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ABsTrRACT. We consider the stability in the inverse problem consisting of the determination of a time-
dependent coefficient of order zero g, appearing in a Dirichlet initial-boundary value problem for a wave
equation 92u — Au+q(t,z)u=01in Q = (0,T) x Q with Q a bounded C? domain of R, n > 3, from partial
observations on dQ. The observation is given by a boundary operator associated to the wave equation.
Using suitable complex geometric optics solutions and a Carleman estimate with linear weight, we prove a
stability estimate in the determination of ¢ from the boundary operator.
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1. INTRODUCTION

1.1. Statement of the problem. In the present paper we consider  a C? bounded domain of R", n > 3.
We set ¥ = (0,T) x 9Q and Q = (0,T) x Q with T > 0. We introduce the following initial-boundary value
problem (IBVP in short) for the wave equation

O?u — Au+ q(t,r)u =0, in @
U(O, ) = Yo, atu((), ) = V1, in Q, (11)
u =g, on 3.

where the potential ¢ € L*°(Q). We prove that problem (1.1) is well posed in some appropriate space. More
precisely, in Section 2 we introduce the space H(9Q) and prove that, for (g,vo,v1) € H(OQ), problem (1.1)
admits a unique weak solution u € L?(Q) with

||u||L2(Q) <C ”(gaUOaUl)HH((')Q) :
We associate to (1.1) the boundary operator
By : (g,v0,v1) = (Ouujs, Uje=7, Orttjy—r)
with u the solution of (1.1) and v the outward unit normal vector to 9. Here u is the solution of (1.1)

and, for u sufficiently smooth, d,u(x) = Vu(x) - v(x). See also Section 2.1 for a rigorous definition of this
operator. Consider, for all y € S*~1 = {y € R": |y| = 1}, the set

0y y={z€d: v(z)-y>0}, 00_,={xecd: v(z) y<O0}
and for € > 0
0Ny oy={2z€d: v(z)-y>c}, 0_.,={zecd: v(z) y<e}
with v the outward unit normal vector to 0€2. Note also that
0Ny y={z€d: v(z) y<—c}, 00_._y={z€d: v(z) y=>—c}

We introduce
Ej;y = (O,T) X ain, Ei,57y = (O,T) X 3Qi,57y
and the closed subspace F), . of H(0Q) defined by

Fye={(g,v0,v1) € H(OQ) : vo =0, suppg C E_ . _,}.

Let wy € S*1, gg > 0. The main purpose of this paper is to prove a stability estimate in the determination
of the time-dependent potential ¢ from the partial boundary operator

B; =B; t Fugeo 2 (9:0,01) = (Quuys_ s Wjt=T)- (1.2)

q;€0,Y0
Physically speaking, our inverse problem consists of determining properties such as density of an inho-
mogeneous medium, that evolve over time, by probing it with disturbances generated on the boundary and
at initial time. The data is the response of the medium to these disturbances, measured on the boundary
and at final time, and the purpose is to recover the function which measures the property of the medium.

1.2. Existing papers. In recent years the problem of recovering coeflicients for hyperbolic equations from
boundary measurements has attracted many attention. Many authors have considered this problem with an
observation given by the reduced boundary operator

Ayt g Oy,

where u solves (1.1) with vg = v1 = 0. This operator is usually called the Dirichlet to Neumann map (DN
map in short). In [26], the authors proved that the DN map uniquely determines the time-independent
potential in a wave equation. Isakov [16] considered the determination of a coefficient of order zero and a
damping coefficient. Note that all these results are concerned with measurements on the whole boundary.
The uniqueness by local DN map has been considered by [9]. The stability estimate in the case where the DN
map is considered on the whole lateral boundary was treated by Stefanov and Uhlmann [29]. The uniqueness
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and Holder stability estimate in a subdomain were established by Isakov and Sun [17] and, assuming that the
coefficients are known in a neighborhood of the boundary, Bellassoued, Choulli and Yamamoto [3] proved
a log-type stability estimate in the case where the Neumann data are observed in an arbitrary subdomain
of the boundary. In some recent work [20] extended the results of [26] to determination of large class of
time-independent coefficient of order zero in an infinite cylindrical domain, also called cylindrical waveguide,
and he proved that only measurements on a bounded subset are required for the determination of some class
of coefficients including periodic coefficients and compactly supported coefficients.

Let us also mention that the method using Carleman inequalities was first considered by Bukhgeim
and Klibanov [4]. For the application of Carleman estimate to the problem of recovering time-independent
coefficients for hyperbolic equations we refer to [2], [15] and [19].

All the above mentioned results are concerned only with time-independent coefficients. Several authors
considered the problem of determining time-dependent coefficients for hyperbolic equations. In [27], the
authors considered the problem of determining the time-dependent coeflicient ¢ from the DN map A, asso-
ciated to (1.1). For this purpose, they considered the problem (1.1) on the infinite time-space cylindrical
domain R x Q instead of @ (¢t € R instead of 0 < ¢ < T < 00). Then, with some additional assumptions
[27] proved a result of uniqueness. Using similar arguments, [25] considered the same problem at finite time
on @, with 7" > Diam(2), and they proved a result of uniqueness for the determination of ¢ restricted to
the subset S of ), consisting of the lines which make 45 degree with the ¢-axis and which meet the planes
t =0 and t = T outside @, from the DN map A,. Using a result of unique continuation due to [31], Eskin
[10] proved that the DN map uniquely determines time-dependent coefficients that are analytic wrt the time
variable ¢t. In some recent work, [28] extended the result of [27] to more general coefficients and he proved a
result of stability for compactly supported coefficients provided T is sufficiently large. One of the main point
in the strategy of these authors consists of using geometric optics solutions concentrate near lines in order
to recover the X-ray transform of the coefficient ¢ from the DN map A,. For time dependent coefficient
this approach requires measurements on the infinite time-space cylindrical domain R x €0, otherwise one can
only expect the determination of the coefficients restricted to a subdomain of ) when the coefficients in
consideration are not analytic wrt ¢. Indeed, even with the knowledge of B, restricted to zero initial data
vg = v1 = 0, from domain of dependence argument there is no hope to determine ¢ on the whole domain
Q. In contrast to this approach, Isakov [16] used complex geometric optics similar to the one used by [30]
for elliptic equations, and he proved a result of uniqueness in the determination of ¢ on the whole domain
@ from the boundary operator B, (see also [6] and [8] for results of stability for parabolic and Schrodinger
equations). In the present paper, we prove that the knowledge of the partial boundary operator By is suffi-
cient for the determination of the time-dependent potential ¢ on the whole domain ). Moreover, we derive
a stability estimate for this inverse problem. In contrast to the result of [16], which seems to be the only
result of determination of a time-dependent coeflicient, that is not analytic wrt to ¢, on the whole domain
@, in the present paper we consider only initial data (vg, v1) with vg = 0 and Dirichlet boundary condition g
supported on some part of X (which, roughly speaking, corresponds to half of the boundary) and we measure
uj—r and J,u on some part of ¥ (which, roughly speaking, corresponds to the other half of the boundary).
Therefore, we restricted both our data and measurements.

We also mention that [6], [7] and [11] considered the problem of determining a time-dependent coefficient
for parabolic equations and they derived stability estimate for this problem.

1.3. Main result. In order to express the main result of this paper we first remark (see Section 2) that for
every q1, g2 € L>(Q) the operator

B; - B:;g : me&o — LQ(E—ﬁo»wo) X Hl(Q)
is bounded. Then our main result can be stated as follows.

Theorem 1. Let q1, g2 € WH(Q) . Assume that

quHlew(Q) + ||Q2||W1»°°(Q) <M.
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Then, for all wy € S*™! and g > 0 we have
lar = a2l 2y < k(|| By, — Bs,

) (1.3)

with
CxE =7
h(7) =9 Cln(llnqy])=2, 0<y <7,
0, v=0.

Here HB;1 - By, || stands for the norm of By, —B;, as an element of B(F,, c,, L*(3_ ¢, w) x H' (). Moreover

C' is a positive constant depending on M, Q, T, €y, wg and vy, = e’eARl, with A and Ry two constant
introduced in Section 5 which depend on M, T, Q, €q, wq.

Let us observe that the stability estimate (1.3) can be improved into a log-type stability estimate if we
replace By by the full boundary operator B,. Indeed, by combining the results of Section 3 with arguments
of [6] (see subsection 3.6) and [8], one can prove a log-type stability estimate in the determination of ¢ from
B,.

Let us remark that in this paper we only treat the case n > 3. Nevertheless, we believe that with
additional technical arguments one can extend our result to the case n = 2. For n = 2, the main difficulty
comes from the choice for (;, j = 1,2, in Proposition 4.

The main tools in our analysis are suitable complex geometric optics (CGO in short) solutions and
Carleman estimates with linear weight. More precisely, in this paper we adapt to the wave equation some
arguments used by many authors for elliptic equations (see [5], [12], [18], [24]). This approach seems quite
natural since we want to determine a coefficient that depends on every variable of our equation.

1.4. Outline. This paper is organized as follows. In Section 2 we treat the direct problem. We show that
problem (1.1) is well posed in some appropriate space and we define the boundary operator B, associated
to this problem. In Section 3, using some results of [6], [13] and [14], we build suitable CGO solutions
associated to (1.1) without condition on 9Q). In Section 4, we establish a Carleman estimate for the wave
equation with linear weight. In Section 5, we use the Carleman estimate introduced in Section 4 to build
CGO solutions associated to (1.1) that vanish on parts of 9Q. More precisely, we build CGO u which are
solutions of (1.1) with (g,vg,v1) € Fluy - In Section 6 we prove Theorem 1. We prove also some auxiliary
results in the appendix.

2. FUNCTIONAL SPACE

In this section we study the IBVP (1.1). We define the space H(9Q) and its topology. We define also
the boundary operator B, in some appropriate spaces. We first introduce the space

J={uecL*Q): (0} —Au=0}
and topologize it as a closed subset of L?(Q). We work with the space
Hp(Q) = {u € L*(Q) : Du= (9 - Ajue L*(Q)},
with the norm
HUH?LID(Q) = ||UH22(Q) + H(at2 - A)“Hi%@) :

Here and in all this paper we denote by [ the differential operator defined by Cu = (92 — A)u. Repeating
some arguments of Theorem 6.4 in chapter 2 of [22] we prove in the appendix (see Theorem 7) that Hg(Q)

embedded continuously into the closure of C*°(Q) in the space
Kn(Q) ={ue H'(0,T;L*(Q)) : Ou= (87 — A)u e L*(Q)}
topologized by the norm

2 2 2
HUHKD(Q) = HUHHfl(O,T;L?(Q)) + H(af - A)UHLz(Q) .
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Then, following Theorem 6.5 in chapter 2 of [22], we prove in the appendix that the maps

Tow = (w\va\t:Oaatw\tZO)v Tiw = (auwmawlt:T»ath,:T)v w € C(Q),
can be extended continuously to 7o : Ho(Q) — H=3(0,T; H~2(0Q)) x H™2(Q) x H4(Q), T : Ho(Q) —
H=3(0,T; H=2(0%)) x H2() x H*(Q) (see Proposition 8). Therefore, we can define

H(0Q) = {Tou: ue Hn(Q)} C H3(0,T; H™2(09Q)) x H2(Q) x H(Q).

Following [24], in order to define an appropriate topology on H(JQ) we consider the restriction of 7y to the
space J.

Proposition 1. The restriction of Ty to J is one to one and onto.

Proof. Let u,v € J with Tou = Tov. Then w = u — v solves
Rw—Aw = 0, (t,x)€Q,
Wi=0 = atw|t:0 = 0,
U}|Z =0
and the uniqueness of solutions of this IBVP implies that w = 0. Thus, the restriction of 7y to J is one to
one. Now let (g,v9,v1) € H(0Q). There exists F' € Ho(Q) such that ToF = (g,v9, v1). Consider the IBVP

Rv—Av = —(7 —A)F, (t,z)€Q,
V=0 = Opvjy—g = 0,
U|E = 0,

Since —(0? — A)F € L?(Q), this IBVP admits a unique solution v € C*([0,T7]; L*(Q)) N C([0,T]; HE()).
Then, u = v + F € L*(Q) satisfies (07 — A)u = 0 and Tou = Tov + ToF = (g,v0,v1). Thus Ty is onto. [

We set Py the inverse of Ty : J — H(IQ) and we define the norm of H(9Q) by

H(QWOavl)”H(aQ) = HPO(gaUO»Ul)”L?(Q)'
We are now in position to state the well possedness of the IBVP (1.1).

Proposition 2. Let (g,vg,v1) € H(0Q) and ¢ € L>(Q). Then the IBVP (1.1) admits a unique solution
u € L2(Q) satisfying

ull 2y < C 108 40,00 oy @)
and the boundary operator By : (g,vo,v1) — Tiu is a bounded operator from H(0Q) to H3(0,T; H—% (09)) x
H=2(Q) x H=4(Q).

Proof. We split u into two term u = v + Py(g, vo, v1) where v solves

Hv—Av+qu = —qPo(g,v0,v1), (t,2)€Q,
’U|t:0 = 8tv‘t:0 = O7 <22)
’U‘g = 0.

Since Po(g,vo,v1) € L*(Q), the IBVP (2.2) admits a unique solution v € C*([0, T; L*(Q)) N C([0, T]; HL(2))
satisfying
||U||c1([o,T];L2(Q)) + HU”C([O,T];H(}(Q)) <C ||—QP0(9’UOaU1)HL2(Q) <C HQHLoo(Q) ||P0(97U0avl)||L2(Q) - (23)

Therefore, u = v + Py(g, vo, v1) is the unique solution of (1.1) and estimate (2.3) implies (2.1).

Now let us show the last part of the proposition. For this purpose fix (g,vo,v1) € H(9Q) and consider
u the solution of (1.1). Note first that v € L*(Q) and (07 — A)u = —qu € L?(Q). Thus u € Hp(Q) and
Tiue H3(0,T; H2(0Q)) x H2(Q) x H~*(Q) with

2 2 2 2 2 2
I1Tull” < C* [lullfry ) = C*(ullza () + llgullza(g) < C*A+ lalze(g)) lullz2(g) -
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Combining this with (2.1) we deduce that B, is a bounded operator from H(9Q) to H (0, T H3(09)) x
H=2(Q) x H=*(Q). O
Consider the operator By, — By, for ¢1, g2 € L>(Q). We have the following regularity result.

Proposition 3. Let ¢1, g2 € L*(Q). Then the operator By, — By, is a bounded operator from H(9Q) to
L3(%) x HY(Q) x L*(Q).

Proof. Let uj,us be respectively the unique solution of the IBVP (1.1) for ¢ = ¢; and ¢ = ¢o2. Then
U = up — Ug solves

Hu—Aut+qu = (@2—q)ua, (t,2)€Q,
U= = Opup—g = 0,
u‘z = 0.

Since (g2 — q1)uz € L*(Q), in view of Theorem A.2 in [3] (see also Theorem 2.1 in [21] for ¢ = 0), u €
CH([0,T); L3(2)) N C([0, T); H () with ,u € L?(X). Moreover we have the following energy estimate

luller o,y L2 + Nulleqo, ) + 10vullp2isy < Cllar = g2l ooy lu2ll 2y -

Note that in Theorem A.2 of 3] the authors consider only the case ¢ is independent of ¢ but their arguments
still work when ¢ is time-dependent. Combining this estimate with (2.1), we deduce that Tiu € L*(Z) x
HY(Q) x L*(Q) with

ITiull L2 2y x @y w22 @) < C (g5 v0,v1) g0 »
where C' depends on Q, T and M 2> (1| gy + |¢2/| 1= (q)- Finally, we complete the proof by recalling that
Tiu = Tiuy — Tiup = (B(h - Btp)(gavOaUl)'
(]

According to Proposition 2 and 3, for every q1, g2 € L*°(Q), the partial boundary operators B;j are well

defined as bounded operator from F,, ., to H=3(0,T; H2(9Q_ ., .,)) x H™2(Q). Moreover the operator
B — By, is bounded from F, ., to L*(X_ ., ..,) X H' ().

3. COMPLEX GEOMETRIC OPTICS SOLUTIONS
The goal of this section is to build CGO u associated to the equation
O2u— Au+q(t,z)u=0 on Q.
More precisely we consider solutions of this equation of the form
uw= et (1 4 w(t, z)) (3.1)
with u € H?(Q). Here {; € C*" and it is chosen in such way that (97 — A)e¢ (%) = 0. Moreover, ¢;
depends on some parameter r > 0 and the remainder term w in the asymptotic expansion of u wrt r satisfies

C

lwll 2y < -

with C' > 0 independent of r. In order to build such CGO, we first introduce some well known results
of Hormander about solutions of PDE’s with constant coeflicients of the form P(D)u = f on @ with
P e C[Xy, X1,...,X,] a polynomial with complex coefficient and D = —i(dy, 0s).
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3.1. Solutions of PDE with constant coefficients. We start this subsection by recalling some properties
of solutions of PDE’s of the form P(D)u = f with constant coefficient. Let P € C[Xy, X1,...,X,] and P
defined by

13:(2

aeNtn

2
0y Pt,2)| )

Theorem 2. (Theorem 7.3.10, [13]) For every P € C[Xo, X1, ...,X,] with P # 0 one can find a distribution
of finite order Ep € D'(RY*™) such that P(D)Ep = §.

Such distributions E'p are called fundamental solutions of P. Note that
Epx (P(D)u) =u, wuec& R™™),

P(D)(Ep+f)=f, [e&®R™),

where £'(RT7) is the set of distributions with compact support. Thus, for all f € &'(R'™), u = Ep x f
is a solution of P(D)u = f . Let us give some information about the regularity of such a solution. For this
purpose we need the following definitions introduced in [14].

Definition 1. A positive function x defined in R*™™ will be called a temperate weight function if there exist
positive constants C and N such that

K(E+m) SCOL+[EDYR(n), &neRM™
The set of all such functions k will be denoted by K.
Notice that, for all P € C[Xq, X1,...,X,], P € K.

Definition 2. Ifx € K and 1 < p < oo, we denote by By, ; the set of all temperate distribution u € S'(R**™)
such that u is a function and

lall = (g [, W@ dg)é < oo

When p = oo we shall interpret |lul, . as ess. sup|r(§)a(€)|. We denote by Blo¢ the set of u € S'(R'™)
such that for all x € C§°(R*™™) we have xu € By .

Remark 1. Let
m(r) = (+|(rmf):, 7ER neR™
Then, in view of Ezample 10.1.2 of [14], one can easily show that k1 € K and Bs ,,, = H'(R'™").

Remark 2. In view of Theorem 10.1.12 of [14], for k},k, € K, k = K| - k), u1 € By i 0 E'(RY™) and
Uz € Bog wy, we have uy x ug € By, and

s *wall, . < llurlls,  lluells_ - (3.2)
Has )

Theorem 3. (Theorem 10.21, [14]) Every P € C[Xo, X1,...,Xy,], with P # 0, has a fundamental solution
Ep € Bizcﬁ such that % € Boo,P and

cosh

Ep

cosh(|(£,2)]) s¢ (3.3)

oo, P

B

with C > 0 a constant depending only on the degree of P.
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Such a fundamental solution will be denoted by regular fundamental solution. Let us remark that in our
construction of complex geometric optics solutions we need to consider an operator E such that P(D)E = Id
for some P € C[Xy, X1,...,X,]. Using the properties of regular fundamental solutions, Hérmander proved
in Theorem 10.3.7 of [14] that such operator exists and it is a bounded operator of L?*(X) for X a bounded
open set of R!*™. In contrast to elliptic equations and parabolic equations (see Subsection 2.1 and 3.6 of
[6]), we can not build CGO lying in H?(Q) by applying the result of Hérmander. What we can actually
build from this result is CGO lying in H'(Q). Therefore, we need to extend the result of Hérmander in the
following way.

Theorem 4. Let P € C[Xy, X1,...,X,] with P # 0. Then there exists an operator

E: HY(Q) — H'(Q)
such that:

(1) P(D)Ef=f, feH'(Q),

(2) for all S € C[Xo, X1,...,Xy] such that 2 is bounded, we have S(D)E € B(H'(Q)), and

SO, _
IS(D)Ell g gy < Cg:ﬂglgn ) k=0,1, (3.4)

where C' > 0 depends only on the degree of P, Q and T.

o

Proof of Theorem 4. Let f € HY(Q). In view of Theorem 2.2 and 8.1 in Chapter 1 of [22], there exists
an extension operator p € B (H'(Q), H'(R**™))) such that p(f);o = f. Here we consider the extension
operator p introduced by [22]. Set x € C°(R'*") and R > 0 such that x = 1 on a neighborhood of @ and
suppy C B with Bp the ball of radius R and of center 0 of R'*". Let Ep be a regular fundamental solution
of P. Now consider the operator

E:fr— (Epx(xp(f)o-
Clearly we have
P(D)Ep = (xp(f)) = xp(f)
and it follows that
PD)Ef = (xp(N))ig =1
which proves (1). Now let us show (2). For this purpose, let ¥ € C§°(R'™™) be such that ¢ = 1 on the
closure of B — Bg = {x —y: x,y € Br} and notice that
(Ep * (xp(f)))q = (WEP) * (xp(f)))q - (3.5)

Note that

FSDywEs)| < 2 pe) ‘f (wcosh“(tvx)')EP)‘

P(£) cosh(|(t, z)|)
Then, since 1 cosh(|(t, z)]) € C§°(R*™), from Lemma 2.1 of [6] we deduce that
Ep
h(|(¢ —————— €B_;
dJCOS (‘( 7m)DCOSh(|(t,I)|) € oo, P
and
Ep Ep ,
peosh((t o)) ——2—— | <o —22 | <c
H cosn((t. o)) |5, = lleosn([(e 20D ||,
with C’ > 0 a constant depending only on the degree of P and y. It follows
1Sl

|S(D)YEp| <O sup =
Booa ¢eritn P(€)
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In view of Remark 2, since xp(f) € H'(R'*") = B, ., with 1 introduced in Remark 1, we have S(D) (¢ Ep)x*
(xp(f)) = (S(D)YEp) * (xp(f)) € Ba,s, and

1S(D)WEP) * (xp(IN i @i+ny = I1S(DYWEP) * (xp(/)lp,,,.,
S |SDWEP| g, XU 1 mreny
C swp 15|
¢e R P(¢)

with C' > 0 a constant depending only on the degree of P, x, Q and T. Thus, in view of (3.5), we have
S(D)Ef € HY(Q) and

N

IS(D)E s ) < I06Er) + (oo < € _sup '8' 1l o

Armed with this result, we are now in position to build CGO of the form (3.1) lying in H?(Q).

3.2. Construction of complex geometric optics solutions. For every 1 < ¢ < 2 and w € S ! we set

L o lhte o e_ (e
“Siraror T varee fTe (36)
Note that here £ € S™ and we have
2 3 1 1
S s NG 3.7

Now let us consider the following.

Proposition 4. Let 1 < ¢ <2 and w € S ! and let £ € S" be defined by (3.6). Then, for every r > 0,
(I,y) € R x R™ satisfying

o —y-&=0=(Ly) (~&,¢), (3.8)
5 2
()]
r (3.9)
(1 ) 6
there exists 8 € R™ such that for ‘
1 .
G =&~ 5(y) —i(0,0), (3.10)
G =16~ 5(Ly) +i(0.6), (3.11)
we have
97 — A)eSrt®) =0, j=1,2,
! 3.12
eCy(t,z)eCz'(t,a:) — efi(lvy)'(tvm). ( ' )

Proof. Choose # € R™ such that -1 =0-¢& = 0. Notice that

1\ 2 2
(07 - A)ebr 0 = [ﬁ(&éwf)(z) (W) i) o) iop | e,
Applying (3.6) and (3.8), we obtain
2 Gt 2 1 l LN L e e
(0f — A)esr ) = | —p* (1 — e \§| -z + o +10]7] esrt™
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and, in view of (3.9), we can choose

e (e (l>2‘(|y2|>2>°‘

(07 — A)esrt2) = 0.

Then, we obtain

In the same way we prove that

(92 — A)efz(t2) = lrQ (1 (142 oE > €' - (>2+ ('Z')QHGV

and we deduce (3.12). O

Proposition 5. Let ¢ € WH(Q), 1 < ¢ <2, w € S"L, £ € S" be defined by (3.6) and (i be defined by
(3.10). Then, there exists ro > 1 such that for r > rqo the equation d?u — Au + qu = 0 admits a solution
u € H3(Q) of the form (3.1) with

(t,x) =0

C

with C depending on Q, T and M > ||q|[y1.q)- Moreover, for |(l,y)| < Br, this solution u satisfies the
estimate

[l g2y < Ce’ (3.14)
with C" a constant depending on Q, T, M 2 ||q|ly1.(q), B and 0 depending on Q and T
Proof. First notice that, in view of (3.12), w should be a solution of
Ofw — Aw +2¢1 - (9, — Vo )w = —q(1 + w), (3.15)
Set P € C[Xy, X1,...,Xp] defined by
Pu,n) = [n* = p® +2i¢1 - (1, —m), peR, neR™
In view of Theorem 4, there exists E € B(H'(Q)) such that
P(D)EF = (0} = A+2( - (8, —V,))EF =F, FeH'(Q). (3.16)
Moreover, for every S € C[Xy, X1, ..., X,] such that 5 is bounded, we have S(D)E € B(H*(Q)) and

!

1S ml
1S(D) Bl <K sup (3.17)
BUr@) (wmermer P(p,m)
where K > 0 depends only of Q and T. Applying estimate (3.17) for S = 1 we deduce
1 1
| E| <K sup —<K sup —— —.
B(HY(Q)) (p,m) ERnH1 P(,u7 7’]) (p,m) R +1 ‘aﬂp(/’b7 77)‘

But 9, P(u,n) = 2n + 2i(r{ +i(§ +0)) and |0, P(p,n)| = [30,P(1,n)| = 2|¢'| r. Therefore, using (3.7), we

find
FE < K < KV10
|| HB(HI(Q)) = 2|£I|T = Ar

(3.18)

Now consider the map

G: HY(Q) — HYQ),

F — —E[q1+F)].
Combining estimate (3.18) with a fixed point argument, we deduce that there exists ro > 0 such that for
7 > 7o the map G admits a unique fix point w € H'(Q) satisfying (3.13). Since w satisfies w = —FE [¢(1 + w)],
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from (3.16) we deduce that it is a solution of (3.15). It remains to show that w € H%(Q) and prove estimate
(3.14). For this purpose, note that

10
wp /I, [ - (1,Vf2jca>,

(p,m) ERH1 P(u, 7])’ (umyern+1 |0 P (1, m)| a (u,m) ER™H1 |277 +2i(rg’ +i(4 + 9))|
val
sup JL‘ < sup L = su |M| = <max | 1, 01¢1] .
Gt [P, )| nmeress uPGeml - unernss 20+ 2i(réo + 5))] r

Here we have used (3.7). Combining these estimates with (3.17), we deduce that d;w, V,w € H'(Q) which
implies that w € H?(Q) and we have

2|1G| | 2]Gl| (€
20y S 1 < —
Iy < © (14 Zit + 9L ) (14 fullye ) < € (1419

with C'" a generic constant depending on ©, T" and M > [[q|lyy1.0(g)- Therefore, u defined by (3.1) is an
H?(Q)-solution of &2u — Au + qu satisfying

gy <€ (14 ) @0+ 1l sup e
" (t.0)€Q

which implies (3.14). O

4. CARLEMAN ESTIMATE WITH LINEAR WEIGHT

This section is devoted to the proof of a Carleman estimate with linear weight. Fix & = (&,&’) € S™
satisfying (3.6) and consider the weighted operator

P, = e3¢0 (92 _ A)es&(t2) 5 e R,
The main result of this section can be stated as follows.
Theorem 5. Let v € C3(Q) and r > 0. If u satisfies the condition
Vg =0, V=g = 0= =0 (4.1)
then the estimate

o latv‘t:Tf + rfE%w 0,0 |w - v(z)| do(z)dt + 12 Jo v|? dadt

<C (fQ |Pov)? dedt + 13 [, |ew - Vzv”:T’z dr + rfE_,w 10,07 |w - v(a))| da(x)dt> (4.2)
holds true for r > ry > 0 with C and r1 depending only on Q and T. If u satisfies the condition
vz =0, V= = Opvp—r =0 (4.3)
then the estimate
P o Ozl du 47 [ 10,0 |- ()| do(@)dt + 72 [, |of dedt )

<C (fQ (P_ ol dedt + 13 [ |- Vovimo*de 41 [y [0,0] - ()] do(x)dt)
holds true for r = ry > 0.

Proof. Since the differential operator Ps, s € R, is real valued, without lost of generality we can assume that u
is real valued. We start with the proof of (4.2). Note first that P, can be decomposed into P, = Q1+ Q2+ Q3

with Q1 = 02 — A +r%(&2 — |§'\2), Q2 = &0, Q3 = —1r&' - V. Therefore we have
Q301175 () + 2 (Q1v, Qav) + 2(Q1v, Qsv) + 2 (Q2v, Qav) < || P72 -
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Here we denote by (.,.) the scalar product in L?(Q). In view of this estimate, (4.2) follows from

4 (T‘/ ‘8tv|t:T|2+r/
Q Z+,w

< HQ3v||2L2(Q) + 22 (Qiv, Qjv) (4.5)
1#]

+ Cy (7"3/ |w-va|t=T|2dm+r/
Q s

with C1,Cy > 0 depending only on 2 and 7. We will prove the above estimate by applying suitably the
Green formula on ). We start by decomposing the following terms

0,0 |w - v(z)| do(z)dt + 12 / |v[? dmdt)
Q

18,0 |w - v(z)] da(x)dt)

—w

(Q1v,Q2v) = 7“50/ D2vdp — r&)/ Avdyw + 3¢ (€2 — |€]°) / vOw=A+ B+ C,
Q Q Q
(Q1v,Q3v) = —r/ O2ve' - Vo + r/ Avg' Vv — 132 — \§’|2)/ v¢ - Vvo=D+ E+F,
Q Q Q

(Q2v, Q3v) = —7‘250/ o€ V=G

For A: integrating wrt ¢t € (0,7") we get

/8 v@tv— /8,5 atU /(at’lj‘t T) dr.

For B: applying the Green formula wrt x € ) we find

1 1
/Av@tv:—/ watv@:—f/ 8t|Vv|2:—f/ ‘Vv|t:T|2.
2 2 Jo

For C: integrating wrt ¢ € (0,7) we obtain

/3,51)1;— /& = /(v‘f T)2d:r.

For D: integrating by parts wrt ¢ € (0,7) and applying the Green formula wrt x € Q we get

/ (91521)5/ -V = —/ at'l)fl . Vatv + / 5‘tv‘t=T(§’ . vv\t:T)
Q Q Q

T
= 71/ /divm((atv)zfl)dxdt+/ 3t’U|t:T(§/ - Vuji=r)

:—7/ (0p)?v(z) - €'do(z dt+/ Ovy=7(&" - Vop=r)
o0
N /Q(atvlt:T)(f/ - V=)

For E and F': applying a well known argument of [BU] (see the proof of Lemma 2.1 in [BU]) we obtain

/QAvfl -V = %/E 18,02 " - v(x)do(z)dt,

/v§/~Vv:0.
Q
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For G: integrating by parts wrt ¢ € (0,7) and applying the Green formula wrt « € Q2 we find
/ o€ - Vo = / (Vj=1)(&" - Vvper) — / v Vo = /(v‘t:T)(f' -Vop=r) — / ¢ - Vodw
Q Q Q Q Q
and it follows
1
/ o€ - Vo = 3 / (Vj=1)(&" - VUp=r).
Q Q
Combining all these results, we deduce that

(Q1v,Q2v) + (Q1v, Q3v) + (Q2v, Q3v)

réo 20 4+ 6o 2 Gl WIS 2 (4.6)
= 50 [ (rvp=r)?dz + 552 [, [Vop—r|” dz + 5 Jo(Vji=r)*dx :

7 o @vy=1)(€ - Voy=r)de + § [, 10,0 €' - v(w)do(@)dt — ZE [, (v,=r)(€' - Voj—r)da

For the fourth term on the rhs, applying the Cauchy-Schwarz inequality we get

2
< %/Q|3tv|t:T|2+32r/ |§ V’U‘t T’ dx.

On the other hand, in view of (4.1), an application of some suitable Poincarré inequality (see [DL] vol. 2 pp
125-126 and Proposition 2.2 in [BU]) yields

/Q(U\t r)*dr < /|€ V)= T| dx

with C' depending on |¢’| (which depends only on ¢ according to (3.6)) and Q. Then, using (3.7), we can
replace C' by a constant depending only on . Therefore, the last term on the rhs of (4.6) can be majored

by
/(U|t )& - Voy—r)dz o g0/ |§ Vo= T‘ dx
Q

and, in a same way, for the third term on the rhs of (4.6) we get

30¢2 (et _
PE [ (] < oo B

with C a generic constant depending only on Q. Moreover, using (4.1) and our Poincarré inequality we get

/ lv|? dtda < C’/ &' - Vo|? dida
Q Q

with C' > 0 depending on (2, which implies

‘r/ (Owv)p=1)(&" - Vupr)da
Q

%
2

<C

L1 Vuual ae=cr® [ ¢ Toorf do

r? 2 2
& i iz < l@solecoy-

Combining all these estimates with (4.6) we deduce (4.5), for r > 1, and by the same way (4.2). Now let us
consider (4.4). For this purpose note that for v satisfying (4.3), w defined by w(t,z) = v(T — t,z) satisfies
(4.1). Thus applying (4.2) to w with £ replaced by —¢’ we obtain (4.4). O

A direct consequence of this result is the following Carlemann estimate for the wave equation with
potential.
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Corollary 1. Let ¢ € L>(Q). Then, there exists ro > 0 and C > 0 such that for all u € C*(Q) satisfying
(4.1), and all r = 19, we have

r [ e e o) |8tu‘t:T‘2 dr +r f2+,w e~ 28 (t2) |9y |w - v(z)| do(z)dt + 12 Jo e~ 2 (t:) |y |2 dadt
<C (fQ e 2 (t2) (92 — A+ q)u|” dwdt + 13 [, e 2¢ T | Vg | dm) (4.7)
+Cr [y, e D90 w - v(x)| do(x)dt.
Here ro and C depend on Q, T and M > ||Q||L°°(Q).

Proof. Let us first consider the case ¢ = 0. Note first that for u satisfying (4.1), v = e~ "¢ (t:®)y satisfies also
(4.1). Moreover, we have

/ e2re(ta) | (92 — A)u‘zdxdt :/ |Po|? dadt
Q Q

and from (4.1)
81,1)‘2 = e*rf'“@)a,,um.

Finally, applying (4.1) and the Poincarré inequality used in Theorem 5 we get

/6_2T5'(T’$) ‘8tU‘t:T’2dl’ < 2/ |8tv|t:T|2dx+Cr2/ |w . Vmu‘t:dex
Q Q Q

with C depending on €. Thus, applying the Carleman estimate (4.2) to v, we deduce (4.7). For ¢ # 0, we
have
2 2 2
’8,52u — Au‘ = |8t2u — Au+qu — qu’ <2 ‘(83 — A+ q)u| +2 Hq||2Loo(Q) |u|2

and hence if we choose 5 > 2C ||q||ioo(Q), replacing C' by

C 2
Cy = sup 5 ! 5
rzre 12 = 2C [|ql| 7 )

)

we deduce (4.7) from the same estimate when ¢ = 0. O

Remark 3. Note that, by density, estimate (4.7) can be estended to function u € CL([0,T]; L%(Q2)) N
C([0,T); HY(2)) satisfying (4.1), (02 — A)u € L*(Q) and d,u € L*(3).
5. GEOMETRIC OPTICS SOLUTIONS VANISHING ON PART OF THE BOUNDARY

In this section we fix ¢ € L>=(Q). The goal of this section is to use the Carleman estimate (4.4) in order
to build solutions v € Hp(Q) to

(0?2 —A+qt,2))u=0 inQ,
Uje=o = 0, (5.1)
U\E—,s,—w = O,

of the form
ult,a) = €0 (@O0 4 o(a)) (L) €Q, (5.2)

where ¢ is defined by (3.6), (3 € C'*" is defined by (3.11) and satisfy (3.12), z € e~ "¢ (%) H5(Q) fulfills

2(t,x) = =27 ayen ., U{0}xQ,

2]l L2 (@) < Or~s. (5.3)

The main result of this section can be stated as follows.
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Theorem 6. Let g € L>°(Q). There exists r3 > 0 such that for all r > r3 there is a solution v € H(Q) of
(5.1) of the form (5.2) with z satisfying (5.3). Moreover, we have

1 Toullaq) < Ce’r (5.4)
with C and § depending on Q, T and M > ”q”L“’(Q)’ € and w.

In order to prove existence of such solutions of (5.1) we need some preliminary tools and two intermediate
results.

5.1. Weighted space. We first recall that
P, = e 58 t2) (92 — A)est 2 (1) €@, seR

and we consider the space

Hp,(Q) ={ve L*Q): Pwe L*Q)}
with the norm

101, @) = 1017200y + I1Psv 1172 -
One can easily check that
Hp,(Q) = e " H(Q) = {7 v e Ha(Q)}.
Set
Hs(0Q) = {e D (g, v0,v1 — s&ovo) = (g,v0,01) € H(9Q)}

with the norm

||(h7w07w1)H7-[S(8Q) = ‘ 685'(t’w)(h,wo,w1 + S«fowo)H

HOQ)
Then, we can extend

76 U= (’U|Z7U|t207 atv\t:0>
continuously to 7o : Hp, (Q) — Hs(0Q).

5.2. Construction of special solutions by Carleman estimate. Applying the Carleman estimate (4.4)
to v € C?(Q) satisfying (4.3) and Vjg—o = 0, for 7 > ry, we obtain

Vi w - v(z)|o,v

1
r2

’LQ(Z,’W) + 7"% ||atv|t:0HL2(Q) +r HUHL?(Q)

Vlw - v(x)|ov )
L2 (34 0)

with C' depending only on 2, T. Therefore, estimate (5.5) holds for every v € C?(Q) satisfying vy = 0 and
V=T = 6tU|t:T = Vj4=0 = 0. Define

D={veC*Q): vz =0, vt = Ovj=1 = vjy—o = 0}

(5.5)
<0 (IPrvllaqqy + 7

and set

M, ={(P_.f,0.f=,.): [ €D}
We think of M,. as a subspace of L?(Q)x L*(rw-v(z)do(z)dt, ¥+ ). Let M, denote the orthogonal projection
onto the closure of M, in this Hilbert space. We then have the following result.

Proposition 6. Given r > ro and

veL*(Q), v-elL? (M’Z"“) , g € L*(Q)

there exists a unique u € L?(Q) such that:
1) Pou=w,
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2ullpzg) < C <7’1 vl 220 +re HM e ||v0|L2(Q)> with C' depending on Q and T,

3)u|271w = V-, Ujt=0 = Yo,
WM~z ) = (w—us, )
Proof. Define a linear function L on M, by
L((P*vaaI/f\Z+,w)) = <f7 >L2(Q <8 fa >L2(E_‘w) +<8tf|t:07UO>L2(Q)a f€D
Let L = 0 on the orthogonal complement of M,.. Using (5.5), for all f € D, we obtain
|L Tfaaf\2+w))‘

L2(2- )

v

()] ‘

<z ol + | V7@ oy o Rl Tl
< ol ] )
r sy (M) + 7 H i (I . e

r (ool 2y (7 0uiecoll 2oy

< C -1 —1 v_ —1
(r ol + 74 | prey T Iollzzca)
) (”PTfHLz(Q) + 1 || Vlw- (@), f L3 (24 ))

with C' the constant of (5.5). Since the rhs of the last inequality is precisely the norm of (P_,.f,d, fs, )
in L?(Q) x L*(rw - v(z)do(x)dt, X ), L can be extended uniquely to a bounded linear form on L?(Q) x
L3 (rw - v(z)do(z)dt, ¥4 ) with

ILf<C

_1
+772 [voll 2 | - (5.6)
L2 (3- )

P ollyaggy H
@ Viw - v(@)]
Thus, there exists
(u,uy) € L2(Q) x L2(r~ Y w - v(z)| " do(z)dt, Sy )
such that for all f € D we have
L((P—T'f7 8Vf|2+,w)) = <P—7‘fa >L2(Q <a f7 u’-‘r>L2(ZJr )
Therefore, for all f € D we have

(P,,ﬂf, U>L2(Q) <8 fs U+>L2(2+7w)
= (f,0)2g) — (Oufiv-)p2n_ ) +<6tf|t:07vo>L2(Q)

and estimate (5.6) implies

1 v_ 1
sy <161 <0 (g +7H || bl
|w-y($>| L2(S_ )
Taking f € C5°(Q) shows that P,u =v € L*(Q) and u € Hp,(Q). We have proved statement 1) and 2), now
let us consider 3). Allowing f € D to be arbitrary shows that ux_ , = v_, ujy—o = vo and Us, , = Ut
Finally, condition 4) follows from the fact that L = 0 in the orthogonal complement of M, and this last
condition guaranties the uniqueness of such wu. O

Armed with this proposition we are now in position to prove Theorem 6. For this purpose, we introduce
the operator
do(z)dt
w - v(z)]’

R, : L*(Q) x L? ( E_,w> x L*(Q) = L*(Q)
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such that for any (v,v_,v) € L?(Q) x L? (d"(m)dt E_W) x L2(Q), u = R.(v,v_,vp) is the unique element

lw-v(z)]

of L?(Q) satisfying conditions 1)-4) of Proposition 6. In particular condition 2) implies that

_1
HRT‘HB( LQ(Q)XLQ(dG(‘T)dt,E,7N)XL2(Q),L2(Q)) < Cr 2, r 2 Ta.

[w-v(z)]

5.3. Proof of Theorem 6. Note first that z must satisfy

z € L*(Q)
PTZ — _q(t,x) (e(szrf)-(t,w) + Z(t7l')) in Q, (5 8)
2(0,2) = —el62=79)(0.2) on ’
2(t,x) = —elC2—re) (o), on Xy .
Choose ¢ € Cj({z € 00 : v(z) w < —5}) satisfying ¢ =1 on 904 . _,, and set h, defined by
he(t, ) = —p()e(C2Erte),
Since h,.(t,xz) = 0 for v-w > —5 we have
/
hy € 2 Mj_w .
|w- v
Now let us introduce the map
G, :L*(Q 5F— R, (—q(t,x) (e(cz_’"f)'(t’x) + F(t,x)) s P —e(@_r&)'(o’x)) € LA(Q).
We have G,.F1 — G.Fy = R, [—q(F1 — F3),0,0] and statement 2) of Proposition 6 implies
C
|G Fy — G?”F2||L2(Q) < r ||QHL<>0(Q) HFI - F2HL2(Q) :
Moreover, since
(C2 - Tf) ' (tax) € iRv (tax) eERx Rn7
we have
1 (G2—r€)-(t,2) /
el ot ) <€ at, e prig SMVTII<C (5.9)
Jorw (@]
Hemz—ws)-(o,m) < (5.10)
L2(Q)

with C" depending only on Q, T, M, w and e. Therefore, in view of statement 2) of Proposition 6, there
exists r3 > 2C'M + 1 such that, for » > r3, G, is a contraction that admits a unique fixed point z. Then
Proposition 6 implies that

z =R, (—q(t,x) (6(42—r£)~(t,m) + z(t,m)) s _e(@—rg)-(o,z))

satisfies (5.8). From statement 2) of Proposition 6 and (5.9), we deduce that for all r > r3

VA 1
M@ | ponmt | oones

— _ ((2—7&)-(t,x) _ (C2—78)-(0,x)
||Z||L2(Q) - HRT ( q(tvx) (6 2 + Z) ahrv € 2 )‘ L2(Q) X 2

which implies (5.3). In view of (5.8), we have z € Hp (@) which implies that u defined by (5.2) is lying in
Hp(Q) and is a solution of (5.1) with Tou € F,, .. Moreover, in view of estimate (5.3), we have

[Toullyag) < Clullpzg) + |87 — A)UHLQ(Q )
< Cllull 2 + llaullp2(q)) < Ce"

with C depending on w, M, £, ¢, and § = sup |[(¢,x)|. This last estimate implies (5.4). |
(t,z)eqQ
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6. STABILITY ESTIMATE

This section is devoted to the proof of Theorem 1. We start with an intermediate result. From now on
we set ¢ = ga — g1 on @ and we assume that ¢ = 0 on R'*"\ Q). Using the Carleman estimate introduced in
the previous section and the geometric optics solutions of Section 3 and Section 5, we obtain the following.

Lemma 1. Assume that the condition of Theorem 1 are fulfilled. Lete = 5 andw € {z € S"71: |z —wq| <
e}. Then, there exists r4y > max (rq,r1,72,73), with ro introduced in Proposition 5, r1 the constant of Theorem
5, ro the constant introduced in Corollary 1 and r3 introduced in Theorem 6, such that for allr > ry, £ € S™
of the form (3.6) with 1 < ¢ <2, (I,y) € R x R™\ {0} satisfying (3.8), (3.9) and |(I,y)| < Br, we have
/ q(t, 2)e”Ev B0 grdy,
Rl+n

2) (6.1)
with d,C' depending only on Q, M, T, €9, B, wy.

Proof. Let ¢j, j = 1,2, be defined by (3.10), (3.11) and satisfy (3.12). According to Proposition 5, we can
introduce

2 1
<o(G+er |, - B

ui(t,z) = (1+w(t,z)) e &), (t,2) € Q,
where u; € H?(Q) satisfies 0?2u; — Aug + qru; = 0 and w satisfies (3.13). Moreover, in view of Theorem 6,
we consider us € H(Q) solution of (5.1) with ¢ = g2 of the form

us(t,2) = €0 (GO L o(ra)) (1) € Q

with z satisfying (5.3), such that Tous € F,, and uy fulfills (5.4). Let w; be the solution of

2wy — Awy + qquw; =0 in Q, (6.2)
Towr = Touz, )
Then, u = wy — uy solves
0?2 — Au+qu= (g2 — q1)uz in &,
u=0 on X, (6.3)

u(0,2) = Gpu(0,2) =0 on
and since (g2 — q1)uz € L*(Q), in view of Theorem A.2 in [BCY], we deduce that v € C1([0,T7]; L*(Q)) N
C([0,T; H(£2)) with 8,u € L*(X). Moreover we have
lullerqo,ry 220y + Nulleqo,mma )) + 10vull p2sy < 20M uzl| g2 g -
Applying the Green formula in x € Q and integration by parts in ¢ € (0,7T), we find

/ quoudadt = / (('9)52 — A+ q1)uugdadt
Q Q

= / u(0f — A+ q1)ug — / Oyuurdo (z)dt
Q )

+/Q@,5U(T,z)u1(T,x)dzf/QU(T,x)&gul(T,x)dz 6

:7/ 8Vuu1da(x)dt+/ atu(T,x)ul(T,x)dzf/u(T,x)@tul(T,:c)dz
by Q Q

= f/ &,uulda(x)dtf/ Opuurdo(x)dt
E+,s,w

Z—,a,w
+/6tu(T,:z:)u1(T,as)d:z:f/u(T,x)@tul(T,x)dr.
Q Q

In view of estimate (3.13), we have

lwll oy < C ) S Clhwllg < ©

1
L2(0,T;HZ (Q
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with C' depending on Q, T and M. Applying this estimate and the Cauchy Schwarz inequality, we obtain

/ Oypuurdo(x)dt| < / ‘ayue_Tg'(t’w)(l + w)’ dtdo(z)
Zi,s,w Zi,g,w

<cC /
Zi,a,w

for some C depending only on 2, T and M. In the same way, we have

(6.5)

1
2

2
efrg'(t’x)(?yu‘ do(x)dt)

Hw|t:THL2(Q) <0 Hw”H%(O,T;B(Q)) <C Hw”Hl(Q) <C

and we deduce

1
2

2
<C (/ ‘e—rf‘”)atu(T, CL‘)‘ da:) . (6.6)
Q

Moreover, in views of Remark 3, the Carleman estimate (4.7) and the fact that 90Q4 ., C 904, imply

/ Opu(T, x)uy (T, x)dx
Q

T f2+,5,w |e_7'5'(t’1')8,,u|2 do(z)dt + 1 [, |e7" ) gyu(T, ac)’2 dx
<e lr f2+ 3 ‘e_Tf'(m)&,u‘z w-v(z)do(z)dt +r [, |e7"¢ T opu(T, x)‘Q dx

<e IC (fQ lere®®)(92 — A + (]1)u|2 dxdt + szi,w |e’r5'(t’m)8yu}2 |w - v(z)| do’(:l:)dt)

_’_Eflcrg fQ 6*27”5'(7"5”) ‘w . Vmu|t=T|2 dl’

e iC (fQ ‘e_’"f'(""m)(]ug‘2 drdt +r [ |e‘r5'(t’m)&,u’2 lw - v(z)| da(a:)dt)

+e10r8 [ e 20 | Vg | da

<e IC (fQ lg| (1 + [2])*dzdt + 7[5, ’e_"é‘(t’w)(?,,u’2 lw - v(x)] do(az)dt)

+e=tCr? [, e 2r&(Tow) ‘w . Vmu|t:T’2 dz

<e o <8M2T 12| +2 HZ||2L2(Q) +rfe

—|—5_1CT3 fQ e—27-§~(T,J;) ‘w . VIu|t:T’2 dx.

efrg'(t’””)(9,,u|2 lw - v(z)] da(w)dt)
Using estimate (5.3) and the fact that ¥_ , C ¥_ ., |w - v(z)| < 1, we obtain
r f2+ -, |e*’"5'(t’$)8,,u|2 do(z)dt + 1 [, |e7" T gu(T, ) |2 dx
<C (1 +r fE—.E y ‘e‘rf'(t’”’)&,uf |w - v(z)|do(z)dt + 13 [, e 2r&:(Tz) |w . Vzu‘t:ﬂz dm)

<C (1 +r [y |e’r5'(t’$)8l,u‘2 do(z)dt + 12 [, e~ 2 (1) | . Vzu|t=T|2 d:c) )
where C' depends only on €, T, €, wg and M. Therefore, we have

Je, e €00, do(w)dt + [ |emmE TR 0u(T, 2)| da

<C (7"_1 + [s - ’e_rg'(t"'”)&,uf do(x)dt + 72 [, e—2ré(Tox) ‘w . un‘t:ﬂz dm) )
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Combining this with (6.4), we obtain

2
‘/ quiugdxdt| < C (7‘1 —|—/
Q —ew

with C depending only on Q, T, €9, wg and M. On the other hand, (3.12) implies

/qulquxdtz/ q(t,x)e_i(l’y)'(t’a”)dxdt—|—/ Zdzdt
Q R+n Q

2
efrg'(t’z)ayu’ do(z)dt + 7’2/
Q

with
Z(t,x) = 2T GO (1 L) 4 we VD) (1 1) € Q.
Using the fact that ({3 + &) - (¢, z) € iR we deduce that
1Z] < [z (1 + [w]) + |w] .
Then, in view of (3.13) and (5.3), an application of the Cauchy-Schwarz inequality yields

’/de
Q

with C depending on 2, T, &g, wp and M. Combining this estimate with (6.7), we obtain

1
<Cr 2

| farin qlt, x)e i) (e dzdt|

C(r+ fyo e D0, do (@)t + 12 o o200 |- Vo[ de)

r 2 2
<C [% +ed (||<’9DU||L2(27,5,W) + ||“\t:THH1(Q))]
with C,d > 0 depending only on €2, T', €9, wg and M. Using the fact that ¥_ ., C ¥_ . ., and
suppg C E*,E,*UJ - E*,so,fwgv vp =0
with (g, vg,v1) = Touz, we deduce that
Ovurs_ .y 0 w=r) = (Bg, — Bg,)Toua.

Then, we have

||3yu||2L2(27,5,w) + ||u‘t:TH§-Il(Q) g ||al/u||i,2(z, ) + ||u|t:T||§{1(Q)

1€0,w0

* * 2
< H(Blh o qu>76u2HL2(E,,50,WO)><H1(Q)

and from (5.4) we deduce

2 2 x |12 T
”76“2”7-[(662) <C HB - By, e

||8uu||2Lz(2,,E,w) + H“\t:THip(Q) <|B;,

—2re(The) {w Vatj—r| d:c> (6.7)

with C' and d depending only on 2, T, o, wp and M. Combining this estimate with (6.8), we obtain

(6.1).

O

From now on, for all s > 0, we denote by D the set Dy = {z € R1™ : |z| < s}. Let us recall the
following result, which follows from Theorem 3 in [1] (see also [32]), on the continuous dependence in the

analytic continuation problem.

Proposition 7. Let p > 0 and assume that f: D,, C R — R is a real analytic function satisfying

Np!
HaﬁfHLOC(sz) S (p)1Bl pe
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for some N >0 and 0 <1 < 1. Furtherlet E C Dg be a measurable set with strictly positive measure. Then,

b
£l o,y < C(N)I? (||fHL°C(E)) ,
where b € (0,1), C > 0 depend on 1, |E| and p.

Armed with Lemma 1, we will use Proposition 7 to complete the proof of of Theorem 1.
Proof of Theorem 1. Without lost of generality, we can assume that 0 € 2. Consider the set

G ={¢€S": ¢of the form (3.6) with 1 <c <2, we {z€S" ' |z —wo| <e}}.
One can easily check that G is an open set of S™. Introduce the set
By = {n e R'"™™ : there exists £ = (&,&’) € G such that - (=&, ¢') = 0}

and note that estimate (6.1) holds for all (I,y) € Ey, r > r4, such that condition (3.9) is fulfilled and
|(Il,y)| < Br for some B > 0. Let us observe that in view of (3.6) and (3.9), (3.9) will be fulfilled if

_ 1 (1+c)?2 \2
< — =
|(l,y)\21£3£2(<1 (1+c)2> 1+(1—|—c)2> r=br

with

1 2 _ 1 %
B=2min (LT =1V
1<e<2 \ 1+ (1 +¢)?
From now on we fix this value of B. Next we set for fixed R > 0, which will be made precise later, and
(ly) € R,

_(+4mn)

H(l,y) = F(Q)(R(l,y)) = (2m)~ > / g(t, z)e” OV D ddt.
Rl+n
Since suppg C Q and 0 € €, H is analytic and

H‘JHLl(Q) RV RIAI
(Diam(@ 0 < V) Biriam@ye

with C' depending on T and 2. Moreover, we have

||‘ZHL2(Q) <2MyT Q|

|DPH(l,y)| < C

and one can check that
RIAl < 2R

S
Applying these estimates, we obtain ’

2R 31
([T Diam(@)] )P
with C' depending on M, Q and T. Set p = [TDiam(Q)]"™' +1, E = By N{z € R : |2| < £} with

N =Ce?F and | = M. In view of (6.9), we have

|DPH(lL,y)| < C (6.9)

2R NB!
Moy < Bram@y 1A ~ Gy

Using the fact that G is an open set of S and tE; = E; for any ¢ > 0, one can check that |E| > 0. Then,
since £ C Dg, 0 < Il <1 and p > 1, applying Proposition 7 to H we obtain

|DPH(l,y

b
F@ERG) = HOY)| <[ Hl g o,y < OO (|Hl o)+ 10y)] < 1,
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where C' > 0 and 0 < b < 1 depend only of Q, T', M, wp and €y. But, for R < Br estimate (6.1) implies that

HP = FQECE < (1 + e 18, - B ) (e B

and we deduce

b
— 1 T * * |2
Fa? <o (Lo g - g )0l <R (6.10)
Note that .
il sy <€ ([ @ 0P F@ ) Paar) (6.11)

We shall make precise below,
[ s lar)y 1R @y Py
Dgr

and

/ U+ y)P) " F (@) ) Pdidy
R1+7\Dp

separately. We start by examining the last integral. The Parseval-Plancherel theorem implies

/ (L4 0 | F (@) (L) Pyl
R3\Dpg

1
< = F(q)(1,y)|*dydl
B RM\DRI (@)1 y)
1 1
< = Ly)Pdydl = = t,x)|2dtd
2 [ 1F@ P = g [ ot P
2
< 8T |0 M
R2
We end up getting that
_ C
[ @Il IR @) o) Py < 7. (612)
R1+"\DR

Further, in light of (6.10), we get
b
n - 1 r * x |2
/D IF(@)(1,y)Pdydl < CRYret(-0R <7~ +e™ By - Bl ) LT > T, (6.13)
R

upon eventually substituting C' for some suitable algebraic expression of C'.
Last, putting (6.12)—(6.13) together we find out that

b\ ®
2 1 n — 1 r * * ||2
oty < ( g+ 20700 (o - ) )
(6.14)

ntl 4(1_b)R
<C (Ri AT R ACRIR | By B;||2> :
T

for 1 < R < Br and r > r4 where the constant C' > 0 depends only on €, T, ¢, wp and M. Here we use the
fact that = — x% is convex on R* since b € (0,1). Now let Ry > 1 be such that

R < BR*PeARCSY) . RS R,

nt3 1-b . n+3 1-b . nt3 1-b
Then, set 5 = max(R, * e*1(5°) ry). Choosing r = R™% (%) for R > Ry with 75 = R,* e*f2(5),
1 gp(izb

e b

n41 )
such that £ — =R % and R< Br, we proceed
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2 n+41 1— n+43 —
lall ;-1 (gasny < C (R—% + R A Rexp (dR%sem(l—,,b)) AT, 6 — A?‘/l,eHz) _
It is not hard to check that

R™ AR exp (dR"T”em(%)) < exp (€[d+"7“+4<1—?>+%“+4<1—;b>]R) . R>R,.

Setting A = 22412=8b+db (6 15) Jeads to
2 2 AR « « 112
lallfysriny <C (R7F 4+ By, = BoI"), B> Re.

Set v = HB;‘1 - B;‘,ZH and v* = e~ For v = ~* we have
2CM
,7*

lallz-1@) < CllallL=(q) < 7.
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(6.15)

(6.16)

(6.17)

For 0 < v < +*, by taking R = R3 = % In(|In~|) in (6.16), which is permitted since R3 > R,, we find out

that
b
2

laller-@ < llallar-sgereny < Cin(lny) ™ (n(n )Py + 47F)

b
Now, since supg.. <., (ln(|1n 7|)%’y + A_%) * is just another constant depending only on Q, T, o, wy and

M, we obtain
lallm-1@) < Cln(lny)™" 0 <y <y™
By interpolation we find
1 1 IO
lallzc@) < Cllals g ldliE ) < COLVIIT) gl -1 o,
with C' depending only on © and T. Combining this estimate with (6.18), we deduce (1.3).

APPENDIX

(6.18)

In this appendix we prove that the space C*°(Q) is dense in H5(Q) in some appropriate sense and we
show that the maps 7y and 77 can be extended continuously on these spaces. The results of this section are

well known, nevertheless we prove them for sake of completeness.

Density result in H5(Q). Let us first recall the definition of Ko(Q):
Kp(Q) ={ue H™'(0,T;L*(Q)) : Du = (9] — A)u e L*(Q)}
with the norm
luliia@ = Il 0,r:z2y + 18ulz2q) -
The goal of this subsection is to prove the following.

Theorem 7. Hp(Q) embedded continuously into the closure of C*(Q) wrt Kp(Q).

Proof. Let N be a continuous linear form on K(Q) satisfying

N(f)=0, [felC™(Q).
In order to show the required density result we will prove that this condition implies that
Niag@) = 0.

(6.19)

By considering the application u + (u, Ju) we can identify K5(Q) to a subspace of H~1(0,T; L*(Q)) x
L?(Q). Then applying the Hahn Banach theorem we deduce that N can be extended to a continuous linear
form on H=1(0,T; L?*(Q2)) x L*(Q). Therefore, there exist hy € H}(0,T; L*()), he € L*(Q) such that

N(u) = (u, ha) s 0,mi0200), H3 0522000 T (B h2)r2(g), € Kn(Q)-
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Now let O C R" be a bounded C* domain such that QCOandfix Q. = (—¢,T +¢) x O with ¢ > 0. Let
h; be the extension of h; on R'™ by 0 outside of @ for j = 1,2. In view of (6.19) we have

(F) ooy T @ =0 Ba) L = N(fig) =0, ] € C5¥(Qe).
Thus, in the sense of distribution we have
Ohy = —iLl, on Q..
Moreover, since hy = 0 on R \ Q@ D 9Q., we deduce that hs solves

~ Ohe— Ahs = i, Q.
ha(—e,x) = Otha(—e,2) = O, zeO
ho(t,z) = 0, (t,x) € (—e,T +¢) x 00.

But, since hy € H(0,T;L*()), we have hy € H(—e,T + &; L*(0)) and we deduce from Theorem 2.1
in Chapter 5 of [23] that this IBVP admits a unique solution lying in H?(Q.). Therefore, hy € H?(Q.).
Combining this with the fact that ho = 0 on Q. \ @Q, we deduce that hy € H2(Q), with H3(Q) the closure
of C§°(Q) in H?(Q), and that Ohy = —hy on Q. Thus, for every u € Hn(Q) we have

(O, ha) 12y = (O h2) r—2(g). m3(@) = (4 Bh2) p2(q) = = () pa(g) -
Here we use the fact that Hg(Q) C L?(Q). Then it follows that
N(u) = <U,h1>L2(Q) - <u7h1>L2(Q) =0, wue€ Hz(Q).

From this last result we deduce that Ho(Q) is contained into the closure of C*°(Q) wrt Ko(Q). Combining
this with the fact that H5(Q) embedded continuously into K5(Q) we deduce the required result. O

Trace operator in Ho(Q). In this subsection we extend the trace maps T and 77 into Ho(Q) by duality
in the following way.

Proposition 8. The maps
Tow = (761107 762’[1}, %Sw) = (w\Ev W)t=0, atw|t:0)7 w e Coo(@)7
7—171} = (7-11’11}77-12’11}77—1310) = (al/w\27w|t:T7atw|t:T)7 w e COO(@)7

can be extended continuously to To : Ho(Q) — H=3(0,T; H—2(8Q)) x H~2(Q) x H-4(Q), T1 : Ho(Q) —
H3(0,T; H-2(09)) x H2(Q) x H-4().

Proof. Tt is well known that the trace maps
u = (U190, O U|s0)

can be extended continuously to a bounded operator from HZ2(Q) to H?(9Q) x Hz(9) which is onto.
Therefore, there exists a bounded operator R : H3 (8Q) x Hz(9Q) — H2(2) such that

R[h1, haljoq = h1,  OuR[h1, ho)jaq = ha, (hi,h2) € H?(0Q) x H* ().
Fix g € H3(0,T; H=(8Q)) and choose G(t,.) = R(0,g(t,.)). One can check that G € H3(0,T; H2(Q)) and
||G||H3(O,T;H2(Q)) < HRH ||g||H3(O,T;H%(8Q)) . (620)

Applying twice the Green formula we obtain

/ vgdo (z)dt = / OvGdz — / vOGdz, v e C™(Q).
bY Q Q
But OG € H}(0,T; H*(Q), and we have

1 —
<76 v’g>H*3(O,T;H_%(GQ)),HS’(O,T;H%(BQ)) = (Mo, G>L2(Q) = (v, DC'Y>H—1(0,T;L2(Q)),Hé(O,T;LQ(Q)) )
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Then, using (6.20) and the Cauchy Schwarz inequality, for all v € C*°(Q), we obtain

|<761U79>’ < ||DU||L2(Q) HG||L2(Q) + HU”H—l(o,T;L?(Q)) ||DG||H5(0,T;L2(Q))

< Clollg @) 191 s 0 1.3 002y

which, combined with the density result of Proposition 7, implies that 7' : v+ vy extend continuously to
a bounded operator from Ho(Q) to H=3(0,T; H~2(05)). In a same way we prove that

lTll'U = auv\Ea v € COO(Q)

extend continuously to a bounded operator from Hp(Q) to H=3(0,T; H-% (09)).
Now let us consider the operators 7;7 ,0<1<1,2< 5 < 3. We consider first

TE v — Vp—o, v E€CT(Q).

Let h € H3(Q) and fix H(t,z) = tp(t)h(x) with o € C5°(—T, L) satisfying 0 < ¢ < land ¢ =1on [-Z,L].
Then, using the fact that ¢» = 1 on a neighborhood of t = 0, we deduce that

H‘E == 6VH‘E == HltZO - DHlt:O == DH‘t:T - 0, 8tH‘t:0 == h

Therefore, OH € H{(0,T; L*(Q)) and repeating the above arguments, for all v € C*°(Q), we obtain the
representation

(750 1) 1120y, 1200 = (0 OH) ir10,m52(0)), 13 0,73 2(60)) — (HL D0 12

Then, we prove by density that 7 extend continuously to 73 : Ho(Q) — H~2(Q).
Now, let us consider

75 v — dvp—o, v €C®(Q).
Let ¢ € H3 () and fix

YOLAG(x)

a(t,w) = v(t)ple) + S

Then, ¢ satisfies
@lz = 8V(I>\Z = 8t(I)|t:0 = O, q)\tzo = p-
Moreover, we have O® € H'(0,T; L*(Q)) with
(33 —A)Pp—g = -Dp+Ap =0, (33 —A)®y_r =0

which implies that O® € H}(0,T; L*(2)). Therefore, repeating the above arguments we obtain the repre-
sentation

(T5°0:0) -1y, 30y = (0 P12y = (0, 09) s 0.1312 (), 13 0,7:22(2)
and we deduce that 73 extends continuously to 73 : Ho(Q) — H~*(2). In a same way, one can check that
TP iv— vy, TP 10— Qe v € C®(Q).

extend continuously to 72 : Ho(Q) — H2(Q) and T : Hn(Q) — H~4(Q). O
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