣

∫

Σ±,ε,ω

∂νuu1dσ(x)dt

∣

∣

∣

∣

∣

6

∫

Σ±,ε,ω

∣

∣

∣
∂νue

−rξ·(t,x)(1 + w)
∣

∣

∣
dtdσ(x)

6 C

(

∫

Σ±,ε,ω

∣

∣

∣
e−rξ·(t,x)∂νu

∣

∣

∣

2

dσ(x)dt

)
1
2

for some C depending only on Ω, T and M . In the same way, we have
∥

∥w|t=T

∥

∥

L2(Ω)
6 C ‖w‖

H
1
2 (0,T ;L2(Ω))

6 C ‖w‖H1(Q) 6 C

and from the proof of Proposition 5 we get
∥

∥∂tw|t=T

∥

∥

L2(Ω)
6 C ‖w‖

H
3
2 (0,T ;L2(Ω))

6 C ‖w‖H2(Q) 6 C(|ζ1|+ 1) 6 Cr

with C depending on Ω, T and M . Thus, we obtain

∣

∣

∣

∣

∫

Ω

∂tu(T, x)u1(T, x)dx

∣

∣

∣

∣

6 C

(
∫

Ω

∣

∣

∣
e−rξ·(T,x)∂tu(T, x)

∣

∣

∣

2

dx

)
1
2

,

∣

∣

∣

∣

∫

Ω

u(T, x)∂tu1(T, x)dx

∣

∣

∣

∣

6 Cr

(
∫

Ω

∣

∣

∣
e−rξ·(T,x)u(T, x)

∣

∣

∣

2

dx

)
1
2

.

In view of these estimates and (6.4), we have

∣

∣

∣

∫

Q
qu2u1dxdt

∣

∣

∣

2

6 C
(

∫

Ω

∣

∣e−rξ·(T,x)∂tu(T, x)
∣

∣

2
dx+ r2

∫

Ω

∣

∣e−rξ·(T,x)u(T, x)
∣

∣

2
dx+

∫

Σ±,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt

)

.
(6.5)

On the other hand, in views of Remark 3, the Carleman estimate (4.2) and the fact that ∂Ω+,ε,ω ⊂ ∂Ω+,ω

imply

r
∫

Σ+,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt+ r

∫

Ω

∣

∣e−rξ·(T,x)∂tu(T, x)
∣

∣

2
dx

6 ε−1
(

r
∫

Σ+,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
ω · ν(x)dσ(x)dt+ r

∫

Ω

∣

∣e−rξ·(T,x)∂tu(T, x)
∣

∣

2
dx
)

6 ε−1C
(

∫

Q

∣

∣e−rξ·(t,x)(∂2t −∆+ q1)u
∣

∣

2
dxdt+ r

∫

Σ−,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2 |ω · ν(x)| dσ(x)dt
)

+ε−1C
(

r5
∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

6 ε−1C
(

∫

Q

∣

∣e−rξ·(t,x)qu2
∣

∣

2
dxdt+ r

∫

Σ−,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2 |ω · ν(x)| dσ(x)dt
)

+ε−1C
(

r5
∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

6 ε−1C
(

∫

Q
|q|2 (1 + |z|)2dxdt+ r

∫

Σ−,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2 |ω · ν(x)| dσ(x)dt
)

+ε−1C
(

r5
∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

6 ε−1C
(

8M2T |Ω|+ 8M2 ‖z‖2L2(Q) + r
∫

Σ−,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2 |ω · ν(x)| dσ(x)dt
)

+ε−1C
(

r5
∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

.
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Using estimate (5.3) and the fact that Σ−,ω ⊂ Σ−,ε,ω, |ω · ν(x)| 6 1, we obtain

r
∫

Σ+,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt+ r

∫

Ω

∣

∣e−rξ·(T,x)∂tu(T, x)
∣

∣

2
dx

6 C
(

1 + r
∫

Σ−,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2 |ω · ν(x)| dσ(x)dt
)

+C
(

r5
∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

6 C
(

1 + r
∫

Σ−,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt

)

+C
(

r5
∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r3

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

,

where C depends only on Ω, T , ε0, ω0 and M . Therefore, we have

∫

Σ+,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt+

∫

Ω

∣

∣e−rξ·(T,x)∂tu(T, x)
∣

∣

2
dx

6 C
(

r−1 +
∫

Σ−,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt+ r4

∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r2

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

.

Combining this with (6.5), we obtain

∣

∣

∣

∫

Q
qu1u2dxdt

∣

∣

∣

2

6 C
(

r−1 +
∫

Σ−,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt+ r4

∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r2

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

(6.6)
with C depending only on Ω, T , ε0, ω0 and M . On the other hand, (3.12) implies

∫

Q

qu1u2dxdt =

∫

R1+n

q(t, x)e−i(l,y)·(t,x)dxdt+

∫

Q

Ze−i(l,y)·(t,x)dxdt

with Z(t, x) = z+w+zw. Then, in view of (3.13) and (5.3), an application of the Cauchy-Schwarz inequality
yields

∣

∣

∣

∣

∫

Q

Ze−i(l,y)·(t,x)dx

∣

∣

∣

∣

6 Cr−
1
2

with C depending on Ω, T , ε0, ω0 and M . Combining this estimate with (6.6), we obtain

∣

∣

∫

R1+n q(t, x)e
−i(l,y)·(t,x)dxdt

∣

∣

2

6 C
(

r−1 +
∫

Σ−,ε,ω

∣

∣e−rξ·(t,x)∂νu
∣

∣

2
dσ(x)dt+ r4

∫

Ω
e−2rξ·(T,x)

∣

∣u|t=T

∣

∣

2
dx+ r2

∫

Ω
e−2rξ·(T,x)

∣

∣ω · ∇xu|t=T

∣

∣

2
dx
)

6 C
[

1
r
+ ed1r

(

‖∂νu‖2L2(Σ−,ε,ω) +
∥

∥u|t=T

∥

∥

2

H1(Ω)

)]

(6.7)
with C, d1 > 0 depending only on Ω, T , ε0, ω0 and M . Using the fact that Σ−,ε,ω ⊂ Σ−,ε0,ω0

and

suppg ⊂ Σ−,ε,−ω ⊂ Σ−,ε0,−ω0
, v0 = 0

with (g, v0, v1) = T0u2, we deduce that

(∂νu|Σ−,ε0,ω0
, u|t=T ) = (B∗

q1
−B∗

q2
)T0u2.
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Then, we have

‖∂νu‖2L2(Σ−,ε,ω) +
∥

∥u|t=T

∥

∥

2

H1(Ω)
6 ‖∂νu‖2L2(Σ−,ε0,ω0

) +
∥

∥u|t=T

∥

∥

2

H1(Ω)

6
∥

∥(B∗
q1

−B∗
q2
)T0u2

∥

∥

2

L2(Σ−,ε0,ω0
)×H1(Ω)

and from (5.4) we deduce

‖∂νu‖2L2(Σ−,ε,ω) +
∥

∥u|t=T

∥

∥

2

H1(Ω)
6
∥

∥B∗
q1

−B∗
q2

∥

∥

2 ‖T0u2‖2H(∂Q) 6 C
∥

∥B∗
q1

−B∗
q2

∥

∥

2
e2δr

with C depending only on Ω, T , ε0, ω0 and M . Combining this estimate with (6.7), we obtain (6.1). �

From now on, for all s > 0, we denote by Bs the set Bs = {z ∈ R
1+n : |z| < s}. Let us recall the

following result, which follows from Theorem 3 in [1] (see also [35]), on the continuous dependence in the
analytic continuation problem.

Proposition 6. Let ρ > 0 and assume that f : B2ρ ⊂ R
1+n → R is a real analytic function satisfying

∥

∥∂βf
∥

∥

L∞(B2ρ)
6

Nβ!

(ρλ)|β|
, β ∈ N

1+n

for some N > 0 and 0 < λ 6 1. Further let E ⊂ B ρ
2

be a measurable set with strictly positive measure.
Then,

‖f‖L∞(Bρ)
6 C(N)(1−b)

(

‖f‖L∞(E)

)b

,

where b ∈ (0, 1), C > 0 depend on λ, |E| and ρ.

Armed with Lemma 4, we will use Proposition 6 to complete the proof of of Theorem 1.
Proof of Theorem 1. Without lost of generality, we can assume that 0 ∈ Ω. Consider the set

G = {ξ ∈ S
n : ξ of the form (3.6) with 1 < c < 2, ω ∈ {z ∈ S

n−1 : |z − ω0| < ε}}.
One can easily check that G is an open set of Sn. Introduce the set

E1 = {η ∈ R
1+n : there exists ξ = (ξ0, ξ

′) ∈ G such that η · (−ξ0, ξ′) = 0}
and note that estimate (6.1) holds for all (l, y) ∈ E1, r > r2, such that condition (3.9) is fulfilled and
|(l, y)| 6 Br for some B > 0. Let us observe that in view of (3.6) and (3.9), (3.9) will be fulfilled if

|(l, y)| 6 2 inf
16c62

((

1− 1

(1 + c)2

)

(1 + c)2

1 + (1 + c)2

)

1
2

r = Br

with

B = 2 min
16c62

(

(1 + c)2 − 1

1 + (1 + c)2

)

1
2

> 0.

From now on we fix this value of B. Next we set for fixed R > 0, which will be made precise later, and
(l, y) ∈ R

1+n,

H(l, y) = F(q)(R(l, y)) = (2π)−
(1+n)

2

∫

R1+n

q(t, x)e−iR(l,y)·(t,x)dxdt.

Since suppq ⊂ Q and 0 ∈ Ω, H is analytic and

∣

∣∂βH(l, y)
∣

∣ 6 C
‖q‖L1(Q)R

|β|

([max(T,Diam(Ω))]−1)|β|
6 C ‖q‖L1(Q)

R|β|

β!([max(T,Diam(Ω))]−1)|β|
β!, β ∈ N

1+n

with C depending on T and Ω. Moreover, we have

‖q‖L1(Q) 6 2MT |Ω|
and one can check that

R|β|

β!
6 e(1+n)R.
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Applying these estimates, we obtain

∣

∣∂βH(l, y)
∣

∣ 6 C
e(1+n)Rβ!

([max(T,Diam(Ω))]−1)|β|
, β ∈ N

1+n (6.8)

with C depending on M , Ω and T . Set ρ = [max(T,Diam(Ω))]−1+1, E = E1∩{x ∈ R
1+n : |x| < min(ρ2 , 1)}

with N = Ce(1+n)R and λ = [max(T,Diam(Ω))]−1

ρ
. In view of (6.8), we have

∥

∥∂βH
∥

∥

L∞(B2ρ)
6 C

e(1+n)Rβ!

([max(T,Diam(Ω))]−1)|β|
=

Nβ!

(ρλ)|β|
, β ∈ N

1+n.

Using the fact that G is an open set of Sn and tE1 = E1 for any t > 0, one can check that |E| > 0. Then,
since E ⊂ B ρ

2
, 0 < λ < 1 and ρ > 1, applying Proposition 6 to H we obtain

|F(q)(R(l, y))| = |H(l, y)| 6 ‖H‖L∞(Bρ)
6 Ce(1+n)R(1−b)

(

‖H‖L∞(E)

)b

, |(l, y)| < 1,

where C > 0 and 0 < b < 1 depend only on Ω, T , M , ω0 and ε0. But, for R < Br estimate (6.1) implies
that

|H(l, y)|2 = |F(q)(R(l, y))|2 6 C

(

1

r
+ edr

∥

∥B∗
q1

−B∗
q2

∥

∥

2
)

, (l, y) ∈ E

and we deduce

|F(q)(l, y)|2 6 Ce2(1+n)(1−b)R

(

1

r
+ edr

∥

∥B∗
q1

−B∗
q2

∥

∥

2
)b

, |(l, y)| < R. (6.9)

Note that

‖q‖
2
b

H−1(R1+n) 6 C

(
∫

R1+n

(1 + |(l, y)|2)−1|F(q)(l, y)|2dydl
)

1
b

. (6.10)

We shall make precise below,
∫

BR

(1 + |(l, y)|2)−1|F(q)(l, y)|2dydl

and
∫

R1+n\BR

(1 + |(l, y)|2)−1|F(q)(l, y)|2dldy

separately. We start by examining the last integral. The Parseval-Plancherel theorem implies
∫

R3\BR

(1 + |(l, y)|2)−1|F(q)(l, y)|2dydl 6 1

R2

∫

R1+n\BR

|F(q)(l, y)|2dydl

6
1

R2

∫

R1+n

|F(q)(l, y)|2dydl = 1

R2

∫

R1+n

|q(t, x)|2dtdx

6
4T |Ω|M2

R2
.

We end up getting that
∫

R1+n\BR

(1 + |(l, y)|2)−1|F(q)(l, y)|2dydl 6 C

R2
. (6.11)

Further, in light of (6.9), we get

∫

BR

(1 + |(l, y)|2)−1|F(q)(l, y)|2dydl 6 CR1+ne2(1+n)(1−b)R

(

1

r
+ edr

∥

∥B∗
q1

−B∗
q2

∥

∥

2
)b

, r > r2, (6.12)

upon eventually substituting C for some suitable algebraic expression of C.
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Last, putting (6.11)–(6.12) together we find out that

‖q‖
2
b

H−1(R1+n) 6 C

(

1

R2
+R1+ne2(1+n)(1−b)R

(

1

r
+ edr

∥

∥B∗
q1

−B∗
q2

∥

∥

2
)b
)

1
b

6 C

(

R− 2
b +

R
n+1
b e2(1+n)( 1−b

b
)R

r
+R

n+1
b e2(1+n)( 1−b

b
)Redr

∥

∥B∗
q1

−B∗
q2

∥

∥

2

)

,

(6.13)

for 1 < R < Br and r > r2 where the constant C > 0 depends only on Ω, T , ε0, ω0 and M . Here we use the
fact that x 7→ x

1
b is convex on (0,+∞) since b ∈ (0, 1). Now let R1 > 1 be such that

R < BR
n+3
b e2(1+n)R( 1−b

b
), R > R1.

Choose r = R
n+3
b e2(1+n)R( 1−b

b
) for R > R2, with R2 > R1 such that

R
n+3
b e2(1+n)R( 1−b

b
) > r2, R > R2.

Then, we have r > r2, R < Br and R
n+1
b e

2(1+n)R( 1−b
b

)

r
= R− 2

b . With this value of r we obtain

‖q‖
2
b

H−1(R1+n) 6 C
(

R− 2
b +R

n+1
b e2(1+n)( 1−b

b
)Rexp

(

dR
n+3
b e2(1+n)R( 1−b

b
)
)

∥

∥B∗
q1

−B∗
q2

∥

∥

2
)

. (6.14)

On the other hand, we have

R
n+1
b e2(1+n)( 1−b

b
)Rexp

(

dR
n+3
b e2(1+n)R( 1−b

b
)
)

6 exp

(

R
n+1
b + 2(1 + n)

(

1− b

b

)

R+ dR
n+3
b e2(1+n)R( 1−b

b )
)

6 exp
(

e
n+1
b

R + e2(1+n)( 1−b
b )R + e[d+

n+3
b

+2(1+n)( 1−b
b

)]R
)

6 exp
(

3e[
n+1
b

+2(1+n)( 1−b
b

)+d+n+3
b

+2(1+n)( 1−b
b

)]R
)

6 exp
(

e[3+
n+1
b

+2(1+n)( 1−b
b

)+d+n+3
b

+2(1+n)( 1−b
b

)]R
)

.

Setting A = 3 + n+1
b

+ 2(1 + n)( 1−b
b
) + d+ n+3

b
+ 2(1 + n)( 1−b

b
), (6.14) leads to

‖q‖
2
b

H−1(R1+n) 6 C
(

R− 2
b + ee

AR ∥

∥B∗
q1

−B∗
q2

∥

∥

2
)

, R > R2. (6.15)

Set γ =
∥

∥B∗
q1

−B∗
q2

∥

∥ and γ∗ = e−eAR2
. For γ > γ∗ we have

‖q‖H−1(Q) 6 C‖q‖L∞(Q) 6
2CM

γ∗
γ. (6.16)

For 0 < γ < γ∗, by taking R = R3 = 1
A
ln(|ln γ|) in (6.15), which is permitted since R3 > R2, we find out

that

‖q‖H−1(Q) 6 ‖q‖H−1(R1+n) 6 C ln(|ln γ|)−1
(

ln(|ln γ|) 2
b γ +A

2
b

)
b
2

.

Now, since sup
0<γ6γ∗

(

ln(|ln γ|) 2
b γ +A

2
b

)
b
2

is just another constant depending only on Ω, T , ε0, ω0 and M , we

obtain

‖q‖H−1(Q) 6 C ln(|ln γ|)−1, 0 < γ < γ∗. (6.17)

By interpolation we find

‖q‖L2(Q) 6 C‖q‖
1
2

H1(Q)‖q‖
1
2

H−1(Q) 6 C(M
√

|Ω|T ) 1
2 ‖q‖

1
2

H−1(Q)

with C depending only on Ω and T . Combining this estimate with (6.17), we deduce (1.3). �
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Appendix

In this appendix we prove that the space C∞(Q) is dense in H�(Q) in some appropriate sense and we
show that the maps T0 and T1 can be extended continuously on these spaces. Without lost of generality we
consider only these spaces for real valued functions. The results of this section are well known, nevertheless
we prove them for sake of completeness.

Density result in H�(Q). Let us first recall the definition of K�(Q):

K�(Q) = {u ∈ H−1(0, T ;L2(Ω)) : �u = (∂2t −∆)u ∈ L2(Q)}
with the norm

‖u‖2K�(Q) = ‖u‖2H−1(0,T ;L2(Ω)) + ‖�u‖2L2(Q) .

The goal of this subsection is to prove the following.

Theorem 7. H�(Q) embedded continuously into the closure of C∞(Q) wrt K�(Q).

Proof. Let N be a continuous linear form on K�(Q) satisfying

Nf = 0, f ∈ C∞(Q). (6.18)

In order to show the required density result we will prove that this condition implies that
N|H�(Q) = 0.

By considering the application u 7→ (u,�u) we can identify K�(Q) to a subspace of H−1(0, T ;L2(Ω))×
L2(Q). Then applying the Hahn Banach theorem we deduce that N can be extended to a continuous linear
form on H−1(0, T ;L2(Ω))× L2(Q). Therefore, there exist h1 ∈ H1

0 (0, T ;L
2(Ω)), h2 ∈ L2(Q) such that

N(u) = 〈u, h1〉H−1(0,T ;L2(Ω)),H1
0 (0,T ;L2(Ω)) + 〈�u, h2〉L2(Q) , u ∈ K�(Q).

Now let O ⊂ R
n be a bounded C∞ domain such that Ω ⊂ O and fix Qε = (−ε, T + ε)×O with ε > 0. Let

h̃j be the extension of hj on R
1+n by 0 outside of Q for j = 1, 2. In view of (6.18) we have

〈

f, h̃1

〉

L2(O)
+
〈

(∂2t −∆)f, h̃2

〉

L2(O)
= N(f|Q) = 0, f ∈ C∞

0 (Qε).

Thus, in the sense of distribution we have

�h̃2 = −h̃1, on Qε.

Moreover, since h̃2 = 0 on R
1+n \Q ⊃ ∂Qε, we deduce that h̃2 solves







∂2t h̃2 −∆h̃2 = −h̃1, in Qε,

h̃2(−ε, x) = ∂th̃2(−ε, x) = 0, x ∈ O
h̃2(t, x) = 0, (t, x) ∈ (−ε, T + ε)× ∂O.

But, since h1 ∈ H1
0 (0, T ;L

2(Ω)), we have h̃1 ∈ H1
0 (−ε, T + ε;L2(O)) and we deduce from Theorem 2.1

in Chapter 5 of [24] that this IBVP admits a unique solution lying in H2(Qε). Therefore, h̃2 ∈ H2(Qε).

Combining this with the fact that h̃2 = 0 on Qε \ Q, we deduce that h2 ∈ H2
0 (Q), with H2

0 (Q) the closure
of C∞

0 (Q) in H2(Q), and that �h2 = −h1 on Q. Thus, for every u ∈ H�(Q) we have

〈�u, h2〉L2(Q) = 〈�u, h2〉H−2(Q),H2
0 (Q) = 〈u,�h2〉L2(Q) = −〈u, h1〉L2(Q) .

Here we use the fact that H�(Q) ⊂ L2(Q). Then it follows that

N(u) = 〈u, h1〉L2(Q) − 〈u, h1〉L2(Q) = 0, u ∈ H�(Q).

From this last result we deduce that H�(Q) is contained into the closure of C∞(Q) wrt K�(Q). Combining
this with the fact that H�(Q) embedded continuously into K�(Q) we deduce the required result. �
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Trace operator in H�(Q). In this subsection we extend the trace maps T0 and T1 into H�(Q) by duality
in the following way.

Proposition 7. The maps

T0w = (T 1
0 w, T 2

0 w, T 3
0 w) = (w|Σ, w|t=0, ∂tw|t=0), w ∈ C∞(Q),

T1w = (T 1
1 w, T 2

1 w, T 3
1 w) = (∂νw|Σ, w|t=T , ∂tw|t=T ), w ∈ C∞(Q),

can be extended continuously to T0 : H�(Q) → H−3(0, T ;H− 1
2 (∂Ω))×H−2(Ω)×H−4(Ω),

T1 : H�(Q) → H−3(0, T ;H− 3
2 (∂Ω))×H−2(Ω)×H−4(Ω).

Proof. It is well known that the trace maps

u 7→ (u|∂Ω, ∂νu|∂Ω)

can be extended continuously to a bounded operator from H2(Ω) to H
3
2 (∂Ω) × H

1
2 (∂Ω) which is onto.

Therefore, there exists a bounded operator R : H
3
2 (∂Ω)×H

1
2 (∂Ω) → H2(Ω) such that

R[h1, h2]|∂Ω = h1, ∂νR[h1, h2]|∂Ω = h2, (h1, h2) ∈ H
3
2 (∂Ω)×H

1
2 (∂Ω).

Fix g ∈ H3
0 (0, T ;H

1
2 (∂Ω)) and choose G(t, .) = R(0, g(t, .)). One can check that G ∈ H3

0 (0, T ;H
2(Ω)) and

‖G‖H3(0,T ;H2(Ω)) 6 ‖R‖ ‖g‖
H3(0,T ;H

1
2 (∂Ω))

. (6.19)

Applying twice the Green formula we obtain
∫

Σ

vgdσ(x)dt =

∫

Q

�vGdx−
∫

Q

v�Gdx, v ∈ C∞(Q).

But �G ∈ H1
0 (0, T ;H

2(Ω)), and we have
〈

T 1
0 v, g

〉

H−3(0,T ;H− 1
2 (∂Ω)),H3

0 (0,T ;H
1
2 (∂Ω))

= 〈�v,G〉L2(Q) − 〈v,�G〉H−1(0,T ;L2(Ω)),H1
0 (0,T ;L2(Ω)) .

Then, using (6.19) and the Cauchy Schwarz inequality, for all v ∈ C∞(Q), we obtain
∣

∣

〈

T 1
0 v, g

〉
∣

∣ 6 ‖�v‖L2(Q) ‖G‖L2(Q) + ‖v‖H−1(0,T ;L2(Ω)) ‖�G‖H1
0 (0,T ;L2(Ω))

6 C ‖v‖K�(Q) ‖g‖H3(0,T ;H
1
2 (∂Ω))

which, combined with the density result of Proposition 7, implies that T 1
0 : v 7→ v|Σ extend continuously to

a bounded operator from H�(Q) to H−3(0, T ;H− 1
2 (∂Ω)). In a same way we prove that

T 1
1 v = ∂νv|Σ, v ∈ C∞(Q)

extend continuously to a bounded operator from H�(Q) to H−3(0, T ;H− 3
2 (∂Ω)).

Now let us consider the operators T j
i , i = 0, 1, j = 2, 3. We start with

T 2
0 : v 7−→ v|t=0, v ∈ C∞(Q).

Let h ∈ H2
0 (Ω) and fix H(t, x) = tψ(t)h(x) with ψ ∈ C∞

0 (−T, T2 ) satisfying 0 6 ψ 6 1 and ψ = 1 on [−T
3 ,

T
3 ].

Then, using the fact that ψ = 1 on a neighborhood of t = 0, we deduce that

H|Σ = ∂νH|Σ = H|t=0 = �H|t=0 = �H|t=T = 0, ∂tH|t=0 = h.

Therefore, �H ∈ H1
0 (0, T ;L

2(Ω)) and repeating the above arguments, for all v ∈ C∞(Q), we obtain the
representation

〈

T 2
0 v, h

〉

H−2(Ω),H2
0 (Ω)

= 〈v,�H〉H−1(0,T ;L2(Ω)),H1
0 (0,T ;L2(Ω)) − 〈H,�v〉L2(Q) .

Then, we prove by density that T 2
0 extend continuously to T 2

0 : H�(Q) −→ H−2(Ω).
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Now, let us consider

T 3
0 : v 7−→ ∂tv|t=0, v ∈ C∞(Q).

Let ϕ ∈ H4
0 (Ω) and fix

Φ(t, x) = ψ(t)ϕ(x) +
ψ(t)t2∆ϕ(x)

2
.

Then, Φ satisfies

Φ|Σ = ∂νΦ|Σ = ∂tΦ|t=0 = 0, Φ|t=0 = ϕ.

Moreover, we have �Φ ∈ H1(0, T ;L2(Ω)) with

(∂2t −∆)Φ|t=0 = −∆ϕ+∆ϕ = 0, (∂2t −∆)Φ|t=T = 0,

which implies that �Φ ∈ H1
0 (0, T ;L

2(Ω)). Therefore, repeating the above arguments we obtain the repre-
sentation

〈

T 3
0 v, ϕ

〉

H−4(Ω),H4
0 (Ω)

= 〈�v,Φ〉L2(Q) − 〈v,�Φ〉H−1(0,T ;L2(Ω)),H1
0 (0,T ;L2(Ω))

and we deduce that T 3
0 extends continuously to T 3

0 : H�(Q) −→ H−4(Ω). In a same way, one can check that

T 2
1 : v 7−→ v|t=T , T 3

1 : v 7−→ ∂tv|t=T v ∈ C∞(Q)

extend continuously to T 2
1 : H�(Q) −→ H−2(Ω) and T 3

1 : H�(Q) −→ H−4(Ω). �
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