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DIVERGENT SERIES AND DIFFERENTIAL

EQUATIONS

Michèle LODAY-RICHAUD

Abstract. — The aim of these notes is to develop the various known approaches
to the summability of a class of series that contains all divergent series solutions of
ordinary differential equations in the complex field. We split the study into two parts:
the first and easiest one deals with the case when the divergence depends only on one
parameter, the level k also said critical time, and is called k-summability; the second
one provides generalizations to the case when the divergence depends on several (but
finitely many) levels and is called multi-summability. We prove the coherence of the
definitions and their equivalences and we provide some applications.

A key role in most of these theories is played by Gevrey asymptotics. The notes
begin with a presentation of these asymptotics and their main properties. To help
readers that are not familiar with these concepts we provide a survey of sheaf theory
and cohomology of sheaves. We also state the main properties of linear ordinary
differential equations connected with the subject we are dealing with, including a
sketch algorithm to compute levels and various formal invariants of linear differential
equations as well as a chapter on irregularity and index theorems. A chapter is
devoted to tangent-to-identity germs of diffeomorphisms in C, 0 as an application of
the cohomological point of view of summability.
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CHAPTER 1

INTRODUCTION

Divergent series may diverge in many various ways. When a divergent se-

ries issues from a natural problem it must satisfy specific constraints restricting

thus the range of possibilities. What we mean, here, by natural problem is a

problem formulated in terms of a particular type of equations such as differ-

ential equations, ordinary or partial, linear or non-linear, difference equations,

q-difference equations and so on . . .

Much has been done in the last decades towards the understanding of the

divergence of natural series, their classification and how they can be related

to analytic solutions of the natural problem. The question of “summing”

divergent series dates back long ago. Famous are the works of Euler and

later of Borel, Poincaré, Birkhoff, Hardy and their school until the 1920’s.

After a long period of inactivity, the question knew exploding developments

in the 1970’s and 1980’s with the introduction by Y. Sibuya and B. Malgrange

of the cohomological point of view followed by works of J.-P. Ramis, J. Écalle

and many others.

In these lecture notes, we focus on the best known class of divergent se-

ries, a class motivated by the study of solutions of ordinary linear differential

equations with complex meromorphic coefficients at 0 (for short, differential

equations) to which they all belong. It is well-known (Cauchy-Lipschitz The-

orem) that series solutions of differential equations at an ordinary point are

convergent defining so analytic solutions in a neighborhood of 0 in C. At

a singular point one must distinguish between regular singular points where

all formal solutions are convergent (cf. [Was76, Thm. 5.3] for instance) and

irregular singular points where the formal solutions are divergent in general;

several examples of divergent series are presented and commented throughout



2 CHAPTER 1. INTRODUCTION

the text. The strong point with formal solutions is that they are “easily”

computed; at least, there exist algorithms to compute them, whatever the or-

der of the linear differential equation. Nonetheless, one wishes to find actual

solutions near such singular points and to understand their behavior.

The idea underlying a theory of summation is to build a tool that trans-

forms formal solutions into unique well-defined actual solutions. Roughly

speaking, it is natural to ask that the former ones be linked to the latter

ones by an asymptotic condition; in other words, that the formal solutions be

Taylor series of the actual solutions in a generalized sense. Only convergent

series have an asymptotic function on a full neighborhood of 0 in C; other-

wise, the asymptotics are required on sectors with vertex 0. Uniqueness is

essential to go back and forth and to guaranty good, well-defined properties.

The problem is now fully solved for the class under consideration in several

equivalent ways providing thus several equivalent theories of summation or

theories of summability. Some methods provide necessary and sufficient con-

ditions for a series to be summable, some others provide explicit formulæ.

Each method has its own interest; none is the best and their variety must be

thought as an enrichment of our means to solve problems. The theories here

considered depend on parameters called levels or critical times. The simplest

case with only one level k is called k-summability (actually, “simpler than the

simplest” is the case when k = 1). The case of several levels k1, k2, . . . , kν is

called multisummability or, to be precise, (k1, k2, . . . , kν)-summability.

At first sight, since the singular points of differential equations are isolated,

one could discuss the interest of such a procedure, for, one can approach

as close as wished the singular points with the Cauchy-Lipschitz Theorem

at the neighboring ordinary points. However, such an approach does not

allow a good understanding of the singularities; even numerically, the usual

numerical procedures stop being efficient when approaching a singular point,

not providing thus even an idea of the behavior at the singular point. On

the contrary, a good understanding of the singularity by means of a theory of

summation permits a numerical calculation of solutions and of their invariants

in most cases.

Chapter 2 deals with asymptotics in the complex domain, ordinary (also

called Poincaré asymptotics) and Gevrey asymptotics. The presentation is

classical and comes with five examples of divergent series (not all solutions
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of differential equations) that will be commented throughout the text. The

chapter contains also a proof of the Borel-Ritt Theorem in Poincaré and in

Gevrey asymptotics and a proof of the Cauchy-Heine Theorem in classical

form.

In chapter 3 we introduce the language of sheaves and rudiments in Čech

cohomology. The sheaves A, As, A<0 and A≤−k of germs of various types of

asymptotic functions that are at the core of what follows, are carefully defined.

Cohomological versions of the Borel-Ritt Theorem and of the Cauchy-Heine

Theorem are made explicit.

Chapter 4 contains basic recalls in the theory of ordinary linear differential

equations: comparison of equations and systems with Deligne’s Cyclic vector

lemma, the viewpoint of D-modules, equivalence of equations or systems, for-

mal and meromorphic classifications, Newton polygons and calculation of the

formal invariants in the case of equations, Main Asymptotic Existence Theo-

rem in sheaf form and in classical form. We end the chapter with the construc-

tion of infinitesimal neighborhoods of singularities of differential equations.

Chapter 5 is devoted to index theorems for ordinary linear differential

operators in various spaces with an application to the irregularity of operators.

In chapter 6 we develop four different approaches to k-summability (that

is, summability depending on a unique level k) and we prove their equivalence:

Ramis k-summability, Ramis-Sibuya k-summability, Borel-Laplace summation

with a proof of Nevanlinna’s Theorem and wild-summability, that is, by means

of wild analytic continuation in the infinitesimal neighborhood of 0. Follow

some applications: Maillet-Ramis Theorem, sufficient conditions for the k-

summability of solutions of differential equations, their resurgence in the sense

of J. Écalle, and Martinet-Ramis Tauberian Theorems. In each case, we chose

the approach that seemed to us to be the most convenient.

Chapter 7 deals with tangent-to-identity germs of diffeomorphisms that

are formally conjugated to the translation (by 1). It is meant as an application

of Ramis-Sibuya Theorem to prove the 1-summability of the conjugacy map.

A proof of the Birkhoff-Kimura sectorial normalization Theorem is provided.

A careful study by means of Borel and Laplace transforms will be find in

[Sau].

In chapter 8 we develop six different approaches to multisummability

and we prove their equivalence: an asymptotic definition generalizing Ramis

k-summability, Malgrange-Ramis summability generalizing Ramis-Sibuya k-

summability, summation by iterated Laplace integrals and accelero-summation
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generalizing the Borel-Laplace summation, Balser’s decomposition into sums

and the wild-multisummability in the infinitesimal neighborhood of 0. Some

applications to differential equations and Tauberian Theorems are given.

Acknowledgements. I am very indebted to Jean-Pierre Ramis who initiated

me to this subject and was always open to my questioning. I also thanks all

those that read all or part of the manuscript and especially Anne Duval, Sergio

Carillo, Michael Singer, Duncan Sands and Pascal Remy as well as Raymond

Séroul for his “technical” support.



CHAPTER 2

ASYMPTOTIC EXPANSIONS IN THE

COMPLEX DOMAIN

2.1. Generalities

We consider functions of a complex variable x and their asymptotic expan-

sions at a given point x0 of the Riemann sphere. Without loss of generality we

assume that x0 = 0 although for some examples classically studied at infinity

we keep x0 = ∞. Indeed, asymptotic expansions at infinity reduce to asymp-

totic expansions at 0 after the change of variable x 7→ z = 1/x and asymptotic

expansions at x0 ∈ C after the change of variable x 7→ t = x−x0. The point 0
must belong to the closure of the domain where the asymptotics are studied.

In general, we consider sectors with vertex 0, or germs of such sectors when

the radius approaches 0. The sectors are drawn either in the complex plane

C, precisely, in C∗ = C \ {0} (the functions are then univaluate) or on the

Riemann surface of the logarithm (the functions are multivaluate or given

in terms of polar coordinates).

Notations 2.1.1. — We denote by

⊲ = α,β(R) the open sector with vertex 0 made of all points x ∈ C

satisfying α < arg(x) < β and 0 < |x| < R;

⊲ = α,β(R) its closure in C∗ = C \ {0} or in (0 is always excluded )

and we use the term closed sector;

⊲ O( ) the set of all holomorphic functions on .

Definition 2.1.2. — A sector α′,β′(R
′) is said to be a proper sub-sector of

(or to be properly included in) the sector α,β(R) and one denotes

α′,β′(R
′) ⋐ α,β(R)
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Figure 1

if its closure α′,β′(R
′) in C∗ or is included in α,β(R).

Thus, the notation α′,β′(R
′) ⋐ α,β(R) means α < α′ < β′ < β

and R′ < R.

2.2. Poincaré asymptotics

Poincaré asymptotic expansions, or for short, asymptotic expansions, are

expansions in the basic sense of Taylor expansions providing successive ap-

proximations of a function. Unless otherwise mentioned we consider functions

of a complex variable and asymptotic expansions in the complex domain and

this allows us to use the methods of complex analysis. As we will see, the

properties of asymptotic expansions in the complex domain may differ quite

a little bit of those in the real domain.

In what follows denotes an open sector with vertex 0 either in C∗ or

in , the Riemann surface of the logarithm.

2.2.1. Definition. —

Definition 2.2.1. — A function f ∈ O( ) is said to admit a series∑
n≥0 anx

n as asymptotic expansion (or to be asymptotic to the series)

on a sector if for all proper sub-sector ′
⋐ of and all N ∈ N, there

exists a constant C > 0 such that the following estimate holds for all x ∈ ′:

∣∣∣f(x)−
N−1∑

n=0

anx
n
∣∣∣ ≤ C |x|N .

The constant C = CN, ′ depends on N and ′ but no condition is required

on the nature of this dependence.

The technical condition “ for all ′
⋐ ” plays a fundamental role of which

we will take benefit soon (cf. Rem. 2.2.10).

Observe that the definition includes infinitely many estimates in each of

which N is fixed. The conditions have nothing to do with the convergence or
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the divergence of the series as N goes to infinity. For N = 1 the condition says

that f can be continuously continued at 0 on . For N = 2 it says that the

function f has a derivative at 0 on and more generally for any N , that f has

a “Taylor expansion” of order N . As in the case of a real variable, asymptotic

expansions of functions of a complex variable, when they exist, are unique and

they satisfy the same algebraic rules on sums, products, anti-derivatives and

compositions. The proofs are similar and we leave them to the reader. The

main difference between the real and the complex case lies in the behavior

with respect to derivation (cf. Prop. 2.2.9 and Rem. 2.2.10).

Notations 2.2.2. — We denote by

⊲ A( ) the set of functions of O( ) admitting an asymptotic expansion

at 0 on ;

⊲ A<0( ) the sub-set of functions of A( ) asymptotic to zero at 0 on .

Such functions are called flat functions at 0 on ;

⊲ T = T : A( ) → C[[x]] the map assigning to each f ∈ A( ) its asymp-

totic expansion at 0 on .

Due to the uniqueness of the asymptotic expansion, the map T is well

defined and is called the Taylor map on (cf. Exa. 2.2.3 below). Due to

the algebraic properties of asymptotic expansions the sets A( ) and A<0( )

are naturally endowed with a structure of vector spaces and the Taylor map

is a linear map with kernel A<0( ). Proposition 2.2.9 below will improve

this result. We notice that A<0( ) is not 0: exponentials of various powers

of x provide examples of non-zero functions of A<0( ) for any . For in-

stance, if = {x ; | arg(x)| < π/2}, the function exp(−1/x) belongs toA<0( );

if = {x ; | arg(x)| < π}, the function exp(−1/
√
x) where

√
x stands for the

principal determination of x1/2 belongs to A<0( ).

2.2.2. Examples. —

Example 2.2.3 (A trivial example: convergent series)

Let be a punctured disc D∗ around 0 (i.e., a sector of opening > 2π in C). If f is an

analytic function on D then f is asymptotic to its Taylor series at 0 on D∗. Reciprocally,

if f is an analytic function on D∗ that has an asymptotic expansion at 0 on D∗ then, f

is bounded near 0 and according to the removable singularity Theorem, f is analytic on

all of D.
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Example 2.2.4 (A fundamental example: the Euler function)

Consider the Euler equation

(1) x2 dy

dx
+ y = x.

Looking for a power series solution one finds the unique series

(2) Ẽ(x) =
∑

n≥0
(−1)n n!xn+1

called the Euler series. The Euler series is clearly divergent for all x 6= 0 and thus, it does

not provide an analytic solution near 0 by Cauchy summation.

However, an actual solution can be found by applying the Lagrange method on R+;

notice that 0 is a singular point of the equation and the Lagrange method must be applied

on a domain (i.e., a connected open set) containing no singular point (R+ is connected,

open in R and does not contain 0). Among the infinitely many solutions given by the

method we choose the only one which is bounded as x tend to 0+; it reads

E(x) =

∫ x

0

exp
(
− 1

t
+

1

x

) dt

t
=

∫ +∞

0

e−ξ/x

1 + ξ
dξ

and is not only a solution on R+ but also a well defined solution on ℜ(x) > 0.

Actually, the function E is asymptotic to the Euler series Ẽ on {x ∈ C ; ℜ(x) > 0}.
A proof works as follows: writing

1

1 + ξ
=

N−2∑

n=0

(−1)nξn + (−1)N−1 ξ
N−1

1 + ξ

and using
∫ +∞

0
un e−udu = Γ(1 + n), we get the relation

E(x) =

N−2∑

n=0

(−1)n Γ(1 + n)xn+1 + (−1)N−1

∫ +∞

0

ξN−1 e−ξ/x

1 + ξ
dξ

and we are left to bound the integral remainder term.

Choose 0 < δ < π/2 and consider the (unlimited) proper sub-sector

δ =
{
x ; | arg(x)| < π/2− δ

}

of the half-plane = {x ; ℜ(x) > 0}.

Figure 2
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For all x ∈ δ, we can write

∣∣∣E(x)−
N−2∑

n=0

(−1)n n!xn+1
∣∣∣ ≤

∫ +∞

0

ξN−1 e−ℜ(ξ/x)dξ

≤
∫ +∞

0

ξN−1 e−ξ sin(δ)/|x| dξ

=
|x|N

(sin δ)N

∫ +∞

0

uN−1 e−udu = C |x|N

with C = Γ(N)/(sin δ)N . This proves that the function E(x) is asymptotic to the Euler

series Ẽ(x) at 0 on the half plane . Observe that the constant C does not depend on x

but it depends on N and δ and it tends to infinity as δ tends to 0. Thus, the estimate is

no longer valid on the whole sector = {x ; ℜ(x) > 0}.
If we slightly turn the line of integration to the line dθ with argument θ then, the

same calculation stays valid and provides a function Eθ(x) with the same asymptotic

expansion on the half plane bisected by dθ. Due to Cauchy’s Theorem, Eθ(x) is the

analytic continuation of E(x). Denote by E(x) the largest analytic continuation of the

initial function E(x) by such a method. Its domain of definition is easily determined: we

can rotate the line dθ as long as it does not meet the pole ξ = −1 of the integrand, i.e., we

can rotated it from θ = −π to θ = +π. We get so an analytic continuation of the initial

function E on the sector

E = {x ∈ ; −3π/2 < arg(x) < +3π/2}
of the universal cover of C∗. On such a sector, E(x) is asymptotic to the Euler series Ẽ(x).

Figure 3

With this construction we are given on {x ∈ C∗ ; ℜ(x) < 0} two determinations E+(x)

and E−(x) of E(x) when the direction θ approaches +π and −π respectively. Let us

observe the following two facts:

⊲ The determinations E+(x) and E−(x) are distinct since, otherwise, the func-

tion E(x) would be analytic at 0 and the Euler series Ẽ(x) would be convergent.

⊲ Although E(x) admits an analytic continuation as a solution of the Euler equation

on all of the universal cover of C∗ (Cauchy-Lipschitz Theorem) its stops having an

asymptotic expansion on any sector larger than E (i.e., E ( ). Indeed, the two

determinations E+(x) and E−(x) satisfy the relation (see [LR90] or the calculation of the

variation of E(x) in Remark 2.5.3)

(3) E+(x)− E−(x) = 2πi e1/x.
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Thus, E+(x) can be continued through the negative imaginary axis by set-

ting E+(x) = E(x) + 2πie1/x and symmetrically for E−(x) through the positive imaginary

axis. Any asymptotic condition fails since e1/x is unbounded at 0 when ℜ(x) is positive.

Such a phenomenon of discontinuity of the asymptotics is called Stokes phenomenon (see

end of Rem. 2.5.3 and Sect. 4.3).

The function E(x) is called the Euler function. Unless otherwise specified we consider

it as a function defined on {x ∈ ; | arg(x)| < 3π/2}.

Example 2.2.5 (A classical example: the exponential integral)

The exponential integral Ei(x) is the function given by

(4) Ei(x) =

∫ +∞

x

e−t dt

t
·

The integral being well defined on horizontal lines avoiding 0 the function Ei(x) is well

defined and analytic on the plane C slit along the real non positive axis.

Let us first determine its asymptotic behavior at the origin 0 on the right half

plane = {x ; ℜ(x) > 0}. For this, we start with the asymptotic expansion of its deriva-

tive Ei′(x) = −e−x/x. Taylor expansion with integral remainder for e−x gives

e−x =

N−1∑

n=0

(−1)n
xn

n!
+ (−1)N

xN

(N − 1)!

∫ 1

0

(1− u)N−1 e−uxdu

and then, since ℜ(−ux) < 0,

∣∣∣Ei′(x) + 1

x
+

N−1∑

n=1

(−1)n
xn−1

n!

∣∣∣ ≤ |x|N−1

N !
·

We see that a negative power of x occurs with a logarithm as anti-derivative. Integrating

between ε > 0 and x and making ε tend to 0 we obtain

∣∣∣Ei(x) + ln(x) + γ +

N−1∑

n=1

(−1)n
xn

n · n!
∣∣∣ ≤ |x|N

N !
with γ = − lim

x→0+

(
Ei(x) + ln(x)

)
.

To fit our definition of an asymptotic expansion we must consider the func-

tion Ei(x) + ln(x). By extension, one says that Ei(x) has the asymptotic expansion

− ln(x)− γ −
∞∑

n=1

(−1)n
xn

n · n! ·

We leave as an exercise the fact that γ is indeed the Euler con-

stant limn→+∞

∑n
p=1 1/p− ln(n). Notice that, this time, we did not need to shrink the

sector .

Look now what happens at infinity. Instead of calculating the asymptotic expansion

of Ei(z) at infinity from its definition we notice that the function y(x) = e1/x Ei(1/x) is the

Euler function f(x). Hence, it has on at 0 the same asymptotics as f(x). Turning back

to the variable z = 1/x ≃ ∞ we can state that ez Ei(z) has the series
∑

n≥0(−1)n n!/zn+1

as asymptotic expansion at infinity on . By extension, one says that Ei(z) is asymptotic

to e−z ∑
n≥0(−1)nn!/zn+1 on at infinity.
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Example 2.2.6 (A generalized hypergeometric series 3F0)

We consider a generalized hypergeometric equation with given values of the parameters,

say,

(5) D3,1y ≡
{
z
(
z
d

dz
+ 4

)
− z

d

dz

(
z
d

dz
+ 1

)(
z
d

dz
− 1

)}
y = 0.

The equation has an irregular singular point at infinity and a unique series solution

(6) g̃(z) =
1

z4

∑

n≥0

(n+ 2)!(n+ 3)!(n+ 4)!

2!3!4!n!

1

zn
·

Using the standard notation for the hypergeometric series, the series g̃ reads

g̃(z) = z−4
3F0

(
{3, 4, 5}

∣∣∣ 1
z

)
.

By abuse of language, we will also call g̃ an hypergeometric series.

One can check that the equation admits, for −3π < arg(z) < +π, the solution

g(z) =
1

2πi 2!3!4!

∫

γ

Γ(1− s)Γ(−s)Γ(−1− s)Γ(4 + s)eiπszsds

where γ is a path from −3− i∞ to −3 + i∞ along the line ℜ(s) = −3. This follows from

the fact that the integrand G(s, z) satisfies the order one difference equation deduced from

D3,1 by applying a Mellin transform. We leave the proof to the reader. Instead, let us

check that the integral is well defined. The integrand G(s, z) being continuous along γ we

just have to check the behavior of G(s, z) as s tends to infinity along γ. An asymptotic

expansion of Γ(t+ iu) for t ∈ R fixed and u ∈ R large is given by (see [BH86, p. 83]):

(7) Γ(t+ iu) = |u|t− 1
2 e−

π
2
|u|{√2π ei

π
2
(t− 1

2
) sgn(u)−iu |u|iu

}{
1 +O

(
1/u

)}
.

It follows that G(t+ iu, z) satisfies

(8)
∣∣G(t+ iu, z)

∣∣ = (2π)2 |u|−2t+2 |z|t e−2π|u|−πu−u arg(z){1 +O(1/u)
}
.

The exponent of the exponential being negative for −3π < arg(z) < π the integral is

convergent and it defines an analytic function g(z).

Let us prove that the function g(z) is asymptotic to g̃(z) at infinity on the sec-

tor = {z ; −3π < arg(z) < +π}. For this, consider a path

γn,p = γ1 ∪ γ2 ∪ γ3 ∪ γ4 (n, p ∈ N
∗)

as drawn on Fig. 4.

The path γn,p encloses the poles sm = −4−m for m = 0, . . . , n+1 of G(s, z) and the

residues are Res
(
G(s, z); s = −4−m

)
= (2 +m)! (3 +m)! (4 +m)! z−4−m/m! = 2! 3! 4! am.

Indeed, Γ(4 + s) has a simple pole at s = −4−m and reads

Γ
(
4 + (−4−m+ t)

)
= Γ(−m+ t) =

(−1)m

m!
t−1 +O(1)

while all other factors of G are non-zero analytic functions. We deduce that

1

2πi 2! 3! 4!

∫

γn,p

G(s, z)ds =
1

z4

n+1∑

m=0

am

zm
·
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Figure 4. Path γn,p

Formula (8) implies the estimate
∣∣G(t+ iεp, z)

∣∣ ≤ Cp2n+5 e−(2π+επ+ε arg(z))p, ε = ±1,

valid for |z| > 1 all along γ2∪γ4, the constant C depending on n and z but not on p. This

shows that the integral along γ2 ∪ γ4 tends to zero as p tends to infinity and consequently,

we obtain

g(z) =
1

z4

n+1∑

m=0

am

zm
+ gn(z)

where gn(z) = 1
2πi 2!3!4!

∫
γn G(s, z)ds and γn = {s ∈ C ; ℜ(s) = −4 − n − 3

2
} oriented

upwards.

For any (small enough) δ > 0 consider the proper sub-sector δ of defined by

δ =
{
z ∈ C ; |z| > 1 and − 3π + δ < arg(z) < π − δ

}
.

For z ∈ δ and s = −4− n− 3
2
+ iu ∈ γn, the factor zs satisfies

|zs| ≤ 1

|z|4+n+ 3
2

·
{

e−u(π−δ) if u < 0,

eu(3π−δ) if u > 0.

and using again formula (7) we obtain
∣∣∣G

(
− 4− n− 3

2 + iu, z
)∣∣∣ ≤ Constn,δ

|z|(4+n)+1
|u|13+n e−|u|δ.

Hence, there exists a constant C = C(n, δ) depending on n and δ but not on z such that

∣∣∣g(z)− 1

z4

n+1∑

m=0

am

zm

∣∣∣ =
∣∣gn(z)

∣∣ ≤ C

|z|(4+n)+1
for all z ∈ δ.

Rewriting this estimate in the form

∣∣∣g(z)− 1

z4

n∑

m=0

am

zm

∣∣∣ =
∣∣∣gn(z) +

an+1

z(4+n)+1

∣∣∣ ≤ C + |an+1|
|z|(4+n)+1

for all z ∈ δ

we satisfy Definition 2.2.1 for g at the order 4 + n.

With this method we do not know how the constant C depends on n but we know

that |an+1| grows like (n!)2 and then C + |an+1| itself grows at least like (n!)2.
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Example 2.2.7 (A series solution of a mild difference equation)

Consider the order one difference equation

(9) h(z + 1)− 2h(z) =
1

z
·

A difference equation is said to be mild when its companion system, here
[
y1(z + 1)

y2(z + 1)

]
=

[
2 1/z

0 1

][
y1(z)

y2(z)

]

has an invertible leading term; in our case,
[
2 0
0 1

]
is invertible. The term “mild” and its

contrary “wild” were introduced by M. van der Put and M. Singer [vdPS97].

Let us look at what happens at infinity. By identification, we see that equation (9)

has a unique power series solution in the form h̃(z) =
∑

n≥1 hn/z
n. The coefficients hn

are defined by the recurrence relation

hn =
∑

m+p=n
m,p≥1

(−1)phm
(m+ p− 1)!

(m− 1)! p!

starting from the initial value h1 = −1. It follows that the sequence hn is alternate and

satisfies

|hn| ≥ n|hn−1|.
Consequently, |hn| ≥ n! and the series h̃ is divergent. Actually the recurrence relation can

be solved as follows. Consider the Borel transform

ĥ(ζ) =
∑

n≥1

hn
ζn−1

(n− 1)!

of h̃ (cf. Def. 6.3.1). It satisfies the Borel transformed equation e−ζ ĥ(ζ)− 2ĥ(ζ) = 1 and

then ĥ(ζ) = 1/(e−ζ − 2). Its Taylor series at 0 reads

T0ĥ(ζ) =
∑

n≥0

(−1)n+1

n!

∑

p≥0

pn

2p+1
ζn

which implies that hn = (−1)n
∑

p≥0 p
n−1/2p+1. Again, we see that the series h̃ is diver-

gent since |hn| ≥ nn−1/2n+1.

We claim that the function

h(z) =

∫ +∞

0

ĥ(ζ)e−zζdζ

is asymptotic to h̃(z) at infinity on the sector = {z ;ℜ(z) > 0} (right half-plane). Indeed,

choose N ∈ N and a proper sub-sector δ = {z ; −π
2
+ δ < arg(z) < π

2
− δ} of . From the

Taylor expansion with integral remainder of ĥ(ζ) at 0

ĥ(ζ) =

N∑

n=1

hn
ζn−1

(n− 1)!
+

ζN

(N − 1)!

∫ 1

0

(1− t)N−1 ĥ(N)(ζt)dt

we obtain

h(z) =
N∑

n=1

hn

zn
+

∫ +∞

0

ζN

(N − 1)!

∫ 1

0

(1− t)N−1 ĥ(N)(ζt)dt e−zζ dζ.
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To bound ĥ(N)(ζt) we use the Cauchy Integral Formula

ĥ(N)(ζt) =
N !

2πi

∫

Cζt

ĥ(u)

(u− ζt)N+1
du

where Cζt denotes the circle with center ζt, radius 1/2, oriented counterclockwise.

For t ∈ [0, 1] and ζ ∈ [0,+∞[ then ζt is non negative and ℜ(u) ≥ −1/2 when u runs

over any Cζt. Hence, we obtain

∣∣ĥ(N)(ζt)
∣∣ ≤ N !2N

2− e1/2
and

∣∣∣
∫ 1

0

(1− t)N−1ĥ(N)(ζt)dt
∣∣∣ ≤ (N − 1)!2N

2− e1/2
·

Finally, from the identity above we can conclude that, for all z ∈ δ,

(10)
∣∣∣h(z)−

N∑

n=1

hn

zn

∣∣∣ ≤ 2N

2− e1/2

∫ +∞

0

ζN
∣∣e−ζz

∣∣ dζ =
C

|z|N+1

with C = 1

2−e1/2
N ! 2N

(sin δ)N+1 .

This proves that h(z) is asymptotic to h̃(z) at infinity on .

Example 2.2.8 (A series solution of a wild difference equation)

Consider the order one inhomogeneous wild difference equation

(11)
1

z
ℓ(z + 1) +

(
1 +

1

z

)
ℓ(z) =

1

z
·

An identification of terms of equal power shows that it admits a unique series solution

ℓ̃(z) =
∑

n≥1

ℓnz
−n

whose coefficients ℓn are given by the recurrence relation

ℓn+1 = −2ℓn −
∑

m+p=n
m≥1,p≥1

(−1)pℓm
(m+ p− 1)!

p! (m− 1)!

from the initial value ℓ1 = 1. It follows that the sequence (ℓn)n≥1 is alternate and satisfies

|ℓn+1| ≥ (n− 1)|ℓn−1|.
Hence, ℓ2n ≥ 2n (n − 1)! for all n and consequently, the series is divergent. The Borel

transform ℓ̂(ζ) of the series ℓ̃(z) satisfies the equation
∫ ζ

0

e−ξ ℓ̂(ξ)dξ +

∫ ζ

0

ℓ̂(ξ)dξ + ℓ̂(ξ) = 1

equivalent to the two conditions ℓ̂(0) = 1 and ℓ̂ ′(ζ) =
(
− e−ζ − 1

)
ℓ̂(ζ). Hence,

ℓ̂(ζ) =
1

e
e−ζ+e−ζ

.

We leave as an exercise to prove that the Laplace integral
∫ +∞

0
ℓ̂(ζ)e−zζ dζ is a solution

of (11) asymptotic to ℓ̂(z) at infinity on the sector ℜ(z) > −1 (Follow the same method

as in the previous exercise and estimate the constant C).



2.2. POINCARÉ ASYMPTOTICS 15

2.2.3. Algebras of asymptotic functions. — Recall that denotes a

given open sector with vertex 0 in C \ {0} or in the Riemann surface of the

logarithm . Unless otherwise mentioned we refer to the usual derivation

d/dx and to Notations 2.2.2.

Proposition 2.2.9 (Differential algebra and Taylor map)

⊲ The set A( ) endowed with the usual algebraic operations and the usual

derivation d/dx is a differential algebra.

⊲ The Taylor map T = T : A( ) → C[[x]] is a morphism of differential

algebras with kernel A<0( ).

Proof. — Due to the algebraic rules on asymptotic expansions A( ) is a sub-

algebra of O( ). We are left to prove thatA( ) is stable under derivation with

respect to x and that the Taylor map T commutes with derivation.

Let f ∈ A( ) have an asymptotic expansion T f(x) =
∑

n≥0 anx
n. Since f

belongs to O( ) it admits a derivative f ′ ∈ O( ). Moreover, for all ′
⋐ and

all N ≥ 0, there exists C > 0 such that, for all x ∈ ′,

∣∣∣f(x)−
N∑

n=0

an x
n
∣∣∣ ≤ C |x|N+1

and we want to prove that for all ′′
⋐ , for all N > 0, there exists C ′ > 0

such that, for all x ∈ ′′,

∣∣∣f ′(x)−
N−1∑

n=0

(n+ 1)an+1 x
n
∣∣∣ ≤ C ′ |x|N .

Fix N > 0 and consider the function g(x) = f(x)−∑N
n=0 anx

n.

We must prove that the condition

• for all ′
⋐ , there exists C > 0 such that |g(x)| ≤ C |x|N+1 for all x ∈ ′

implies the condition

• for all ′′ ⋐ , there exists C ′ > 0 such that |g′(x)| ≤ C ′ |x|N for all x ∈ ′′.

Given ′′
⋐ , choose a sector ′ such that ′′

⋐
′
⋐ (see Fig 5) and let

δ be so small that, for all x ∈ ′′, the closed disc B(x, |x|δ) centered at x with

radius |x|δ be contained in ′. Denote by γx the boundary of B(x, |x|δ).
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Figure 5

By assumption, for all t ∈ B(x, |x|δ) and, especially, for all t ∈ γx the

function g satisfies |g(t)| ≤ C |t|N+1. We deduce from Cauchy’s integral for-

mula g′(x) = 1
2πi

∫
γx

g(t)
(t−x)2

dt that, for all x ∈ ′′, the derivative g′ satisfies

∣∣g′(x)
∣∣ ≤ 1

2π
max
t∈γx

∣∣g(t)
∣∣ 2π |x| δ
(|x| δ)2 ≤ C

|x| δ
(
|x| (1 + δ)

)N+1
= C ′ |x|N

with C ′ = C (1 + δ)N+1/δ. Hence, the result.

Remarks 2.2.10. — Let us insist on the role of Cauchy’s integral formula.

⊲ The proof of Proposition 2.2.9 does require that the estimates in Defi-

nition 2.2.1 be satisfied for all ′
⋐ instead of itself. Otherwise, we could

not apply Cauchy’s integral formula and we could not assert anymore that the

algebra A( ) is differential. In such a case, algebras of asymptotic functions

would not be suitable to handle solutions of differential equations.

⊲ Theorem 2.2.9 is no longer valid in real asymptotics, where Cauchy’s

integral formula does not hold, as it is shown by the following counter-example.

The function f(x) = e−1/x sin(e1/x) is asymptotic to 0 (the null series)

on R+ at 0. Its derivative f ′(x) = 1
x2 e
−1/x sin(e1/x) − 1

x2 cos(e
1/x) has no

limit at 0 on R+ and then no asymptotic expansion. This proves that the set

of real analytic functions admitting an asymptotic expansion at 0 on R+ is

not a differential algebra.

The following proposition provides, in particular, a proof of the uniqueness

of the asymptotic expansion, if any exists.

Proposition 2.2.11. — A function f belongs toA( ) if and only if f belongs

to O( ) and a sequence (an)n∈N exists such that

1

n!
lim
x→0
x∈ ′

f (n)(x) = an for all ′
⋐ .
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Proof. — The only if part follows from Proposition 2.2.9. To prove the if

part consider ′
⋐ . For all x and x0 ∈ ′, f admits the Taylor expansion

with integral remainder

f(x)−
N−1∑

n=0

1

n!
f (n)(x0)(x− x0)

n =

∫ x

x0

1

(N − 1)!
(x− t)N−1f (N)(t)dt.

Notice that we cannot write such a formula for x0 = 0 since 0 does not even

belong to the definition set of f . However, by assumption, the limit of the left

hand side as x0 tends to 0 in ′ exists; hence, the limit of the right hand side

exists and we can write

f(x)−
N−1∑

n=0

anx
n =

∫ x

0

1

(N − 1)!
(x− t)N−1f (N)(t)dt.

Then,

∣∣∣f(x)−
N−1∑

n=0

anx
n
∣∣∣ ≤ 1

(N−1)!

∣∣∣
∫ x
0 (x− t)N−1f (N)(t)dt

∣∣∣

≤ |x|N

N ! supt∈ ′
∣∣f (N)(t)

∣∣ ≤ C |x|N ,
the constant C = 1

N ! supt∈ ′ |f (N)(t)| being finite by assumption. Hence, the

conclusion

2.3. Gevrey asymptotics

When working with differential equations for instance, it appears easily

that the conditions required in Poincaré asymptotics are too weak to fit some

natural requests, say for instance, to provide asymptotic functions that are

solutions of the equation when the asymptotic series themselves are solution

or, better, to set a 1-to-1 correspondence between the series solution and their

asymptotic expansion. A precise answer to these questions is found in the

theories of summation (cf. Chaps. 6 and 8). A first step towards that aim is

given by strengthening Poincaré asymptotics into Gevrey asymptotics.

From now on, we are given k > 0 and we denote its inverse by

s = 1/k

When k > 1/2 then π/k < 2π and the sectors of the critical opening

π/k to be further considered may be seen as sectors of C∗ itself; otherwise,

they must be considered as sectors of the universal cover of C∗. In general,
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depending on the problem, we may assume that k > 1/2 after performing a

change of variable (ramification) x = tp with a large enough p ∈ N.

Recall that, unless otherwise specified, we denote by , ′, . . . open sectors

in C∗ or and that the notation ′
⋐ means that the closure of the sector ′

in C∗ or lies in (cf. Def. 2.1.2).

2.3.1. Gevrey series. —

Definition 2.3.1 (Gevrey series of order s or of level k)

A series
∑

n≥0 anx
n is of Gevrey type of order s (in short, s-Gevrey) if there

exist constants C > 0, A > 0 such that the coefficients an satisfy

|an| ≤ C(n!)sAn for all n.

The constants C and A do not depend on n.

Equivalently, a series
∑

n≥0 anx
n is s-Gevrey if the series

∑
n≥0 anx

n/(n!)s

converges.

Notation 2.3.2. — We denote by C[[x]]s the set of s-Gevrey series.

Observe that the spaces C[[x]]s are filtered as follows:

C{x} = C[[x]]0 ⊂ C[[x]]s ⊂ C[[x]]s′ ⊂ C[[x]]∞ = C[[x]]

for all s, s′ satisfying 0 < s < s′ < +∞.

Comments 2.3.3 (On the examples of chapter 1)

⊲ A convergent series (cf. Exa. 2.2.3) is a 0-Gevrey series.

⊲ The Euler series Ẽ(x) (cf. Exa. 2.2.4) is 1-Gevrey and hence s-Gevrey for any s > 1.

It is s-Gevrey for no s < 1.

⊲ The hypergeometric series 3F0(1/z) (cf. Exa. 2.2.6) is 2-Gevrey and s-Gevrey for

no s < 2.

⊲ The series h̃(z) (cf. Exa. 2.2.7) is 1-Gevrey. Indeed, it is at least 1-Gevrey

since |hn| ≥ n! and it is at most 1-Gevrey since its Borel transform at infinity converges.

⊲ From the fact that |ℓ2n+1| ≥ 2nn! and |ℓ2n| ≥ 2n(n − 1)! we know that, if the

series ℓ̃(z) (cf. Exa. 2.2.8) is of Gevrey type then it is at least 1/2-Gevrey. From the fact

that its Borel transform is convergent it is of Gevrey type and at most 1-Gevrey. Note

however that its Borel transform is an entire function and consequently, ℓ̃(z) could be less

than 1-Gevrey.

Proposition 2.3.4. — C[[x]]s is a differential sub-algebra of C[[x]] stable un-

der composition.
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Proof. — C[[x]]s is clearly a sub-vector space of C[[x]]. We have to prove that

it is stable under product, derivation and composition.

⊲ Stability of C[[x]]s under product. — Consider two s-Gevrey series∑
n≥0 anx

n and
∑

n≥0 bnx
n satisfying, for all n and for positive constants

A,B,C and K, the estimates

|an| ≤ C(n!)sAn and |bn| ≤ K(n!)sBn.

Their product is the series
∑

n≥0 cnx
n where cn =

∑
p+q=n apbq. Then,

|cn| ≤ CK
∑

p+q=n

(p!)s(q!)sApBq ≤ CK(n!)s(A+B)n.

Hence the result.

⊲ Stability of C[[x]]s under derivation. — Given an s-Gevrey series∑
n≥0 anx

n satisfying |an| ≤ C(n!)sAn for all n, its derivative
∑

n≥0 bnx
n

satisfies

|bn| = (n+ 1)|an+1| ≤ (n+ 1)C((n+ 1)!)sAn+1 ≤ C ′(n!)sA′n

for convenient constants A′ > A and C ′ ≥ C. Hence the result.

⊲ Stability of C[[x]]s under composition [Gev18]. — Let f̃(x) =∑
p≥1 apx

p and g̃(y) =
∑

n≥0 bny
n be two s-Gevrey series. The compo-

sition g̃ ◦ f̃(x) = ∑
n≥0 cnx

n provides a well-defined power series in x. From

the hypothesis, there exist constants h, k, a, b > 0 such that, for all p and n,

the coefficients of the series f̃ and g̃ satisfy respectively |ap| ≤ h(p!)sap and

|bn| ≤ k(n!)sbn.

Faà di Bruno’s formula allows us to write

n! cn =
∑

m∈In

N(m)|m|! b|m|
n∏

j=1

(
j! aj

)mj

where In stands for the set of non-negative n-tuples m = (m1,m2, . . . ,mn)

satisfying the condition
∑n

j=1 jmj = n, where |m| = ∑n
j=1mj and the coeffi-

cient N(m) is a positive integer depending neither on f̃ nor on g̃. Using the

Gevrey hypothesis and the condition
∑n

j=1 jmj = n, we can then write

n!|cn| ≤ k an
∑

m∈In

N(m) |m|!1+s (hb)|m|
( n∏

j=1

j!mj

)1+s
.
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As clearly |m| ≤ n and N(m) ≤ N(m)1+s, with B = max(hb, 1), we obtain

n!|cn| ≤ k (aB)n
∑

m∈In

(
N(m) |m|!

n∏

j=1

j!mj

)1+s

and then, from the inequality
∑K

i=1X
1+s
i ≤

(∑K
i=1Xi

)1+s
for non-negative s

and Xi’s, the estimate

n!|cn| ≤ k (aB)n
( ∑

m∈In

N(m) |m|!
n∏

j=1

j!mj

)1+s
.

Now, applying Faà di Bruno’s formula to the case of the series f̃(x) = x/(1−x)
and g̃(x) = 1/(1− x), implying thus g̃ ◦ f̃(x) = 1 + x/(1 − 2x), we get the

relation
∑

m∈In

N(m) |m|!
n∏

j=1

(j!)mj =

{
2n−1n! when n ≥ 1

1 when n = 0;

hence, a fortiori,
∑

m∈In

N(m) |m|!
n∏

j=1

(j!)mj ≤ 2n n!

and we can conclude that

|cn| ≤ k (n!)s (21+s aB)n

for all n ∈ N, which ends the proof.

One has actually the more general result stated in Proposition 2.3.6 below.

Definition 2.3.5. — A series g̃(y1, . . . , yr) =
∑

n1,··· ,nr≥0
bn1,...,nry

n1
1 . . . ynr

r

is said to be (s1, . . . , sr)-Gevrey if there exist positive constants C,M1, . . . ,Mr

such that, for all n-tuple (n1, . . . , nr) of non-negative integers, the series sat-

isfies an estimate of the form∣∣∣bn1,...,nr

∣∣∣ ≤ C(n1!)
s1 · · · (nr!)srMn1

1 · · ·Mnr
r .

It is said to be s-Gevrey when s1 = · · · = sr = s.

Proposition 2.3.6. — Let f̃1(x), f̃2(x), . . . , f̃r(x) be s-Gevrey series without

constant term and let g̃(y1, . . . , yr) be an s-Gevrey series in r variables.

Then, the series g̃(f̃1(x), . . . , f̃r(x)) is an s-Gevrey series.

Since the expression of the nth derivative of g̃(f̃1(x), . . . , f̃r(x)) has the

same form as in the case of g̃(f̃(x)) the proof is identical to the one for g̃(f̃(x))

and we leave it as an exercise.
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The result is, a fortiori, true when g̃ or some of the f̃j ’s are analytic. The

fact that C[[x]]s be stable by product (and composition of course) can then be

seen as a consequence of that proposition.

2.3.2. Algebras of Gevrey asymptotic functions. —

Definition 2.3.7 (Gevrey asymptotics of order s)

A function f ∈ O( ) is said to be Gevrey asymptotic of order s (for short,

s-Gevrey asymptotic) to a series
∑

n≥0 anx
n on if for any proper sub-sector

′
⋐ there exist constants C ′ > 0 and A ′ > 0 such that, the following

estimate holds for all N ∈ N∗ and x ∈ ′:

(12)
∣∣∣f(x)−

N−1∑

n=0

anx
n
∣∣∣ ≤ C ′(N !)sAN

′ |x|N

A series which is the s-Gevrey asymptotic expansion of a function is said to

be an s-Gevrey asymptotic series.

Notation 2.3.8. — We denote by As( ) the set of functions admitting an

s-Gevrey asymptotic expansion on .

Given an open arc I of S1, let I(R) denote the sector based on I with

radius R. Since there is no possible confusion, we also denote the set of germs

of functions admitting an s-Gevrey asymptotic expansion on a sector based

on I by

As(I) = lim
−→
R→0

As

(
I(R)

)
.

The constants C ′ and A ′ may depend on ′; they do not depend on N ∈ N∗

and x ∈ ′. Gevrey asymptotics differs from Poincaré asymptotics by the fact

that the dependence on N of the constant CN, ′ (cf. Def. 2.2.1) has to be of

Gevrey type.

Comments 2.3.9 (On the examples of chapter 1)

The calculations in Section 2.2.2 show the following Gevrey asymptotic properties:

⊲ The Euler function E(x) is 1-Gevrey asymptotic to the Euler series Ẽ(x) on any

(germ at 0 of) half-plane bisected by a line dθ with argument θ such that −π < θ < +π.

It is then 1-Gevrey asymptotic to Ẽ(x) at 0 on the full sector −3π/2 < arg(x) < +3π/2.

⊲ Up to an exponential factor the exponential integral has the same properties on

germs of half-planes at infinity.
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⊲ The generalized hypergeometric series g̃(z) of Example 2.2.6 is 2-Gevrey and we

stated that the function g(z) is asymptotic in the rough sense of Poincaré to g̃(z) on

the half-plane ℜ(z) > 0 at infinity. We will see (cf. Com. 6.2.7) that the function g(z) is

actually 1/2-Gevrey asymptotic to g̃(z). Our computations in Sect. 2.2.2 do not allow us

to state yet such a fact since we did not determine how the constant C depends on N .

⊲ The function h(z) of Example 2.2.7 was proved to be 1-Gevrey asymptotic to the

series h̃(z) (cf. Estim. (10) on the right half-plane ℜ(z) > 0 at infinity.

⊲ The function ℓ(z) of Example 2.2.8 satisfies the same estimate (10) as h(z) on

the sector ′ = {−π/2 + δ < arg(z) < π/2 − δ}, for (0 < δ < π/2), with a constant C

which can be chosen equal to C = e−1/2+e1/2 N ! 2N/(sin δ)N+1. The function ℓ(z) is then

1-Gevrey asymptotic to the series ℓ̃(z) on the right half-plane ℜ(z) > 0 at infinity.

Proposition 2.3.10. — An s-Gevrey asymptotic series is an s-Gevrey se-

ries.

Proof. — Suppose the series
∑

n≥0 anx
n is the s-Gevrey asymptotic series of

a function f on . For all N , the result follows from Condition (12) applied

twice to

aNx
N =

(
f(x)−

N−1∑

n=0

anx
n
)
−
(
f(x)−

N∑

n=0

anx
n
)
.

Proposition 2.3.11. — A function f ∈ A( ) belongs to As( ) if and only if

for all ′
⋐ there exist constants C ′ ′ > 0 and A′ ′ > 0 such that the following

estimate holds for all N ∈ N and x ∈ ′:

(13)
∣∣∣ d

Nf

dxN
(x)

∣∣∣ ≤ C ′ ′(N !)s+1A
′N
′ .

Proof. — Prove that Condition (13) implies Condition (12). — Like in the

proof of Prop. 2.2.11, write Taylor’s formula with integral remainder:

f(x)−
N−1∑

n=0

anx
n =

∫ x
0

1
(N−1)!(x− t)N−1f (N)(t)dt = − 1

N !

∫ x
0 f

(N)(t)d(x− t)N

and conclude that

∣∣∣f(x)−
N−1∑

n=0

anx
n
∣∣∣ ≤ 1

N !
sup
t∈ ′

∣∣∣ d
Nf

dxN
(t)

∣∣∣ · |x|N ≤ C ′ ′(N !)sA
′N
′ |x|N .

Prove that Condition (12) implies Condition (13). — Like in the proof of

Prop. 2.2.9, attach to any x ∈ ′ a circle γx centered at x with radius |x|δ, the
constant δ being chosen so small that γx be contained in and apply Cauchy’s
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integral formula:

dNf

dxN
(x) =

N !

2πi

∫

γx

f(t)
dt

(t− x)N+1
=
N !

2πi

∫

γx

(
f(t)−

N−1∑

n=0

ant
n
) dt

(t− x)N+1

since the N th derivative of a polynomial of degree N − 1 is 0. Hence,
∣∣∣ d

Nf

dxN
(x)

∣∣∣ ≤ N !

2π
C ′(N !)sAN

′

∣∣∣
∫

γx

|t|N

|t− x|N+1
dt
∣∣∣

≤ 1

2π
C ′(N !)s+1AN

′

|x|N (1 + δ)N

|x|N+1δN+1
2πδ |x|

= C ′(N !)s+1A
′N
′ with A′ ′ = A ′

(
1 +

1

δ

)
.

Proposition 2.3.12 (Differential algebra and Taylor map)

The set As( ) is a differential C-algebra and the Taylor map T restricted

to As( ) induces a morphism of differential algebras

T = Ts, :As( ) −→ C[[x]]s

with values in the algebra of s-Gevrey series.

Proof. — Let ′
⋐ . Suppose f and g belong to As( ) and satisfy on ′

∣∣∣ d
Nf

dxN
(x)

∣∣∣ ≤ C(N !)s+1AN and
∣∣∣ d

Ng

dxN
(x)

∣∣∣ ≤ C ′(N !)s+1A′N .

The product fg belongs to A( ) (cf. Prop. 2.2.9) and its derivatives satisfy

∣∣∣ d
N (fg)

dxN
(x)

∣∣∣ ≤
N∑

p=0

Cp
N

dpf

dxp
(x)

dN−pg

dxN−p
(x) ≤ CC ′(N !)s+1(A+A′)N .

The fact that the range Ts,
(
As( )

)
be included in C[[x]]s follows from Propo-

sition 2.3.10.

Observe now the effect of a change of variable x = tr, r ∈ N∗. Clearly, if

a series f̃(x) is Gevrey of order s (level k) then the series f̃(tr) is Gevrey of

order s/r (level kr). What about the asymptotics?

Let =]α, β[×]0, R[ be a sector in (the directions α and β are not given

modulo 2π) and let /r =]α/r, β/r[× ]0, R1/r[ so that as the variable t runs

over /r the variable x = tr runs over . From Definition 2.3.7 we can state:

Proposition 2.3.13 (Gevrey asymptotics in an extension of the vari-

able)

The following two assertions are equivalent:
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(i) the function f(x) is s-Gevrey asymptotic to the series f̃(x) on ;

(ii) the function g(t) = f(tr) is s/r-Gevrey asymptotic to g̃(t) = f̃(tr)

on /r.

Way back, given an s′-Gevrey series g̃(t), the series f̃(x) = g̃(x1/r) ex-

hibits, in general, fractional powers of x. To keep working with series of

integer powers of x one may use rank reduction as follows [LR01]. One can

uniquely decompose the series g̃(t) as a sum

g̃(t) =
r−1∑

j=0

tj g̃j(t
r)

where the terms g̃j(t
r) are entire power series in tr. Set ω = e2πi/r and x = tr.

The series g̃j(x) are given, for j = 0, . . . , r − 1, by the relations

rtj g̃j(t
r) =

r−1∑

ℓ=0

ωℓ(r−j) g̃(ωℓt).

For j = 0, . . . , r − 1, let j
/r denote the sector

j
/r =](α+ 2jπ)/r, (β + 2jπ)/r[× ]0, R1/r[

so that as t runs through /r =
0
/r then ωjt runs through j

/r and x = tr runs

through .

From the previous relations and Proposition 2.3.13 we can state:

Corollary 2.3.14 (Gevrey asymptotics and rank reduction)

The following two assertions are equivalent:

(i) for ℓ = 0, . . . , r − 1 the series g̃(t) is an s′-Gevrey asymptotic series

on ℓ/r (in the variable t);

(ii) for j = 0, . . . , r − 1 the r-rank reduced series g̃j(x) is an s′r-Gevrey

asymptotic series on (in the variable x = tr).

With these results we might limit the study of Gevrey asymptotics to

small values of s (s ≤ s0) or to large ones (s ≥ s1) at convenience.

2.3.3. Flat s-Gevrey asymptotic functions. — In this section we ad-

dress the following question: to characterize the functions that are both s-

Gevrey asymptotic and flat on a given sector . To this end, we introduce the

notion of exponential flatness.
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Definition 2.3.15. — A function f is said to be exponentially flat of order

k (or k-exponentially flat) on a sector if, for any proper subsector ′
⋐ of

, there exist constants K and A > 0 such that the following estimate holds

for all x ∈ ′ :

(14)
∣∣f(x)

∣∣ ≤ K exp
(
− A

|x|k
)
·

The constants K and A may depend on ′.

Notation 2.3.16. — We denote the set of k-exponentially flat functions on

by

A≤−k( ).

Proposition 2.3.17. — Let be an open sector. The functions which are

s-Gevrey asymptotically flat on are the k-exponentially flat functions, i.e.,

As( ) ∩ A<0( ) =A≤−k( ) (recall s = 1/k).

Proof. — ⊲ Let f ∈ As( ) ∩ A<0( ) and prove that f ∈ A≤−k( ).

It is, here, more convenient to write Condition (12) in the following equivalent

form: for all ′
⋐ , there exist A > 0, C > 0 such that the estimate

∣∣f(x)
∣∣ ≤ CNN/k

(
A|x|

)N
= C exp

(N
k

ln
(
N
(
A|x|

)k))

holds for all N and all x ∈ ′ (with possibly new constants A and C).

For x fixed, look for a lower bound of the right hand side of this estimate

as N runs over N. The derivative ϕ′(N) = ln
(
N(A|x|)k

)
+ 1 of the function

ϕ(N) = N ln
(
N(A|x|)k

)

seen as a function of a real variable N > 0 vanishes at N0 = 1/
(
e(A|x|k)

)

and ϕ reaches its minimal value ϕ(N0) = −N0 at that point. Taking into

account the monotonicity of ϕ, for instance to the right of N0, we can assert

that

inf
N∈N

ϕ(N) ≤ ϕ(N0 + 1) = ϕ(N0)
(
1 +

1

N0

(
1− (1 +N0) ln

(
1 +

1

N0

)))
.

Substituting this value ofN0 as a function of x in ϕ, we can write ϕ(N0 + 1) = ϕ(N0)ψ(x)

where ψ(x) is a bounded function on . Hence, there exists a constant C ′ > 0

such that |f(x)| ≤ C ′ exp
(
− a
|x|k

)
with a = 1

k eAk > 0 independent of x ∈ ′.

This proves that f belongs to A≤−k( ).
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⊲ Let f ∈ A≤−k( ) and prove that f ∈ As( ) ∩ A<0( ).

The hypothesis is now: for all ′
⋐ , there exist A > 0, C > 0 such that an

estimate ∣∣f(x)
∣∣ ≤ C exp

(
− A

|x|k
)

holds for all x ∈ ′. Hence, for any N , the estimate

∣∣f(x)
∣∣ · |x|−N ≤ C exp

(
− A

|x|k
)
|x|−N .

For N fixed, look for an upper bound of the right hand side of this estimate

as |x| runs over R+. Let ψ(|x|) = exp
(
− A
|x|k

)
|x|−N . Its logarithmic derivative

ψ′(|x|)
ψ(|x|) = − N

|x| +
Ak

|x|k+1

vanishes for Ak/|x|k = N and ψ reaches its maximum value at that point.

Thus, max|x|>0 ψ(|x|) = exp
(
− N

k

)(
N
Ak

)N/k
and there exists constants

a = (eAk)−1/k and C > 0 such that, for all N ∈ N and x ∈ Σ′ the function f

satisfies ∣∣f(x)
∣∣ ≤ CNN/k

(
a|x|

)N
.

Hence, f belongs to As( ) ∩ A<0( ).

2.4. The Borel-Ritt Theorem

With any asymptotic function f ∈ A( ) over a sector the Taylor map T

associates a formal series f̃ = T (f). We address now the converse problem:

is any formal series the Taylor series of an asymptotic function over a given

sector ? The theorem below states that the answer is yes for any open sector

with finite radius in C∗ or in Poincaré asymptotics. In case the series is

s-Gevrey an s-Gevrey asymptotic function always exists when the opening of

the sector is small enough but we will see on examples that it might not

exist for a too wide . Notice that the Taylor series of a function f ∈ A(C∗)

is necessarily convergent by the removable singularity Theorem of Riemann.

And thus, when is included in C∗, it cannot be a full neighborhood of 0

in C∗.

Theorem 2.4.1 (Borel-Ritt). — Let 6= C∗ be an open sector of C∗ or of

the Riemann surface of logarithm with finite radius R.

(i) (Poincaré asymptotics) The Taylor map T :A( ) → C[[x]] is onto.
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(ii) (Gevrey asymptotics) Suppose has opening | | ≤ π/k. Then, the

Taylor map Ts, :As( ) → C[[x]]s is onto. Recall s = 1/k.

Proof. — (i) Poincaré asymptotics. — Various proofs exist. The one pre-

sented here can be found in [Mal95]. For simplicity, begin with the case of a

sector in C∗.

⊲ Case when lies in C∗. Modulo rotation it is sufficient to consider the

case when = −π,+π(R) is the disc of radius R slit on the real negative axis.

Figure 6

Given any series
∑

n≥0 anx
n ∈ C[[x]] we look for a function f ∈ A( )

with Taylor series T f =
∑

n≥0 anx
n. To this end, one introduces functions

βn(x) ∈ O( ) satisfying the two conditions

(1) :
∑

n≥0

anβn(x)x
n ∈ O( ) and (2) : T βn(x) ≡ 1 for all n ≥ 0.

Such functions exist: consider, for instance, the functions β0 ≡ 1 and, for

n ≥ 1, βn(x) = 1 − exp
(
− bn/

√
x
)
with positive bn and

√
x the principal

determination of the square root.

In view to Condition (1), observe that since 1 − ez = −
∫ z
0 etdt

then |1− ez| < |z| for ℜ(z) < 0. This implies |βn(x)| ≤ bn/
√

|x| for all

x ∈ and n ≥ 1 and then,
∣∣anβn(x)xn

∣∣ ≤ |an|bn |x|n−1/2 ≤ |an|bnRn−1/2.

Now, choose bn such that the series
∑

n≥1 |an|bnRn−1/2 be convergent.

Then, the series
∑

n≥0 anβn(x)x
n converges normally on and its sum f(x) =∑

n≥0 anβn(x)x
n is holomorphic on .

To prove Condition (2), consider any proper sub-sector ′
⋐ of and

x ∈ ′. Then, for any N ≥ 1, we can write

∣∣∣f(x)−
N−1∑

n=0

anx
n
∣∣∣ ≤

∣∣∣
N−1∑

n=0

an(βn(x)− 1)xn
∣∣∣ + |x|N

∑

n≥N

∣∣anβn(x)xn−N
∣∣.

The first summand is a finite sum of terms all asymptotic to 0 and then,

is majorized by C ′ |x|N , for a convenient positive constant C ′. The second
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summand is majorized by

|x|N
(
2|aN | +

∑

n≥N+1

|an|bnRn−1/2−N
)
.

Choosing C = C ′ + 2|aN | +∑
n≥N+1 |an|bnRn−1/2N provides a positive con-

stant C (independent of x but depending on N and ′) such that

∣∣∣f(x)−
N∑

n=0

anx
n
∣∣∣ ≤ C |x|N for all x ∈ ′.

This ends the proof in this case.

⊲ General case when lies in C̃∗. — It is again sufficient to consider the

case of a sector of the form = {x ∈ C̃∗ ; | arg(x)| < kπ, 0 < |x| < R} where

k ∈ N∗. The same proof can be applied after replacing
√
x by a convenient

power xα of x so that ℜ(xα) is positive for all x in and taking bn ≡ 1 for all

n ≤ α.

(ii) Gevrey asymptotics

Let f̃(x) ∈ C[[x]]s be an s-Gevrey series which, up to a polynomial, we

may assume to be of the form f̃(x) =
∑

n≥k anx
n. It is sufficient to consider

a sector of opening π/k (as always, k = 1/s) and by means of a rotation, we

can then assume that is an open sector bisected by the direction θ = 0 with

opening π/k; we denote by R its radius. We must find a function f ∈ As( ),

s-Gevrey asymptotic to f̃ over .

The proof used here is based on the Borel and the Laplace transforms

which will be at the core of Borel-Laplace summation in Section 6.3.

Since f̃(x) is an s-Gevrey series (cf. Def. 2.3.1) its k-Borel transform(1)

f̂(ξ) =
∑

n≥k

an
Γ(n/k)

ξn−k

is a convergent series(2) and we denote by ϕ(ξ) its sum. The adequate Laplace

transform to “invert” the k-Borel transform (as a function ϕ(ξ), not as a series

f̂(ξ)) in the direction θ = 0 would be the k-Laplace transform

Lk(ϕ)(x) =

∫ +∞

0
φ(ζ)e−ζ/x

k
dζ

(1) See Sect. 6.3.1. The k-Borel transform of a series
∑

n≥k anxn is the usual Borel transform of the

series
∑

n≥k anXn/k with respect to the variable X = xk and expressed in the variable ξ = ζs.
(2) Although, when k is not an integer, the series f̂(ξ) is not a series in integer powers of ξ it becomes

so after factoring by ξ−k. We mean here that the power series ξk f̂(ξ) is convergent.
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where ζ = ξk and φ(ζ) = ϕ(ζ1/k). However, although the series f̂(ξ) is

convergent, its sum ϕ(ξ) cannot be analytically continued along R+ up to

infinity in general. So, we choose b > 0 belonging to the disc of convergence

of f̂(ξ) and we consider a truncated k-Laplace transform

(15) f b(x) =

∫ bk

0
φ(ζ)e−ζ/x

k
dζ

instead of the full Laplace transform Lk(ϕ)(x). Lemma 2.4.2 below shows that

the function f = f b answers the question.

Lemma 2.4.2 (Truncated Laplace transform). — With notations and

conditions as above, and especially being an open sector bisected by θ = 0

with opening π/k, the truncated k-Laplace transform f b(x) of the sum ϕ(ξ)

of the k-Borel transform of f̃(x) in direction θ = 0 is s-Gevrey asymptotic to

f̃(x) on (with s = 1/k as usually).

Proof. — Given 0 < δ < π/2 and R′ < R, consider the proper sub-sector of

defined by δ =
{
x ; | arg(x)| < π/(2k)− δ/k and |x| < R′

}
. For x ∈ δ we

can write

f b(x)−
N−1∑

n=k

anx
n =

∫ bk

0

∑

n≥k

an
Γ(n/k)

ζ(n/k)−1 e−ζ/x
k
dζ

−
N−1∑

n=k

an
Γ(n/k)

∫ +∞

0
ζ(n/k)−1 e−ζ/x

k
dζ.

Since ℜ(xk) > 0 then,
∣∣ζ(n/k)−1 e−ζ/xk ∣∣ ≤ bn−k for all ζ ∈ [0, bk]. Consequently,

the series
∑

n≥k
an

Γ(n/k)ζ
(n/k)−1 e−ζ/x

k
converges normally on [0, bk] and we can

permute sum and integral. Hence,

f b(x)−
N−1∑

n=k

anx
n =

∑

n≥N

an
Γ(n/k)

∫ bk

0
ζ(n/k)−1 e−ζ/x

k
dζ

−
N−1∑

n=k

an
Γ(n/k)

∫ +∞

bk
ζ(n/k)−1 e−ζ/x

k
dζ.

However,
∣∣ζ/bk

∣∣(n/k)−1 ≤
∣∣ζ/bk

∣∣(N/k)−1
both when |ζ| ≤ bk and n ≥ N

and when |ζ| ≥ bk and n < N and then,
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∣∣∣f b(x)−
N−1∑

n=k

anx
n
∣∣∣ ≤

∑

n≥N

|an|
Γ(n/k)

∫ bk

0
bn−N |ζ|(N/k)−1 e−ζℜ(1/x

k)dζ

+
N−1∑

n=k

|an|
Γ(n/k)

∫ +∞

bk
idem

≤
∑

n≥k

|an|
Γ(n/k)

bn−N
∫ +∞

0
|ζ|(N/k)−1 e−ζ sin(δ)/|x|

k

dζ

=
∑

n≥k

|an|
Γ(n/k)

bn−N
|x|N

(sin δ)N/k

∫ +∞

0
u(N/k)−1 e−udu

=
∑

n≥k

|an|
Γ(n/k)

bn−N
|x|N

(sin δ)N/k
Γ(N/k) = CΓ(N/k)AN |x|N

where A = 1
b(sin δ)1/k

and C =
∑

n≥k
|an|

Γ(n/k)b
n < +∞. The constants A and C

depend on δ and on the choice of b but are independent of x. This achieves

the proof.

Comment 2.4.3 (On the Euler series (Exa. 2.2.4))

The proof of the Borel-Ritt Theorem provides infinitely many functions asymptotic to

the Euler series Ẽ(x) =
∑

n≥0(−1)nn!xn+1 at 0 on the sector = {x ; | arg(x)| < 3π/2}.
For instance, the following family provides infinitely many such functions:

Fa(x) =
∑

n≥0

(−1)nn!
(
1− e−a/((n!)2x1/3))xn+1, a > 0.

We saw in Example 2.2.4 that the Euler function E(x) =
∫ +∞

0
e−ξ/x

1+ξ
dξ is both solution of

the Euler equation and asymptotic to the Euler series on . We claim that it is the unique

function with these properties. Indeed, suppose E1 be another such function. Then, the

difference E(x)− E1(x) would be both asymptotic to the null series 0 on and solution

of the homogeneous associated equation x2y′+ y = 0. However, the equation x2y′+ y = 0

admits no such solution on but 0. Hence, E = E1 and the infinitely many functions

given by the proof of the Borel-Ritt Theorem do not satisfy the Euler equation in general.

Taking into account Props. 2.2.9, 2.3.12 and 2.3.17 we can reformulate

the Borel-Ritt Theorem 2.4.1 as follows.

Corollary 2.4.4. — The set A<0( ) of flat functions on and the set

A≤−k( ) of k-exponentially flat functions on are differential ideals of A( )
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and As( ) respectively. The sequences

0 →A<0( ) −→A( )
T−−→C[[x]] → 0

and, when | | ≤ π/k,

0 →A≤−k( ) −→ As( )
Ts,−−−→ C[[x]]s → 0

are exact sequences of morphisms of differential algebras.

The Borel-Ritt Theorem implies the classical Borel Theorem in the real

case providing thus a new proof of it.

Corollary 2.4.5 (Classical Borel Theorem). —

Any formal power series
∑

n≥0 anx
n ∈ C[[x]] is the Taylor series at 0 of

a C∞-function of a real variable x.

Proof. — Apply the Borel-Ritt Theorem on a sector ′ containing R+ and on

a sector ′′ containing R−. The two functions so obtained glue together at 0

into a C∞-function in a neighborhood of 0 in R.

2.5. The Cauchy-Heine Theorem

In this section we are given:

⊲ a sector
•

= α,β(R) with vertex 0 in C∗;

⊲ a point x0 in
•

and the straight path γ = ]0, x0] in
•

;

⊲ a function ϕ ∈ A<0(
•

) flat at 0 on
•

.

Definition 2.5.1. — One defines the Cauchy-Heine integral associated with

ϕ and x0, to be the function

f(x) =
1

2πi

∫

γ

ϕ(t)

t− x
dt.

Figure 7
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Denote by:

⊲ = α,β+2π(R) a sector with vertex 0 in the Riemann surface of loga-

rithm overlapping on
•

;

⊲ θ0 the argument of x0 satisfying α < θ0 < β;

⊲ Dγ = θ0,θ0+2π(|x0|) the disc of radius |x0| slit along γ;
⊲
•
′ =

• ∩ {|x| < |x0|} = α,β(|x0|);
⊲ ′ = ∩ {|x| < |x0|} = α,β+2π(|x0|).
The Cauchy-Heine integral determines a well-defined and analytic func-

tion f on Dγ . By Cauchy’s Theorem, Cauchy-Heine integrals associated with

different points x0 and x1 in
•

differ by 1
2πi

∫
⌢

x0x1

ϕ(t)
t−x dt, an analytic function

on a neighborhood of 0.

Theorem 2.5.2 (Cauchy-Heine). — With notations and conditions as be-

fore and especially, ϕ flat on
•

, the Cauchy-Heine integral f(x) = 1
2πi

∫
γ

ϕ(t)
t−x dt

has the following properties:

1. The function f can be analytically continued from Dγ to ′; we also use

the term Cauchy-Heine integral when referring to this analytic continuation

which we keep denoting by f .

2. The function f belongs to A( ′).

3. Its Taylor series at 0 on ′ reads

T ′f(x) =
∑

n≥0

anx
n with an =

1

2πi

∫

γ

ϕ(t)

tn+1
dt.

4. Its variation varf(x) = f(x)− f(xe2πi) is equal to ϕ(x) for all x ∈ •
′.

5. If, in addition, ϕ belongs to A≤−k( •) then, f belongs to As(
′) with the

above Taylor series, i.e., , if ϕ is k-exponentially flat on
•

then, f is s-Gevrey

asymptotic to the above series
∑

n≥0 anx
n on ′ (recall s = 1/k).

Proof. — The five steps can be proved as follows.

1. — Consider, for instance, the function f for values of x on the left of

γ. To analytically continue this “branch” of the function f to the right of γ it

suffices to deform the path γ by pushing it to the right keeping its endpoints

0 and x0 fixed. This allows us to go up to the boundary arg(x) = α of ′. We

can similarly continue the “branch” of the function f defined for values of x

on the right of γ up to the boundary arg(x) = β + 2π of ′.

2–3. — We have to prove that, for all subsector ′′
⋐

′, the function f

satisfies the asymptotic estimates of Definition 2.2.1.
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⊲ Suppose first that ′′ ∩ γ = ∅. Writing

1

t− x
=

N−1∑

n=0

xn

tn+1
+

xN

tN (t− x)

as in Example 2.2.4, we get

f(x) =
N−1∑

n=0

anx
n +

xN

2πi

∫

γ

ϕ(t)

tN (t− x)
dt.

Figure 8

Given x ∈ ′′, then |t− x| ≥ dist(t, ′′) = |t| sin(δ) for all t ∈ γ and so

(16)
∣∣f(x)−

N−1∑

n=0

anx
n
∣∣ ≤ C |x|N

where the constant C = 1
2π

∣∣∫
γ

|ϕ(t)|

|t|N+1 sin(δ)
dt
∣∣ is finite (the integral converges

since ϕ is flat at 0 on γ) and depends on N and ′′, but is independent of

x ∈ ′′.

⊲ Suppose now that ′′ ∩ γ 6= ∅. Push homotopically γ into a path made

of the union of a segment γ1 = ]0, x1] and a curve γ2, say a circular arc, joining

x1 to x0 without meeting ′′ as shown on the figure. The integral splits into

two parts f1(x) and f2(x).

Figure 9
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The term f1(x) belongs to the previous case and is then asymptotic to

∑

n≥0

1

2πi

∫

γ1

ϕ(t)

tn+1
dt xn on ′′.

The term f2(x) defines an analytic function on the disc |x| < |x0| and is

asymptotic to its Taylor series
∑

n≥0
1

2πi

∫
γ2

ϕ(t)
tn+1 dt x

n. Hence, the result.

4. — Given x ∈ •
′ compute the variation of f at x. Recall that x ∈ •

′

means that x belongs to the first sheet of ′. So, as explained in the proof of

point 1, to evaluate f(x) we might have to push homotopically the path γ to

the right into a path γ′. When x lies to the left of γ we can keep γ′ = γ. To

evaluate f(xe2πi) we might have to push homotopically the path γ to the left

into a path γ′′ taking γ′′ = γ when x lies to the right of γ.

The concatenation of γ′ and −γ′′ generates a path Γ in
•

enclosing x and

since the function ϕ(t)/(t− x) is meromorphic on
•

we obtain by the Cauchy’s

Residue Theorem:

var f(x) = f(x)− f(xe2πi) =
1

2πi

∫

Γ

ϕ(t)

t− x
dt = Res

( ϕ(t)
t− x

, t = x
)
= ϕ(x)(17)

Figure 10

5. — Given ′′
⋐

′ suppose that the function ϕ satisfies
∣∣ϕ(x)

∣∣ ≤ K exp
(
−A/|x|k

)
on ′′.

Consider the case when ′′ ∩ γ = ∅. Then, the constant C in estimate (16)

satisfies

C ≤ K

2π

∣∣∣
∫

γ

exp(−A/|t|k)
|t|N+1

dt
∣∣∣ ≤ C ′A−N/kΓ(N/k)

with a constant C ′ > 0 independent of N . The case when ′′∩γ 6= ∅ is treated

similarly by deforming the path γ as in points 2–3. Hence, f(x) is s-Gevrey

asymptotic to the series
∑

n≥0 anx
n on ′.
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Comments 2.5.3 (On the Euler function (Exa. 2.2.4))

Set
•

= α,β(∞) with α = −3π/2 and β = −π/2 and = α,β+2π(∞). Let E(x) denote

the Euler function as in Example 2.2.4 and, given θ, let dθ denote the half line issuing

from 0 with direction θ.

⊲ The variation of the Euler function E on
•

is given by

var E(x) =

∫

d
−π+ε

e−ξ/x

1 + ξ
dξ −

∫

dπ−ε

e−ξ/x

1 + ξ
dξ (ε small enough)

= −2πiRes
( e−ξ/x

1 + ξ
, ξ = −1

)
(Cauchy’s Residue Thm.)

= −2πie1/x.

⊲ Apply the Cauchy-Heine Theorem by choosing the 1-exponentially flat func-

tion ϕ(x) = −2πie1/x on
•

and a point x0 ∈ •

, for instance x0 = −r real negative.

Denote ′ = ∩ {|x| < |x0|} and
•′ = ′ ∩ {|x| < |x0|}. The Cauchy-Heine Theorem

provides a function f which, as the Euler function, belongs to A1(
′) with variation ϕ(x)

on
•′.

We claim that E and f differ by an analytic function near 0. Indeed, the Taylor series

of f on ′ reads
∑

n≥0 an,x0
xn with coefficients

an,x0
= −

∫ x0

0

e1/t

tn+1
dt = (−1)n−1

∫ +∞

1/r

un−1 e−udu

while the Taylor coefficients an of the Euler function E are given by a0 = 0 and for n ≥ 1

by an = limr→+∞ an,x0
. Since a0,x0

has no limit as r tends to +∞ we consider, instead

of f , the function

f(x)− a0,x0
= −

∫ −r

0

( 1

t− x
− 1

t

)
e1/tdt =

∫ +∞

1/r

xe−u

1 + ux
du.

Suppose x = |x| eiθ. Then, the Euler function at x can be defined by the integral

E(x) =

∫

dθ

e−ξ/x

1 + ξ
dξ =

∫ +∞

0

xe−u

1 + xu
du

and

E(x)− f(x) = −a0,x0
+ x

∫ 1/r

0

e−u

1 + ux
du

which is an analytic function on the disc |x| < r = |x0|.
This property will follow from a general argument of uniqueness given by Watson’s

Lemma 6.1.3. Indeed, the function f(x) − a0,x0
+ x

∫ 1/r

0
e−u

1+ux
du has the Euler series as

asymptotic expansion and is 1-Gevrey asymptotic to the Euler series Ẽ(x) on ′. Then, it

must be equal to the Euler function E(x) which has the same properties.

⊲ Stokes phenomenon. — The Euler function E(x) is also solution of the homogeneous

linear differential equation

E0(y) ≡ x3 d2y

dx2
+ (x2 + x)

dy

dx
− y = 0
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deduced from the Euler equation (1) by dividing it by x and then, differentiating once.

Since the equation has no singular point but 0 (and infinity) the Cauchy-Lipschitz Theorem

allows one to analytically continue the Euler function along any path which avoids 0

and then in particular, outside of the sector −3π/2 < arg(x) < +3π/2. However, when

crossing the lateral boundaries of this sector the Euler function E(x) stops being asymptotic

to the Euler series at 0; it even stops having an asymptotic expansion since, from the

variation formula above (cf. also the end of Exa. 2.2.4), one has now to take into account

an exponential term which is unbounded. This phenomenon is known under the name of

Stokes phenomenon. It is at the core of the meromorphic classification of linear differential

equations (cf. Sect. 4.3).

Exercise 2.5.4. — Study the asymptotics at 0 of the function

F (x) =

∫ +∞

0

e−ξ/x

ξ2 + 3ξ + 2
dξ.

and its analytic continuation. Compute its variation.



CHAPTER 3

SHEAVES AND ČECH COHOMOLOGY WITH AN

INSIGHT INTO ASYMPTOTICS

In this chapter, we recall some definitions and results used later and some

examples, about sheaves and Čech cohomology. For more precisions we refer

to the classical literature (cf. [God58], [Ten75], [Ive86] for instance).

3.1. Presheaves and sheaves

Sheaves are the adequate tool to handle objects defined by local conditions

without having to make explicit how large is the domain of validity of the

conditions. They are mainly used as a bridge from local to global properties.

It is convenient to start with the weaker concept of presheaves which we usually

denote with an overline.
3.1.1. Presheaves. — Let us start with the definition of presheaves with

values in the category of sets and continue with the case of various sub-

categories (for the definition of a category, see for instance [God58, Sect.

1.7]).

Definition 3.1.1 (Presheaf). — A presheaf (of sets) F over a topological

space X called the base space is defined by the following data:

(i) to any open set U of X there is a set F (U) whose elements are called

sections of F on U ;

(ii) to any couple of open sets V ⊆ U there is a map ρV,U : F (U) →F (V )

called restriction map satisfying the two conditions:

⊲ ρU,U = idU for all U ,

⊲ ρW,V ◦ ρV,U = ρW,U for all open sets W ⊆ V ⊆ U .

In the language of categories, a presheaf of sets over X is then a contravariant

functor from the category of open subsets of X into the category of sets.
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Unless otherwise specified, we assume that X does not reduce to one

element.

The names “section” and “restriction map” take their origin in Example

3.1.2 below which, with the notion of espace étalé (cf. Def. 3.1.10), will become

a reference example.

Example 3.1.2 (A fundamental example). — Let F be a topological space

and π : F → X a continuous map. A presheaf F is associated with F and π as follows:

for all open set U in X one defines F (U) as the set of sections of π on U , i.e., continuous

maps s : U → F such that π ◦ s = idU . The restriction maps ρV,U for V ⊆ U are defined

by ρV,U (s) = s|V .

Example 3.1.3 (Constant presheaf). — Given any set (or group, vector

space, etc. . . ) C, the constant presheaf CX over X is defined by CX(U) = C for all

open set U in X and the maps ρV,U = idC : C → C as restriction maps.

Example 3.1.4 (An exotic example). — Given any marked set with more

than one element, say (X = C, 0), one defines a presheaf G over X as follows: G(X) = X

and G(U) = {0} when U 6= X; all the restriction maps are equal to the null maps except

ρX,X which is the identity on X.

Below, we consider presheaves with values in a category C equipped with

an algebraic structure. We assume moreover that, in C, there exist products,

the terminal objects are the singletons, the isomorphisms are the bijective

morphisms. The same conditions will apply to the sheaves we consider later

on.

Definition 3.1.5. — A presheaf over X with values in a category C is a

presheaf of sets satisfying the following two conditions:

(iii) For all open set U of X the set F (U) is an object of the category C;
(iv) For any couple of open sets V ⊆ U the map ρV,U is a morphism in C.

In the next chapters, we will mostly be dealing with presheaves or sheaves

of modules, in particular, of Abelian groups or vector spaces, and presheaves

or sheaves of differential C-algebras, i.e., presheaves or sheaves with values in

a category of modules, Abelian groups, or vector spaces and presheaves or

sheaves with values in the category of differential C-algebras.
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Definition 3.1.6 (Morphism of presheaves). — Given F and G two

presheaves over X with values in a category C, a morphism f : F → G is a

collection, for all open sets U of X, of morphisms

f(U) : F (U) −→ G(U)

in the category C which are compatible with the restriction maps, i.e., such that

the diagrams

F (U)
f(U)−−−−→ G(U)

ρV,U

y
yρ′V,U

F (V )
f(V )−−−−→ G(V )

commute (ρV,U and ρ′V,U denote the restriction maps in F and G respectively).

Definition 3.1.7. — A morphism f of presheaves is said to be injective or

surjective when all morphisms f(U) are injective or surjective.

The morphisms of presheaves from F into G form a set, precisely, they

form a subset of
∏

U⊆X Hom
(
F (U),G(U)

)
. Composition of morphisms in the

category C induces composition of morphisms of presheaves over X with values

in C. It follows that presheaves over X with values in C form themselves a

category.

When C is Abelian, the category of presheaves over X with values in C is

also Abelian. In particular, one can talk of an exact sequence of presheaves

· · · → F j−1
fj−→F j

fj+1−−→F j+1 → · · ·

which means that the following sequence is exact for all open set U :

· · · → F j−1(U)
fj(U)−−→F j(U)

fj+1(U)−−−→ F j+1(U) → · · · .

The category of modules over a given ring, hence also the category of

Abelian groups and the category of vector spaces, are Abelian. They admit

the trivial module {0} as terminal object.

The category of rings, and in particular, the category of differential C-

algebras, is not Abelian. Although the quotient of a ring A by a subring J
is not a ring in general, this becomes true when J is an ideal and allows one

to consider short exact sequences 0 → J →A →A/J → 0 of presheaves of

rings or of differential C-algebras.
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Definition 3.1.8 (Stalk). — Given a presheaf F over X and x ∈ X, the

stalk of F at x is the direct limit

Fx = lim
−→
U∋x

F (U),

the limit being taken on the filtrant set of the open neighborhoods of x in X

ordered by inclusion. The elements of F x are called germs of sections of F
at x.

Let us first recall what is understood by the terms direct limit and filtrant.

⊲ The direct limit

E = lim
−→
α∈I

(Eα, fβ,α)

of a direct family (Eα, fβ,α : Eα −→ Eβ for α ≤ β) (i.e., it is required that the

set of indices I be ordered and right filtrant which means that given α, β ∈ I

there exists γ ∈ I greater than both α and β; moreover, the morphisms must

satisfy fα,α = idα and fγ,β ◦ fβ,α = fγ,α for all α ≤ β ≤ γ) is the quotient

of the sum F =
⊔

α∈I Eα of the spaces Eα by the equivalence relation R: for

x ∈ Eα and y ∈ Eβ , one says that

xRy if there exists γ such that γ ≥ α, γ ≥ β and fγ,α(x) = fγ,β(y).

In the case of a stalk here considered, the maps fβ,α are the restriction maps

ρV,U .

⊲ Filtrant means here that, given any two neighborhoods of x, there exists

a neighorhood smaller than both of them. Their intersection, for example,

provides such a smaller neighborhood.

Thus, a germ ϕ at x is an equivalence class of sections under the equiva-

lence relation: given two open sets U and V of X containing x, two sections

s ∈ F (U) and t ∈ F (V ) are equivalent if and only if there is an open set

W ⊆ U ∩ V containing x such that ρW,U (s) = ρW,V (t).

By abuse and for simplicity, we allow us to say “the germ ϕ at x” when ϕ is

an element of F (U) with U ∋ x identifying so the element ϕ in the equivalence

class to the equivalence class itself.

Given s ∈ F (U) and t ∈ F (V ) one should be aware of the fact that the

equality of the germs sx = tx for all x ∈ U ∩ V does not imply the equality of

the sections themselves on U ∩ V .
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A counter-example is given by taking the sections s ≡ 0 and t ≡ 1 whose germs are

everywhere 0 in Example 3.1.4.

Also, it is worth to notice that a consistent collection of germs for all x ∈ U

does not imply the existence of a section s ∈ F (U) inducing the given germs

at each x ∈ U . Consistent means here that any section v ∈ F (V ) representing

a given germ at x induces the neighboring germs: there exists an open sub-

neighborhood V ′ ⊆ V ⊆ U of x where the given germs are all represented by

v.

A counter-example is given by the constant presheaf CX whenX is disconnected. Consider,

for instance, X = R∗, C = R and the collection of germs sx = 0 for x < 0 and sx = 1 for

x > 0. The presheaf A defined in Section 3.1.5 will provide another example.

Such inconveniences are circumvented by restricting the notion of presheaf

to the stronger notion of sheaf given just below.

3.1.2. Sheaves. —

Definition 3.1.9 (Sheaf). — A presheaf F over X is a sheaf (we denote it

then by F) if, for all open set U of X, the following two properties hold:

1. If two sections s and σ of F(U) agree on an open covering U = {Uj}j∈J
of U (i.e., if they satisfy ρUj ,U (s) = ρUj ,U (σ) for all j) then s = σ.

2. Given any consistent family of sections sj ∈ F(Uj) on an open cov-

ering U = {Uj}j∈J of U there exists a section s ∈ F(U) gluing all the sj’s

(i.e., such that for all j, ρUj ,U (s) = sj).

Consistent means here that, for all i, j, the restrictions of si and sj agree

on Ui ∩ Uj, i.e., ρUi∩Uj ,Ui(si) = ρUi∩Uj ,Uj (sj).

The presheaf F of Example 3.1.2 is a sheaf. In Example 3.1.4 Condition 1 fails. In the

case of the constant presheaf over a disconnected base space X (cf. Exa. 3.1.3) and in the

case of the presheaf A in the next section Condition 2 fails.

It follows from the axioms of sheaves that F(∅) is a terminal object.

Thus, F(∅) = {0} when F is a sheaf of modules, Abelian groups and vector

spaces or of differential C-algebras.

When F is a sheaf of modules the restriction maps are linear and Condi-

tion 1 reduces to: a section which is zero in restriction to a covering U = {Uj}
is the null section.



42 CHAPTER 3. SHEAVES AND ČECH COHOMOLOGY

3.1.3. From presheaves to sheaves: espaces étalés. — With any

presheaf F there is a sheaf F canonically associated as follows. Consider the

space F =
⊔

x∈XF x (disjoint union of the stalks of F ) and endow it with the

following topology: a set Ω ⊆ F is open in F if, for all open set U of X and

all section s ∈ F (U), the set of all elements x ∈ U such that the germ sx of s

at x belong to Ω is open in X.

Given s ∈ F (U) where U is an open subset of X, consider the map

s̃ : U −→ F defined by s̃(x) = sx. Denote by π the projection map π :

F → X, sx 7→ π(sx) = x. The topology on F is the less fine for which s̃ is

continuous for all U and s, and the topology induced on the stalksF x = π−1(x)

is the discrete topology. The sets s̃(U) are open in F and the maps s̃ satisfy

π(s̃(x)) = x for all x ∈ U . It follows that π is a local homeomorphism.

Definition 3.1.10 (Espace étalé, associated sheaf)

⊲ The topological space F is called the espace étalé over X associated

with F .

⊲ The sheaf F associated with the presheaf F is the sheaf of continuous

sections of π : F → X as defined in Example 3.1.2.

Example 3.1.11 (Constant sheaf). — The espace étalé associated with the

constant presheaf CX in Example 3.1.3 is the topological space X × C endowed with the

topology product of the given topology on X and of the discrete topology on C. Whereas

the sections of CX are the constant functions over X, the sections of the associated sheaf

CX are all locally constant functions. The sheaf CX is commonly called the constant sheaf

over X with stalk C. Since there is no possible confusion one calls it too, the constant

sheaf C over X using the same notation for the sheaf and its stalks.

The maps i(U) given, for all open subsets U of X, by

i(U) : F (U) −→ F(U), s 7−→ s̃

define a morphism i of presheaves. These maps may be neither injective (fail-

ure of condition 1 in Def. 3.1.9. See Exa. 3.1.4) nor surjective (failure of

Condition 2 in Def. 3.1.9. See Exa. 3.1.11 or 3.1.22). One can check that the

morphism i is injective when Condition 1 of sheaves (cf. Def. 3.1.9) is satisfied

and that it is surjective when both Conditions 1 and 2 are satisfied, and so,

we can state

Proposition 3.1.12. — The morphism i is an isomorphism of presheaves if

and only if F is a sheaf.
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In all cases, i induces an isomorphism between the stalks F x and Fx at

any point x ∈ X.

The morphism of presheaves i satisfies the following universal property:

Suppose G is a sheaf; then, any morphism of presheaves ψ : F → G can

be factored uniquely through the sheaf F associated with F , i.e., there exists

a unique morphism ψ such that the following diagram commutes:

From the fact that,when F is itself a sheaf, the morphism i is an isomor-

phism of presheaves between any presheaf and its associated sheaf, one can

always think of a sheaf as being the sheaf of the sections of an espace étalé

F
π−→ X. From that viewpoint, it makes sense to consider sections over any

subset W of X, open or not, and also to define any section as a collection of

germs. Not any collection of germs is allowed. Indeed, if ϕ ∈ F (Wx) repre-

sents the germ sx on a neighborhood Wx of x then, for the section s :W → F

to be continuous at x, the germs sx′ for x
′ close to x must also be represented

by ϕ. The set F(W ) of the sections of a sheaf F over a subset W of X is

widely denoted by Γ(W ;F).

Recall the following definition (see end of Sect. 3.1.1 and Def. 3.1.9).

Definition 3.1.13 (Consistency). —

⊲ A family of sections sj ∈ F(Wj) is said to be consistent if, whenWi∩Wj

is not empty, the restrictions of si and sj to Wi ∩Wj coincide.

⊲ A family of germs is said to be consistent if any germ generates its

neighbors.

One can state:

Proposition 3.1.14. — Given F a sheaf over X and W any subset of X,

open or not, a family of germs (sx)x∈W is a section of F over W if and only

if it is consistent.

Definition 3.1.15. — Let F be the sheaf associated with a presheaf F . We

define a local section of F to be any section of the presheaf F .
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Considering representatives of the germs sx of a section s ∈ Γ(W ;F),

Proposition 3.1.14 can be reformulated as follows.

Proposition 3.1.16. — Let F be the sheaf associated with a presheaf F
over X and let W be any subset of X, open or not. Sections of F over W can

be seen as consistent collections of local sections sj ∈ F (Uj) with Uj open in

X and W ⊆ ⋃
j Uj.

Clearly, such collections are not unique.

When W is not open the inclusion W ⊆ ⋃
j Uj is proper and the section

lives actually on a larger open set (the size of which depends not only on W

but both on W and the section).

3.1.4. Morphisms of sheaves. —

Definition 3.1.17 (Sheaf morphism). — A morphism of sheaves is just a

morphism of presheaves.

With this definition, Proposition 3.1.12 has the following corollary.

Corollary 3.1.18. — Let F be a sheaf and F ′ its associated sheaf when con-

sidered as a presheaf. Then, F and F ′ are isomorphic sheaves.

Given two sheaves F and F ′ over X, let F
π−→ X and F ′

π′−→ X ′ be their

respective espace étalé. From the identification of a sheaf to its espace étalé a

morphism f : F → F ′ of sheaves can be seen as a continuous map, which can

also be denoted safely by f , between the associated espaces étalés with the

condition that the following diagram commute:

Like presheaves, sheaves with values in a given category C and their mor-

phisms form a category which is Abelian when C is also Abelian. The category

of sheaves and the category of espaces étalés with values in a given category

C are equivalent.

Definition 3.1.19. — A morphism f : F → F ′ of sheaves over X is said to

be injective (resp. surjective, resp. an isomorphism) if, for any x ∈ X, the

stalk map fx : Fx → F ′x is injective (resp. surjective, resp. bijective).
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When a morphism f : F → F ′ is injective then, for all open subset U of

X, the map f(U) : F(U) → F ′(U) is injective. However, the fact that f be

surjective does not imply the surjectivity of the maps f(U) for all U ; hence, a

surjective morphism of sheaves is not necessarily surjective as a morphism of

presheaves, the converse being, of course, true since the functor direct limit is

exact.

Example 3.1.20. — Take for F the sheaf of germs of holomorphic functions on

X = C∗ and for F ′ the subsheaf (see Def. 3.1.21 below) of the non-vanishing functions.

The map f : ϕ 7→ exp ◦ϕ is a morphism from F to F ′ which is surjective as a morphism

of sheaves since the logarithm exists locally on C∗. However, the logarithm is not defined

as a univaluate function on all of C∗ and so, the map f is not a surjective morphism

of presheaves. For instance, the identical function Id : x 7→ x cannot be written in the

form Id = f(ϕ) for any ϕ in F(C∗) or more generally, any ϕ in F(U) as soon as U is not

simply connected in C∗.

Definition 3.1.21. — A sheaf F over X is a subsheaf of a sheaf G over X

if, for all open set U , it satisfies the conditions

⊲ F(U) ⊆ G(U),

⊲ the inclusion map F(U) →֒ G(U) commute to the restriction maps.

The inclusion j : F →֒ G is an injective morphism of sheaves.

3.1.5. Sheaves A of asymptotic and As of s-Gevrey asymptotic func-

tions over S1. — The sheaves A and As of asymptotic functions we intro-

duce in this section play a fundamental role in what follows.

⊲ Topology of the base space S1. — The base space S1 is the circle of

directions from 0. One should consider it as the boundary of the real blow up

of 0 in C, i.e., as the boundary S1 × {0} of the space of polar coordinates

(θ, r) ∈ S1 × [0,∞[.

For simplicity, we denote S1 for S1 × {0}.
The map π : → C defined by π(θ, r) = r eiθ sends S1 to 0

and \ S1 homeomorphically to C∗. A basis of open sets of S1 is

given by the arcs I = ]θ0, θ1[ seen as the direct limit of the domains
ˇ = I × ]0, R[ in as R tends to 0. Such domains are identified via π to

sectors = {x = r eiθ; θ0 < θ < θ1 and 0 < r < R} of C∗.

⊲ The presheaf A over S1. — Given an open arc I = ]θ0, θ1[ we denote

by I,R = I × ]0, R[ a sector based on I with radius R. The sections of A over
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Figure 1

I are given by

A(I) = lim
−→
R→0

A( I,R).

Suppose an element of A(I) is represented by two functions ϕ ∈ A( I,R)

and ψ ∈ A( I,R) on the same sector I,R. This means that there exists a sub-

sector I,R′ of I,R on which ϕ and ψ coincide. By analytic continuation, we

conclude that ϕ = ψ on all of I,R.

Choosing as restriction maps the usual restriction of functions, this defines

a presheaf of differential C-algebras. The example below shows that such a

presheaf is not a sheaf.

Example 3.1.22. — Consider the lacunar series (see [Rud87, Hadamard’s Thm.

16.6 and Exa. 16.7])

f1(x) =
∑

n≥0

an(x− 1)2
n

with an = exp(−2n/2).

Since lim supn→+∞ |an|2
−n

= 1 its radius of convergence as a series in powers of x− 1 is

equal to 1. We know from a theorem of Hadamard that its natural domain of holomorphy

is the open disc D = {x ∈ C ; |x− 1| < 1}. The series of the derivatives of any order

(starting from order 0) converge uniformly on the closed disc D. The function f1 admits

then an asymptotic expansion at 0 on any sector included in D.

Figure 2
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Consider now the arc I = ]− π
2
, π
2
[ of S1. To any θ ∈ I there is a sector θ = Iθ×]0, Rθ[

on which f1 is well defined and belongs to A( θ). However, as θ approaches ±π
2

the

radius Rθ tends to 0 and there is no sector = I × ]0, R[ with R > 0 on which f1 is even

defined. Thus, Condition 2 of Definition 3.1.9 fails on U = I.

⊲ The sheaf A over S1. — The sheaf A of asymptotic functions over S1 is

the sheaf associated with the presheaf A. A section of A over an interval I is

defined by a collection of asymptotic functions fj ∈ A( j) on j = Ij × ]0, Rj [

where {Ij} is an open covering of I and Rj 6= 0 for all j. The sheaf A is a

sheaf of differential C-algebras.

⊲ The subsheaf A<0 of flat germs. — Given an open sector I,R = I × ]0, R[

(cf. Notations. 2.2.2), we define

A<0(I) = lim
−→
R→0

A<0( I,R).

The set A<0(I) is a subset of A(I). Considering the restriction maps ρJ,I of

the presheaf A(I) restricted to A<0(I) we obtain a presheaf I 7→ A<0(I) over

S1. The associated sheaf is denoted by A<0 and is a subsheaf of A over S1.

⊲ The Taylor map. — The Taylor map T I,R :A( I,R) → C[[x]] induces

a map

T : A → C[[x]]

also called Taylor map which is a morphism of sheaves of C-differential algebras

with kernel A<0. Thus, A<0 is a subsheaf of ideals of A.

⊲ The sheaf As over S1. — Similarly, one defines a presheaf As over S1

by setting

As(I) = lim
−→
R→0

As( I,R)

for the set of (equivalence classes of) s-Gevrey asymptotic functions on a sector

based on I. Its associated sheaf is denoted by As.

⊲ The sheaf A≤−k over S1. — One also defines a presheaf by setting

A≤−k(I) = lim
−→
R→0

A≤−k( I,R)

and A≤−k denotes the associated sheaf over S1. According to Proposi-

tion 2.3.17, the presheaf A≤−k is a sub-presheaf of As, and then, A≤−k is a

subsheaf of As, precisely, the subsheaf of s-Gevrey flat germs.

The Taylor map T : A → C[[x]] induces a Taylor map

T = Ts : As −→ C[[x]]s
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which is a morphism of sheaves of C-differential algebras with kernel A≤−k.
Thus, A≤−k is a subsheaf of ideals of As.

3.1.6. Quotient sheaves and exact sequences. — From now on, unless

otherwise specified, we suppose that all the sheaves or presheaves we consider

are sheaves or presheaves of Abelian groups (or, more generally, sheaves or

presheaves with values in an Abelian category C). Recall that such sheaves or

presheaves and their morphisms form themselves an Abelian category which

will allow us to talk of exact sequences of sheaves.

Given a sheaf G with values in C and a subsheaf F one defines a presheaf

by setting U 7→ G(U)/F(U) for all open set U of the base space X, the

restriction maps being induced by those of G.
Condition 1 of sheaves is always satisfied (for a proof see [Mal95, An-

nexe 1] for instance) while Condition 2 fails in general (cf. Exa. 3.1.24).

Definition 3.1.23. — One defines the quotient sheaf H = G/F to be the

sheaf over X associated with the presheaf

U 7−→ G(U)/F(U) for all open set U of X

with restriction maps induced by those of G.

If F and G are sheaves of Abelian groups or of vector spaces so is the

quotient H. If G is a sheaf of algebras and F a subsheaf of ideals, then H is a

sheaf of algebras.

As noticed at the end of Section 3.1.3, the fact that the quotient presheaf

satisfies Condition 1 of sheaves (Def. 3.1.9) means that the natural map

G(U)/F(U) → H(U)

is injective. If Condition 2 were also satisfied then this natural map would

be surjective. However, this is not true, in general, as shown by the Exam-

ple 3.1.24 below.

Example 3.1.24. — (Quotient sheaf and Euler equation) We saw in

Example 2.2.4 that the Euler equation

x2 dy

dx
+ y = x (1)

admits an actual solution E(x) =
∫ +∞

0
e−ξ/x

1+ξ
dξ which is asymptotic to the Euler se-

ries Ẽ(x) =
∑

n≥0(−1)nn!xn+1 on the sector − 3π
2

< arg(x) < + 3π
2
.
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Consider the homogeneous version of the Euler equation

E0 y ≡ x3 d2y

dx2
+ (x2 + x)

dy

dx
− y = 0.

Recall that one obtains the equation E0y = 0 by dividing equation(1) by x and differen-

tiating. In any direction, E0 y = 0 admits a two dimensional C-vector space of solutions

spanned by e1/x and E(x).

Following P. Deligne we denote by V the sheaf over S1 of the germs of solutions of (E0)

having an asymptotic expansion at 0 and we denote by Vθ the stalk of V in a direction θ.

The sheaf V is a sheaf of vector spaces and a subsheaf of A seen as a sheaf of vector spaces.

Since E(x) has an asymptotic expansion in all directions −3π/2 < θ < 3π/2 and e1/x has

an asymptotic expansion (equal to 0) on ℜ(x) < 0 we can assert that

dimC Vθ =

{
2 if +π/2 < θ < 3π/2,

1 if −π/2 ≤ θ ≤ +π/2·
Denote by V<0 = V ∩ A<0 the subsheaf of flat germs of V. We observe

that V(S1) = {0} and V<0(S1) = {0}, hence the quotient V(S1)/V<0(S1) = {0}.
A global section of the quotient sheaf V/V<0 is a collection of solutions over an

open covering of S1 which agree on the intersections up to flat solutions. The solution

E induces such a global section while e1/x does not. Thus, the space of global sections

Γ(S1;V/V<0) has dimension dimC Γ(S1;V/V<0) = 1. This shows that the quotient sheaf

V/V<0 is different from the quotient presheaf. The quotient sheaf V/V<0 is isomorphic to

the constant sheaf C as a sheaf of C-vector spaces.

Let f : F → G be a morphism of sheaves with values in C over the same

base space X. Let ρV,U and ρ′V,U denote the restriction maps in F and G
respectively. One can define the presheaves Ker (f),Im (f) and Coker (f) over

X with values in C by setting

⊲ for Ker (f) : U 7−→ ker
(
f(U) : F(U) → G(U)

)
for all open set U ⊆ X

with restriction maps rV,U = ρV,U |ker(f(U));

⊲ for Im (f) : U 7−→ f
(
F(U)

)
with restriction maps r′V,U = ρ′V,U |f(F(U));

⊲ for Coker (f) : U 7−→ G(U)/f
(
F(U)

)
with restriction maps canonically

induced from ρ′V,U on the quotient.

So defined,Ker (f) and Im (f) appear as sub-presheaves of F and G respec-

tively, Coker (f) as a quotient of G. For a definition by a universal property

we refer to the classical literature.

One can check that the presheaf Ker (f) is actually a sheaf (precisely, a

subsheaf of F). Hence, the definition:

Definition 3.1.25. — The sheaves kernel, image and cokernel of a mor-

phism of sheaves f can be defined as follows.
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⊲ The kernel Ker(f) of the sheaf morphism f , is the sheaf defined by

U 7−→ ker
(
f(U)

)
for all open set U ⊆ X

with the restriction maps ρV,U |ker(f(U)).

⊲ The image Im(f) and the cokernel Coker(f ) of the sheaf morphism f , are

the sheaves respectively associated with the presheaves Im (f) and Coker (f).

The sheaves Coker(f ) and Im(f) are respectively a quotient and a kernel:

Coker(f ) = G/Im(f ), Im(f ) = Ker
(
G → Coker(f )

)

where G → Coker(f ) stands for the canonical quotient map.

Definition 3.1.26. — Exactness of sequences of presheaves and of sheaves

are defined by the following non-equivalent conditions:

⊲ A sequence of presheaves F f−→ G g−→H is said to be exact when

Im (f (U)) =Ker (g(U)) for all open set U ⊆ X.

⊲ A sequence of sheaves F f−→ G g−→ H is said to be exact when

Im(fx) = Ker(gx) for all x ∈ X.

⊲ A sequence · · · → Fn−1
fn−→ Fn

fn+1−−→ Fn+1 → · · · of presheaves or

sheaves is exact when each subsequence Fn−1
fn−→ Fn

fn+1−−→ Fn+1 is exact.

A sequence of sheaves can be seen as a sequence of presheaves. One can

show that exactness as a sequence of presheaves implies exactness as a sequence

of sheaves the converse being false in general. Precisely, to a short (hence

to any) exact sequence of presheaves 0 →F f→G g→ H → 0 there corresponds

canonically the exact sequence of sheaves 0 → F f→ G g→ H → 0. Reciprocally,

an exact sequence 0 → F f→ G g→ H → 0 of sheaves can be seen as a sequence

of presheaves but, in general, only the truncated sequence 0 → F f→ G g→ H
is exact as a sequence of presheaves.

Let PreshX and ShX denote respectively the categories of presheaves and

sheaves over X with values in a given Abelian category C. In the language of

categories the properties above are formulated as follows.

⊲ The functor of sheafification PreshX → ShX is exact.

⊲ The functor of inclusion ShX →֒ PreshX is only left exact.
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3.1.7. The Borel-Ritt Theorem revisited. — By construction, A<0(I)

and A≤−k(I) are the kernels of the Taylor maps

TI :A(I) −→ C[[x]] and Ts,I :As(I) −→ C[[x]]s

respectively for any open arc I of S1. Hence, the sequences

0 →A<0 −→A T−−→ C[[x]] and 0 →A≤−k −→As
Ts−−→ C[[x]]s

are exact sequences of presheaves and they generate the exact sequences of

sheaves of differerential algebras

0 → A<0 −→ A T−−→ C[[x]] and 0 → A≤−k −→ As
Ts−−→ C[[x]]s.

The Borel-Ritt Theorem 2.4.1 allows one to complete these sequences into

short exact sequences as follows.

Corollary 3.1.27 (Borel-Ritt). — The sequences

0 → A<0 −→ A T−−→ C[[x]] → 0,(18)

0 → A≤−k −→ As
Ts−−→ C[[x]]s → 0(19)

are exact sequences of sheaves of differential C-algebras over S1. Equivalently,

the quotient sheaves A/A<0 and As/A≤−k are isomorphic via the Taylor map

to the constant sheaves C[[x]] and C[[x]]s respectively, as sheaves of differential

C-algebras.

With this approach, the surjectivity of T or Ts means that, given any

series and any direction there exist a sector containing the direction and a

function asymptotic on it to the given series. We cannot not claim that the

sector can be chosen to be arbitrarily wide.

Observe that (18) and (19) are not exact sequences of presheaves over S1.

Indeed, the range of the Taylor map T : A(S1) → C[[x]], as well as the range

of Ts : As(S
1) → C[[x]]s, is made of convergent series and, consequently, these

maps are not surjective.

3.1.8. Change of base space: direct image, restriction and exten-

sion by 0. — The following definition makes sense since for f continuous

and U open in Y the set f−1(U) is open in X.

Definition 3.1.28 (Direct image). — Let f : X → Y be a continuous

map. With any sheaf F over X one can associate a sheaf f∗F over Y called

its direct image by setting

f∗F(U) = F
(
f−1(U)

)
for all open set U in Y,
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with restriction maps

ρ∗V,U (s∗) = ρf−1(V ),f−1(U)(s) for all open sets V ⊆ U in Y.

When F is a sheaf of Abelian groups, vector spaces, etc. . . , so is its direct

image f∗F .

To a morphism ϕ : F → G of sheaves over X there corresponds a morphism

of sheaves ϕ∗ : f∗F → f∗G over Y defined by

s∗ ∈ f∗F(U) = F
(
f−1(U)

)
7−→ ϕ(s∗) ∈ G

(
f−1(U)

)
= f∗G(U).

The functor direct image is left exact. Thus, to an exact sequence

0 → F ′ u−→ F ′ v−→ F ′′

there corresponds the exact sequence

0 → f∗F ′′ u∗−→ f∗F ′ v∗−→ f∗F ′′.

We suppose now that X is a subspace of Y with inclusion j : X →֒ Y and

that we are given G a sheaf over Y . The restriction of G into a sheaf over X is

fully natural in terms of espaces étalés. We denote by π : G → Y the espace

étalé associated with G.

Definition 3.1.29 (Restriction). —

The sheaf G restricted to X is the sheaf G|X with espace étalé

π|π−1(X)
: π−1(X) → X.

The definition makes sense since as π : G→ Y is a local homeomorphism

so is π|π−1(X)
: π−1(X) → X. The restricted sheaf can also be seen as the

inverse image of G by the inclusion map j, a viewpoint which we won’t develop

here.

As in the previous section we consider now sheaves of Abelian groups and

we denote by 0 the neutral element. With X
j−֒→ Y let F and F ′ be sheaves

over X and Y respectively.

Definition 3.1.30 (Extension). —

⊲ A sheaf F ′ is an extension of a sheaf F if its restriction F ′|X to X is

isomorphic to F .
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⊲ An extension F ′ of F is an extension by 0 if, for all y ∈ Y \ X, the

stalk F ′y is 0. (Equivalently, F ′|Y \X is the constant sheaf 0.)

Definition 3.1.31 (Support of a section). —

The support of a section s ∈ Γ(U ;F) is the subset of U where s does not

vanish:

supp(s) =
{
x ∈ U ; sx 6= 0

}
.

Example 3.1.32. — Let E be the sheaf of C-vector spaces generated over S1 by the

function e1/x. The sheaf E is isomorphic to the constant sheaf with stalk C over S1. Let

e(x) be the class of e1/x in the quotient sheaf E/E<0 where E<0 = E∩A<0. Thus, e(x) = 0

for ℜ(x) < 0 and the support of e is the arc −π/2 ≤ arg(x) ≤ π/2, a closed subset of S1.

The support supp(s) is always a closed subset of U , for, if a germ sx is 0

then, there is an open neighborhood Vx of x on which sx is represented by the

0 function generating thus the germs 0 on a neighborhood of x.

Recall that a subset X of Y is said to be locally closed in Y if any point

x ∈ X admits in Y a neighborhood VY (x) such that its intersection VY (x)∩X
is closed in VY (x). This is equivalent to saying that there exist X1 open in Y

and X2 closed in Y such that X = X1 ∩X2.

Definition 3.1.33 (Sheaf j!F). —

Suppose X is locally closed in Y and denote by j : X →֒ Y the inclusion map

of X in Y . Given F a sheaf of Abelian groups over X one defines the sheaf j!F
over Y by setting, for all open U of Y ,

j!F(U) =
{
s ∈ Γ(X ∩ U ;F) ; supp(s) is closed in U

}

with restriction maps induced by those of j∗F (of which j!F is a subsheaf).

One can check that j!F is a sheaf; it is then clearly a subsheaf of j∗F and

there is a canonical inclusion j!F →֒ j∗F . Moreover, j!F is an extension of

F by 0. When X is closed in Y then the two sheaves coincide: j!F = j∗F .

Unlike the functor j∗ which is only left exact, the functor j! is exact.

The extension of sheaves by 0 provides a characterization of locally closed

subspaces as follows: X is locally closed in Y if and only if, for any sheaf F
over X, there is a unique extension of F to Y by 0 (cf. [Ten75] Thm. 3.8.6).

Example 3.1.34 (j∗ 6= j!). — As an illustration consider the sheaf E ′ generated as

a sheaf of C-vector spaces by e1/x over the punctured disc D∗ = {x ∈ C ; 0 < |x| < 1}
and consider the inclusion j : D∗ →֒ C.
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The direct image j∗E ′ of E ′ by j is a non-constant sheaf of C-vector spaces. Indeed,

for U a connected open set in C, one has j∗E ′(U) ≃ Cn where n is the number of connected

components of U ∩D∗.

Figure 3

The stalks of j∗E ′ are given by

j∗E ′x ≃
{

C if x ∈ D
∗
,

0 otherwise,

so that, in some way, the direct image j∗E ′ spreads E ′ out, onto the closure of D∗. Thus,

the direct image j∗E ′ is an extension of E ′ but not an extension by 0.

On the contrary, the sheaf j!E ′ is an extension of E ′ by 0. It is well defined since D∗

being open in C is also locally closed in C. This shows that j∗E ′ 6= j!E ′ and therefore, that

the functors j∗ and j! are different.

3.2. Čech cohomology

Let F be a sheaf over a topological space X. We assume that F is a

sheaf of Abelian groups. The set Γ(U ;F) of sections of F over a U ⊂ X is

then naturally endowed with a structure of Abelian group and F(∅) = {0},
the trivial Abelian group 0. Unless otherwise specified, all the coverings we

consider are coverings by open sets.

3.2.1. Čech cohomology of a covering U . — Let U = {Ui}i∈I be an

open covering of X.

Denote Ui,j = Ui ∩ Uj , Ui,j,k = Ui ∩ Uj ∩ Uk, and so on. . .

Definition 3.2.1. — One defines the Čech complex of F associated with the

covering U to be the differential complex

0 → ∏
i0
Γ(Ui0 ;F)

d0−→ ∏
i0,i1

Γ(Ui0,i1 ;F)
d1−→

· · · dn−1−−→ ∏
Γ(Ui0,...,in ;F)

dn−→ ∏
Γ(Ui0,...,in+1 ;F)

dn+1−−−→ · · ·
where, for all n, the map dn is defined by

dn : f = (fi0,...,in) 7−→ g = (gi0,...,in+1)
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where

gi0,...,in+1 =

n+1∑

ℓ=0

(−1)ℓf
i0,...,iℓ−1 ,̂ıℓ,iℓ+1,...,in+1

∣∣
Ui0,...,in+1

the hat over iℓ indicating that the index iℓ is omitted.

Each term of the complex is an Abelian group.

The maps dn are morphisms of Abelian groups. Consequently, the image

im dn and the kernel ker dn are Abelian groups. For all n, the maps dn are

“differentials” which, in this context, means that dn ◦ dn−1 = 0 and thus,

im dn−1 ⊂ ker dn and the quotients ker dn/im dn−1 are Abelian groups.

Definition 3.2.2. — One calls

⊲ n-cochains of U (with values) in F the elements of the Abelian group

Cn(U ;F) =
∏

Γ(Ui0,...,in ;F),

⊲ n-cocycles of U (with values) in F the elements of the Abelian group

Zn(U ;F) = ker dn,

⊲ n-coboundaries of U (with values) in F the elements of the Abelian

group

Bn(U ;F) = im dn−1,

⊲ n-th Čech cohomology group of U (with values) in F the Abelian group

Hn(U ;F) = Zn(U ;F)/Bn(U ;F) = ker dn/im dn−1.

In particular, H0(U ;F) ≃ Γ(X;F) the set of global sections of F over X.

Definition 3.2.3 (Refinement of a covering). — A covering V =

{Vj}j∈J is said to be finer than the covering U = {Ui}i∈I , and we de-

note V � U , if any element in V is contained in at least one element of U .
Equivalently, one can say that there exists a map

σ : J −→ I such that Vj ⊂ Uσ(j) for all j ∈ J.

Such a map is called inclusion map or simplicial map.

With the simplicial map σ are naturally associated the maps

σ∗n : Cn(U ;F) −→ Cn(V;F), f = (fi0,...,in) 7−→ σ∗nf = (Fj0,...,jn)

given by
Fj0,...,jn = fσ(j0),...,σ(jn)|Vj0,...,jn

.
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The family σ∗ = (σ∗n) defines a morphism of Čech complexes and induces, for

all n, a morphism of groups

S
n(V,U) : Hn(U ;F) −→ Hn(V;F).

It turns out that these latter homomorphims are independent of the choice of

the simplicial map σ. The case when n = 1 has the following specificity:

Proposition 3.2.4. — When n = 1, the morphism

S
1(V,U) : H1(U ;F) −→ H1(V;F) is injective.

We refer to [Ten75, Thm. 4.15, p. 148] .

3.2.2. Čech cohomology of the space X. — The preceding section

suggests to take the direct limit (cf. Def. p. 40) of the groups Hn(U ;F)

using the maps S(V,U) as the coverings become finer and finer. Indeed, the

coverings of X endowed with fineness form an ordered, right filtrant(1) “set”

and the maps Sn(V,U) satisfy, for all n, the conditions:

⊲ S
n(U ,U) = Id for all U ,

⊲ S
n(W,V) ◦Sn(V,U) = S

n(W,U) for all W � V � U
providing thus a direct system (Hn(U ;F),Sn(V,U)) of Abelian groups.

The only problem is that coverings of a topological space do not form a

set. That difficulty can be circumvented by limiting the considered coverings

to those that are indexed by a given convenient set, i.e., a set of indices large

enough to allow arbitrarily fine coverings. In the cases we consider any count-

able set is convenient, say, N or Z. Actually, for X = S1, we may consider

coverings with a finite number of open sets since there exists finite coverings

of S1 that are arbitrarily fine. From now on, we assume that the coverings are

indexed by subsets J of N.

Another trick due to R. Godement consists in considering only the cover-

ings {Ux} indexed by the points x ∈ X with the condition x ∈ Ux (cf. [God58,

Sect. 5.8, p. 223]). Hence, the following definition:

Definition 3.2.5. — The n-th Čech cohomology group of the space X (with

values) in F is the direct limit of the cohomology groups Hn(U ;F), the limit

(1) “Right filtrant” means here that to each finite family U1, . . . ,Up of open coverings of X there is

a covering V finer than all of them.
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being taken over coverings ordered with fineness. One denotes

Hn(X;F) = lim
−→
U

Hn(U ;F).

WhenX is a manifold and n > dimX there exists arbitrarily fine coverings

without intersections n+1 by n+1 and then, Hn(X;F) = 0. The canonical

isomorphism H0(X;F) ≃ Γ(X;F) is valid without restriction.

The following two results are useful.

Theorem 3.2.6 (Leray’s Theorem). — Given U an acyclic covering of X

which is either closed and locally finite or open then,

Hn(U ;F) = Hn(X;F) for all n.

Acyclic means that Hn(Ui;F) = 0 for all Ui ∈ U and all n ≥ 1.

We refer to [God58, Thm. 5.2.4, Cor. p. 209], (case U closed and locally

finite) and to [God58, Thm. 5.4.1, Cor. p. 213] (case U open).

Theorem 3.2.7. — To any short exact sequence of sheaves of Abelian groups

over X

0 → G −→ F −→ H → 0

there is a long exact sequence of cohomology

0 → H0(X;G) −→ H0(X;F) −→ H0(X;H)
δ0−→ H1(X;G) −→ H1(X;F) −→ H1(X;H)

δ1−→ H2(X;G) −→ H2(X;F) −→ H2(X;H)
δ2−→ · · ·

The maps δ0, δ1, . . . are called coboundary maps. For their general defini-

tion, see the references above.

3.2.3. The Borel-Ritt Theorem and cohomology. — We know from

Corollary 3.1.27 that the sheaves A/A<0 and As/A≤−k are constant sheaves

with stalks C[[x]] and C[[x]]s respectively. Their global sections

Γ(S1;A/A<0) ≡ H0(S1;A/A<0) and Γ(S1;As/A≤−k) ≡ H0(S1;As/A≤−k)
are then also respectively isomorphic to C[[x]] and C[[x]]s and we can state

the following corollary of the Borel-Ritt Theorem.
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Corollary 3.2.8 (Borel-Ritt). — The Taylor map induces the following

isomorphisms:

H0(S1;A/A<0) ≃ C[[x]], H0(S1;As/A≤−k) ≃ C[[x]]s.

We can synthesize:

formal series

f̃(x) =
∑

n≥0

anx
n ∈ C[[x]]





⇐⇒





(equivalence class of a)

0-cochain (fj)j∈J over S1

with values in A and

coboundary (fj − fℓ)j,ℓ∈J
with values in A<0

The components fj(x) of the 0-cochains are all asymptotic to f̃(x).

s-Gevrey series

f̃(x) =
∑

n≥0

anx
n ∈ C[[x]]s





⇐⇒





(equivalence class of a)

0-cochain (fj)j∈J over S1

with values in As and

coboundary (fj − fℓ)j,ℓ∈J
with values in A≤−k

The components fj(x) of the 0-cochains are all s-Gevrey asymptotic to

f̃(x). Due to Proposition 2.3.17 it would actually be sufficient to ask for the

coboundary to be with values in A<0. This latter equivalence will be improved

in Corollary 6.2.2.

3.2.4. The case when X = S1 and the Cauchy-Heine Theorem. —

Since, in what follows, we will mostly be dealing with sheaves over S1, it

is worth developing this case further. With X = S1 things are often made

simpler by the fact that S1 is a manifold of dimension 1. On another hand,

one has to take into account the fact that S1 has a non-trivial π1.

Definition 3.2.9 (Good covering). — An open covering I = (Ij)j∈J of

S1 is said to be a good covering if

⊲ it is finite with |J | = p elements,

⊲ its elements Ij are connected (i.e., open arcs of S1),

⊲ it has thickness ≤ 2 (i.e., no 3-by-3 intersections),
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⊲ when p = 2 its two open arcs I1 and I2 are proper arcs of S1 so

that I1 ∩ I2 is made of two disjoint open arcs which we denote by
•

I1 and
•

I2; when p ≥ 3 its open arcs Ij can be indexed by the cyclic group Z/pZ so

that
•

Ij := Ij ∩ Ij+1 6= ∅ and Ij ∩ Iℓ = ∅ as soon as |ℓ− j| > 1 modulo p.

The definition implies that open arcs of a good covering are not nested.

The family of the arcs
•

Ij is sometimes called the nerve of the covering I.

The case p = 1, i.e., the case of coverings of S1 by just one arc, is worth

to consider. These unique arcs cannot be proper arcs of S1: one has to

introduce overlapping arcs i.e., arcs of the universal cover of S1 of length

> 2π. Such coverings are widely used to make proofs simpler by using the

additivity of 1-cocycles. A typical example is given by the Cauchy-Heine

Theorem (Thm. 2.5.2 and Cor. 3.2.14 below).

Definition 3.2.10 (Elementary good covering). — An open covering

I = {I} with only one overlapping open arc I = ]α, β + 2π[ and nerve
•

I = ]α, β[( S1 is called an elementary good covering.

Example 3.2.11 (The Euler series as a 0-cochain)

The Euler series f̃(x), which belongs to C[[x]]1, can be seen as a 0-cochain as follows.

Consider the covering I = {I1, I2} of S1 made of the arcs

I1 = ]− 3π/2,+π/2[ and I2 = ]− π/2,+3π/2[.

The elements of I intersect over the two arcs
•

I 1 = {x ∈ S1 ; ℜ(x) < 0} and
•

I 2 = {x ∈ S1 ; ℜ(x) > 0}.
The corresponding 0-cochain to consider is the pair (f1(x), f2(x)) made of the restrictions

of the Euler function f(x) to I1 and I2 respectively. Both f1(x) and f2(x) are sections of

A1. The coboundary (
•

f 1,
•

f 2) is given by
•

f 1(x) = f1(x)− f2(x) = 2πie1/x on
•

I 1 and
•

f 2(x) = f2(x)− f1(x) = 0 on
•

I 2

and has values in A≤−1.

Figure 4
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Since the component
•

f 2 is trivial one could also consider a branch covering made of

the unique arc I = ]− 3π/2,+3π/2[ overlapping on
•

I = {x ∈ S1 ; ℜ(x) < 0}.

Figure 5

The (branched) 0-cochain f(x) is 1-Gevrey asymptotic to f̃(x) on I and its cobound-

ary f+(x)− f−(x) = 2πi exp(1/x) is a section of A≤−1 over
•

I .

Given a good covering I = {Ij} of S1, a 1-cochain is a family

fj,ℓ ∈ Γ(Ij ∩ Iℓ;F) for j and ℓ ∈ Z/pZ.

The 1-cocycle conditions
•

f j,k+
•

fk,ℓ =
•

f j,ℓ on Ij∩Ik∩Iℓ for all j, k, ℓ are empty

since so are the 3-by-3 intersections; consequently, any 1-cochain is a 1-cocycle.

Taking into account the necessary conditions fj,j = 0 and fk,j = −fj,k on 1-

cocycles, a 1-cocycle can thus be seen as any collection (
•

f j ∈ Γ(
•

Ij ;F)) for

j ∈ Z/pZ.

By linearity, a 1-cocycle (
•

f j)j∈Z/pZ can be decomposed into a sum
∑

j∈Z/pZ

•
ϕj where

•
ϕj is the 1-cocycle over the covering I having all trivial

components (equal to 0, the neutral element) but the jth equal to
•

f j . Fix

j and consider the elementary good covering Ij whose nerve is
•

Ij and the

1-cocycle
•

f j ∈ Γ(
•

Ij ,F). The covering I is finer than Ij . We identify the

1-cocycles
•
ϕj and

•

f j and we say that the 1-cocycle
•
ϕj can be lifted into the

elementary 1-cocycle
•

f j .

Proposition 3.2.12. — There exist arbitrarily fine good coverings of S1

Consequently, when F is a sheaf over S1, to determineH1(S1;F) it suffices

to consider good coverings.

Example 3.2.13. — (Euler equation and cohomology) We consider the

elementary good covering I = {I} of S1 defined by the overlapping interval I = ] −
3π/2,+3π/2[ with self-intersection

•

I = ] − 3π/2,−π/2[ and we consider the sheaf V of

asymptotic solutions of the Euler equation (cf. Exa. 3.1.24). A 1-cocycle of I in V is

a section
•

ϕ (x) = af(x) + be−1/x over
•

I with arbitrary constants a and b in C. There

is no 1-cocycle condition. The 0-cochains are of the form cf(x) over I, with c ∈ C an

arbitrary constant and they generate the 1-coboundaries c
(
f(xe2πi)− f(x)

)
= 2πice−1/x.
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The cohomological class of
•

ϕ is then uniquely represented by af(x) for −3π/2 < arg(x) <

−π/2. Hence, H1(I;V) is a vector space of dimension one, isomorphic to C.

Given J a covering of S1 finer than I we have seen (cf. Prop. 3.2.4) that the

map SJ ,I : H1(I;V) → H1(J ;V) is injective. Let us check that it is surjective on the

example of J = {J1, J2} for J1 = ]− π/4, 5π/4[ and J2 = ]− 5π/4, π/4[.

We set
•

J1= ]3π/4, 5π/4[ and
•

J2= ]− π/4, π/4[.

A 1-cocycle (
•

ϕ1,
•

ϕ2) over the covering J is cohomologous to (
•

ϕ1 +
•

ϕ2, 0) via the

0-cochain (0,
•

ϕ2) where we keep denoting by
•

ϕ2 the continuation of
•

ϕ2 to
•

J2. How-

ever,
•

ϕ=
•

ϕ1 +
•

ϕ2 can be continued to
•

I (we keep denoting by
•

ϕ the continuation) and

therefore, the 1-cocycle (
•

ϕ1 +
•

ϕ2, 0) lifts up into the 1-cocycle
•

ϕ of the covering I.

Figure 6

The proof extends to any good covering J finer than I by induction on the number

of connected 2-by-2 intersections. We can conclude that H1(I;V) = H1(S1;V).
The same result can be seen as a consequence of the theorem of Leray (Thm. 3.2.6)

after showing that I is acyclic for V.

In the case when X = S1 the long exact sequence of cohomology of Theo-

rem 3.2.7 reduces to

0 → H0(S1;G) −→ H0(S1;F) −→ H0(S1;H)
δ0−→ H1(S1;G) −→ H1(S1;F) −→ H1(S1;H) → 0.

The coboundary map δ0 is defined as follows: The sheaf H is the quotient

of F by G. A 0-cocycle in H0(S1;H) is a collection of fi ∈ Γ(Ii;F) such

that fi − fj belong to Γ(Ii,j ;G) for all i, j. There corresponds the 1-cocycle

(gi,j = fi − fj)i,j of I with values in G. To different representatives f ′i of

the 0-cocycle there correspond a cohomologous 1-cocycle (g′i,j = fi − fj)i,j of

I with values in G; hence, an element of H1
(
{Ii};G

)
and consequently, an

element of H1(S1;G).

The Cauchy-Heine Theorem (Thm. 2.5.2) can be reformulated as a coho-

mological condition as follows.

Corollary 3.2.14 (Cauchy-Heine). —
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(i) The natural map H1(S1,A<0) → H1(S1,A) is the null map.

(ii) The natural map H1(S1,A≤−k) → H1(S1,As) is the null map.

Proof. — (i) It suffices to prove the assertion for any good covering. Given

a covering I of S1 there is a natural map from H1(I;A<0) into H1(I;A)

(cohomologous 1-cocycles of H1(I;A<0) are also cohomologous in H1(I;A)).

By linearity, it suffices to consider the case of an elementary good covering

I = {I} with self-intersection
•

I (cf. Def. 3.2.10). The Cauchy-Heine Theorem

as stated in Thm. 2.5.2 says that a 1-cocycle of H1(I;A<0) is a coboundary

in H1(I;A), that is, it is cohomologous to the trivial 1-cocycle 0 in H1(I;A).

(ii) Same proof by replacing A<0 by A≤−k and A by As.

Although the maps are zero maps, far from being null spaces, H1(S1,A)

and H1(S1,As) are huge spaces.



CHAPTER 4

LINEAR ORDINARY DIFFERENTIAL EQUATIONS:

BASIC FACTS AND INFINITESIMAL

NEIGHBORHOODS OF IRREGULAR SINGULARITIES

In this chapter, we first gather some basic facts on linear ordinary dif-

ferential equations. Our aim is not to be exhaustive (in particular, we omit

most of the proofs) but to provide the useful material to better understand

series solutions of differential equations and examples. We end the chapter

with the construction of infinitesimal neighborhoods for the singularities of

solutions of linear differential equations at an irregular singular point in the

spirit of the infinitesimal neighborhoods of algebraic geometry. The adequacy

of such neighborhoods to characterize the summability properties of the for-

mal solutions of a given differential equation is presented in Chapters 6 and 8

(Defs. 6.4.1 and 8.7.1).

Consider a linear differential operator of order n

(20) D = bn(x)
dn

dxn
+ bn−1(x)

dn−1

dxn−1
+ · · ·+ b0(x) where bn(x) 6≡ 0

with analytic coefficients at x = 0. Unless otherwise specified, we assume that

the coefficients bn, bn−1, . . . , b0 do not vanish simultaneously at x = 0. When

the coefficients bn, bn−1, . . . , b0 are polynomials in x their maximal degree is

called the degree of D.

4.1. Equation versus system

With the differential equation Dy = 0, setting

Y =




y

y′
...

y(n−1)


 ,
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is associated its companion system ∆Y = 0 defined by the n-dimensional order

one differential operator

∆ =
d

dx
−B(x) where B(x) =




0 1 · · · 0
...

. . .
. . .

...
... 0 1

− b0
bn

· · · · · · − bn−1

bn



·

Reciprocally, the question is to determine if and how one can put a given

system in companion form.

Definition 4.1.1 (Gauge transformation). — Given a system of dimen-

sion n with meromorphic coefficients ∆Y ≡ dY
dx −B(x)Y = 0 a gauge transfor-

mation is a linear change of the unknown variables Z = TY with T invertible

in a sense to be made precise. In the case when T belongs to GL(n,C{x}[1/x])
the gauge transformation T is said to be meromorphic; in the case when T be-

longs to GL(n,C[[x]][1/x]) it is said to be formal (meromorphic).

A gauge transformation Z = TY changes the system ∆Y = 0 into the

differential system T∆Z = 0 with

T∆ = T∆T−1 =
d

dx
− dT

dx
T−1 − TBT−1.

When T is meromorphic (resp. formal), so is T∆; however, T∆ may be mero-

morphic for some formal T . We can now answer the question.

Proposition 4.1.2 ((Deligne’s) Cyclic vector lemma)

To any system ∆Y = 0 with meromorphic coefficients there is a meromor-

phic gauge transformation Z = TY such that the transformed system T∆ = 0

is in companion form.

The formulation in terms of cyclic vectors (cf. Rem. 4.2.6) is due to P.

Deligne [Del70, Lem II.1.3] although more algorithmic proofs already existed

[Cop36], [Jac37]. The companion form is obtained by differential elimination.

Despite the fact that the program is short and simple it is not (at least, not

yet) available in computer algebra systems such as Mathematica or Maple (see

[BCLR03] for a sketched algorithm and references; see also [Ram84, Thm.

1.6.16]). As a consequence of the Cyclic vector lemma, theoretical properties

can be proved equally on equations or systems (as long as these properties stay

unchanged under meromorphic gauge transformations). To perform calcula-

tions one could, in principle using the algorithm, go from equations to systems
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and reciprocally at convenience. Actually, these algorithms are usually very

“expensive” and used sparingly.

4.2. The viewpoint of D-modules

The notion of differential module, or equivalently, of D-module generalizes

the notion of order one differential system in an abstract setting free of coordi-

nates. From this viewpoint, the gauge transformations and the meromorphic

or formal equivalence arise naturally.

Suppose we are given a differential field (K, ∂). Precisely, for our purpose,

we suppose that K is either the field C{x}[1/x] of meromorphic series at 0

or the field C[[x]][1/x] of the formal ones. The derivation is ∂ = d/dx. The

constant subfield C of K, i.e., the set of the elements f ∈ K satisfying ∂f = 0,

is C = C and the C-vector space of the derivations of K has dimension 1 and

generator ∂.

4.2.1. D-modules and order one differential systems. —

Definition 4.2.1. — A differential module(1) (M,∇) of rank n over K is a

K-vector space M of dimension n equipped with a map

∇ : M −→M,

called connection, which satisfies the two conditions:

(i) ∇ is additive;

(ii) ∇ satisfies the Leibniz rule ∇(fm) = ∂f ·m + f∇(m) for all f ∈ K

and m ∈M .

We may observe that ∇ is also C-linear. Indeed, when f ∈ C is a constant

the Leibniz rule reads ∇(fm) = f∇(m).

The link with differential systems is as follows.

Choose a K-basis e = [e1 e2 · · · en] of M and let

[ε1 ε2 · · · εn] = −[e1 e2 · · · en]B with B ∈ gl(n,K)

be its image by ∇ (the minus sign is introduced to fit the usual notations for

systems and has no special meaning). The connection ∇ is fully determined

by the matrix B. Indeed, let y =
∑n

j=1 yjej be any element of M . In matrix

notation, we write y = eY where Y = t
[
y1 · · · yn

]
is the column matrix of the

(1) In French, one says “un vectoriel à connexion”.
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components of y in the basis e. Then, applying the Leibniz rule, we see that

∇y is uniquely determined by

∇y = e (∂Y −BY ).

Thus, with the connection ∇ and the K-basis e is naturally associated the

differential operator ∆ = ∂ −B of order one and dimension n.

Definition 4.2.2. — Let (M1,∇1) and (M2,∇2) be differential modules.

(i) A morphism of differential modules from (M1,∇1) to (M2,∇2) is a

K-linear map T : M1 → M2 which commutes to the connections ∇1 and ∇2,

i.e., such that the following diagram commutes:

M1
T−−−−→M2

∇1

y
y ∇2

M1
T−−−−→M2

(ii) A morphism T is an isomorphism if T is bijective.

Denote by n1 and n2 the rank of (M1,∇1) and (M2,∇2) respectively.

Choose K-basis e1 and e2 of M1 and M2 and denote by ∆1 and ∆2 the differ-

ential system operators associated with of ∇1 and ∇2 in the basis e1 and e2
respectively. Denote by T the matrix of T in these basis. The definition says

that T is a morphism if T satisfies the relation

∆2T = T∆1.

It says that T is an isomorphism if, in addition, n1 = n2 and the matrix T is

invertible so that the condition may be written

∆1 = T−1∆2T

and is also valid for T−1 in the form ∆1T
−1 = T−1∆2; hence, the commutation

of the diagram with T :M1 →M2 replaced by T−1 :M2 →M1. We recognize

the formula linking the operators ∆1 and ∆2 under the gauge transformation

T (cf. Def. refgauge). Suppose M1 =M2 =:M . An invertible K-morphism T
is just a change of K-basis inM . Therefore, to the connection ∇ there are the

infinitely many system operators T−1∆T associated with all T ∈ GL(n,K)

and it is natural to set the following definition.
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Definition 4.2.3. — Two differential system operators ∆1 = ∂ − B1

and ∆2 = ∂ −B2 are said to be K-equivalent if there exists a gauge transfor-

mation T in GL(n,K) such that

∆1 = T−1∆2T.

When K = C{x}[1/x] is the field of meromorphic series the systems are said

to be meromorphically equivalent. When K = C[[x]][1/x] is the field of for-

mal meromorphic series they are said to be formally equivalent or formally

meromorphically equivalent.

In modern language, we should say K-similar but the old denomination K-

equivalent is still in common use.

The condition is clearly an equivalence relation: indeed, any system op-

erator ∆ satisfies ∆ = I−1∆I; if ∆1 = T−1∆2T then ∆2 = S−1∆1S with

S = T−1; if ∆1 = T−1∆2T and ∆2 = S−1∆3S then ∆1 = (ST )−1∆3(ST ).

With this definition, a differential module can be identified to an equivalence

class of systems.

Denote by D = K[∂] the ring of differential operators on K, i.e., the ring

of polynomials in ∂ with coefficients in K satisfying the non-commutative rule

∂x = x∂ + 1.

Let us now show how a differential module can be identified to a D-module,

i.e., a module over the ring D in the classical sense. For this, we go to a dual

approach as follows.

Consider Dn as a left D-module and denote by ε = [ε1 · · · εn] its canonical
D-basis. Given a n-dimensional system operator ∆ = ∂ − B with coefficients

in K we make it act linearly on Dn to the right by setting

n∑

j=1

Pjεj 7−→ [P1 · · ·Pn]∆ = [P1∂ · · ·Pn∂]− [P1 · · ·Pn]B.

The cokernel Dn/Dn∆ has a natural structure of left D-module (but no natural

structure of right-module over D) and has rank n (its dimension as K-vector

space). Denote by M ≡ Dn/Dn∆ this K-vector space of dimension n. The

images in the cokernel of the n elements ε1, . . . , εn — which we keep denoting

by ε1, . . . , εn — of the canonical D-basis ε form a K-basis of M . On another

hand, the operator ∂ acting on M to the left defines a connection on M :

indeed, it acts additively and satisfies the Liebniz rule. The question remains

to determine which class of systems it represents. From the relation ∂−B = 0
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in M we deduce that, for all j = 1, . . . , n, the components of ∂εj in the basis

ε are given by the jth row of the matrix B. Hence,

∂[ε1ε2 · · · εn] = [ε1ε2 · · · εn] tB.

And we can conclude that the system operator associated with the connection

∂ is the adjoint ∆∗ = ∂ + tB of ∆. We can state:

Proposition 4.2.4. — Given a differential system operator ∆ = ∂ −B with

coefficients B in K the pair (M = Dn/Dn∆, ∂) defines a differential module

of rank n over K with connection ∂ = ∇∗ adjoint to ∆.

From now on, we may talk of the differential module Dn/Dn∆, the connec-

tion ∇ = ∂ being understood. With this result we can identify left D-modules

and differential modules equipped with a K-basis. Observe, in particular, that

a morphism or an isomorphism

φ : Dn/Dn∆1 −→ Dn/Dn∆2

in the sense of Definition 4.2.2 is a morphism or an isomorphism of D-modules

in the classical sense and reciprocally.

Proposition 4.2.5. — Two system operators ∆1 = ∂−B1 and ∆2 = ∂−B2

with coefficients in K are K-equivalent if and only if the D-modules Dn/Dn∆1

and Dn/Dn∆2 are isomorphic.

Proof. — We have to prove that two differential systems ∆1Y = 0 and ∆2Y =

0 on one hand and their adjoints ∆∗1Y = 0 and ∆∗2Y = 0 on the other hand

are simultaneously K-equivalent. To this end, consider fundamental solutions

Y1 and Y2 of ∆1Y = 0 and ∆2Y = 0 respectively in any convenient extension

of K (for instance, the formal fundamental solutions given by Thm. 4.3.1).

The systems ∆1Y = 0 and ∆2Y = 0 are equivalent if and only if there exists a

gauge transformation T ∈ GL(n,K) such that ∆1 = T−1∆2T or equivalently

Y2 = TY1. This latter relation is equivalent to the relation tY−12 = tT−1 tY−11 .

Hence the result since tY−11 and tY−12 are fundamental solutions of the adjoints

equations ∆∗1Y = 0 and ∆∗2Y = 0 respectively.

Remark 4.2.6. — Let us end this section with a remark on the Cyclic vector

lemma (Prop. 4.1.2). In a differential module (M,∇) of rank n one calls cyclic

vector any vector e ∈ M such that the n vectors e,∇e, . . . ,∇n−1e form a

K-basis of M . In such a basis, the matrix of the connection ∇ reads in the
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form

B∇ =




0 · · · 0 an−1

1
...

...
...

. . .
...

...

0 · · · 1 a0


.

Let ∆ be a system of dimension n with coefficients in K and consider the

D-module Dn/Dn∆. In a cyclic basis e the system ∆ admits −tB∇ as matrix

which is a companion form (cf. Sect. 4.1) but, stricto sensu, the minus signs in

the sup-diagonal of 1’s. One can cancel these minus signs by taking the basis

(e,−∂e, . . . , (−1)n−1∂n−1e).

4.2.2. D-modules and differential operators of order n. — The aim

of this section is to describe the K-equivalence of order n linear differential

operators with coefficients in K. Consider a single linear differential operator

D = ∂n + bn−1(x)∂
n−1 + · · ·+ b0(x), b0, . . . , bn−1 ∈ K.

The operator D acts linearly on D by multiplication to the right. Its cokernel

D/DD has a natural structure of left D-module. The pair (D/DD, ∂) defines
a differential module of rank n. Again, by abuse, we talk of the differential

module D/DD, the connection ∂ being understood.

Proposition 4.2.7. —Let ∆ be the companion system operator of D

(cf. Sect. 4.1). Then, the D-modules D/DD and Dn/Dn∆ are isomorphic.

Proof. — Consider the map

U : Dn −→ D, (δ1 · · · δn) 7−→ δ1 + δ2∂ + · · ·+ δn∂
n−1

and the map V : Dn → D, projection over the last component, defined by

(δ1 · · · δn) 7−→ δn.

The maps U and V are D-linear; the diagram

Dn ·∆−−−−→Dn
y V

y U

D ·D−−−−→ D
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commutes and it can be completed into the commutative diagram with exact

rows

0 −−−→Dn ·∆−−−−→Dn −−−−→Dn/Dn∆ −−−→ 0y V

y U

y u

0 −−−→ D ·D−−−−→ D −−−−→ D/DD −−−→ 0.

The quotient map u does exist. It is left D-linear and surjective since U is also

left D-linear and surjective. On the other hand, the modules Dn/Dn∆ and

D/DD have equal ranks. Therefore, u is an isomorphism of K-vector spaces

and in particular, is injective.

From Propositions 4.2.7 and 4.2.5 we may set the following definition.

Definition 4.2.8 (equivalent operators). — Two linear differential oper-

ators D1 and D2 of order n are said to be K-equivalent if the D-modules

D/DD1 and D/DD2 are isomorphic.

Let us now make explicit the equivalence of order n linear differential

operators in the spirit of Definition 4.2.3.

Recall that D = K[∂] is a non commutative ring with non-commutation

relations generated by ∂x = x∂+1. In the ring D there is an euclidian division

on the right and on the left. Consequently, any left or right ideal is principal

and any two differential operators have a greatest common divisor on the left

(denoted by lgcd) and on the right (rgcd) as well as a least common multiple

on the left (llcm) and on the right (rlcm). These gcd and lcm are uniquely

determined by adding the condition that they are monic polynomials, which

we do.

The counterpart for a differential operator D ∈ D of a gauge transforma-

tion for a system involves a transformation TA, with A ∈ D, of the form

TA(D) = llcm(D,A)A−1.

By this, we mean that we take the lcm of D and A on the left and we divide

it by A on the right (this is possible since, by definition, A can be factored

on the right in any llcm involving A). In other words, TA(D) is the factor of

smallest degree we must multiply A on the left to obtain a left multiple of D.

Notice that such a factor is unique due to the uniqueness of llcm(D,A) as a

monic polynomial.

Proposition 4.2.9. — The differential operators D1 and D2 ∈ D are K-

equivalent if and only if there exists A ∈ D prime to D2 to the right such
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that

D1 = TA(D2).

We may notice that, as A and D2 are prime, the operators D2 and TA(D2)

have the same order.

Proof. — By definition, the K-equivalence of D1 and D2 means that there is

an isomorphism of D-modules

ϕ : D/DD1 −→ D/DD2.

As a morphism of D-modules the map ϕ is well defined by

ϕ(1 +DD1) = A+DD2.

For any L ∈ D, one has then ϕ(L + DD1) = LA + DD2. Since ϕ(D1) = 0

there exists L1 ∈ D such that D1A = L1D2. Conversely, any A such that

there is an L1 satisfying D1A = L1D2 determines a morphism of D-modules

from D/DD1 into D/DD2 by setting ϕ(1 +DD1) = A+DD2.

The injectivity of ϕ means that the condition ϕ(L) = 0, i.e., LA = PD2

for a certain P ∈ D, implies L = QD1 with Q ∈ D. Hence, to any rela-

tion LA = PD2 there is Q ∈ D such that PD2 = QD1A, that is to say, any

left common multiple of A and D2 is a left multiple of D1A. Otherwise said,

D1A is the llcm of A and D2 and then,

D1 = TA(D2).

Let us now express the surjectivity of ϕ. This amount to the fact that

there exists L ∈ D such that ϕ(L+DD1) = 1+DD2, which means that there

is P ∈ D such that LA+PD2 = 1. This is a Bézout relation for A and D2 on

the right which means that A and D2 are prime on the right.

4.3. Classifications

We denote by K̃ = C[[x]][1/x] the field of all meromorphic series at 0

either convergent or not and by K = C{x}[1/x] the subfield of the convergent

ones. We consider linear differential systems or equations with coefficients in

K, i.e., with convergent meromorphic coefficients.

The formal classification of linear differential systems or equations is the

classification under K̃-equivalence (cf. Def 4.2.3 and Prop. 4.2.9). The mero-

morphic(2) classification is the classification under K-equivalence.

(2) We use the term meromorphic in the sense of convergent meromorphic. Otherwise, we specify

formal meromorphic or simply formal.
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In this section, we sketch the main theoretical results on the formal and

the meromorphic classes of systems or equations. In the case of equations we

also sketch the practical algorithms based on Newton polygons to compute

the formal invariants.

4.3.1. The case of systems. — Denote by ′ the derivation with respect

to x, writing Y ′ instead of dY
dx , and consider an order one linear differential

system

(21) ∆Y ≡ Y ′ −B(x)Y = 0

with meromorphic coefficients (i.e., B(x) ∈ gℓ(n,K)).

Recall (cf. Sect. 4.1) that a gauge transformation Z = TY changes the dif-

ferential system Y ′ −B(x)Y = 0 into the differential system Z ′ − TB(x)Z = 0

with
TB = T ′ T−1 + TB T−1.

When T (x) is meromorphic
(
we denote T ∈ G = GL(n,C{x}[1/x])

)
the ma-

trix TB(x) is also meromorphic. But the matrix TB(x) may also be convergent

for some divergent T (x). We denote by G̃(B) the set of formal meromorphic

gauge transformations T ∈ GL(n,C[[x]][1/x]) such that TB(x) is convergent.

The set G̃(B) contains G. While G is a group, G̃(B) is not. The meromorphic

class of the system is its orbit under the gauge transformations in G while its

formal class is its (larger) orbit under those in G̃(B).

4.3.1.1. Formal classification. — The formal classification of n-dimensional

meromorphic linear differential systems is performed by selecting, in each class,

a system of a special form called a normal form. There exist algorithms to

fully calculate a normal form of any given system (cf. end of Sect. 4.3.2.3).

Theorem 4.3.1 (Formal fundamental solution and normal form)

1. To any system (21) : Y ′ = B(x)Y there is a formal fundamental solution

(i.e., a matrix of n linearly independent formal solutions) of the form

Y(x) = F̃ (x)xL eQ(1/x)

where

⊲ Q(1/x) =
⊕J

j=1 qj(1/x) Inj (assume the qj’s are distinct) is a diagonal

matrix satisfying Q(0) = 0; its diagonal entries are polynomials in 1/x or in a

fractional power 1/t = 1/x1/p of 1/x; the notation Inj stands for the identity
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matrix of dimension nj. The smallest possible number p is called the degree

of ramification of the system, eQ(1/x) the irregular part of Y(x) and the qj’s

the determining polynomials.

⊲ L ∈ gℓ(n,C) is a constant matrix called the matrix of the exponents of

formal monodromy.

⊲ F̃ (x) ∈ GL(n,C[[x]][1/x]) is an invertible formal meromorphic matrix.

2. The matrix Y0(x) = xL eQ(1/x) is a (formal) fundamental solution of a

system

Y ′ = B0(x)Y

with polynomial coefficients in x and 1/x. The system Y ′ = B0(x)Y is for-

mally equivalent to the initial system Y ′ = B(x)Y via the formal gauge trans-

formation F̃ (x) (hence, B(x) = F̃B0(x)) and it is called a normal form of the

given system Y ′ = B(x)Y . The fundamental matrix Y0(x) is called a normal

solution.

A normal solution exhibits all formal invariants. However, the normal

form and the normal solution are not unique: indeed, given P ∈ GL(n,C) any

permutation matrix or any matrix commuting with Q(1/x), the matrix

P Y0(x)P
−1 = xPLP−1

ePQ(1/x)P−1

is also a normal solution associated with the normal form Y ′ = PB0(x)Y since

a fundamental solution of the given system Y ′ = B(x)Y reads in the form

Y(x)P−1 = (F̃ (x)P−1)P Y0(x)P
−1

and F̃ (x)P−1 still belongs to GL(n,C[[x]][1/x]). In the unramified case

(i.e., with ramification degree p = 1), a minimal full set of formal invariants

is given by the diagonal matrix Q(1/x) of the determining polynomials up to

permutation and by the invariants of similarity of L (eigenvalues and size of

the corresponding irreducible Jordan blocks). In the ramified case (i.e., with

ramification degree p > 1) the situation is a little more intricate : given

a determining polynomial in the variable t′ = x1/p
′
(i.e., with ramification

degree p′) any element in its orbit under the action of the Galois group of

the ramification t′p
′
= x is also a determining polynomial and any of them

equally characterizes the orbit. In other words, a minimal set of invariants is

well determined by one polynomial in each orbit jointly with the invariants of

similarity of L.
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Any normal form is meromorphically equivalent to Y ′ = B0(x)Y . That’s

why, sometimes, one generalizes the definition by calling normal form any

system meromorphically equivalent to Y ′ = B0(x)Y .

The theorem of formal classification was first proved in a weaker form,

called Hukuhara-Turrittin Theorem, in which the given system Y ′ = B(x)Y

is considered as a system in the ramified variable t = x1/p (p the degree of

ramification of the system) allowing, thus, gauge transformations in a finite

extension of the initial variable x (cf. [DMR07, p. 104, Thm. (4.2.1)] and also

[Was76, HS99]). Stated as above it was first proved by W. Balser, W. Jurkat

and D.A. Lutz [BJL79]. A simpler proof and an expression of the normal form

in terms of rank reduced systems built on the minimal set of invariants can

be found in [LR01].

Let us now state some definitions associated with the formal invariants.

Choose a formal fundamental solution of System (21):

(22) Y(x) = F̃ (x)xL eQ(1/x) with Q =

J⊕

j=1

qj(1/x)Inj and distinct qj ’s

and the normal form Y ′ = B0(x)Y with fundamental solution Y0(x) =

xL eQ(1/x).

Definition 4.3.2 (Stokes arcs). —

(i) Let q ∈ C[1/x] be a polynomial of degree k > 0 in the variable 1/x. We

call Stokes arc associated with eq(1/x) (in short, with q) the closure of any arc

of S1 of length π/k made of directions where eq(1/x) is flat.

(ii) In the case of ramified polynomials q ∈ C[1/x1/p], p ∈ N∗, Stokes arcs

can be defined similarly w.r.t. the variable t = x1/p on the corresponding p-

sheet cover of S1. When the fractional degree of q is over 1/2 we call Stokes

arcs of q their projection on S1 by the map t 7→ x = tp. Otherwise, the

projections are onto S1 and one has to keep working with the variable t in the

p-sheet cover .

(iii) The Stokes arcs of a linear differential equation or system are the

Stokes arcs associated with all its determining polynomials.

Example 4.3.3. — Suppose a determining polynomial of system (21) be given by

q(1/x) = −1/x2/3.
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Then, the polynomials jq(1/x) and j2q(1/x) (where j3 = 1) are also determining polyno-

mials of system (21). A fundamental solution of the system in the variable t = x1/3 con-

tains the three exponentials e−1/t2 , e−j/t2 and e−j2/t2 to which correspond the six Stokes

arcs defined by −π/4 ≤ arg(t) ≤ +π/4 mod π/3 and 3π/4 ≤ arg(t) ≤ 5π/4 mod π/3. By

projection of these six arcs on the circle S1 of directions in the variable x we obtain the

two Stokes arcs defined by −3π/4 ≤ arg(x) ≤ +3π/4 mod π, each one associated with the

three polynomials.

The matrix F̃ (x) satisfies the homological system

(23)
dF

dx
= B(x)F − F B0(x).

which is a linear differential system in the entries of F and which admits the

polynomials qℓ − qj for j, ℓ = 1, . . . , J as determining polynomials and so, we

can state:

Proposition 4.3.4. — The Stokes arcs of the homological system (23) are

the Stokes arcs associated with all polynomials qℓ − qj for 1 ≤ j 6= ℓ ≤ J .

Split the matrix F̃ (x) into column-blocks corresponding to the block-

structure of Q (for j = 1, . . . , J , the matrix F̃j(x) has nj columns):

F̃ (x) =
[
F̃1(x) F̃2(x) · · · F̃J(x)

]
.

Definition 4.3.5 (Stokes arcs of F̃j(x)). — We call Stokes arcs of F̃j(x)

the Stokes arcs associated with the polynomials qℓ − qj for 1 ≤ ℓ ≤ J, ℓ 6= j.

The Stokes arcs of the homological system are the Stokes arcs of all F̃j(x).

Definition 4.3.6 (Levels, anti-Stokes directions)

We call

(i) levels of system (21) the degrees of the determining polynomials qℓ − qj
for 1 ≤ j 6= ℓ ≤ J , of the homological system (23);

(ii) anti-Stokes direction associated with

(24) (qℓ − qj)(1/x) = −aℓ,j / xk
(
1 + o(1/x)

)
6= 0

any direction along which the exponential eqℓ−qj has maximal decay, i.e., , any

direction θ = arg(aℓ,j)/k mod 2π/k along which −aℓ,j/xk is real negative;

(iii) anti-Stokes directions of system (21) the anti-Stokes directions asso-

ciated with all determining polynomials (qℓ − qj)(1/x) 6= 0 of the homological

system (23);

(iv) levels of F̃j(x) the degrees of the polynomials qℓ−qj for 1 ≤ ℓ ≤ J, ℓ 6= j;
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(v) anti-Stokes directions of F̃j(x) the anti-Stokes directions associated

with the polynomials qℓ − qj for 1 ≤ ℓ ≤ J, ℓ 6= j.

Observe that 0 is not a level since qℓ 6= qj for all ℓ 6= j and the polynomials

q contain no constant term. Notice, in the right hand side of (24), the minus

sign which we would not introduce if we worked at infinity.

The anti-Stokes directions of a system are the middle points of the Stokes

arcs of its homological system. The denomination “anti-Stokes directions” is

not universal: sometimes, one calls such directions “Stokes directions” while

to us, the Stokes directions are the oscillating lines of the exponentials eqℓ−qj .

It is worth to notice that it is always possible to permute the columns of

a formal fundamental solution by writing it

Y(x) = F̃ (x)P xP
−1LP eP

−1Q(1/x)P

with P the chosen permutation. It is also always possible to normalize a given

eigenvalue of L, say λ1, and a given determining polynomial, say q1, to zero by

the change of variable Y 7→ x−λ1 e−q1Y in the initial system (and at the same

time, in its normal form). The Stokes arcs and the levels of F̃1(x) are then the

Stokes arcs and the degrees of the determining polynomials qj themselves.

4.3.1.2. Meromorphic classification. — The meromorphic classification pro-

ceeds differently than the formal one since it’s hopeless to exhibit (and, a

fortiori, to calculate), in each meromorphic class, a system of a special form

analogous to the normal form of the formal classification. Theoretically, the

meromorphic classes are well identified as non-Abelian 1-cohomology classes.

In practice, the meromorphic classes are identified via a finite number of ma-

trices of a special form called Stokes matrices. Contrary to normal solutions,

the Stokes matrices do not depend algebraically on the system; they are, in

general, deeply transcendental with respect to the coefficients of the system.

Some algorithms exist to calculate numerical approximations of the Stokes

matrices in some “simple” situations but, yet, none is efficient in the very

general case.

Since the meromorphic classification refines the formal meromorphic one

it is convenient, without any loss, to restrict the classification to a given formal

class with normal form Y ′ = B0(x)Y and normal solution Y0(x) = xL eQ(1/x).

Any system Y ′ = B(x)Y in the formal class of Y ′ = B0(x)Y satisfies, by

definition, a relation B(x) = F̃B0(x) for a convenient formal gauge transforma-

tion F̃ (x) but such a gauge transformation F̃ (x) is not unique in general: one
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has F̃1B0 =
F̃2B0 if and only if F̃−1

2 F̃1B0 = B0, i.e., if and only if there exists a

gauge transformation T which leaves invariant the normal form Y ′ = B0(x)Y

and such that F̃1(x) = F̃2(x)T (x). Notice that T (x) acts on F̃2(x) to the right.

The gauge transformations T for which TB0 = B0 form a group.

Definition 4.3.7. — The group G0(B0) ⊂ G̃(B0) of the gauge transforma-

tions T for which TB0 = B0 is called the group of isotropies or group of

invariance of the normal form Y ′ = B0(x)Y .

The group G0(B0) is in general small, even trivial, and it is easily de-

termined in each particular case: it is made of all matrices T (x) such that

there exists a matrix C ∈ GL(n,C) satisfying T (x)Y0(x) = Y0(x)C; this cor-

responds to constant block-diagonal matrices C commuting with Q(3) and

such that xLCx−L is meromorphic. In the case when all diagonal terms qj in

Q(1/x) are distinct the group G0(B0) is made of all invertible constant diag-

onal matrices; if, in addition, we ask for tangent-to-identity transformations

then the group reduces to the identity.

Examples 4.3.8. — Denote by Ij the identity matrix of dimension j and by Jj the

irreducible nilpotent upper Jordan block of dimension j.

⊲ Suppose the normal solution has the form

Y0(x) = xλ1I1⊕(λ2I3+J3) eq1I1⊕q2I3

where 0 < ℜ(λ1), ℜ(λ2) < 1 and where q1 6= q2 are polynomials in 1/x. The invertible

matrices C such that Y0(x)C Y0(x)
−1 is a meromorphic transformation are those which

commute both to eq1I1⊕q2I3 (this is a general fact) and to xλ1I1⊕(λ2I3+J3). One can check

that this means that the matrix C has the form C = C1 ⊕C2 where C1 = cI1 with c ∈ C∗

and C2 = c1I3 + c2J3 + c3J
2
3 with c1, c2, c3 ∈ C and c1 6= 0. All such constant matrices C

form the group G0(B0).

⊲ Suppose the normal solution has the form Y0(x) =
⊕

xLj e
qjInj with distinct qj ’s

and matrices Lj = diag(λj,1, . . . , λj,nj ) with integer coefficients λj,1, . . . , λj,nj ∈ Z.

Then, C =
⊕

Cj is any constant invertible block-diagonal matrix with Cj of dimension nj

and the elements of G0(B0) are the transformations of the form T (x) =
⊕

xLj Cj x
−Lj .

Their coefficients are polynomials in x and 1/x.

The meromorphic classes of formal gauge transformations of a system,

either a normal form or not, Y ′ = B0(x)Y are, by definition, the elements of

the quotient G \ G̃(B0) of all formal meromorphic gauge transformations of

Y ′ = B0Y by the convergent ones to the left. The meromorphic classes of

systems in the formal class of Y ′ = B0Y are the quotient G \ G̃(B0) /G0(B0)

(3) If Q =
⊕

qjInj then C =
⊕

Cj with matrices Cj of size nj .
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of the previous classifying set by the group G0(B0) of invariance of Y
′ = B0 Y

to the right (recall that the isotropies act on gauge transformations to the

right, cf. supra). Since the group G0(B0) can always be made explicit it is

sufficient to describe the classifying set G \ G̃(B0) of gauge transformations(4)

of the normal form.

A first description of the meromorphic classes of gauge transformations

was set up through a careful analysis of the Stokes phenomenon by Y. Sibuya

[Sib77, Sib90] and by B.Malgrange [Mal79] (cf. Coms. 2.5.3). To state

their result we need to introduce the sheaf Λ<0(B0) over S1 of germs of flat

isotropies of the normal form Y ′ = B0(x)Y : a germ ϕ(x) in Λ<0(B0) is a germ

of GL(n,A) which is asymptotic to the identity(5)and satisfies ϕB0 = B0. The

sheaf Λ<0(B0) is a sheaf of non-commutative groups.

Theorem 4.3.9 (Malgrange-Sibuya). — The classifying set G \ G̃(B0) is

isomorphic to the first (non Abelian) cohomology set H1
(
S1; Λ<0(B0)

)
.

The map from G \ G̃(B0) into H
1
(
S1; Λ<0(B0)

)
is abstractly given by the

Main Asymptotic Existence Theorem (Cor. 4.4.4) while, way back, it is made

explicit by means of Cauchy-Heine integrals.

Actually, meromorphic classes of gauge transformations can be given a

simpler characterization as follows.

Let A be the set of anti-Stokes directions of the normal form Y ′ = B0(x)Y

and denote by Stoα(B0) the subgroup of the stalk Λ<0
α (B0) made of all germs

of flat isotropies of Y ′ = B0(x)Y having maximal decay at α.

When α 6∈ A the group Stoα(B0) is trivial (no flat isotropy has maximal

decay but the identity). When α ∈ A the group Stoα(B0) can be given a

linear representation as follows: given a normal solution Y0(x) = xL eQ(1/x)

with Q(1/x) =
⊕J

j=1 qj(1/x) and distinct qj ’s choose a determination α of α.

Denote by Y0,α(x) the function defined by Y0(x) with that determination of

the argument near the direction α. An element ϕα(x) of Stoα(B0) is a flat

transformation such that

ϕα(x)Y0,α(x) = Y0,α(x) (In + Cα)

for a unique constant invertible matrix In + Cα.

This implies that ϕα(x) = xL eQ(1/x) (In + Cα) e
−Q(1/x)x−L with the given

(4) D.G. Babbitt and V.S. Varadarajan [BV89] call them meromorphic pairs (B0, F̃ ).
(5) Flatness must be understood, here, in the multiplicative meaning of asymptotic to identity.
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choice of the argument near α. Denote by Cα = [C
(ℓ,j)
α ] the decomposition

of Cα into blocks fitting the structure of Q. Hence, the germ ϕα(x) reads

ϕα(x) = xL
(
In + C(ℓ,j)

α e(qℓ−qj)(1/x)
)
x−L.

An exponential eq(1/x) = e−a/x
k(1+o(1/|xk|)) has maximal decay in a direction

α ∈ S1 if and only if −ae−ikα is real negative (k might be fractional). Hence,

ϕα(x) is flat in direction α if and only if, as soon as eqℓ(1/x)−qj(1/x) does not

have maximal decay in direction α the corresponding block C
(ℓ,j)
α of Cα van-

ishes. In particular, for j = ℓ, the exponential eqj−qℓ does not have maximal

decay and the corresponding diagonal block C
(j,j)
α is zero; if eqj−qℓ has maxi-

mal decay in direction α then eqj−qℓ has not and thus, if a block C
(ℓ,j)
α is not

equal to zero the symmetric block C
(j,ℓ)
α is necessarily zero. This implies that

the matrix In +Cα is unipotent. Reciprocally, any constant unipotent matrix

with the necessary blocks of zeros characterizes a unique element of Stoα(B0).

Consequently, Stoα(B0) has a natural structure of a unipotent Lie group.

The Malgrange-Sibuya Theorem has been improved by showing that in

each 1-cohomology class there is a unique 1-cocycle of a special form called

the Stokes cocycle which is constructible from any cocycle in its 1-cohomology

class [LR94, Thm. II.2.1]; the uniqueness of the Stoles cocycle is further

developed in [LR03].

Definition 4.3.10 (Stokes cocycle). — A Stokes cocycle is a 1-cocycle

(ϕα)α∈A with the following properties: it is indexed by the set A of anti-Stokes

directions and each component ϕα determines an element of Stoα(B0).

The set of Stokes cocycles can be identified to the finite product∏
α∈A0

Stoα(B0) and we can state:

Theorem 4.3.11 (Stokes cocycle). —

The classifying set G \ G̃(B0) is isomorphic to the product
∏

α∈A0
Stoα(B0) of

the Stokes groups associated with a normal form Y ′ = B0(x)Y .

From this theorem the classifying set inherits a natural structure of a

unipotent Lie group. For applications of this property we refer to [LR94].

Let (ϕα)α∈A be a Stokes cocycle associated with a gauge transforma-

tion F̃ (x) from the normal form Y ′ = B0(x)Y to a system Y ′ = B(x)Y

(hence, F̃ (x) ∈ G̃(B0)). Let Y0(x) be a normal solution. Choose a determina-

tion α of the argument for all α (it is usually understood that all α belong to

a same interval ]2mπ, 2(m+ 1)π]) and denote by Y0,α(x) the normal solution
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with that choice of a determination of the argument. Finally, for all α ∈ A,

let the matrix (In + Cα)α∈A represent ϕα with respect to these choices.

Definition 4.3.12. — The matrices (In +Cα)α∈A are called the Stokes ma-

trices associated with the fundamental solution F̃ (x)Y0,α(x).

Like Stokes cocycles, Stokes matrices characterize the meromorphic classes

of gauge transformations: they form a full free set of meromorphic invariants.

The Stokes cocycle and the Stokes matrices are connected to the theory of

summation (Chap. 6) as follows. Suppose we are given a formal fundamental

solution Y(x) = F̃ (x)Y0(x) at 0 and an anti-Stokes direction α ∈ A and denote

by F+
α (x) and F−α (x) the sums (k- or multisums) of F̃ (x) to the left and to

the right of the direction α.

Theorem 4.3.13. — The Stokes cocycle (ϕα)α∈A satisfy

ϕα = F+
α (x)−1F−α (x) for all α ∈ A.

The Stokes matrices (In+Cα)α∈A at 0 associated with F̃ (x)Y0,α(x) for a given

determination α of α satisfy

F−α (x)Y0,α(x) = F+
α (x)Y0,α(x) (In + Cα) for all α ∈ A.

Formerly, one used to call Stokes matrices all matrices In + C satisfying

a condition of the type

Fj(x)Y0,α(x) = Fℓ(x)Y0,α(x) (In + C)

linking two overlapping asymptotic solutions, i.e., any matrix representing a

germ of isotropy Fℓ(x)
−1 Fj(x) = Y0,α(x) (In + C)Y0,α(x)

−1, not necessarily a

Stokes germ. This appeared to be not restrictive enough to easily characterize

the meromorphic classes of systems or to exhibit good Galoisian properties:

an example of a non-Galoisian “Stokes matrix” in the wide sense is given in

[LR94, Sect. III.3.3.2]. Henceforward, we use the expression Stokes matrix in

the restrictive sense of associated to a Stokes cocycle.

4.3.2. The case of equations. — The meromorphic and the formal equiv-

alence of linear differential operators of order n were given in Definition 4.2.8

with a characterization in Proposition 4.2.9.

Like for systems the formal class of an equation is made explicit from a

formal fundamental solution which can be read as the first row of a formal
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fundamental solution of its companion system. Each such solution takes the

form

φ(x) xλ eq(1/x)

where the factors φ(x) are polynomials in ln(x) with formal series coefficients.

Levels, Stokes arcs and anti-Stokes directions are defined similarly as for sys-

tems. The invariants are all the determining polynomials q(1/x) with mul-

tiplicities, the corresponding exponents λ and the degrees in ln(x) of each

associated φ(x). The meromorphic classes in a given formal class are also

characterized by (adequate) Stokes matrices.

The formal invariants are much easier to determine for an equation than

for a system. Below we sketch a procedure to follow for an equation.

4.3.2.1. Newton polygons. — Newton polygons are a very convenient tool to

identify the formal invariants of a linear differential equation Dy = 0 at a

singular point. By means of a change of variable any singular point can be

moved to the origin 0. However, we state the definitions both at 0 and at

infinity.

Consider a linear differential operator

D = bn
dn

dxn
+ bn−1

dn−1

dxn−1
+ · · ·+ b0

with coefficients bj that are either meromorphic series in x (for a study

at x = 0) or in powers of 1/x (for a study at x = ∞). Temporarily, we

do not need that the coefficients be convergent. The valuation of a power

series b(x) =
∑

m≥m0
βm x

m at the origin is denoted by v0(b) and defined

as the smallest degree with respect to x of the non-zero monomials βm x
m

of b; thus, v0(b) = m0 when βm0 6= 0. The valuation of a power series

b(1/x) =
∑

m≥m1
βm/x

m at infinity is denoted by v∞(b) and defined as

the highest degree with respect to x of a non-zero monomial βm/x
m of b;

thus, v∞(b) = −m1 when βm1 6= 0. When b is a polynomial in x, then v∞(b)

is the degree of b with respect to x.

Definition 4.3.14 (Newton polygons). —

(i) Newton polygon at 0. — Suppose the coefficients bj of D are for-

mal or convergent meromorphic power series in x. With the operator D one

associates in R+ × R the set PD of marked points

PD =
{
(j, v0(bj)− j) ; 0 ≤ j ≤ n

}
.



82 CHAPTER 4. LINEAR ORDINARY DIFFERENTIAL EQUATIONS

The Newton polygon N0(D) of D at 0 is the upper envelop in R+ × R of the

various attaching lines of PD with non-negative slopes.

(ii) Newton polygon at infinity. — Suppose the coefficients bj of D are

formal or convergent meromorphic power series in 1/x. With the operator D

one associates in R+ × R the set PD of marked points

PD =
{
(j, v∞(bj)− j) ; 0 ≤ j ≤ n

}
.

The Newton polygon N∞(D) of D at 0 is the lower envelop in R+ × R of the

various attaching lines of PD with non-positive slopes.

Equivalently, we can say that the Newton polygon at 0 is the intersection

of the closed upper half-planes limited by the various attaching lines of PD with

non-negative slopes while the Newton polygon at infinity is the intersection of

the closed lower half-planes limited by the various attaching lines of PD with

non-positive slopes.

One obtains the same Newton polygon when one enlarges the set of marked

points to any points (j,m− j) corresponding to a non-zero monomial xm dj

dxj

in D or to the horizontal segments issuing from the points of PD backwards

to the vertical axis.

Example 4.3.15. — Consider the operator D = xm dj

dxj . Since xm is both a mero-

morphic series in x and in 1/x it makes sense to determine both its Newton polygon

at 0 and at infinity. There corresponds to D the unique marked point (j,m− j) and the

corresponding Newton polygons are as shown on Fig. 1.

Figure 1

When D has polynomial coefficients one can define its Newton polygons

both at 0 and at infinity.

Definition 4.3.16 (Full Newton polygon). — Suppose D has polynomial

coefficients. The full Newton polygon N (D) is the intersection N0(D) ∩
N∞(D) of the Newton polygons of D at 0 and at infinity.

For simplicity and when there is no ambiguity, we denote by N (D) anyone

of these Newton polygons.
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Example 4.3.17. — Here below are the full Newton polygons of the Euler operator

E = x2 d
dx

+ 1, its homogeneous variant E0 = x3 d2

dx2 +(x2+x) d
dx

−1 and the hypergeometric

operator D3,1 = z
(
z d
dz

+ 4
)
− z d

dz

(
z d
dz

+ 1
)(
z d
dz

− 1
)
.

Figure 2

From now on, unless otherwise specified, we work at the origin 0, i.e., we

suppose that D has formal or convergent meromorphic coefficients at 0.

Proposition 4.3.18 (levels of D). — Suppose 0 is a singular point of D,

i.e., at least one of the coefficients bj/bn has a pole at 0.

(i) The levels of D at 0 are the positive slopes of N0(D).

(ii) The point 0 is regular singular for D if and only if the Newton poly-

gon N0(D) has no non-zero slope.

Proposition 4.3.19. — Newton polygons satisfy the following properties.

(i) Let Dm = xmD, m ∈ Z. The Newton polygon of Dm is the Newton

polygon of D translated vertically by m.

(ii) Let D1 and D2 be two linear differential operators meromorphic at 0.

Then,

N0(D1D2) = N0(D1) +N0(D2).

Proof. — Assertion (i) is elementary.

For a proof of (ii) we refer, for instance, to [DMR07, Lem. 1.4.1, p. 99].

As a consequence of (i), we may define the Newton polygon of an equa-

tion Dy = 0 as being the Newton polygon of D up to vertical translation.

On the set C[[x]][1/x, d/dx] of linear differential operators at 0 it is con-

venient to introduce a weight (or 0-weight) w by setting

w
(
xk

dj

dxj

)
= k − j and w

(∑
xk

dj

dxj

)
= min

k,j
w
(
xk

dj

dxj

)
.

In particular, w(x) = 1, w
(

d
dx

)
= −1 and, to an operator D with weight

w(D) = w, the product x−wD has weight 0. At our convenience, given a

differential equation Dy = 0, we can then assume that D has weight 0.
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Lemma 4.3.20. — Given j ∈ N and k ∈ Z, one has

(
xk+1 d

dx

)j
= xjk+j dj

dxj
+

∑

1≤j′′<j
j′−j′′=jk

cj′,j′′x
j′ dj′′

dxj′′
(cj′,j′′ ∈ C).

Observe that all monomials in the right hand side have weight j k and then,

the whole expression in the left hand side has weight j k. The marked point

associated with xjk+j dj/dxj is A = (j, jk). The marked points associated

with the monomials in the sum are (j′, jk) with 1 ≤ j′ ≤ j − 1, hence points

lying on the horizontal segment between A and the vertical coordinate axis.

Proof. — The formula in Lemma 4.3.20 is trivially true for j = 1. By Leibniz

rule we obtain the commutation law d
dxx

k+1 = xk+1 d
dx+(k+1)xk, from which

it follows that
(
xk+1 d

dx

)2
= x2k+2 d2

dx2
+ (k + 1)x2k+1 d

dx
·

Hence the formula for j = 2. The general case is similarly obtained by recur-

rence.

Proposition 4.3.21. — Given a differential operator D in the variable x

denote by Dz the operator deduced from D by the change of variable x = 1/z.

Then, the Newton polygons N0(D) and N∞(Dz) are symmetric with each other

with respect to the horizontal coordinate axis.

Proof. — One has d
dz = −x2 d

dx . From Lemma 4.3.20 we know that we can

expand D in powers of the derivation δ = x2 d
dx with weight w(δ) = +1:

D = cn(x)δ
n + cn−1(x)δ

n−1 + · · ·+ c0(x)

and the set PD of marked points is then given by (j, v0(cj) + j) for 0 ≤ j ≤ n.

Now, the operator Dz reads

Dz = (−1)ncn(1/z)
dn

dzn
+ (−1)n−1cn−1(1/z)

dn−1

dzn−1
+ · · ·+ c0(1/z)

and the associated marked points are (j, v∞
(
cj(1/z)

)
− j) = (j,−v0(cj) −

j).

4.3.2.2. Newton polygon and Borel transform. — We consider here the clas-

sical Borel transform B (or 1-Borel transform) at 0 as defined in Section 6.3.1

below and we denote by ξ the variable in the Borel plane. We suppose that
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D has polynomial coefficients in x and 1/x. As previously, we can expand D

in powers of δ = x2 d
dx :

D = cn(x)δ
n + cn−1(x)δ

n−1 + · · ·+ c0(x).

We assume that the coefficients cj are polynomials in 1/x. If this were not the

case, we would replace D by x−ND with N the degree of the cj ’s with respect

to x.

Let ∆ = B(D) denote the operator deduced from D by Borel transform.

Since B(δ) = ξ and B
(
1
x

)
= d

dξ (cf. Sect. 6.3.1) the operator ∆ reads

∆ = cn

( d

dξ

)
ξn + cn−1

( d

dξ

)
ξn−1 + · · ·+ c0

( d

dξ

)

and is then a linear differential operator with polynomial coefficients. The

fact that D had coefficients polynomial in 1/x is a key point here. In the

general case, due to the fact that B(fg) = B(f) ∗ B(g), the Borel transform of

a linear differential operator is a convolution operator. The proposition below

is a corollary of [Mal91b, Thm. (1.4)].

Proposition 4.3.22. — With normalization as above, the following two

properties are equivalent:

(i) the levels of D at 0 are ≤ 1;

(ii) the levels of ∆ at infinity are ≤ 1.

Proof. — Let v = minj v0(cj) ≤ 0 be the minimal valuation of the coefficients

of D at 0. This implies that all marked points associated with D at 0 are on

the line issuing from (0, v) with slope 1 (Recall that δ has weight 1) or over

and that at least one of them belongs to the line. As a consequence, all levels

of D are ≤ 1 if and only if the point (n, v + n) of the line is a marked point,

i.e., if and only if v0(cn) = v.

To the other side, ∆ has degree n and order −v. Similarly at 0, its

Newton polygon at infinity has no slope > 1 if and only if the monomial

ξn d−v

dξ−v does exist in ∆. And indeed, this is precisely what the condition

v0(cn) = v says.

4.3.2.3. Calculating the formal invariants. — We briefly sketch here how to

calculate the formal invariants of a linear differential equation Dy = 0 with

(formal) meromorphic coefficients at 0. Recall that the formal invariants at 0

of the equation are the determining polynomials q(1/x) with multiplicities, the

exponents of formal monodromy λ and how many logarithms are associated

with.
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⊲ Indicial equation. — Suppose the Newton polygon N0(D) has a hori-

zontal side and consider the operator restricted to the marked points lying on

that horizontal side. Up to a power of x to the left that operator reads

D0 = γr x
r dr

dxr
+ γr−1 x

r−1 dr−1

dxr−1
+ · · ·+ γ1 x

d

dx
+ γ0, γr, . . . , γ0 ∈ C.

The indicial equation is the equation in the variable λ obtained by writing that

xλ satisfies the equation D0y = 0, i.e., denoting [λ]r = λ(λ− 1) . . . (λ− r+1),

the equation

γr [λ]r + γr−1 [λ]r−1 + . . . + γ1 [λ]1 + γ0 = 0.

Its roots λj (with multiplicities) are the exponents of factors xλ associated

with no exponential.

⊲ k-characteristic equation. — Suppose the Newton polygon N0(D) has

a side with slope k and consider the differential operator restricted to the

marked points lying on that side with slope k. This operator reads xk
′
Dk

ds′′

dxs′′

with

Dk =
(
cs x

s(k+1) ds

dxs
+ cs−1 x

(s−1)(k+1) ds−1

dxs−1
+ · · ·+ c1 x

k+1 d

dx
+ c0

)
.

The k-characteristic equation is the equation obtained by writing that e−a/x
k

satisfies the equation Dky = 0, i.e.,

csX
s + cs−1X

s−1 + · · ·+ c1X + c0 = 0.

Its roots (counted with multiplicities) are the dominant coefficients a of the

exponentials e−a/x
k+··· times k. Differently said, they are equal to the domi-

nant coefficients ak in the derivatives of the exponentials e−a/x
k(1+0(1/x)).

⊲ Iterated characteristic equations. — Once one has determined the dom-

inant coefficient a in the exponentials the next coefficients including the factor

xλ attached to each exponential can be determined as follows. Select one root

a and consider the differential operator D1 = D(−a/xk) deduced from D by the

change of variable y = e−a/x
k
Y (and simplifying by the factor e−a/x

k
). The

Newton polygon N0(D1) may have no slope k′ < k and no horizontal side;

in that case e−a/x
k
is the exponential we look for and it comes factored with

no xλ. It may have no slope k′ < k but a horizontal side; in that case, there

exist terms of the form xλ e−a/x
k
for all root λ of the indicial equation of D1.

The Newton polygon N0(D1) may also have non-zero slopes k′ < k; in that

case, one has to solve the k′-characteristic equations to determined the next
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term in the exponential e−a/x
k+··· and so on . . . until all exponentials and

associated xλ are found.

⊲ Frobenius method. — When the indicial equations have multiple roots

modulo Z there might exist logarithmic terms. To determine which terms

appear with logarithms there exist a classical algorithm called Frobenius al-

gorithm. Although the procedure is easy and natural from a theoretical view-

point (it might be long and laborious in practice) we do not develop it here

and we refer to the classical literature, for instance, [CL55, Sec 4.8].

When one knows all normal solutions, to complete them by formal series

to get solutions of the initial equation Dy = 0 one proceeds by like powers

identification.

All these algorithms have been implemented in Maple packages such as

Isolde or gfun.

The case of systems is much more difficult to treat practically. There ex-

ists however algorithms to determine formal fundamental solutions. One can

always apply the Cyclic vector algorithm (Sect. 4.1) and proceed as before.

However, this way, there appear, in general, huge coefficients making the cal-

culation heavy. It is then, in general, recommended to operate directly on

the system itself. One method, which relies on Moser’s rank, was developed

by M. Barkatou and his group (cf. [BCLR03] for a sketched algorithm and

references). A variant was developed by M.Miyake [Miy11].

4.4. The Main Asymptotic Existence Theorem

Consider a linear differential operator

D =

n∑

j=1

bj(x)
dj

dxj

with analytic coefficients at 0. The question here addressed is: is any formal

solution of the equation Dy = 0 the asymptotic expansion of an asymptotic

solution? A positive answer is given by the Main Asymptotic Existence The-

orem (M.A.E.T.) either in Poincaré asymptotics or in Gevrey asymptotics.

In the case of Poincaré asymptotics the theorem, precisely Cor. 4.4.2,

is mostly due to Hukuhara and Turritin with a complete proof by Wasow

[Was76]. An extension to Gevrey asymptotics is given by B.Malgrange in

[Mal91a, Append. 1] and to non linear operators [RS89] by J.-P. Ramis and

Y. Sibuya.
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The theorem roughly says that to a formal solution f̃ of a differential

equation (linear or non linear) there correspond actual solutions f asymptotic

to f̃ on various sectors. Given a direction, it is possible to determine from the

equation itself a minimal opening of the sector on which such an asymptotic

solution exists. However, these asymptotic solutions are, in general, neither

unique nor given by explicit formulæ.

Theorem 4.4.1 (Main Asymptotic Existence Theorem)

The operator D acts linearly and surjectively on the sheaf A<0 and on the

sheaves A≤−k for all k > 0.

In other words, the sequences

A<0 D−→A<0 −→ 0 and A≤−k D−→A≤−k −→ 0 for all k > 0

are exact sequences of sheaves of C-vector spaces. For the proof we refer to

[Mal91a, Append 1; Thm. 1] where the theorem is stated and proved for all

spaces A<k and A≤k for all k ∈ R (see definitions in [Mal91a]).

The Main Asymptotic Existence Theorem implies the following corollary.

Corollary 4.4.2. — Let f̃(x) =
∑

m≥0 amx
m be a power series solution of

the differential equation Dy = 0.

(i) Given any direction θ ∈ S1, there exists a sector θ = ]θ−δ,θ+δ′[(R)

and a function f ∈ A( θ) such that

⊲ Df(x) = 0 for all x ∈ θ (i.e., f is an analytic solution on θ),

⊲ T
θ
f = f̃ (i.e., f is asymptotic to f̃ at 0 on θ).

(ii) If the series f̃(x) is Gevrey of order s then θ and f(x) can be chosen

so that f(x) be s-Gevrey asymptotic to f̃(x) on θ.

Proof. — (i) The Borel-Ritt Theorem (cf. Thm. 2.4.1 (i)), provides for any

sector ′ containing the direction θ, a function g ∈ A( ′) with asymptotic

expansion T ′g = f̃ on ′. Since T ′ is a morphism of differential algebras,

T ′Dg = DT ′g = Df̃ = 0. Hence, the function Dg is flat: Dg ∈ A<0( ′). The

Main Asymptotic Existence Theorem above applied to Dg in the direction θ

provides a sector θ ⊂ ′ containing the direction θ and a function h ∈ A<0( θ)

such that Dh = Dg. The function f = g − h satisfies the required conditions

on θ.

(ii) When the series f̃(x) is s-Gevrey the Borel-Ritt Theorem with Gevrey

conditions (cf. Thm. 2.4.1.(ii)) provides a function g ∈ As(
′) over some sector

′ containing the direction θ which is s-Gevrey asymptotic to f̃ on ′. Its
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derivativeDg is asymptotic toDf̃(x) = 0 and, from Proposition 2.3.17, we can

assert that Dg is k-exponentially flat on ′. Hence, by the Main Asymptotic

Existence Theorem, h belongs to A≤−k and the conclusion follows as in the

previous case.

Since the proof relies on the Borel-Ritt Theorem it does not provide the

uniqueness of the asymptotic solutions.

The theorem does not make explicit the size of the sector θ. When the

series f̃ is convergent the sector θ can be chosen to be a full disc around 0

and f(x) to be the sum of the series. The opening of a possible sector can

be very different depending on the series and on the chosen direction θ. The

analysis of the Stokes phenomenon of the differential equation shows that in

any direction one can choose a sector of opening at least π/k for k the highest

level of the equation.

Comments 4.4.3 (On the examples of section 2.2.2)

⊲ Example 2.2.4. The Euler function is asymptotic to the Euler series on a sector of

opening 3π and this sector is an asymptotic sector in any direction θ. The highest (and

actually unique) level of the Euler equation is k = 1 and thus, the actual opening of 3π

is larger than π/k = π. However, if we ask for a sector bisected by the direction θ the

opening reduces to π in the direction θ = π.

⊲ Example 2.2.6. The hypergeometric function g(z) is asymptotic to the hyperge-

ometric series g̃(z) on a sector of opening 4π while π/k = 2π (the unique level of the

hypergeometric equation D3,1y = 0 is k = 1/2). The anti-Stokes (and singular) directions

are the directions θ = 0 mod 2π since the exponentials of a formal fundamental solution

are e±2 z1/2 . An asymptotic sector bisected by θ = 0 has 2π as maximal opening.

⊲ In the previous two examples there exists only one singular direction and the pos-

sible asymptotic sectors are much larger than the announced minimal value. Actually,

considering two neighboring singular directions θ < θ′ an asymptotic sector always ex-

ists with opening ]θ − π/(2k), θ′ + π/(2k)[ for k the highest level of the equation. When

the singular directions are irregularly distributed the asymptotic sectors are “irregularly”

wide.

Let ∆Y ≡ Y ′ − B(x)Y = 0 be a linear differential system of order 1

and dimension n with formal fundamental solution F̃ (x)xL eQ(1/x). The Main

Asymptotic Existence Theorem 4.4.1 and its Corollary 4.4.2 remain valid for

systems in the following form.
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Corollary 4.4.4. — The operator ∆ acts surjectively in
(
A<0

)n
and in(

A≤−k
)n

for all k > 0 and consequently, it satisfies in all direction θ ∈ S1 the

following properties:

(i) There exists a sector θ = ]θ−ω,θ+ω′[(R) and an invertible matrix

function F ∈ GL
(
n,A( θ)

)
such that

{
∆
(
F (x)xL eQ(1/x)

)
= 0 for all x ∈ θ,

T
θ
F = F̃ (F is asymptotic to F̃ at 0 on θ).

(ii) If an entry of F̃ is s-Gevrey then the corresponding entry of F can be

chosen to be s-Gevrey asymptotic on a convenient θ.

Proof. — This extension to differential systems follows from the fact that each

entry of F̃ (x) satisfies itself a linear differential equation with meromorphic

coefficients deduced from the homological system (23): F ′ = B F − F B0.

4.5. Infinitesimal neighborhoods of an irregular singular point

While algebraic functions have moderate growth the form of formal so-

lutions given above and the Main Asymptotic Existence Theorem show that

solutions of linear differential equations at an irregular singular point may ex-

hibit exponential growth or decay. Infinitesimal neighborhoods of algebraic ge-

ometry are then insufficient to discriminate between the various solutions. We

define below infinitesimal neighborhoods for irregular singularities of solutions

of differential equations as suggested by P. Deligne in a letter to J.-P. Ramis

dated 7/01/1986 [DMR07]. This approach is developed, with an application

to index theorems, in [LRP97].

4.5.1. Infinitesimal neighborhoods associated with exponential or-

der. — We begin with a concept related only to the exponential order of

growth or decay of the singularity under consideration. This concept will

show up to be slightly too poor for a good characterization of k-summable

series but it is a necessary step, at least for clarity.

⊲ Base space X. — From this viewpoint the infinitesimal neighborhood

X of 0 in C is defined as a full copy of C compactified by the adjunction of a

circle at infinity and endowed with a structural sheaf F defined as below. For

obvious reasons we represent the infinitesimal neighborhood of 0 as a compact

disc in place of the origin 0 in C. The “outside world” C∗ = C \ {0} is not
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affected by the construction and stays being endowed with the sheaf of germs

of analytic functions.

⊲ Sheaf A≤k, k > 0. — Similar to the definition of k-exponentially flat

functions in Section 3.1.5 one says that a function f has exponential growth of

order k on a sector if, for any proper subsector ′
⋐ , there exist constants

K and A > 0 such that the following estimate holds for all x ∈ ′:

|f(x)| ≤ K exp
( A

|x|k
)
.

The set of all functions with exponential growth of order k on is denoted

by A≤k( ) and one defines a sheaf A≤k over S1 of germs with exponential

growth of order k (or, with k-exponential growth) in a similar way as A≤−k
(cf. Sect. 3.1.5).

⊲ Presheaf F . — In view to define the sheaf F it suffices to define the

presheaf F on a basis of open sets of X. We consider the following open sets

(cf. Fig. 3):

Figure 3. Basis of open sets in X





the discs D(0, k) for all k > 0,

the (truncated) sectors I × ]k′, k′′[={x = r eiθ ; θ ∈ I and 0 < k′ < r < k′′},
the (truncated) sectors I × ]k,∞] ={x = r eiθ ; θ ∈ I and 0 < k < r ≤ ∞}.

and we set 



F
(
D(0, k)

)
= C[[x]]s (recall s = 1/k),

F
(
I × ]k′, k′′[

)
= H0

(
I ; A≤k′/A≤−k′′

)
,

F
(
I × ]k,∞]

)
= H0

(
I ; A≤k

)
.
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The restriction map between (truncated) sectors is the canonical restriction of

functions and quotients. The restriction map from a disc D(0, k) to a sector

is made possible by the isomorphism between C[[x]]s and H0
(
S1;As/A≤−k

)

following from the Borel-Ritt Theorem (cf. Seq. (19) and Cor. 3.2.8).

Notation 4.5.1. — From now on, a point x = k eiθ with k > 0 is also denoted

by its polar coordinates (θ, k).

⊲ Sheaf F . — The sheaf F over X is the sheaf associated with the

presheaf F .

It is a sheaf of C-algebras. The stalk F0 of F at 0 is made of all Gevrey

series. If useful, it could be extended to any series of C[[x]], the support of

germs of non-Gevrey series having the point {0} as support. To define the

stalk at the other points (θ, k) we introduce the sheaves

A≤k− = lim
−→

ε→0+

A≤k−ε and A≤−k+ = lim
−→

ε→0+

A≤−(k+ε).

A germ f at θ belongs to A≤k− if there exist a sector in C∗ containing the

direction θ, an ε > 0, and constants K,C > 0 such that

|f(x)| ≤ K exp
C

|x|k−ε
for all x ∈ .

A germ f is in A≤−k+ if under the same conditions it satisfies

|f(x)| ≤ K exp− C

|x|k+ε
for all x ∈ .

The stalk of F at (θ, k) is given by

F(θ,k) = A≤k−θ /A≤−k+θ .

Example 4.5.2 (Definition domain and support of exponentials)

An exponential exp
(
− a/xk + q(1/x)

)
where q is a polynomial of degree less than k can

be seen as a section of the complement of the closed disc D(0, k) since it has exponential

growth of order less than k′ for all k′ > k.
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On another hand, the exponential is flat on the k open sectors
∣∣arg(x) + α/k

∣∣ < π/(2k) mod 2π/k

where α denotes the argument of a. The exponential can then be continued on all of

these open sectors and is equal to 0 inside D(0, k). It cannot be continued any further.

Its support is the complement of the open disc D(0, k) in its definition domain. The arcs

on the circle of radius k limiting the sectors where the exponential is equal to zero are of

length π/k. By analogy with the big points of algebraic geometry, their closure is called

k-big points associated with the exponential exp
(
−a/xk+q(1/x)

)
(or with the polynomial

−a/xk + q(1/x)). On the picture are drawn two particular cases of the definition domain

(open shadowed part) of an exponential. The big points are in dotted lines.

This example shows that the sheaf F is in no way a coherent sheaf, hence its surname

of “wild analytic” sheaf.

The following properties of the sheaf F are elementary and their proof is

left to the reader.

Proposition 4.5.3. — The sheaf F satisfies the following properties:

1. The restriction F|S1×{k} of F to the circle centered at 0 with radius k

in X is isomorphic to the quotient sheaf A≤k−/A≤−k+ over S1.

2. Sections over an open disc:

H0
(
D(0, k);F

)
= lim
←−

ε→0+

C[[x]]s+ε =
⋂

ε>0

C[[x]]s+ε =: C[[x]]s+ ) C[[x]]s.

3. Sections over a closed disc:

H0
(
D(0, k);F

)
= lim
−→

ε→0+

C[[x]]s−ε =
⋃

ε>0

C[[x]]s−ε =: C[[x]]s− ( C[[x]]s.

4.5.2. Infinitesimal neighborhoods associated with exponential or-

der and type. — As it follows from Proposition 4.5.3 the Gevrey space

C[[x]]s does not appear as a space of sections of F over some disc or any other

domain. To supply that gap we enrich the sheaf F by taking into account

both exponential order and exponential type.
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For a given k > 0 we define extensions Xk,Fk of X,F as follows.

⊲ Base space Xk. —While, buildingX, we replaced the origin 0 by a copy

of C compactified with a circle at infinity, we now replace the circle S1 × {k}
of radius k in X by a copy Y k of C∗ = S1 × ]0,∞[ compactified by the two

circles S1×{0} and S1 × {∞}. Precisely, we glue the lower boundary S1×{0}
of Y k to the boundary of the disc D(0, k) and the upper boundary S1 × {∞}
of Y k to the lower boundary of the complement X \ D(0, k). As topological

spaces X and Xk are isomorphic to C.

Figure 4

We denote by (θ, {k, ρ}) the polar coordinates of the points of Y k. A basis

of open sets in Xk is given by open discs centered at 0 and truncated sectors

like in X.

⊲ Presheaf Fk
. — Given c > 0 we take into account the type c of

exponentials of order k by introducing the subsheaf A≤k,c− of A≤k and the

subsheaf A≤−k,c+ of A≤−k over S1 defined as follows.

A germ of A≤k,c− at θ is a germ f ∈ A≤kθ which satisfies the condition:

there exist an open sector containing the direction θ, an ε > 0 and a con-

stant K > 0 such that
∣∣f(x)

∣∣ ≤ K exp
c− ε

|x|k
for all x ∈ .

A germ of A≤−k,c+ at θ is a germ f ∈ A≤−kθ which satisfies the condi-

tion: there exist an open sector containing the direction θ, an ε > 0 and a

constant K > 0 such that
∣∣f(x)

∣∣ ≤ K exp−(c+ ε)

|x|k
for all x ∈ .

The space C[[x]]s,C of series with fixed Gevrey order s and type C is the

subspace of C[[x]] made of the series
∑

n≥0 anx
n whose coefficients satisfy an



4.5. INFINITESIMAL NEIGHBORHOODS 95

estimate of the form |aN | ≤ K(n!)sCns for all n ≥ 0 and a convenient K > 0.

It is useful to introduce the spaces C[[x]]s,C+ =
⋂

ε>0C[[x]]s,C+ε. Thus, a series∑
n≥0 anx

n belongs to C[[x]]s,C+ if for all ε > 0 there exists K > 0 such that

|aN | ≤ K(n!)s(C + ε)ns for all n ≥ 0.

In view to construct the sheaf Fk it suffices to define Fk
on a basis of

open sets by setting:




inside X \ Y k, no change: F k
= F ,

inside Y k : F k
(I × ]{k, c′}, {k, c′′}[) = H0

(
I;A≤k,c′−/A≤−k,c′′+

)
,

across ∂Y k : F k(
D(0, {k, c})

)
= C[[x]]s,(1/c)+ , for 0 < c < +∞

F k(
I × ]k′, {k, c}[

)
= H0

(
I;A≤k′/A≤−k,c+

)
,

F k(
I × ]{k, c}, k′′[

)
= H0

(
I;A≤k,c−/A≤−k′′

)
.

As for the presheaf F , the application of restriction in F k
is defined on

sectors by the natural restriction of functions and quotient. The restriction to

an intersection of a sector and a disc is made consistent by the exact sequence

0 → A≤−k,c− −→ As,(1/c)+
T−−→ C[[x]]s,(1/c)+ → 0,

analog to the Borel-Ritt exact sequence (19) [LRP97, Sect. 1] . In this se-

quence the notation As,C+ stands for the following sheaf. A germ of As,C+ at θ

is a germ f ∈ Aθ which satisfies the condition: there exist an open sector

containing the direction θ and a series
∑

n≥0 an x
n such that for all ε > 0 there

is a constant K > 0 such that

∣∣∣f(x)−
N−1∑

n=0

an x
n
∣∣∣ ≤ K (N !)s |x|N (C + ε)Ns on for all N ∈ N.

⊲ Sheaf Fk. — The sheaf Fk is the sheaf over Xk associated with the

presheaf F k
. It is a sheaf of C{x}-modules and no longer a sheaf of C-algebras

since the product of two functions of A≤k,c− belongs to A≤k,(2c)− and not

to A≤k,c− in general. The stalk at a point (θ, {k, c}) of Y k is given by

Fk
(θ,{k,c}) =





A≤k−θ /A≤−kθ if c = 0,

A≤k,c−θ /A≤−k,c+θ if 0 < c < +∞,

A≤kθ /A≤−k+θ if c = +∞.
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Example 4.5.4 (Definition domain and support of exponentials)

An exponential exp
(
− a/xk + q(1/x)

)
where q is a polynomial of degree less than k

and a = Aeiα, A > 0 is well defined in Y k for all (θ, {k, ρ}) such that −A cos(α− kθ) < ρ.

When cos(α− kθ) ≤ 0 this means all points out of the “arch” ρ = −A cos(α− kθ). When

cos(α − kθ) > 0 this leads to no constraint on ρ; moreover, the exponential is equal to 0

inside the arch ρ = A cos(α− kθ).

The k-big points associated with the exponential are now the closures of the

arches ρ < A cos(α− kθ) and cos(α− kθ) > 0 where the exponential vanishes in Y k.

In the example drawn in Figure 5 the definition domain of the exponential is the

shadowed part of the infinitesimal neighborhood of 0. We indicated by “0” the open

regions where the exponential vanishes. The big points are the closure of the arches

(colored in orange-red in case of a colored copy) in which a small 0 is indicated.

Figure 5. Definition domain of exp
(

i
x4 + q

(
1
x

))
(here, k = 4 and c = 1)

We can now see the space C[[x]]s as a space of sections of the sheaf Fk.

Proposition 4.5.5. — Let D(0, {k, 0}) be the closure in Xk of the disc

D(0, k) centered at 0 with radius k. Then,

H0
(
D(0, {k, 0});Fk

)
= C[[x]]s.

Proof. — The equality follows from the fact thatD(0, {k, 0}) = ⋂
c>0D(0, {k, c})

and that H0
(
D(0, {k, c});Fk

)
= C[[x]]s,(1/c)+ .

4.5.3. More infinitesimal neighborhoods. — The previous construction

can be repeated twice at levels k = k1 and k = k2 > k1 or finitely many times

at levels k1 < k2 < · · · < kν . One obtain thus base spaces Xk1,k2 or Xk1,k2,··· ,kν

and sheaves Fk1,k2 or Fk1,k2,··· ,kν in a trivial way. Such spaces are useful for

handling multisummable series.
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Exercise 4.5.6. — Consider a linear differential equation

(25) Dy ≡ an(x)x
n dny

dxn
+ an−1(x)x

n−1 dn−1y

dxn−1
+ · · ·+ a0(x) y = g(x)

with formal series coefficients aj(x) ∈ C[[x]] and g(x) ∈ C[[x]][1/x]. We sup-

pose that g(x) is non-zero and we denote by p ∈ Z its valuation.

Consider the operator D′ = g(x)2 d
dx

1
g(x)D so that the equation

(26) D′ y ≡ bn+1(x)x
n+1 dn+1y

dxn+1
+ bn(x)x

n dny

dxn
+ · · ·+ b0(x) y = 0

is the homogeneous form of equation (25).

Denote by N (D) and N (D′) the Newton polygons at 0 of D and D′ respec-

tively, ℓ and ℓ′ the lengths of their horizontal side and π(λ) and π′(λ) their

indicial equations.

(a) Prove that ℓ′ = ℓ+ 1.

(b) Prove that π′(λ) = C (λ− p)π(λ) for a convenient constant C 6= 0.

(c) When π(λ) has no integer root conclude that equation (25) admits

a solution in C[[x]][1/x]. What happens when there exists r ∈ Z such

that π(r) = 0?

Exercise 4.5.7. —

(1) Check that the function F (x) =
∫ +∞
0

e−ξ/x

ξ2+3ξ+2
dξ of exercise (2.5.4)

satisfies the linear differential equation

(27) x4y′′′ + (2x3 + 3x2) y′ + 2y = x

and explain the appearance of the exponential terms in the analytic continu-

ation of F (x) over the Riemann surface of logarithms.

Put equation (27) in homogeneous form

(28) D1 y = 0.

Draw its Newton polygon at 0 and write its characteristic and indicial

equations.

Determine a fundamental set of formal solutions.

Write down the companion system of equation (28), a normal form and a

formal fundamental solution.
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Compute its Stokes matrix or matrices.

(2) Consider the linear differential equation

(29) D2 y ≡
(
x2(x+ 2)

d

dx
+ 4(x+ 1)

)(
x2

d2

dx2
+ (x2 + x)

d

dx
− 1

)
y = 0

where the factor to the right is the homogeneous Euler operator E0
(cf. Exa. 3.1.24).

Show that y = e2/x satisfies D2y = 0 and conclude that the equations

D1y = 0 and D2y = 0 admit a same normal form (i.e., belong to the same

formal class).

Compute the Stokes matrices of D2y = 0 and conclude that the equa-

tions D1y = 0 and D2y = 0 do not belong to the same meromorphic class.



CHAPTER 5

IRREGULARITY AND GEVREY INDEX THEOREMS

FOR LINEAR DIFFERENTIAL OPERATORS

In this chapter, the results of the preceding sections are applied to prove

index theorems for linear differential operators in the spaces of s-Gevrey se-

ries C[[x]]s as well as in the space C[[x]]∞ = C[[x]] of formal series and the

space C[[x]]0 = C{x} of convergent series. The existence and the value of the

irregularity follow. We also sketch a method based on wild analytic continua-

tion, i.e., continuation in the infinitesimal neighborhood.

5.1. Introduction

A linear map D : E −→ E is said to have an index in E if it has finite

dimensional kernel ker(D,E) and cokernel coker(D,E). If so, the index is

defined as being the number

χ(D,E) = dim ker(D,E)− dim coker(D,E).

An index is the Euler characteristic of the complex

· · · → 0 −→ 0 −→ E
D−−−→ E −→ 0 −→ 0 → · · ·

where D is placed in degree 0 or even. It meets then all algebraic properties

of Euler characteristics. In case coker(D,E) = 0 the index χ(D,E) gives the

number of solutions of the equation Dy = 0 in E. More generally, one says

that a linear morphism L : E → E′ between two vector spaces E and E′ has

an index if its kernel and its cokernel have finite dimension, the index being

again the difference of these dimensions.

From now on, we suppose that D is a linear differential operator

D = bn(x)
dn

dxn
+ bn−1(x)

dn−1

dxn−1
+ · · ·+ b1(x)

d

dx
+ b0(x)
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where the coefficients bp(x) are convergent series at 0 ∈ C. The operator D is

a linear operator in any of the spaces C[[x]]s for 0 ≤ s ≤ +∞ and in any of

the quotients C[[x]]s/C{x}.
The irregularity of D was first defined by B. Malgrange in [Mal74] as

follows.

Definition 5.1.1 (Irregularity). — The irregularity of D at 0 is the index

of D seen as a linear operator in the quotient C[[x]]/C{x}.
It was proved in [Mal74] that D has an index both in C[[x]] and in C{x},

the irregularity being then equal to χ(D,C[[x]]) − χ(D,C{x}). It was also

proved the relation coker(D,C[[x]]/C{x}) = 0 which shows that the irregu-

larity is the maximal number of divergent series solutions of the equations

Dy = g(x) ∈ C{x} linearly independent modulo convergent ones. These in-

dices were computed in terms of the coefficients bp(x) of D. The calculation of

χ(D,C[[x]]) is elementary calculus (cf. Prop. 5.2.5 (i) below). The calculation

of χ(D,C{x}) follows from an adequate application of Ascoli’s Theorem.

By a similar analytical method, based on direct or projective limits of

Banach spaces and compact perturbations of operators, J.-P. Ramis [Ram84]

extended these indices to a large family of Gevrey series spaces: the Gevrey

spaces C[[x]]s as introduced above but also the Gevrey-Beurling spaces

C[[x]](s) = lim
←−
C>0

C[[x]]s,C =
⋂

C>0

C[[x]]s,C

where

C[[x]]s,C =
{∑

n≥0

anx
n ∈ C[[x]] ; ∃K > 0 such that |an| ≤ K(n!)sCns for all n

}

and the spaces C[[x]]s,C+ =
⋂

ε>0C[[x]]s,C+ε and C[[x]]s,C− =
⋃

ε>0C[[x]]s,C−ε.

B.Malgrange [Mal74] and J.-P. Ramis [Ram84] computed also the in-

dices of D acting on the fraction fields of formal, convergent or Gevrey series.

They proved that these indices differ by −χ(D,C[[x]]) from those of D acting

in C[[x]], C{x} or C[[x]]s for 0 < s < +∞. In particular, they are all com-

puted in terms of the Newton polygon of D up to vertical translations and

appear thus as formal meromorphic invariants of the equation. These indices

are extended to systems by means of a cyclic vector.

A differential operator has no index in the spaces C[[x]]s,C themselves

in general. A counter-example (cf. [LRP97, p. 1420]) is given by the Euler
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operator in C[[x]]1,1 as we prove below.

Proposition 5.1.2. — The Euler operator

E = x2
d

dx
− 1 : C[[x]]1,1 −→ C[[x]]1,1

has no index when acting in C[[x]]1,1 for, coker(E ,C[[x]]1,1) has infinite di-

mension.

Proof. — Check first that E acts in C[[x]]1,1. Suppose
∑

n≥0 an x
n satisfy

|an| ≤ Kn! for all n. Then,

E
(∑

n≥0

an x
n
)
=

∑

n≥0

bn x
n

where bn = (n − 1)an−1 − an satisfy |bn| ≤ 2Kn! for all n and the series∑
n≥0 bn x

n belongs to C[[x]]1,1. Consider now the family of series of C[[x]]1,1

gα(x) =
∑

n>0

(n− 1)!nα xn, 0 < α < 1.

The unique series
∑

n≥0 cnx
n solution of E(y) = gα(x) is given by c0 = 0 and

for n > 0 by cn = −(n− 1)!
(
1α + 2α + · · ·+ nα

)
. The coefficients cn have an

asymptotic behavior of the form

cn =
1

α+ 1
(n− 1)!n1+α

(
1 +O(1/n)

)
=

1

α+ 1
n!nα

(
1 +O(1/n)

)

with α > 0 [Die80, p.119, Exer. 27 or p. 305, Formula (7.5.1)]. Consequently,

the series
∑

n≥0 cnx
n does not belong to C[[x]]1,1 and gα(x) does not belong to

the range of E . Any non trivial linear combination
∑
λjgαj (x) has the same

property.

To prove that coker(E ,C[[x]]1,1) has infinite dimension it suffices to prove

that the gα’s are linearly independent. To this end, suppose that the gα’s sat-

isfy a linear relation of the form a1gα1 + a2gα2 + · · ·+ argαr = 0. This means

that a1n
α1+a2n

α2+· · ·+arnαr = 0 for all n > 0. Choose n0 6= 1. Applying the

relation for n = n0, n
2
0, . . . , n

r
0 provides the van der Monde system based on

(λ1 = nα1
0 , λ2 = nα2

0 , λ3 = nα3
0 , . . . , λr = nαr

0 ):




λ1a1 + λ2a2 + · · ·+ λrar = 0

λ21a1 + λ22a2 + · · ·+ λ2rar = 0

· · ·
λr1a1 + λr2a2 + · · ·+ λrrar = 0
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to determine the coefficients a1, a2, . . . , ar which are then all equal to 0. Hence

the gα’s are linearly independent and coker(E ,C[[x]]1,1) has infinite dimension.

5.2. Irregularity after Deligne-Malgrange and Gevrey index theo-

rems

The proofs given in this section are due to B.Malgrange [Mal74] and

P. Deligne [DMR07]) in letter to B. Malgrange, dated 22 août 1977. Introduce

the following notations:

⊲ V is the sheaf over S1 of germs of solutions of D;

⊲ V≤k the subsheaf of germs with exponential growth of order at most k;

⊲ V<0 the sheaf over S1 of flat germs of solutions of D;(1)

⊲ V≤−k the subsheaf of germs with exponential decay of order at least k.

The sheaf V≤k is a subsheaf of A≤k, the sheaf V≤−k a subsheaf of A≤−k
and the sheaf V<0 a subsheaf of A<0. All these sheaves are sheaves of C-vector

spaces. The dimensions of the stalks of V<0 and V≤−k at θ ∈ S1 are denoted

by

N<0(θ) = dimV<0
θ and N≤−k(θ) = dimV≤−kθ .

Lemma 5.2.1. — The sheaves V<0 and V≤−k for all k > 0 are piecewise

constant. The functions θ 7→ N<0(θ) and θ 7→ N≤−k(θ) are lower semi-

continuous with jumps occuring only when entering or exiting a Stokes arc of

D.

Proof. — Let D′ be a normal form of D. We denote by V ′,V ′≤k, . . . the

sheaves associated with D′ as V,V≤k, . . . are associated with D. By the Main

Asymptotic Existence Theorem (Thm. 4.4.2) the sheaves V<0 and V≤−k for

all k > 0 are isomorphic to V ′<0 and V ′≤−k respectively and it is sufficient to

prove the lemma for D′ instead of D. The space of solutions of D′y = 0 is

spanned by functions of the form h(x)eqj(1/x) where h(x) has moderate growth

at x = 0 and is defined on the full germ of universal cover of C∗ at 0. Such

functions belong to V<0 in a direction θ if and only if eqj(1/x) belongs to A<0
θ .

If qj(1/x) appears with multiplicity mj in a formal fundamental solution of

Dy = 0 then the solutions of the form h(x)eqj(1/x) generate a constant sheaf

isomorphic to Cmj over the interior of each Stokes arc generated by eqj(1/x)

(1) The notations A≤0 and V≤0, in the continuation of the exponential case A≤−k and V≤−k for

k > 0, are usually saved for germs with moderate growth.
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and nothing else. The same result is valid for V≤−k by considering only the

exponentials eqj(1/x) of degree at least k.

Comments 5.2.2 (Sheaf of solutions of the Euler equation)

Here below are drawn the unique Stokes arc of the Euler equation (cf. Exa. 2.2.4) and

the graph of the function θ 7→ N≤−1(θ). In this case, N<0(θ) = N≤−1(θ).

Figure 1

Theorem 5.2.3 (Deligne-Malgrange). — Any linear differential operator

D with analytic coefficients satisfies the following properties.

1. ker
(
D,C[[x]]s/C{x}

)
≃

{
H1

(
S1;V<0

)
for s = +∞,

H1
(
S1;V≤−k

)
for 0 < s = 1/k < +∞;

2. coker
(
D,C[[x]]s/C{x}

)
= 0 for 0 < s ≤ +∞;

3. dim H1
(
S1;V<0

)
= 1

2 var
(
N<0

)
;

4. dim H1
(
S1;V≤−k

)
= 1

2 var
(
N≤−k

)
for all k > 0.

Proof. — 1.–2. Consider first the case s = +∞. The long exact sequence

of cohomology associated with the short exact sequence 0 → A<0 → A →
A/A<0 → 0 reads

0 → H0
(
S1;A

)
−→ H0

(
S1;A/A<0

)
−→ H1

(
S1;A<0

)
−→ H1

(
S1;A

)

≃ ≃

ց ւ
C{x} C[[x]] 0

for, H0(S1;A<0) = 0, H0(S1;A/A<0) is isomorphic to C[[x]] by the Borel-

Ritt Theorem (cf. Cor. 3.2.8) and the map H1(S1;A<0) → H1(S1;A) factors

through 0 by the Cauchy-Heine Theorem (cf. Cor. 3.2.14). Hence,

H1(S1;A<0) ≃ C[[x]]/C{x}.
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The Main Asymptotic Existence Theorem in sheaf form (Thm. 4.4.1) provides

the short exact sequence 0 → V<0 → A<0 D−→A<0→0. The associated long

exact sequence of cohomology reads

0 → H1
(
S1;V<0

)
−→ H1

(
S1;A<0

) D−→ H1
(
S1;A<0

)
→ 0.≃ ≃

C[[x]]/C{x} C[[x]]/C{x}
Hence, ker(D,C[[x]]/C{x}) ≃ H1

(
S1;V<0

)
and coker(D,C[[x]]/C{x}) ≃ 0.

The case when s < +∞ is proved similarly from the short exact sequences

0 → A≤−k → As
T−→As/A≤−k → 0 and 0 → V≤−k → A≤−k D−→A≤−k → 0

using the Gevrey parts of the Borel-Ritt and the Cauchy-Heine Theorems.

3. Denote by αℓ for ℓ ∈ Z/pZ, the boundary points of the Stokes arcs of

D ordered cyclically on S1 and by iℓ : {αℓ} →֒ S1 and jℓ : ]αℓ, αℓ+1[ →֒ S1

the canonical inclusions. Since S1 is a real variety of dimension 1 the Euler

characteristic(2) of the sheaf V<0 satisfy

χ(V<0) = dimH0
(
S1;V<0

)
− dimH1

(
S1;V<0

)
.

Then, χ(V<0) = − dim H1
(
S1;V<0

)
since dimH0

(
S1;V<0

)
= 0 (there exists

no flat analytic function and, a fortiori, no flat solution all around 0 but

the null function) and we are left to estimate the Euler characteristic of the

sheaf V<0.

Consider the short exact sequence

0 →
⊕

ℓ

jℓ!V<0 −→ V<0 −→
⊕

ℓ

iℓ∗V<0 → 0

The additivity of Euler characteristics allows us to write

χ(V<0) =
∑

ℓ

χ(jℓ!V<0) +
∑

ℓ

χ(iℓ∗V<0).

The space H0
(
S1; jℓ!V<0

)
is 0 since ]αℓ, αℓ+1[ is not a closed subset of S1 (a

germ at a point of the boundary is the null germ by definition and generates

null germs in the neighborhood, hence all over ]αℓ, αℓ+1[ ). The sheaf jℓ!V<0

is a constant sheaf in restriction to ]αℓ, αℓ+1[ and 0 outside. Hence, the space

H1
(
S1; jℓ!V<0

)
≃ H1

(
]αℓ, αℓ+1[; jℓ!V<0

)
is isomorphic to the stalk of V<0 at

any point α′ℓ of ]αℓ, αℓ+1[ and therefore, χ(jℓ!V<0) = − dimV<0
α′ℓ

for all ℓ.

(2) The number χ(F) =
∑

(−1)j dimHj
(
X;F

)
is, by definition, the Euler characteristic of a sheaf F

over a space X.
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The space H1
(
S1; iℓ∗V<0

)
is 0 since the support of iℓ∗V<0 has dimension 0

and the space H0
(
S1; iℓ∗V<0

)
is isomorphic to the stalk V<0

αℓ
of V<0 at αℓ.

Thus, χ(iℓ∗V<0) = dimV<0
αℓ

for all ℓ.

The number dimV<0
αℓ

−dimV<0
α′ℓ

is both the variation of N<0 at αℓ and at

αℓ+1. Hence, the
1
2 in the formula

∑
ℓ χ(jℓ!V<0)+

∑
ℓ χ(iℓ∗V<0) = 1

2 var
(
N<0

)
.

This ends the proof of point 3.

4. The extension of the previous proof to the sheaf V≤−k is straightfor-

ward.

Remark 5.2.4. — The half variation of N<0 around S1 is also the number

of Stokes arcs of D counted with multiplicity (cf. Def. 4.3.2 and Exa. 4.3.3), or

equivalently, the sum of the (possibly fractional) degrees of all of the exponen-

tials of a formal fundamental solution ofD. The half variation of N≤−k around

S1 is the number of Stokes arcs of D with level at least k and counted with

multiplicity, or equivalently, the sum of the degrees of all of the exponentials

of degree at least k.

Corollary 5.2.5. — Let 0 < k1 < k2 < · · · < kr < +∞ be the slopes of the

Newton polygon of the linear differential operator D (i.e., the levels of D) and

denote, as usually, sj = 1/kj for j = 1, . . . , r. The operator D has an index

in all spaces C[[x]]s for 0 ≤ s ≤ +∞ with values

(i) χ
(
D,C[[x]]

)
= − lower ordinate of the Newton polygon N (D);

(ii) χ(D,C{x}) =

{
χ
(
D,C[[x]]

)
− ♯ Stokes arcs of any level , i .e.,

−lower ordinate of the vertical side in N (D);

(iii) χ(D,C[[x]]s) =





χ
(
D,C[[x]]

)
− ♯ Stokes arcs of level < kj , i .e.,

−lower ordinate of the side of slope kj in N (D)

when s satisfies sj+1 < s ≤ sj

where ♯ stands for “the number of”. In particular, its irregularity irr0(D)

satisfies

(iv) irr0(D) = height of the Newton polygon N (D) of D

(out of the vertical side).

Proof. — Denote by v(bp) the valuation of the coefficient bp(x) of d
p/dxp in D

and by m = inf
(
v(bp)− p

)
the lower ordinate of the Newton polygon N (D)

of D.

(i) Prove that D has an index in C[[x]], equal to −m.
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From the definition of m the valuation of bp satisfies v(bp) ≥ p+m for all

p, the equality being reached on a non-empty set P of indices p. Hence, the

coefficient bp reads bp(x) = αpx
p+m +Ap(x) with v(Ap) > p+m for all p and

the constant coefficient αp is non-zero for p ∈ P. For r ≥ −m, we have

bp(x)
dp

dxp
xr = r(r − 1) · · · (r − p+ 1)αpx

r+m + higher order terms.

Hence,

Dxr = βr+mx
r+m +Br+m(x)

where v(Br+m) > r+m. The constant βr+m =
∑

p∈P r(r−1) · · · (r−p+1)αp

being a polynomial with respect to r is non-zero for r ≥ r0 large enough.

Denote by M the maximal ideal of C[[x]] (ideal generated by x). The previous

calculation states that, for r ≥ r0, the operator D induces a morphism D :

Mr → Mr+m.

Prove that this morphism is an isomorphism. Let g(x) = gr+mx
r+m +

Gr+m(x) with v(Gr+m) > r + m be given. A series f(x) = frx
r + Fr(x)

with v(Fr) > r satisfies the equation Df = g if and only if fr = gr+m/βr+m

and DFr = Gr+m + Cr+m for an adequate formal series Cr+m with valuation

v(Cr+m) > r +m. The same reasoning applied to this new equation proves

that the next term in f(x) is also uniquely determined and so on by recurrence.

This achieves the proof of the fact that D : Mr → Mr+m is an isomorphism.

Now, consider the commutative diagram

0 −−→ Mr −−−→C[[x]] −−−→ C[[x]]/Mr −−→ 0y∼
yD

y
0 −−→Mr+m −−−→C[[x]] −−−→C[[x]]/Mr+m −−→ 0

The left vertical morphism has an index equal to 0. The spaces C[[x]]/Mr

and C[[x]]/Mr+m being of finite dimension equal to r and r +m respectively

the right vertical morphism has an index equal to −m. We can conclude that

the morphism in the middle has also an index χ(D,C[[x]]) and, by additiv-

ity of Euler characteristics, this index satisfies −0 + χ(D,C[[x]])− (−m) = 0.

Hence, the result.

(ii) To prove that D has an index in C{x} with the value given in the

statement we consider the exact sequence

0 → C{x} −→ C[[x]] −→ C[[x]]/C{x} → 0.
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Since D has an index both in C[[x]] and in C[[x]]/C{x} (cf. Thm. 5.2.3) it has

also an index in C{x} and the three indices satisfy the addition formula

χ(D,C{x})− χ(D,C[[x]]) + χ(D,C[[x]]/C{x}) = 0.

Hence, the result.

(iii) The same argument applied to the exact sequence

0 → C{x} −→ C[[x]]s −→ C[[x]]s/C{x} → 0

proves that D has an index in C[[x]]s and provides the value given in the

statement by the addition formula of Euler characteristics.

(iv) follows directly from (i) and (ii).

Remarks 5.2.6. — The following remarks are straightforward.

Figure 2. Newton polygon and the curve s → χ(D,C[[x]]s)

⊲ The proof above shows that the cokernel of D : C[[x]] → C[[x]] can be

generated by polynomials.

⊲ The irregularity of D is zero if and only if the Newton polygon has only

an horizontal edge. This corresponds, by definition, to a regular singular point

at 0. Hence, the irregularity is zero if and only if 0 is a regular singular point.

⊲ The function s 7→ χ(D,C[[x]]s) is piecewise constant, increasing and left

continuous.

⊲ The indices χ(D,C[[x]]s), 0 ≤ s ≤ +∞, are not themselves formal mero-

morphic invariants since, in a gauge transformation, the Newton polygon is

translated vertically. However, the irregularity is a meromorphic invariant as

well as any difference of indices χ(D,C[[x]]s), 0 ≤ s ≤ +∞.

A consequence of the previous index theorem is the Maillet-Ramis The-

orem. Maillet’s Theorem asserts that the series solutions of a linear or non
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linear differential equation are Gevrey of a certain order k. J.-P. Ramis made

the theorem more precise in the linear case by proving that the possible k are

the levels of the equation.

Theorem 5.2.7 (Maillet-Ramis Theorem). — A series f̃(x), solution of

the differential equation Dy = 0 is either convergent or s-Gevrey where s

can be chosen so that k = 1/s be one of the levels k1 < k2 < · · · < kr of D

associated with f̃(x). Other values of k are not optimal.

A series solution f̃(x) is a formal solution of the form f̃(x)e0 coming with

a determining polynomial qj = 0. The levels associated with f̃(x) are the

degrees of the polynomials qℓ − qj = qℓ for all ℓ 6= j. They are, then, the non

zero slopes of the Newton polygon N0(D) of D at 0.

Proof. — Let 0 < s < +∞ and denote k0 = 0, k∞ = +∞ and sj =

1/kj for j = 0, . . . ,+∞. Since, for all s, coker(D,C[[x]]s/C{x}) = 0 the

number of independent solutions of D in C[[x]]s/C{x} is equal to the index

χ(D,C[[x]]s/C{x}) of D in C[[x]]s/C{x}. It is then constant for sj+1 < s ≤ sj ,

j = 0, . . . , r. Hence, a series solution is at least s1-Gevrey; if it is s-Gevrey

with s satisfying sj+1 < s ≤ sj , it is also sj-Gevrey and, in particular, if it is

s-Gevrey with s < sr it is convergent.

Comments 5.2.8 (On the examples of Section 2.2.2)

⊲ The Euler operator E = x2d/dx+ 1 and its homogeneous variant

E0 = x3 d2

dx2
+ (x2 + x)

d

dx
− 1

are singular irregular at 0. They have same indices and same irregularity as indicated on

Fig. 3. Moreover, χ(E ,C[[x]]s) = χ(E ,C[[x]]) for s ≥ 1 and χ(E ,C[[x]]s) = χ(E ,C{x})
for s < 1.

The unique non-zero slope of the Newton polygons N (E) and N (E0) is equal to 1

while the Euler series is 1-Gevrey and s-Gevrey for no s < 1 (cf. Com. 2.3.3).

Figure 3
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⊲ The exponential integral function satisfies Ei(y) = 0 where Ei is the operator

Ei = x
d2

dx2
+ (x+ 1)

d

dx
.

This operator is regular singular at 0 and irregular singular at infinity. One can check that

the Newton polygon at 0 reduces to a horizontal slope. The picture below shows the New-

ton polygon N (Ei) at infinity. Recall that N (Ei) is the symmetric, with respect horizontal

axis, of the Newton polygon at 0 of the operator Ei after the change of variable z = 1/x.

Hence the change of signs in the indices. The series Ei(x) is 1-Gevrey.

Figure 4

⊲ The hypergeometric operator

D3,1 = z
(
z
d

dz
+ 4

)
− z

d

dz

(
z
d

dz
+ 1

)(
z
d

dz
− 1

)

is irregular singular at infinity. Its Newton polygon at infinity has a slope 0 and a slope − 1
2
.

Its indices and its irregularity at infinity are indicated on figure below.

Figure 5

The unique non-zero slope of the Newton polygon N (D3,1) is −1/2 at inifinity

(hence +1/2 at 0 after the change of variable x = 1/z) and we saw that the hyperge-

ometric series g̃(x) is 2-Gevrey.

5.3. Wild analytic continuation and index theorems

We sketch here another method to compute a larger variety of index theo-

rems for D. For more details we refer to [LRP97]. In that paper, indices are

computed for D acting on a variety of spaces including the spaces considered

before. The idea is to see each functional space as the 0-cohomology group

of the sheaves F ,Fk, and so on. . . on a convenient subset of the base space
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X,Xk and so on . . . The admissible subsets U that are considered are finite

unions of truncated narrow sectors (for a technical reason, sectors are assumed

to be closed on their lower boundary) and, possibly, of a small disc centered

at 0. The index χ(D,C[[x]]) of D acting on the space of formal series C[[x]]

is assumed to be known, for instance, from a calculation as before (Cor. 5.2.5

(i)). From the present viewpoint the situation is made more complicated by

the fact that the base spaces are now varieties of real dimension 2. The coho-

mology groups H2(U ;F), H2(U ;Fk) and so on. . . are non-zero groups but the

cohomology groups H i for i ≥ 1 satisfy (cf. [LRP97, Thms. 2.1 and 4.2]) the

following sharp property.

Theorem 5.3.1. — For i ≥ 1, the linear maps

D : H i
(
U ;F

)
−→ H i

(
U ;F

)

are isomorphisms for all admissible U .

The same result is valid for F replaced by Fk,Fk1,k2 and so on . . .

The technique is as follows. For small discs and narrow sectors (this means

small enough to contain no big point associated with D) the calculation is

elementary and based on the isomorphism between the spaces of solutions for

D and for a normal form D′ of D over such domains. For a union of narrow

sectors or of a small disc and narrow sectors the calculation follows from the

use of Mayer-Vietoris sequences as follows (cf. [LRP97, Lem. 3.5]).

Lemma 5.3.2. — Let U = U1∪U2 where U1 and U2 are either open or closed

subsets of U and suppose U,U1, U2 and U1 ∩ U2 are admissible subsets.

If D has an index in H0(U1;F), H0(U2;F) and in H0(U1 ∩ U2;F) then,

it has an index in H0(U ;F) given by

χ
(
D,H0(U ;F)

)
= χ

(
D,H0(U1;F)

)
+ χ

(
D,H0(U2;F)

)

−χ
(
D,H0(U1 ∩ U2;F)

)
.

The same result is valid with F replaced by Fk,Fk1,k2 and so on . . .

For a (non-exhaustive) list of indices which can be computed that way

we refer to [LRP97]. Let us just mention that the list includes indices of D

acting on k-summable series over any k-wide arc I (cf. Def. 6.1.2) or acting

on multisummable series over any multi-arc (I1, I2, . . . ) (cf. Sect. 8.7.1).

These indices are formal meromorphic invariants of D as long as U does

not contain a small disc about 0. Otherwise, their difference with χ(D,C[[x]])

are formal meromorphic invariants.



CHAPTER 6

FOUR EQUIVALENT APPROACHES TO

K-SUMMABILITY

Given a power series f̃(x) at 0 we know from the Borel-Ritt Theorem that

there are infinitely many functions asymptotic to f̃(x) on any given sector

with an arbitrary opening. However, when f̃(x) satisfies an equation, these

asymptotic functions do not satisfy the same equation in general. The Main

Asymptotic Expansion Theorem fills in this gap on small enough sectors for

series solutions of linear differential equations by asserting the existence of

asymptotic solutions. However, the theorem does not guaranty uniqueness

and consequently lets the situation under some indetermination.

The aim of a theory of summation on a given germ of sector (there might

be some constraints on the size and the position of the sector) is to associate

with any series an asymptotic function uniquely determined in a way as much

natural as possible. What natural means depends on the category we want to

consider. There is no known operator of summation applying to the algebra

of all power series at one time and no hope towards such a universal tool.

For the theory to apply to series solutions of differential equations an eligible

request is that the summation operator be a morphism of differential algebras

from an algebra of power series (containing the series under consideration) into

an algebra of asymptotic functions (containing the corresponding asymptotic

solutions). Both algebras must be chosen carefully and correspondingly. To

sum series solutions of a difference equation one should look for a summation

operator being a difference morphism; to sum basic series, for a summation

operator being a q-morphism and so on . . . The simplest example is given by

the usual summation of convergent power series from the algebra of convergent

series into the algebra of germs of analytic functions at 0. Such a summation

operator is indeed a morphism of differential algebras.
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This chapter deals with the simplest case of summability called k-

summability which applies to some divergent series and it aims at being

a detailled introduction to the subject. We present four approaches which

show up to be equivalent characterizations of k-summable series. With

each approach we discuss examples and we attach some applications fitting

especially that viewpoint. We give extensive proofs for most of the results

and we refer to the literature when the proofs are omitted. A good part of

the chapter can be found in [Mal95] or, in [Bal94] and [Cos09] (mostly for

the Borel-Laplace approach) and [LRP97] (for an approach through wild

analytic continuation). More references can be found in these papers and

books.

These questions were already widely considered by Euler. They have

been developed at the end of the XIXth and the beginning of the XXth Cen-

tury by mathematicians such as Borel, Hardy and al. A cohomological view-

point brought them an impulse in the late 1970’s and 1980’s mostly with

the works of Y. Sibuya, B.Malgrange, J.-P. Ramis, J.Martinet, W. Balser and

lately, C. Zhang for basic series, giving rise to the abstract notions of simple or

multiple summability. An extension of Borel’s approach was almost simultane-

ously developed by J. Écalle, B. Braaksma, G. Immink, . . . , giving rise to the

theory of resurgence and integral formulæ applying to a variety of situations.

In the 1980’s J.-P. Ramis and Y. Sibuya [RS89] (see also, [LR90]) an-

swered negatively the Turrittin problem [Was76, p. 326] by showing that

series solutions of linear differential equations might be k-summable for no

value of the parameter k > 0. They showed however that they are all, at

worst, multisummable. The levels kj entering the multisummability process

are the levels of the equation (cf. Def. 4.3.6). In the case of series solutions

of linear difference equations J. Écalle noticed that some series are neither k-

summable nor multisummable. He showed that one has to introduce a new

concept named k+-summability (cf. [É93], [Imm96]) for a simple level k as

well as for multiple levels k’s.

6.1. First approach: Ramis k-summability

The problem we address now is to determine under which conditions the

Taylor map

Ts,I : H0(I;As) −→ C[[x]]s

which, with a section of As over an arc I of S1 (or of its universal cover

Š1 ≃ R), associates its s-Gevrey asymptotic expansion, could be inverted as a
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morphism of differential C-algebras. The answer is far from being straightfor-

ward and requires some restrictions both on I and C[[x]]s. The first definition

of k-summability we present here is based on constraints for the asymptotic

conditions themselves (recall k = 1/s). It relies on the results of chapters 2

and 3.

Comment 6.1.1 (On the Euler function (Exa. 2.2.4))

Although the problem here addressed is independent of any equation, what can happen is

well illustrated by the behavior of the solutions of the Euler equation.

We saw (cf. Coms. 2.3.9, p. 21) that E(x) is 1-Gevrey asymptotic at 0 to the Euler

series Ẽ(x) on any sector I based on the arc I = ] − 3π
2
, 3π

2
[. Denote by E−(x) and

E+(x) the two branches of E(x) on the half-plane −π = {x ; ℜ(x) < 0}; these branches

are the respective analytic continuations of E−π+ε(x) and E+π−ε(x) as ε > 0 tends to 0.

The functions E−(x) and E+(x) are distinct. Indeed, if they were equal, E(x) would be

asymptotic to Ẽ(x) all around 0 and this would imply that Ẽ(x) be convergent. More

precisely, by applying Cauchy’s Residue Theorem, one can check [LR90] that

E+(x)− E−(x) = 2πi exp(1/x)

The functions E−(x) and E+(x) are both 1-Gevrey asymptotic to Ẽ(x) at 0 on the half-

plane −π, and indeed, exp(1/x) is 1-Gevrey asymptotic to 0 on −π.

When the sector is narrow, that is, when is at most an open half-plane, then, E(x)

provides always a 1-Gevrey asymptotic solution on . However, when ⊆ −π, the two

solutions E−(x) and E+(x), and hence all the solutions, are 1-Gevrey asymptotic to Ẽ(x).

Existence is guarantied, uniqueness fails.

When the sector is wide, that is, when contains a closed half-plane, then, either

does not contain the closure −π of −π and f provides the unique 1-Gevrey asymptotic

solution on , or contains −π and there is no 1-Gevrey asymptotic solution on .

Uniqueness is guaranteed , existence may fail.

In conclusion, there is no good size for an open sector to guaranty both existence

and uniqueness of s-Gevrey asymptotic solutions. We will see that this property remains

valid for s-asymptotic functions, not necessarily solutions. Note also that the defect of

uniqueness is an exponential function. More generally, flatness for solutions of linear

differential equations is always related to exponential functions.

It is convenient to introduce the following definition.

Definition 6.1.2 (k-wide arc or sector). —

⊲ An arc I (of S1 or of its universal cover Š1) is said to be k-wide if it is

bounded and either closed with opening |I| ≥ π
k or open with opening |I| > π

k .

⊲ A sector is said to be k-wide if it is based on a k-wide arc.
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It follows from the Borel-Ritt Theorem (Thm. 2.4.1 (ii) and Cor. 2.4.4)

that the Taylor map

Ts,I : H0(I;As) −→ C[[x]]s

is surjective when the arc I is open with length |I| ≤ π/k and a fortiori,

when I is closed with length |I| < π/k. Schematically, we can write

I open or closed but not k-wide =⇒ Ts,I surjective

Consider now the injectivity of Ts,I . The example of the Euler func-

tion (cf. comment 6.1.1) shows that the Taylor map Ts,I may be not injective,

at least, when I is small. For all I, the kernel of Ts,I is the space H0(I;A≤−k).
Indeed, the left exactness of the functor Γ(I; . ) = H0(I; . ) applied to the short

exact sequence

0 → A≤−k −→ As
Ts−→ C[[x]]s → 0 (19)

implies exactness for the sequence

0 → H0(I;A≤−k) −→ H0(I;As)
Ts,I−−−→ C[[x]]s.

A sufficient condition for Ts,I to be injective is given by Watson’s Lemma.

Theorem 6.1.3 (Watson’s Lemma). — Let be an open sector with open-

ing | | = π/k and suppose that f ∈ O( ) satisfies a global estimate of expo-

nential type of order k on , i.e., there exist constants C > 0, A > 0 such that

the following estimate holds for all x ∈ :

|f(x)| ≤ C exp− A

|x|k
·

Then, f is identically equal to 0 on .

Roughly speaking, the lemma says: “under a global estimate of exponen-

tial order k on , the function f is too flat on a too wide sector to be possibly

non 0”.

For a proof, among the many possible references, quote [Mal95, p. 174,

Lem. 1.2.3.3] or to [Bal00, p. 75 Prop. 11].

In terms of sheaves Watson’s Lemma translates as follows.

Corollary 6.1.4 (Watson’s Lemma). — The sections of A≤−k over any

k-wide arc I are all trivial and consequently, the Taylor map Ts,I is injective.
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Schematically,

k-wide arc I =⇒ H0(I;A≤−k) = 0 =⇒ Ts,I injective

Proof. — It suffices to consider the case when I is compact. A section of A≤−k
on I is represented by a finite and consistent collection of fj ∈ A≤−k

(
j(Rj)

)

where the sectors j(Rj) have radius Rj and cover the arc I. Let R =

minj(Rj). Then, the fj ’s glue together into a function f ∈ A≤−k( (R)) where

(R) denotes the sector (R) =
⋃

j j(Rj) ∩ {|x| < R}. Since (R) contains I

it is wider than π
k and Watson’s Lemma applies.

Comments 6.1.5 (Exponentials and Watson’s Lemma)

⊲ Choose = {x ; π/2 < arg(x) < 3π/2}. Then, the exponential function exp(1/x)

(which appears in the Euler example) belongs to A≤−1( ). Although this function is not

zero that’s not contradictory with Watson’s Lemma. Indeed, denote θ = arg(x); the best

global estimate for exp(1/x) on is supx∈ | exp(1/x)| = supπ/2<θ<3π/2 exp(cos θ/|x|) = 1

since cos θ tends to 0 as θ tends to ±π/2.

⊲ On another hand, the exponential exp(1/x) satisfies Watson’s estimate on any

proper subsector of . This shows that Watson’s Lemma is no more valid on a smaller

sector; here, for k = 1 on a sector of opening less than π and for any k > 0, using an

adequate exponential of order k, on a sector of opening less than π/k.

⊲ Euler series. — We can now achieve our comment 6.1.1 and show that when

is a sector containing −π there exists no function (solution or not solution of the

Euler equation) being 1-Gevrey asymptotic to the Euler series Ẽ(x) on . Indeed, sup-

pose = ]α, β[×]0, R[ with α < π/2 < 3π/2 < β and f(x) be 1-Gevrey asymptotic

to Ẽ(x) on . In restriction to ]α, 3π/2[, the function f(x)−E+(x) is 1-Gevrey asymptotic

to Ẽ(x)− Ẽ(x) ≡ 0; hence, it is 1-exponentially flat (cf. Prop. 2.3.17) on a 1-wide sector

and we can conclude by Corollary 6.1.4 of Watson’s Lemma that f(x) = E+(x) on ]α, 3π/2[.

Symmetrically, f(x) = E−(x) on ]π/2, β[. Hence, the contradiction since E+ 6= E−

on ]π/2, 3π/2[.

The conditions on the arc I to insure either the injectivity or surjectivity

of the Taylor map Ts,I are complementary and there is no intermediate con-

dition insuring both injectivity and surjectivity. In such a situation a natural

solution proposed by J.-P. Ramis in the early 80’s to get both injectivity and

surjectivity consisted in choosing for I a k-wide arc and restricting the space

C[[x]]s of s-Gevrey series into a smaller space.

Suppose we are given a power series f̃(x) =
∑

n≥0 anx
n at 0.

Definition 6.1.6 (Ramis k-summability). —
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⊲ k-summability on a k-wide arc I (recall s = 1/k). — The series f̃(x)

is said to be k-summable on I if I is a k-wide arc and f̃ belongs to the range

of the Taylor map Ts,I , i.e., if there exists a section f ∈ H0(I;As) which is

s-Gevrey asymptotic to f̃ on the large enough arc I.

⊲ k-summability in a direction arg(x) = θ. — The series f̃(x) is said to

be k-summable in the direction θ if there exists a k-wide arc I bisected by θ

on which f̃(x) is k-summable.

⊲ k-sum. — The function f above, which is uniquely determined when it

exists, is called the k-sum of f̃(x) on I or in the direction θ and we denote it

by f = Sk,I(f̃) or f = Sk,θ(f̃).

⊲ k-summability. — The series f̃(x) is said to be k-summable if it is

k-summable in all directions but finitely many, called the singular directions.

Notation 6.1.7. — We denote by C{x}{k,I} the set of all k-summable series

on I and by C{x}{k,θ} the set of all k-summable series in direction θ.

Notice that C{x}{k,θ} = C{x}{k,I} for I the closed arc bisected by θ with

length π/k.

Remark 6.1.8. — It follows from the definition that a series which is k-

summable in all direction is necessarily convergent.

Comment 6.1.9 (On the examples of chapter 1)

From Sect. 2.2.2 we deduce:

⊲ The Euler series Ẽ(x) of Example 2.2.4 is 1-summable according to the definition

above: precisely, it is 1-summable in all directions but the direction θ = π.

⊲ Since we have not yet proved that the hypergeometric series g̃(z) of Example 2.2.6 is

a 2-Gevrey asymptotic expansion we cannot conclude yet about its possible 1
2
-summability.

⊲ In Example 2.2.7, as for the Euler function, we can move the line of integration

from R+ to the half-line dθ with argument θ and get an estimate of the same type as

Estimate (10) as long as −π/2 < θ < π/2 (we leave that point as an exercise). This shows

that the series h̃(z) is 1-summable in all directions −π/2 < θ < π/2.

⊲ Similarly, one can show that the series ℓ̂(z) of Example 2.2.8 is 1-summable in all

directions −π/2 < θ < π/2.

The following proposition is straightforward.

Proposition 6.1.10. — With definitions as above, and especially s = 1/k,

we can state:
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(i) The sets C{x}{k,I} of k-summable series on a k-wide arc I

and C{x}{k,θ} of k-summable series in direction θ are differential subal-

gebras of the Gevrey series space C[[x]]s;

(ii) For I a k-wide arc of S1, the Taylor map

Γ(I,As)
Ts,I−−−→ C{x}{k,I}

is an isomorphism of differential C-algebras with inverse the summation

map Sk,I .

As in Chapter 2 (cf. Prop. 2.3.13 and Cor. 2.3.14) let us now observe the

effect of a change of variable x = tr, r ∈ N∗. Let I = (α, β) be a k-wide arc.

In accordance with the notation j
/r for sectors in Section 2.3.2, denote by Ij/r

the arc

Ij/r =
(
(α+ 2jπ)/r, (β + 2jπ)/r

)

so that when θ′ = arg(t) runs over I/r = I0/r then θ′′ = arg(ωℓt) runs over Iℓ/r
and θ = arg(x = tr) runs over I. Observe that Ij/r is kr-wide.

Proposition 6.1.11 (k-summability in an extension of the variable)

The following two assertions are equivalent:

(i) the series f̃(x) is k-summable on I with k-sum f(x);

(ii) the series g̃(t) = f̃(tr) is kr-summable on I/r with kr-sum g(t) = f(tr).

Proof. — The equivalence is a direct consequence of Definition 6.1.6 of k-

summability and of Proposition 2.3.13.

Given a series g̃(t) recall (cf. Sect. 2.3.2) that r-rank reduction consists in

replacing g̃(t) by the r series g̃j(x), j = 0, . . . , r defined by

g̃(t) =

r−1∑

j=0

tj g̃j(t
r)

and that the series g̃j(x) are given, for j = 0, . . . , r − 1, by the relations

rtj g̃j(t
r) =

r−1∑

ℓ=0

ωℓ(r−j) g̃(ωℓt).

From Corollary 2.3.14 we can state:

Corollary 6.1.12 (k-summability and rank reduction)

The following two properties are equivalent:
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(i) for ℓ = 0, . . . , r − 1 the series g̃(t) is k′-summable on Iℓ/r with k′-

sum g(t);

(ii) for j = 0, . . . , r − 1 the r-rank reduced series g̃j(x) is k′/r-summable

on I with k′/r-sums gj(x) defined by the relation

rxj/r gj(x) =

r−1∑

ℓ=0

ωℓ(r−j) g(ωℓx1/r), x1/r ∈ I0/r.

In particular, a series g̃(t) is k′-summable if and only if its associated r-rank

reduced series are k′/r-summable.

With these results we may assume, without loss of generality, that k is

small or large at convenience. In particular, we may assume that k > 1/2 so

that closed arcs of length π/k are shorter than 2π and can be seen as arcs of

S1.

6.2. Second approach: Ramis-Sibuya k-summability

Due to the quite simple integral formula defining the Euler function f(x)

we were able to prove, in accordance to Definition 6.1.6, that the Euler se-

ries Ẽ(x) is 1-summable in all directions but the direction θ = π. However, to

check s-asymptoticity on k-wide arcs is not an easy task in general (we refer

for instance to our other examples in Sect 2.2.2) and it is worth to look for

equivalent conditions in different form.

In this section, we discuss an alternate definition of k-summability, stated

in the early 80’ by J.-P. Ramis and Y. Sibuya, which is based on series seen as

0-cochains. In order to work on S1 we assume that k > 1/2. This assumption

does not affect the generality of the purpose as explained at the end of the

previous section.

6.2.1. Definition. — Let I = {Ij}j∈Z/pZ be a “good” covering of S1 (hence

a covering without 3-by-3 intersections; cf. Def. 3.2.9). Its connected intersec-

tions 2-by-2 are the arcs (
•

Ij = Ij ∩ Ij+1)
(1) and, given a sheaf F over S1,

a 1-cocycle of I with values in F is well defined by the data of functions
•
ϕj∈ F(

•

Ij) for all j ∈ Z/pZ.

(1) There is an ambiguity with the notations when p = 2. In that case, the intersection I1 ∩ I2 is

made of two arcs which we denote by
•

I 1 and
•

I 2.
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Theorem 6.2.1 (Ramis-Sibuya Theorem). —

Suppose
•
ϕ = (

•
ϕj)j∈Z/pZ is a 1-cocycle of I with values in A≤−k.

Then, there exist 0-cochains (fj ∈ Γ(Ij ;A))j∈Z/pZ of I with cobound-

ary
•
ϕ and any such 0-cochain (fj)j∈Z/pZ takes actually its values in As,

i.e., fj ∈ Γ(Ij ;As) for all j (recall that s = 1/k).

The theorem says in particular that, under the condition that all the differ-

ences −fj + fj+1 are k-exponentially flat, all the fj ’s are s-Gevrey asymptotic

to a same s-Gevrey formal series f̃(x).

Proof. — When
•
ϕ is trivial (

•
ϕj= 0 for all j) then

•
ϕ is the coboundary of any

analytic function. Conversely, given any 0-cochain (fj) which, by means of a

refinement if necessary, we can assume to be a 0-cochain over a good covering

the condition that its coboundary is trivial, i.e., −fj + fj+1 = 0 for all j,

implies that the functions fj glue together into an analytic function f . The

function fj are, in particular, s-Gevrey asymptotic to f on Ij for any s > 0.

When
•
ϕ is elementary (i.e., only one of its components is non zero;

Def. 3.2.10) a 0-cochain with values in As and coboundary
•
ϕ is given by the

Cauchy-Heine Theorem 2.5.2 (ii). The general case follows by additivity of

cocycles. In all cases, there exists then a 0-cochain (fj)j∈Z/pZ with values

in As and coboundary
•
ϕ. Let (gj)j∈Z/pZ be another 0-cochain of I with

coboundary
•
ϕ. Then, the 0-cochain (gj − fj)j∈Z/pZ has a trivial coboundary

and comes from an analytic function h: for all j ∈ Z/pZ, gj = fj + h and

then, like fj , the function gj belongs to As(Ij).

The Ramis-Sibuya Theorem admits the following corollary:

Corollary 6.2.2. — The natural injection As →֒ A induces an isomorphism

H0(S1;As/A≤−k) i−→ H0(S1;A/A≤−k)

and, consequently (cf. Cor. 3.1.27), the Taylor map induces an isomorphism

H0(S1;A/A≤−k) ≃ C[[x]]s.
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We can thus improve the characterization of s-Gevrey series given in Sec-

tion 3.2.3 into a characterization free of Gevrey estimates:

s-Gevrey series

f̃(x) =
∑

n≥0

anx
n ∈ C[[x]]s





⇐⇒





(equivalence class of a)

0-cochain (fj) over S1

with values in A
and coboundary (fj − fℓ)j,ℓ∈J
with values in A≤−k

This equivalence is a subsequent improvement with respect to the setting

in Section 3.2.3 since to check that the 0-cochain is asymptotic in the sense

of Poincaré is usually much simpler than to check its s-Gevrey asymptotics.

While in Section 3.2.3 it was sufficient to ask for the coboundary to be with

values in A<0 it is now essential that the coboundary took its values in A≤−k.

Definition 6.2.3 (k-quasi-sum). —

Given f̃(x) an s-Gevrey series, the element ϕ0 ∈ H0
(
S1;A/A≤−k

)
associated

with f̃(x) by the Taylor isomorphism of Corollary 6.2.2 is called the k-quasi-

sum of f̃(x). By extension, any 0-cochain (fj) representing ϕ0 is called a

k-quasi-sum of f̃(x).

With these results k-summability can be equivalently defined as follows.

Definition 6.2.4 (Ramis-Sibuya k-summability)

An s-Gevrey series f̃(x) is said to be k-summable on a k-wide arc I with

k-sum f(x) ∈ H0(I;A) if, in restriction to I, its k-quasi-sum ϕ0 satisfies the

condition

ϕ0|
I
(x) = f(x) mod A≤−k.

Indeed, suppose ϕ0 satisfies the condition above and let the 0-cochain

(fj) be a k-quasi-sum of f̃(x). We know by Corollary 6.2.2 of the Ramis-

Sibuya Theorem that all components fj are s-Gevrey asymptotic to f̃(x).

Hence, the same is true for f(x) on the k-wide arc I and f(x) fits Definition

6.1.6. Conversely, a k-sum f(x) of f̃(x) in the sense of Definition 6.1.6, can

be completed into a k-quasi-sum (fj) of f̃(x) using the Borel-Ritt Theorem

2.4.1(ii) and Proposition 2.3.17. Thus, we can reformulated Definition 6.2.4

by saying:

The s-Gevrey series f̃(x) is k-summable on the k-wide arc I with k-sum

f(x) if there exists a k-quasi-sum of f̃(x) containing f(x) as component.
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6.2.2. Applications to differential equations. — As before we consider

a linear differential operator with analytic coefficients at 0:

D = bn(x)
dn

dxn
+ bn−1(x)

dn−1

dxn−1
+ · · ·+ b0(x) with bn(x) 6≡ 0.

⊲ The Maillet-Ramis Theorem (Thm. 5.2.7) can be obtained as a conse-

quence of the Ramis-Sibuya Theorem as follows. Recall its statement:

Given f̃(x), solution of Dy = 0, then, either f̃(x) is convergent or f̃(x)

is s-Gevrey and k = 1/s is one of the levels k1 < k2 < · · · < kr of D associated

with f̃(x), i.e., the non-zero slopes of the Newton polygon N0(D) of D at 0.

Other values of k are not optimal.

Proof. — Using the Main Asymptotic Existence Theorem (Cor. 4.4.2 (i))

we can associate with f̃(x) a (non-unique) 0-cochain
(
fj(x)

)
j∈Z/pZ

made of

asymptotic solutions of the equation Dy = 0 over a good covering of S1. The

coboundary
(
− fj(x) + fj+1(x)

)
is made of flat solutions; each such flat solu-

tion is equal to some linear combinations of all flat solutions of the equation.

Now, solutions of the equation are flat if and only if the exponential factor

they contain is flat. They are then flat of an order k which is one of the levels

k1, k2, . . . , kr. It follows that either the coboundary
(
− fj(x) + fj+1(x)

)
is

trivial (or cohomologous to trivial via flat functions) and the series f̃(x) is

convergent or the coboundary takes its values in A≤−kj for a certain index

j and the series f̃(x) is 1/kj-Gevrey according to the Ramis-Sibuya Theo-

rem (Thm. 6.2.1) and Proposition 2.3.10. If the series f̃(x) were 1/k-Gevrey

with kj < k < kj+1 then, by Corollary 4.4.2 (ii) of the Main Asymptotic

Existence Theorem, the 0-cochain could be chosen with values in A1/k; by

Proposition 2.3.10 its coboundary would be with values in A≤−k and since

it is made of solutions it would necessary be with values in A≤−kj+1 . If the

series f̃(x) were 1/k-Gevrey with kr < k then the coboundary would be trivial

and f̃(x) convergent. Hence, the optimality of k is reached among the levels

k1, k2, . . . , kr.

⊲ Summability properties

Theorem 6.2.5. — Let f̃(x) be a solution of Dy = 0 and suppose the equa-

tion has a unique level k associated with f̃(x) (cf. Def. 4.3.6). Then, f̃(x) is

k-summable.
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Proof. — Let θ be a direction which is not anti-Stokes for the equationDy = 0

and Iθ be a k-wide arc centered at θ and containing no Stokes arc. Such a

k-wide arc exists since, under the assumption of the unique level k, the Stokes

arcs of Dy = 0 are the closed arcs of length π/k centered at the anti-Stokes

directions.

As in the proof of the Maillet-Ramis Theorem above, consider a 0-cochain

(fj(x))j∈Z/pZ associated with f̃(x) made of asymptotic solutions. If we prove

that, restricted to Iθ its coboundary (−fj+fj+1) is cohomologous to trivial via

flat (hence, k-exponentially flat) solutions then, the 0-cochain is cohomologous

to a k-quasi sum of f̃(x) on Iθ. This is proved in Lemma 6.2.6 below. Hence,

the k-summability of the series f̃(x) in all directions but, possibly, the finitely

many anti-Stokes directions.

Lemma 6.2.6. — Let V<0 denote the sheaf of germs of flat solutions of the

equation Dy = 0 and suppose the arc I contains no Stokes arc. Then,

H1(I;V<0) = 0.

Proof. — Let V ′<0 denote the sheaf of flat solutions of a normal equation

D0y = 0 associated with Dy = 0. The property is easily proved for V ′<0 in-

stead of V<0. Indeed, by linearity, it is sufficient to consider the case when V ′<0

is of dimension at most 1 (there is only one non-zero determining polynomial q)

and when the covering is an elementary good covering of I, say I = (I1, I2). A

non-zero 1-cocycle
•
ϕ (x) ∈ Γ(I1 ∩ I2;V ′<0) is of the form m(x)e±q(1/x) where

m(x) has moderate growth (precisely, is a linear combination of products of

powers xλ and logarithm ln(x)) and e±q(1/x) is flat over I1 ∩ I2. Since I does

not contains any Stokes arc associated with q the exponential function e±q(1/x)

is flat on at least one of the two open sets I1, I2. Suppose, for instance, it is

flat on I2. Then,
•
ϕ can be continued into a flat function φ2 ∈ H0(I2;V ′<0)

and the 1-cocycle
•
ϕ is the coboundary of the 0-cochain (f1 = 0,f2 = φ2) with

values in V ′<0.

Now, the result is also true for V<0 since, as a consequence of the Main

Asymptotic Existence Theorem, the sheaves V<0 and V ′<0 are isomorphic.

Comments 6.2.7 (On Examples 2.2.4, 2.2.5 and 2.2.6)

Theorem 6.2.5 applied to these examples yields the following results:
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⊲ The Newton polygon N (E) at the origin 0 of the Euler equation (1) (cf. Exa. 2.2.4)

and the Newton polygon at the origin 0 of the Euler equation E0y = 0 in homogeneous

form (cf. Exa. 3.1.24) are drawn below.

The non-zero slopes reduce to a unique slope equal to 1. This implies that the

exponentials in the formal solutions are all of degree 1. The fact that the horizontal

length of the side of slope 1 is 1 means that there is only one such exponential (including

multiplicity). The fact that N (E0) has one horizontal slope of length 1 means that there

exists a one dimensional space of formal series solution of E0y = 0 (possibly factored by a

complex power of x; logarithms could also occur when the length is 2 and higher).

Figure 1. Numbers enclosed into brackets are the coefficients to take into account in

the indicial and the characteristic equations.

The Euler series Ẽ(x) is the unique, up to multiplication by a constant, series solution

of the Euler equation in homogeneous form (Exa. 3.1.24). The exponent of the exponential

is given by the characteristic equation associated with the slope 1, i.e., the equation r+1 =

0 with solution r0 = −1. Hence, the exponential e
∫
r0/x

2

= e1/x. The unique associated

anti-Stokes direction is θ = π.

Theorem 6.2.5 allows us to assert what we were already able to prove directly on

this very simple example: the Euler series Ẽ(x) is 1-summable in all direction but the

direction θ = π.

⊲ The exponential integral Ei(z) has, at infinity, the same properties as the Euler

function at 0 due to the formula Ei(z) = e−z E(1/z).

⊲ The Newton polygon at infinity of the generalized hypergeometric equa-

tion D3,1y = 0
(
Eq. (2.2.6)

)
drawn below has a horizontal slope of length 1 and a slope 1/2

with horizontal length 2.

Figure 2
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It follows that the equation has a one dimensional space of formal series solutions

(space generated by the “hypergeometric” series g̃(z)); moreover, all exponentials are of

degree 1/2. The characteristic equation associated with the slope 1/2 reads r2 − 1 = 0

with solutions r±0 = ±1 and the exponentials are exp(
∫
±z−1/2) = exp(±2z1/2). The

anti-Stokes directions are the directions θ = 2π mod 4π. (We need to go to the Riemann

surface of the logarithm since the slope is not an integer. After a ramification z = t2

we could stay in the plane C of the variable t: the anti-Stokes directions would become

θ = π ∈ S1.) The indicial equation associated with the horizontal slope reads r + 4 = 0

with solution r0 = −4. Hence the factor 1/z4 in g̃(z).

Therefore, by Theorem 6.2.5, the series g̃(z) is 1/2-summable with respect to the

variable z with singular directions θ = 2π (mod. 4π), which we had not proved earlier.

Theorem 6.2.5 holds for systems.

Corollary 6.2.8. — Let dY/dx = B(x)Y be a differential system with

a formal fundamental solution Y(x) = F̃ (x)xL eQ(1/x) where Q(1/x) =⊕J
j=1 qj(1/x)Inj , the qj’s being distinct. Split the matrix F̃ into column-

blocks fitting the structure of Q:

F̃ (x) =
[
F̃1(x) F̃2(x) · · · F̃J(x)

]

(for j = 1, . . . , J , the matrix F̃j(x) has nj columns). Suppose the degrees of

the polynomials qℓ − qj for ℓ 6= j are all equal to k. Then, the matrix F̃j(x)

(i.e., its entries) is k-summable.

Recall that the matrix F̃ (x) satisfies the homological system

(23)
dF

dx
= B(x)F − F B0(x)

which admits the polynomials qℓ − qj for j, ℓ = 1, . . . , J as determining poly-

nomials. B0(x) stands for the matrix of the normal form dY
dx = B0(x)Y with

fundamental solution Y0(x) = xL eQ(1/x).

6.3. Third approach: Borel-Laplace summation

The third definition provides explicit k-sums in terms of k-Borel-Laplace in-

tegrals.

6.3.1. Definitions. — Due to its main role we first make explicit the classi-

cal Borel-Laplace summation which corresponds to level k = 1. Actually, the

general case k > 0 can be reduced to k = 1 by setting x = tk and taking t as

a new variable. However, this introduces non integer powers in general with

connected problems. We prefer to keep working with the initial variable x.
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Definition 6.3.1 (Classical Borel and Laplace transforms)

(i) The Borel transform B of a series f̃(x) =
∑

n>0 anx
n is the power

series

f̂(ξ) =
∑

n>0

anξ
n−1/Γ

(
n
)
;

(ii) Given a direction θ, the Laplace transform Lθ of a function ϕ(ξ) in

direction θ is defined, when the integral exists, by

f(x) =

∫ eiθ∞

0
ϕ(ξ)e−ξ/xdξ.

Although we do not need it in this chapter let us mention here that there

exists a functional version of the Borel transform given, in each direction θ,

by the integral

Bθ

(
f(x)

)
(ξ) =

1

2πi

∫

γθ

f(x)eξ/x
dx

x2

where γθ denotes the inverse (image by x 7→ 1/x) of a Hankel contour directed

by the direction θ and oriented positively. (Let us observe that we need a

contour that ends at 0 since the function is studied near the origin; if we

worked at infinity we would use a Hankel contour itself). Using Hankel’s

formula for the gamma function we obtain Bθ(x
n) = ξn−1/Γ(n) for all θ; hence,

the coherence with the definition of the formal Borel transform. Similarly,

Lθ(ξ
n−1) = Γ(n)xn. When there is no ambiguity we denote B and L instead

of Bθ and Lθ.

Observe that the formal Borel transform applies to series without con-

stant term. With the constant 1 it would be natural to associate the Dirac

distribution δ at 0. This is necessary in certain situations, for instance, when

one needs to work with convolution algebras (δ is then a neutral element).

For our purpose, this is unnecessary and we assume that our series have no

constant term.

Here are some of the basic actions of the Borel transform. We denote by

ϕ(ξ) both the Borel series of f̃(x) and its sum and by ψ both the Borel series
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of g̃) and its sum.

1

x
f̃(x)

B−−→ d

dξ
ϕ(ξ) (assume f̃(x)/x has no constant term),

x2
d

dx
f̃(x)

B−−→ ξϕ(ξ),

f̃(x)g̃(x)
B−−→ ϕ ∗ ψ(ξ) =

∫ ξ

0
ϕ(ξ − η)ψ(η)dη.

and way back for the Laplace transform when it exists.

Proposition 6.3.2. — Suppose the Borel series f̂(ξ) =
∑

n≥1
an
Γ(n) ξ

n−1

converges and its sum ϕ(ξ) can be analytically continued to an infinite sec-

tor = θ1,θ2(∞) with exponential growth at infinity: there exist A,K > 0

such that ∣∣ϕ(ξ)
∣∣ ≤ K exp

(
A|ξ|

)
on .

Then, for all θ ∈ ]θ1, θ2[, the Laplace integral

fθ(x) =

∫ eiθ∞

0
ϕ(ξ)e−ξ/xdξ

exists and is analytic on the open disc Dθ(A) with diameter (0, eiθ/A) and

the various fθ glue together into an analytic function defined on
⋃

θ Dθ(A)

and, especially, on a sector ′ = ′
θ1−π/2,θ2+π/2 ⊂

⋃
θ Dθ(A) of opening greater

than π.

Figure 3. Borel disc Dθ(A)

Definition 6.3.3. — The disc Dθ(A) is called a Borel disc in direction θ.

Proof. — Since
∣∣ϕ(ξ)e−ξ/x

∣∣ ≤ K exp
(
− (ℜ(eiθ/x) − A)|ξ|

)
the Laplace

integral fθ(x) exists and is analytic on the disc ℜ(eiθ/x) > A, i.e., the open

disc Dθ(A) with diameter (0, eiθ/A).

Consider two directions θ′ < θ′′ in ]θ1, θ2[ such that, say, θ′′ − θ′ ≤ π/4 <

π/2 and apply Cauchy’s Theorem to ϕ(ξ)e−ξ/x along the boundary CR of
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a sector of radius R limited by the lines θ = θ′ and θ = θ′′ and oriented

counterclockwise. Then,

∫ ℜeiθ′

0
+

∫ Reiθ
′′

Reiθ
′

−
∫ Reiθ

′′

0
ϕ(ξ)e−ξ/xdξ = 0.

However, denoting x = |x| eiω we can write

∣∣∣
∫ Reiθ

′′

Reiθ
′
ϕ(ξ)e−ξ/xdξ

∣∣∣ ≤
∫ θ′′

θ′ K exp
(
− (ℜ(eiθ/x)−A)|ξ|

)
|ξ eiθ| dθ

= K
∫ θ′′

θ′ exp
(
− (cos(θ − ω)/|x| −A)R

)
Rdθ.

Choose θ′ < ω < θ′′. Then, |θ − ω| < π/4 for θ from θ′ to θ′′. The inequality

becomes

∣∣∣
∫ Reiθ

′′

Reiθ′
ϕ(ξ)e−ξ/xdξ

∣∣∣ ≤ K(θ′′ − θ′)R exp
(
−
(
1/(

√
2|x|)−A

)
R
)

and the integral tends to 0 as R tends to infinity as soon as |x| < 1/(A
√
2).

Consequently, the Laplace integrals in directions θ′ and θ′′ coincide on the

domain {|x| < 1/(A
√
2) and θ′ < arg(x) < θ′′} and they are, then, analytic

continuations of each other.

With this result we can set the following definition.

Definition 6.3.4 (Borel-Laplace summation). — A series f̃(x) =∑
n>0 anx

n is said to be Borel-Laplace summable in a direction θ0 if the

following two conditions are satisfied:

(i) The Borel transform f̂(ξ) =
∑

n>0 anξ
n−1/Γ

(
n
)
of f̃(x) is convergent,

i.e., the series f̃(x) is 1-Gevrey.

(ii) The sum ϕ(ξ) of the Borel series f̂(ξ) of f̃(x) can be analytically

continued to a sector σ neighboring the direction θ0 with exponential growth of

order 1. We still denote by ϕ its analytic continuation.

When these conditions are satisfied, the Borel-Laplace sum of f̃(x) in

direction θ0 is given by the Laplace integrals

fθ(x) =

∫ eiθ∞

0
ϕ(ξ)e−ξ/xdξ for θ ∈ σ

gluing into an analytic function f(x) defined (at least) on a sector bisected

by θ0 with opening larger than π.
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This definition comes with explicit integral formulæ for the sum of the

series. However, an explicit calculation of ϕ(ξ) in terms of classical functions

is, in general, out of reach or even impossible.

The domain of definition of ϕ(ξ) must contain a disc centered at 0 and

a sector σ = σ]θ1,θ2[ neighboring the direction θ0 in the shape of a cham-

pagne cork as below: the Borel-Laplace sum f(x) is analytic on the union⋃
θ1<θ<θ2

Dθ(A) of the Borel discs with diameter (0, eiθ/A) for all direction θ in

σ. The domain contains sectors ]θ′1,θ
′
2[
for any θ′1 > θ1−π/2 and θ′2 < θ2+π/2.

Figure 4

These definitions can be extended to any level k > 0 as follows. Denote

temporarily by B1 or B1,θ the classical Borel operators defined as above and

generally, by Bk or Bk,θ the k-Borel operators. Denote by L1,θ the Laplace

operator and generally, by Lk,θ the k-Laplace operator in direction θ. The

operators of level k are transmuted from those of level one by means of rami-

fications according to the following schemes.

The k-Borel operators are defined by the following commutative diagram:

f(x)
Bk,θ−−−−→ Bk,θ(f)(ξ) = ψ(ξk)

ρk

y
xρ1/k

f(t1/k)
B1,kθ−−−−−−−→ ψ(τ)

where ψ(τ) = 1
2πi

∫
γkθ

f(t1/k)eτ/tdt/t2 = 1
2πi

∫
γ′θ
f(x)eτ/x

k
kdx/xk+1, the path

γ′θ being deduced from the “Hankel” contour γkθ by the ramification t = xk.

The formal k-Borel transform is obtained by applying these formulæ to

the monomials f(x) = xn. One obtains Bk(x
n) = ξn−k/Γ(n/k). In accordance

to the fact that the usual 1-Borel transform applies to series with valuation

k0 ≥ 1, the k-Borel transform applies to series with valuation k0 ≥ k.

The k-Laplace operators are defined by the following commutative dia-

gram:
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Figure 5. The “Hankel” contour γkθ compared to γ′θ when k > 1

ϕ(ξ)
Lk,θ−−−−→ Lk,θ(ϕ)(x) = g(xk)

ρk

y
xρ1/k

ϕ(τ1/k)
L1,kθ−−−−−−−→ g(t).

where g(t) =
∫ eikθ∞
0 ϕ(τ1/k)e−τ/tdτ .

We can then state the following definitions generalizing for any k > 0 the

classical definitions of the Borel and the Laplace transforms stated above with

k = 1.

Definition 6.3.5 (k-Borel and k-Laplace transforms)

(i) The (formal) k-Borel transform of a series f̃(x) =
∑

n≥k0
anx

n with

valuation k0 ≥ k is the series

f̂(ξ) =
∑

n≥k0

an
ξn−k

Γ
(
n/k

) ·

(ii) The k-Borel transform of a function f(x) in a direction θ is defined,

when the integral exists, by

Bk,θ(f)(ξ) =
1

2πi

∫

γ′θ

f(x)eξ
k/xk kdx

xk+1
·

with γ′θ a Hankel-type contour as above.

(iii) The k-Laplace transform of a function ϕ(ξ) in a direction θ is defined,

when the integral exists, by

f(x) =

∫ eiθ∞

ξ=0
ϕ(ξ)e−ξ

k/xk
d(ξk).
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Proposition 6.3.2 can be generalized to any level k > 0. The Borel discs

must however be changed into Fatou petals (or Fatou flowers) defined in di-

rection θ by conditions of the type ℜ
(
eiθ/xk

)
> A.

Figure 6. Fatou petal

Definition 6.3.6 (k-Borel-Laplace summation). — Let k0 ≥ k be an in-

teger.

A series f̃(x) =
∑

n≥k0
anx

n is said to be k-Borel-Laplace summable in a

direction θ0 if the following two conditions are satisfied:

(i) The k-Borel transform f̂(ξ) =
∑

n≥k0
anξ

n−k/Γ
(
n/k

)
of f̃(x) is con-

vergent, i.e., the series f̃(x) is 1/k-Gevrey.

(ii) The sum ϕ(ξ) of the Borel series of f̃(x) can be analytically continued

to a sector σ neighboring the direction θ0 with exponential growth of order k.

We keep denoting by ϕ its analytic continuation.

If these conditions are satisfied, the k-Borel-Laplace sum of f̃(x) in direc-

tion θ0 is given by the k-Laplace integrals

fθ(x) =

∫ eiθ∞

ξ=0
ϕ(ξ)e−ξ

k/xk
d(ξk) for θ ∈ σ

gluing into an analytic function f(x) defined (at least) on a sector bisected

by θ0 with opening larger than π/k.

The natural question of the equivalence between k-summability and k-

Borel-Laplace summability is studied in the next section (cf. Prop. 6.3.9).

6.3.2. Nevanlinna’s Theorem and summability. — We begin with the

proof of Nevanlinna’s Theorem which solves the main step in the equivalence

of k-summability and k-Borel-Laplace summability, precisely, the fact that

k-summability implies k-Borel-Laplace summability.

Assume we are given a direction θ issuing from 0 which by means of

a rotation we assume to be θ = 0 and let us first describe the curves and

domains we will be concerned with. We consider two copies of C, one which

we call the Laplace plane with coordinate x and the other one, called Borel

plane, with coordinate ξ.
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We fix k > 0 and γ > 0 and we introduce two new copies of C with

coordinates Z = 1/xk and ζ = ξk respectively.

⊲ In the x-plane we consider

1. The sector 0 = {x ∈ C ; |x| < γ and | arg(x)| < π/2k}.
2. For any ℓ > 0, the domain ( Fatou’s petal or Borel disc when k = 1)

defined by

ℓ =
{
x ∈ C ; ℜ

( 1

xk

)
> ℓk and

∣∣arg(x)
∣∣ < π

2k

}
.

Figure 7

⊲ In the Z-plane, we consider the images 0 and ℓ of 0 and ℓ respec-

tively, by the map Z = 1/xk. Hence, ℓ is the half-plane {Z ; ℜ(Z) > ℓk} and

0 the half-plane {Z ; ℜ(Z) > 0} but the half-disc {|Z| ≤ 1/γk,ℜ(Z) > 0}.

Figure 8

⊲ In the ζ-plane, for B > 0, we consider the domain ΣB = D(0, Bk)∪Σ′B
union of the open disc D(0, Bk) with center 0 and radius Bk and of the set

Σ′B of points in C at a distance less than Bk of the line [Bk,+∞[.
⊲ In the ξ-plane, we consider for B > 0, the domain σB = D(0, B) ∪ σ′B

union of the disc D(0, B) with center 0 and radius B and of the image σ′B of

Σ′B by the map ξ = ζ1/k for the choice of the principal determination of the

kth-root.
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Figure 9

Figure 10

Theorem 6.3.7 (Nevanlinna’s Theorem [Nev19, pp. 44–45])

Let k > 0.

Let f̃(x) =
∑

n≥k0
anx

n ∈ C[[x]] be a power series at 0 with valuation k0 ≥ k

and let f̂(ξ) =
∑

n≥k0
an

Γ(n/k)ξ
n−k denote its k-Borel transform.

Suppose f(x) ∈ A( 0) is asymptotic to f̃(x) and satisfies global k-Gevrey

estimates on 0: there exist constants C,B > 0 such that for all x ∈ 0

and N ∈ N∗

(30)
∣∣∣f(x)−

N−1∑

n=k0

anx
n
∣∣∣ ≤ C

(N
k

)N/k
e−N/k |x|N

BN
·

Then, the k-Borel series f̂(ξ) is convergent and its sum ϕ(ξ) can be analytically

continued to the domain σB with exponential growth of order k at infinity: for

any Bε = B − ε < B there exist constants K,A > 0 such that
∣∣ϕ(ξ)

∣∣ ≤ K exp
(
A|ξ|k

)
for all ξ ∈ σBε .

Moreover, the functions f(x) and ϕ(ξ) are k-Laplace and k-Borel transforms

of each other: given ℓ > ℓ0 = inf{ℓ ; f ∈ O( ℓ)} they satisfy

f(x) =
∫ +∞
0 ϕ(ξ)e−ξ

k/xk
d(ξk) (k-Laplace transform of ϕ),(31)

ϕ(ξ) = 1
2πi

∫
ℜ(1/uk)=ℓk f(u)e

ξk/uk
d(1/uk) for all ξ > 0.(32)

Remark 6.3.8 (k-fine summability). — One should observe that Condi-

tion (30) is stronger than k-Gevrey asymptoticity of f(x) to the series f̃(x) on

0. Indeed, while Condition (30) is valid in restriction to any proper subsector
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of 0 (with same constants) implying thus k-astmptoticity on 0, conversely,

the existence of estimates valid on any proper subsector of 0 does not imply

the existence of constants B and C valid on all of 0.

Note also that, due to Condition (31), when an analytic function f sat-

isfying Condition (30) exists then it is unique. (Compare Watson’s Lemma

(Thm. 6.1.3) and Proposition 2.3.17). This comforts the fact that Condition

(30) is stronger than k-Gevrey asymptoticity. Recall the example of the Euler

function E(x) (cf. Exa. 1 and Com. 2.3.9) that provides two functions (its two

determinations) that are 1-Gevrey asymptotic to the Euler series Ẽ(x) on the

half-plane ℜ(x) < 0.

With these results we see that Condition (30) is adequate to guaranty the

existence of a unique well defined sum of f̃(x) on 0 with similar properties as

a k-sum. And indeed, this corresponds to a notion called k-fine summability

in the bisecting direction of 0 which is weaker than k-summability in the

same direction. By this, we mean that a k-summable series in a direction θ0
is k-fine summable in direction θ0, the converse being false in general. For the

case when k = 1 we refer to [Sau], Sect. “The fine Borel-Laplace summation”

where the author uses Formula (31) as definition.

Proof of Theorem 6.3.7 We can check that any monomial xn satisfies

the theorem. Hence, we can assume that f̃(x) =
∑

n≥k0
anx

n has valuation

k0 > k.

Due to Condition (30) the series f̂(ξ) converges at 0 with radius at least B

(cf. Prop. 2.3.10). Its sum ϕ(ξ) defines then an analytic function on the

disc |ξ| < B.

Set Z = 1/xk and ζ = ξk and denote by Z1/k and ζ1/k the principal kth-

roots of Z and ζ. The function F (Z) = f(1/Z1/k) is, by construction, analytic

on the half-plane Πℓk0
= {ℜ(Z) > ℓk0} where 0 ≤ ℓ0 ≤ 1/γ.

Choose ℓ > ℓ0 and set

φ(ζ) =
1

2πi

∫

ℓk+iR
F (U)eζU dU for all ζ > 0.

This formula makes sense. Indeed, in the new variables, Condition (30) be-

comes: for all N ≥ k0 and all Z ∈ Πℓk0
, the function F (Z) satisfies

|RN (Z)| ≡
∣∣∣F (Z)−

∑N−1
n=k0

an
Zn/k

∣∣∣ ≤ C
(
N
k

)N/k
e−N/k 1

(B |Z|1/k)N
(33)

≤ C ′Γ(N/k) 1

(B′ |Z|1/k)N
(using Stirling formula)



134 CHAPTER 6. FOUR EQUIVALENT APPROACHES TO K-SUMMABILITY

for any B′ < B jointly with a convenient C ′ > 0. In particular, there exist

constants M0,M1 > 0 such that

(34) |F (Z)| ≤ M1

|Z|k0/k
≤M0 for all Z ∈ Πℓk

and since k0/k > 1 this implies that F (Z) belongs to L1(ℓk + iR). Hence, its

Fourier integral φ(ζ) exists and is continuous with respect to ζ ∈ R.

We have to prove that:

1. The function F (Z) can be written in the form

F (Z) =

∫ +∞

0
φ(ζ)e−Zζ dζ.

2. The Borel series f̂(ξ) converges to φ(ξk) for 0 < ξ < B; hence the

analytic continuation of φ(ξk) by ϕ(ξ) to the disc |ξ| < B (0 might be a

branch point for the series φ(ζ) itself).

3. The function φ(ζ) can be analytically continued to Σ′B.

4. The function φ(ζ) has exponential growth of order 1 at infinity on Σ′B.

Prove now the four steps.

1. Given Z ∈ Πℓk we enclose it in a domain Ω limited by the vertical line

at ℓk and an arc of a circle centered at 0 with radius R as drawn in figure 11.

Figure 11

By Cauchy’s integral formula we can write

F (Z) =
1

2πi

∫

∂Ω
F (U)

dU

Z − U
,

the boundary ∂Ω of Ω being oriented clockwise. From |F (Z)| ≤ M1/|Z|k0/k
(estimate (34)) we deduce that the integral along the half-circle tends to zero

as R tends to infinity. Hence, F (Z) = 1
2πi

∫
ℓk+iR F (U) dU

Z−U . Write 1
Z−U =
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∫ +∞
0 e(U−Z)ζ dζ so that

F (Z) =
1

2πi

∫

ℓk+iR
F (U)

∫ +∞

0
e(U−Z)ζ dζdU.

Fubini’s Theorem can be applied to the iterated integral since, using

again the estimate (34) we obtain
∣∣F (U)e−(Z−U)ζ

∣∣ ≤ M1

|U |k0/k
e−(ℜ(Z)−ℓk)ζ

with ℜ(Z)− ℓk > 0. Hence, the followed formulae

F (Z) =

∫ +∞

0
φ(ζ)e−Zζ dζ with φ(ζ) =

1

2πi

∫

ℓk+iR
F (U)eUζ dζ.

Moreover, φ(ζ) is independent of ℓ > ℓ0 (apply Cauchy’s Theorem to F (U)eUζ

along a rectangle with vertical sides at ℜ(Z) = ℓk and ℜ(Z) = ℓ′k, ℓ′k 6= ℓk,

and let the horizontal sides go to infinity).

2. From F (U) =
∑N−1

n=k0
an/U

n/k+RN (U) and φ(ζ) = 1
2πi

∫
ℓk+iR F (U)eUζ dζ

for all ζ > 0 we can write

φ(ζ) =

N−1∑

n=k0

an
Γ(n/k)

ζn/k + φN (ζ) with φN (ζ) =
1

2πi

∫

ℓk+iR
RN (U)eUζ dU.

By Condition (30), we have

|φN (ζ)| ≤ C

2π

(N
k

)N/k e−N/k

BN
eℓ

kζ
∣∣∣
∫

ℓk+iR

dU

|U |N/k

∣∣∣

while

ℓN−k
∣∣∣
∫

ℓk+R

dU

|U |N/k

∣∣∣ =
∫

R

dτ
√
1 + τ2

N/k
≤

∫

R

dτ
√
1 + τ2

k0/k
< +∞.

Hence, there exists a constant C0 > 0 such that

|φN (ζ)| ≤ C0

(N
k

)N/k
e−N/k+ℓkζ 1

(ℓB)N
·

Take 0 < ζ < Bk and consider the right hand side as a function of ℓ.

The function y(ℓ) = eℓ
kζ

ℓN
for ℓ > 0 reaches its minimal value at ℓ1 =

(
N
k

)1/k 1
ζ1/k

and y(ℓ1) =
(
k
N

)N/k
eN/kζN/k. Choose n0 = n0(ζ) so large that

ℓ1 =
(n0
k

)1/k 1

ζ1/k
> ℓ0 = inf

{
ℓ ; f ∈ O( ℓ)

}
.

For N ≥ n0(ζ) and since φN (ζ) does not depend on ℓ > ℓ0, we can take ℓ = ℓ1.

Then, φN (ζ) satisfies |φN (ζ)| ≤ C0
ζN/k

BN and tends to 0 as N tends to infinity.
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Hence, φ(ξk) =
∑

n≥k0
an

Γ(n/k)ξ
n = ϕ(ξ) for 0 < ξ < B which proves that f̂(ξ)

is the Taylor series of φ(ξk) at 0 and that φ(ξk) can be analytically continued

by ϕ(ξ) to the disc {ξ ; |ξ| < B}.
From now on, we denote ϕ(ξ) = φ(ξk).

3. Given ζ0 ≥ Bk, prove that the Taylor series of φ(ζ) at ζ0 converges

with radius Bk and converges to φ(ζ) for ζ real.

Prove first that φ(ζ) is infinitely derivable for ζ > 0. Given N ∈ N∗, let

m ∈ N satisfy k(N + 1) < m ≤ k(N + 1) + 1. Write

φ(ζ) =
m∑

n=k0

an
Γ(n/k)

ζn/k +
1

2πi

∫

ℓk+iR
Rm+1(U)eUζ dU

and look at the νth derivative of the integrand for 1 ≤ ν ≤ N . From (33) we

can write

(35)
∣∣∣Rm+1(U)Uν eUζ

∣∣∣ ≤ C ′Γ
(
(m+ 1)/k

) eℓ
kζ

B′m+1
|U |ν−(m+1)/k ≤ C ′′

|U |1+1/k

where the constant C ′′ is independent of ζ so long as ζ stays bounded. By

Lebesgue’s Theorem we can then conclude that φ(ζ) can be derivated N times

under the sign of integration for any ζ > 0.

To estimate the N th derivative when ζ ≥ ζ0 ≥ Bk we write

∂N

∂ζN
φ(ζ) = JN + IN

where

JN =

m∑

n=k0

an
Γ(n/k)

n

k

(n
k
− 1

)
· · ·

(n
k
−N + 1

)
ζn/k−N ,

IN =
1

2πi

∫

ℓk+iR
Rm+1(U)UN eUζ dU.

From the Gevrey Condition (30) or (33) (cf. Prop. 2.3.10) and the fact

that |Z|1/k ≥ 1/γ it follows that

|an|
Γ(n/k)

≤ C ′

B′n

( γ

B′
Γ((n+ 1)/k)

Γ(n/k)
+ 1

)

for all n ∈ N∗, and since Γ((n+1)/k)
Γ(n/k) behaves like

(
n
k

)1/k
as n tends to infinity

we can conclude that, for all Bε = B − ε < B′ there exists a constant C ′′ > 0

such that
|an|

Γ(n/k)
≤ C ′′

Bn
ε

for all n ∈ N∗.
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This implies that

|JN | ≤ C ′′
m

k

(m
k

− 1
)
· · ·

(m
k

−N + 1
)
ζ−N

m∑

n=k0

(ζ1/k
Bε

)n

and, since
∑m

n=k0

( ζ1/k
Bε

)n ≤ m ζm/k

Bm
ε

≤ k(N + 1 + 1/k) ζ1+1/k

BNk+k+1
ε

ζN if Bk
ε ≤ ζ,

that

|JN | ≤ kC ′′

Bk+1
ε

Γ
(
N + 3 +

1

k

)ζ1+1/k

BkN
ε

when Bk
ε ≤ ζ.

From (35) and (33) we obtain

|IN | ≤ 1

2π

∣∣∣
∫

ℓk+iR
|Rm+1(U)| |U |N eℓ

kζ dU
∣∣∣

≤ 1

2π
C ′Γ

(
(m+ 1)/k

) eℓ
kζ

B′m+1 max
(1
ℓ
,
1

ℓ2

)∫

R

dT
√
1 + T 21+1/k

≤ C ′′′Γ(N + 1 + 2/k)
eℓ

kζ

B′ kN
for a convenient C ′′′ > 0

≤ C ′′′Γ(N + 1 + 2/k)
eℓ

kζ

B kN
ε

·

Recall that k(N + 1) < m ≤ k(N + 1) + 1 so that 1 < m − kN + 1 − k ≤ 2.

Hence, the term max
(
1
ℓ ,

1
ℓ2

)
and the power of the integrand.

Adding these two estimates we see that, for all ε > 0, there exists a

constant αε > 0 such that

(36)
∣∣∣∂

Nφ

∂ζN
(ζ)

∣∣∣ ≤ αεΓ(N + 3 + 2/k)
eℓ

kζ

BkN
ε

for all ζ ≥ Bk
ε .

Hence, the Taylor series of φ(ζ) at ζ0,

∑

N≥0

1

Γ(1 +N)

∂Nφ

∂ζN
(ζ0) (ζ − ζ0)

N ,

converges for |ζ − ζ0| < Bk
ε . Making ε tend to 0, we can conclude that it

converges for |ζ − ζ0| < Bk and consequently, the Taylor series of φ(ζ) at ζ0
has a radius of convergence at least equal to Bk.

To prove that this Taylor series converges to φ(ζ) write the Taylor-

Lagrange formulas

φ(ζ) =

n−1∑

p=0

1

Γ(1 + p)

∂pφ

∂ζp
(ζ0)(ζ − ζ0)

p + ψn(ζ),

ψn(ζ) =
1

Γ(1 + n)

∂nφ

∂ζn
(
ζ0 + θ(ζ − ζ0)

)
(ζ − ζ0)

n, 0 < θ < 1.
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For ζ0 ≥ Bk and ζ ≥ Bk
ε , then ζ0 + θ(ζ − ζ0) > Bk

ε and we can apply the

estimate (36) to ∂nφ
∂ζn

(
ζ0 + θ(ζ − ζ0)

)
so that

∣∣ψn(ζ)
∣∣ ≤ αε

Γ(n+ 3 + 2/k)

Γ(1 + n)
eℓ

k max(ζ,ζ0) |ζ − ζ0|n
Bkn

ε

and tends to 0 as n tends to infinity as soon as max(Bk
ε , ζ0−Bk

ε ) < ζ < ζ0+B
k
ε .

Therefore, the sum of the Taylor series of φ at any ζ0 ≥ Bk coincides with

φ(ζ) on the interval max(Bk
ε , ζ0 − Bk

ε ) < ζ < ζ0 + Bk
ε . This proves that φ(ζ)

admits an analytic continuation to Σ′Bε ∩ {ℜ(ζ) > Bk
ε }.

Since the intervals ]0, Bk[ and ]max(Bk
ε , ζ0 − Bk

ε ), ζ0 + Bk
ε [ for ζ0 = Bk,

for instance, overlap this analytic continuation fit the analytic continuation by

ϕ(ζ1/k) on D(0, Bk) ∩ Σ′Bε ∩ {ℜ(ζ) > Bk
ε }.

Letting now ε tend to 0 allows us to extend the analytic continuation of

φ(ζ) up to Σ′B. Hence, the analytic continuation of ϕ(ξ) to the full domain σB.

4. Suppose 0 < Bε < B be given. Since ϕ(ξ) is analytic in the disc

D(0, B) it is bounded in the smaller disc D(0, Bε). Consequently, φ(ζ) is

bounded in D(0, Bk
ε ) and it suffices to prove the exponential estimate in the

discs D(ζ0, B
k
ε ) for ζ0 ≥ Bk.

The analytic continuation of φ to the disc D(ζ0, B
k) is given by the Taylor

series

φ(ζ) =
∑

n≥0

1

Γ(1 + n)

∂nφ

∂ζn
(ζ0)(ζ − ζ0)

n.

Apply estimate (36) to ∂nφ
∂ζn (ζ0) with ε′ < ε. It follows that, on the disc

D(ζ0, B
k
ε ), the function φ satisfies

|φ(ζ)| ≤ αε′
∑

n≥0

Γ(n+ 3 + 2/k)

Γ(1 + n)

|ζ − ζ0|n
Bkn

ε′
eℓ

kζ0

≤ αε′
∑

n≥0

Γ(n+ 3 + 2/k)

Γ(1 + n)

(Bk
ε

Bk
ε′

)n
eℓ

kBk
ε eℓ

kℜζ < +∞

(write ζ0 = (ζ0 − ℜ(ζ)) + ℜ(ζ) and |ζ0 −ℜ(ζ)| < Bk
ε ). The estimate being

valid for all ℓ > ℓ0 we can conclude that there exist constants K > 0, A > ℓk0
such that

|φ(ζ)| ≤ K eA|ζ| on Σ′Bε
.

Hence the result.

Proposition 6.3.9. — k-Borel-Laplace summability in a given direction θ0
is equivalent to k-summability in the direction θ0.
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Proof. — ⊲ k-Borel-Laplace summability implies k-summability.

Suppose we are given a k-Borel-Laplace summable series f̃(x) =∑
n≥k anx

n in a direction θ0. This means that its k-Borel transform∑
n≥k

an
Γ(n/k)ξ

n−k converges; its sum ϕ(ξ) can be analytically continued to a

sector σ]θ1,θ2[ containing the direction θ0 where ϕ(ξ) satisfies the following

inequality for some positive constants A and K:
∣∣ϕ(ξ)

∣∣ ≤ K exp
(
A|ξk|

)
.

By applying Cauchy’s Theorem one proves (proof left to the reader) that

the k-Borel-Laplace integrals

fβ(x) =

∫ ∞eiβ

ξ=0
ϕ(ξ)e−ξ

k/xk
d(ξk)

associated with the various directions β ∈ ]θ1, θ2[ glue into a Borel-Laplace

sum f(x) defined and analytic on the union of the Fatou flowers

D =
⋃

θ1<θ<θ2

{x ; ℜ
(
eiθ/xk

)
> A}

(recall that Fatou flowers are called Borel discs when k + 1). We must prove

that f(x) is s-Gevrey asymptotic to f̃(x) on a sector ⊂ D bisected by θ0
with opening larger than π/k (recall s = 1/k).

Let β ∈ ]θ1, θ2[ and β ⊂ a sector bisected by β with opening

(π − 2δ)/k < π/k be given. Prove that, under the hypothesis
∣∣ϕ(ξ)

∣∣ ≤ K exp
(
A|ξk|

)
for arg(ξ) = β

there exist constants K ′, A′ > 0 such that fβ satisfies

∣∣∣fβ(x)−
N−1∑

n=k

anx
n
∣∣∣ ≤ K ′Γ

(N
k

)
A′N |x|N

for all x ∈ β and N ∈ N∗ and that moreover, the constants K ′, A′ are

independent of β while they depend on the size of β .

We normalize the situation to the case when β = 0 by means of the

rotation −β both in the x- and the ξ-plane: the direction β becomes β∗ = 0

and the variables x and ξ become x∗ = xe−iβ and ξ∗ = ξ e−iβ so that |x∗| = |x|
and |ξ∗| = |ξ|; we set f∗(x∗) = f(x∗ eiβ) and ϕ∗(ξ∗) = ϕ(ξ∗ eiβ). We normalize

to the case k = 1 by the change of variable ζ = ξ∗k (at the price of introducing

non integer powers). The sector β has become a sector ∗
β bisected by θ∗ = 0
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with opening (π − 2δ)/k. Setting φ(ζ) = ϕ(ζ1/k eiβ) we can write

f∗(x∗) =

∫ +∞

0
φ(ζ)e−ζ/x

∗k
dζ

and φ satisfies ∣∣φ(ζ)
∣∣ ≤ K eAζ for ζ > 0.

Choose bk > 0 in the disc of convergence of φ and split the Laplace integral

into f∗(x∗) = f∗1 (x
∗) + f∗2 (x

∗) with

f∗1 (x
∗) =

∫ bk

0
φ(ζ)e−ζ/x

∗k
dζ and f∗2 (x

∗) =

∫ +∞

bk
φ(ζ)e−ζ/x

∗k
dζ.

It follows from Lemma 2.4.2 that f∗1 (x
∗) is s-Gevrey asymptotic to the series

f̃∗(x∗) = f̃(x∗ eiβ) on ∗
β with an estimate of the form

(37)
∣∣∣f∗1 (x∗)−

N−1∑

n=k

anx
∗n
∣∣∣ ≤ C∗1 Γ

(N
k

)
A∗N1 |x|N

where A∗1 = 1/(b| sin(δ)|1/k) and C∗1 =
∑

n≥k
|an|

Γ(n/k)b
n.

We must also prove that f∗2 (x
∗) is s-Gevrey asymptotic to 0 with a global

estimate on ∗
β . To this end, observe that f∗2 satisfies

|f∗2 (x∗)| ≤ K

∫ +∞

bk
e

(
A−ℜ(1/x∗k)

)
ζ dζ =

K eAbk

ℜ(1/x∗k)−A
e−b

kℜ(1/x∗k).

When x∗ = |x∗| eiθ belongs to ∗
β then x∗k = |x∗|k eikθ belongs to a sector

bisected by θ∗ = 0 with opening π − 2δ. Then, cos(kθ) > sin(δ) and x∗k

satisfies ℜ(1/x∗k) > sin(δ)/|x|k. Hence,
∣∣f∗2 (x∗)

∣∣ ≤ K eAbk

sin(δ)/|x|k −A
e−(b

k sin(δ))/|x|k .

The factor K eAbk |x|k/(sin(δ)−A|x|k) is bounded on ∗
β and then, there exists

constants A∗ = bk sin(δ) and C∗ > 0 such that
∣∣f∗2 (x∗)

∣∣ ≤ C∗ e−A
∗/|x|k for x∗ ∈ ∗

β .

The constants depend on b and δ and not on β. From Proposition 2.3.17 we

obtain that f∗2 (x
∗) is s-Gevrey asymptotic to 0 on ∗

β and that there exist

constants C∗2 , A
∗
2 > 0 depending on δ such that

(38)
∣∣f∗2 (x∗)

∣∣ ≤ C∗2 Γ
(N
k

)
A∗N2 |x|N ,
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the estimate being valid for all N ∈ N and x∗ ∈ ∗
β (cf. proof of Prop. 2.3.17).

Hence, putting together (37) and (38), we can conclude that there exist con-

stants C ′, A′ > 0 such that for all N ∈ N∗ and x ∈ ∗
β , the function fβ(x)

satisfies
∣∣∣fβ(x)−

N−1∑

n=k

anx
n
∣∣∣ ≤ C ′ Γ

(N
k

)
A
′N |x|N .

Since the constants do not depend on the direction β the estimate (38) is valid

for f(x) on the union =
⋃

θ1<β<θ2
∗
β . Choosing δ < min(θ0 − θ1, θ2 − θ0)

implies that is a sector with opening larger than π/(2k) on both sides of the

direction θ0. Hence the result.

⊲ k-summability implies k-Borel-Laplace summability.

Suppose we are given a k-summable series f̃(x) =
∑

n≥k anx
n in a direc-

tion θ0. This means that there exist an analytic function f(x) and constants

B,C > 0 such that

∣∣∣f(x)−
N−1∑

n=k

anx
n
∣∣∣ ≤ C Γ

(N
k

)
BN |x|N

on a sector = {x ; | arg(x)− θ0| < (π+2δ)/2k and |x| < R} bisected by θ0
with opening greater than π/k. Given a direction β such that |β − θ0| < δ/k

Nevanlinna’s Theorem (Thm. 6.3.7) provides constants A,K > 0 such that

the Borel transform ϕ(ξ) is analytic and satisfies

∣∣ϕ(ξ)
∣∣ ≤ K eA|ξ|

k

on the domain σ′B,β equal to σ′B rotated by an angle β (cf. preamble of

Nevanlinna’s Theorem). A rotation does not affect the constants and thus,

A and K being independent of the direction β, the estimate is valid on

σ′ =
⋃
|β−θ0|<δ/k σ

′
B,β which contains a champaign cork neighborhood of the

direction θ0. Hence, the series f̃(x) is k-Borel-Laplace summable in direc-

tion θ0.

Comments 6.3.10 (On Examples 2.2.4, 2.2.7 and 2.2.8)

⊲ The Borel transform ϕ(ξ) = 1/(ξ + 1) of the Euler series Ẽ(x) (example 2.2.4)

has exponential growth of order one (and even less) in all direction. However, the sum of

the Borel series cannot be continued up to infinity in the direction θ = π due to the pole

ξ = −1 of ϕ and indeed, we saw that the Euler series Ẽ(x) is 1-summable in all directions

but the direction θ = π.
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⊲ The Borel series ĥ(ζ) of Example 2.2.7 has as sum the function ϕ(ζ) = 1/(e−ζ − 2)

which has exponential growth of order 1 in all directions. However, it has a line of

poles ζn = − ln(2) + 2niπ, n ∈ Z. Hence, we can now conclude that the series h(z)

is 1-summable in all directions but θ = arg(− ln(2) + 2niπ) for all n ∈ Z and their clo-

sure θ = ±π/2. In particular, it is not 1-summable in the sense of Definition 6.1.6 (point 4)

which requires 1-summability in all directions but finitely many. This shows that solutions

of difference equations, even when they are mild, can be not summable.

⊲ The Borel series ℓ̂(ζ) of Example 2.2.8 has as sum the function ϕ(ζ) = e−ζ+e−ζ−1

which is an entire function with exponential growth of order 1 in all directions ℜ(ζ) ≥ 0

and exponential growth of no order in the directions ℜ(ζ) < 0. Hence, the series h̃(z)

is 1-summable in all directions ℜ(z) > 0 and not 1-summable in the other directions.

6.3.3. Tauberian Theorems. — The Tauberian Theorems we have in

mind wish at comparing various k-sums of a given series in a given direction

when several ones exist (cf. [Mal95] Théorème 2.4.2.2, [Bal94] Thms. 2.1

and 2.2). We begin with the following result.

Theorem 6.3.11. — Given numbers k1, k2 satisfying 0 < k1 < k2 define κ1
by

1/κ1 = 1/k1 − 1/k2.

Suppose we are given two closed arcs I1 and Î1 with same middle point θ0
and respective length |I1| = π/k1 and |Î1| = π/κ1. Given a formal power

series f̃(x) ∈ C[[x]] denote by ĝ(ξ) = Bk2(f̃)(ξ) its k2-Borel transform

(cf. Def. 6.3.1).

The following two assertions are equivalent.

(i) The series f̃(x) is k1-summable on I1 with k1-sum f(x);

(ii) The series ĝ(ξ) is κ1-summable on Î1 and its κ1-sum g(ξ) can be

analytically continued to an unlimited open sector σ̂, containing Î1×]0,+∞[,

with exponential growth of order k2 at infinity.

Moreover, Bk2(f)(ξ) = g(ξ) and Lk2(g)(x) = f(x) in direction θ0 and

neighboring directions.

Proof. — The theorem being true (and empty) for monomials we can assume

that the series f̃(x) =
∑

n≥k0
anx

n has valuation k0 > k2.

⊲ Prove that (i) implies (ii). We proceed as in the proof of Nevanlinna’s

Theorem. By assumption, the series f̃(x) has a k1-sum f(x) on the closed arc

I1, hence, on a larger open arc. Thus, there exists a closed arc I ′1 containing

I1 in its interior, there exist r0 > 0 and constants A,C > 0 such that the
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estimate

(39)
∣∣∣f(x)−

N−1∑

n=k0

anx
n
∣∣∣ ≤ C NN/k1AN |x|N

holds for all N ∈ N∗ and all x in the sector ′
1 = I ′1×]0, r0].

For convenience, we normalize the Borel transform Bk2 into the classi-

cal Borel transform B1 of level 1. To this end, set Z = 1/xk2 , ζ = ξk2 and

R0 = 1/rk20 . In the coordinate Z, the sector ′
1 = I ′1×]0, r0] is changed into

a sector 1 = J1 × [R0,+∞[ with opening larger than π (indeed, k2 > k1).

The series f̃(x) becomes the series F̃ (Z) = f̃(1/Z1/k2) and the function f(x)

the function F (Z) = f(1/Z1/k2). In the coordinate ζ, the function g(ξ) be-

comes G(ζ) = g(ζ1/k2).

Suppose first that 1/k1 < 2/k2 (hence, k2π/(2k1) < π). Recall that, by

assumption, we have 1/k2 < 1/k1 (hence, k2π/(2k1) > π/2). After performing

a rotation to normalize the direction θ0 to 0 we get the following picture

(Fig. 12) where J1 = [−ω1, ω1] with ω1 = k2
(
π/(2k1) + ε

)
/, (suppose ε chosen

so small that ω1 < π).

Figure 12

Denote by g(ξ) = Bk2,θ0(f)(ξ) the k2-Borel transform of f(x) in direc-

tion θ0 = 0.

The Borel path to define G(ζ) = g(ζ1/k2) can be chosen as the boundary

∂ 1 = ∂−1 ∪ ∂0 ∪ ∂+1

of 1 where ∂0 denotes the part of the boundary which is a circular arc of radius

R0 and ∂±1 the two straight lines of ∂ 1. Assume that ∂ 1 is oriented as in
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Fig. 12. From Cauchy’s Theorem the path ∂ 1 can equivalently be deformed

into its homothetic λ = λ−1 ∪ λ0 ∪ λ+1 where λ0 has radius R > R0 or into

a broken line ℓ = ℓ− ∪ ℓ+ passing through a large enough α > 0 as shown in

Fig. 12. Thus, γ being any of the Borel paths above, G(ζ) reads as

(40) G(ζ) =
1

2πi

∫

γ
F (U)eζUdU.

It suffices to prove that

1. the function G(ζ) is defined and holomorphic on the unlimited open

sector Σ = J×]0,+∞[ where J =]− ω,+ω[ with ω = k2(π/(2κ1) + ε);

2. the function G(ζ) has exponential growth of order one at infinity on

Σ and has F (Z) as Laplace transform;

3. there exist constants C ′, A′ > 0 such that the following estimate holds

for all N and all ζ ∈ Σ′ = J ′×]0, 1/R0[ where J
′ = [−ω′,+ω′], ω′ = ω−k2ε/2:

(41)
∣∣∣G(ζ)−

N−1∑

n=k0

an
Γ(n/k2)

ζn/k2−1
∣∣∣ ≤ C ′NN/κ1A′

N |ζ|N/k2−1.

Notice that Σ′ ⋐ Σ (cf. Def. 2.1.2) and Σ′ ) [−k2π/(2κ1),+k2π/(2κ1)]×]0, 1/R0[.

1. In the variable Z, Estimate (39) reads

(42)
∣∣∣F (Z)−

N−1∑

n=k0

an

Zn/k2

∣∣∣ ≤ C NN/k1 AN

|Z|N/k2
for all Z ∈ 1

which, taking N = k0, implies that there exists constants M0,M1 > 0 such

that

(43) |F (Z)| ≤ M1

|Z|k0/k2
≤M0, for all Z ∈ 1.

In the integral of Formula (40) choose γ = ∂ 1 and, for j = ±1, 0, denote

Gj(ζ) = 1/(2πi)

∫

∂j

F (U)eζUdU

so that G(ζ) = G−1(ζ) +G0(ζ) +G+1(ζ).

The term G0(ζ) is a Riemann integral and determines a holomorphic function

for all ζ. Due to Estimate (43) and the fact that k0/k2 > 1 the function F (U)

is Lebesgue integrable on ∂−1∪∂+1 and, consequently, the functions G±1(ζ) are

defined and holomorphic on the half-planes ℜ(ζ e±iω1) < 0 respectively. Thus,
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the function G(ζ) is defined and holomorphic on the sector Σ, intersection of

these two half-planes.

2. Denote G±(ζ) = 1/(2πi)
∫
ℓ±
F (U)eζUdU so that G(ζ) = G−(ζ) +G+(ζ)

for all ζ ∈ Σ. Parameterizing the paths ℓ± by U = α+ue±iω1 we deduce from

Estimate (43) that G±(ζ) satisfies

|G±(ζ)| ≤M1
eαℜ(ζ)

2π

∫ +∞

0

1

|α+ ue±iω1 |k0/k2
du for all ζ ∈ Σ.

Thus, there exists a constant c > 0 such that |G(ζ)| ≤ c eα|ζ| for all ζ ∈ Σ,

and this proves the exponential growth of order 1 of G(ζ) at infinity on Σ.

Prove that the Laplace transform L(G)(Z) in direction θ0 = 0 is equal to

F (Z) on the half-plane {Z ; ℜ(Z) > R0}. By definition, L(G)(Z) reads

L(G)(Z) = 1

2πi

∫ +∞

0

(∫

∂ 1

F (U)eζUdU
)
e−ζZdζ

and the function F (U)eζ(U−Z) is in L1(∂ 1 × R+) when ℜ(Z) > R0. Indeed,

parameterizing ∂±1 by U = (R0 + V )e±iω1 and ∂0 by U = R0 e
iθ provides the

estimates
∣∣∣F (U)eζ(U−Z)

∣∣∣ ≤
{
M1 e

ζ(R0 cosω1−ℜ(Z))/|R0 + V |k0/k2 for (U, ζ) ∈ ∂± ×R+

M0 e
ζ(R0−ℜ(Z)) for (U, ζ) ∈ ∂0 ×R+.

By Fubini’s Theorem we can then write

L(G)(Z) =
1

2πi

∫

∂ 1

(
F (U)

∫ +∞

0
eζ(U−Z)dζ

)
dU

=
1

2πi

∫

∂ 1

− F (U)

U − Z
dU (∂ 1 turns negatively around Z)

= F (Z) (by Cauchy’s formula).

3. Use now the path λ with a radius R to be made explicit later. We want to

estimate the quantity

∣∣∣G(ζ)−
N−1∑

n=k0

an
Γ(n/k2)

ζn/k2−1
∣∣∣ ≤ Q−1 +Q0 +Q+1

where Qj = 1/(2π)
∣∣∣
∫
λj

(
F (U)−∑N−1

k0
an/U

n/k2
)
eζUdU

∣∣∣, j = ±1, 0 for

all ζ ∈ Σ′.

To estimate Q±1 use inequality (42) to write

Q±1 ≤
C

2π
NN/k1AN

∫ +∞

R

eℜ(ζU)

|U |N/k2
d|U |
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where ℜ(ζU) = |ζU | cos(θ′ ± ω1) and |θ′ = arg(ζ)| ≤ ω′. For ζ = |ζ| eiθ′ in Σ

then θ′ + ω1 satisfy π/2 < |θ′ ± ω1| < 3π/2. Since Σ′ is a proper subsector

of Σ there exists c′ > 0 such that cos(θ′ + ω1) ≤ −c′ for all ζ ∈ Σ′ and

therefore, ℜ(ζU) ≤ −c′ |ζU | for all ζ ∈ Σ′ and U ∈ λ±1. Using this estimate

and the change of variable V = c′ |ζ| |U | in the latter integral we obtain

Q±1 ≤ C

2π
NN/k1AN (c′ |ζ|)N/k2−1

∫ +∞

c′ |ζ|R

e−V

V N/k2
dV

≤ C

2π
NN/k1AN (c′ |ζ|)N/k2−1 1

(c′ |ζ|R)N/k2

∫ +∞

0
e−V dV

=
C

2π
NN/k1AN (c′ |ζ|)−1 1

RN/k2
·

For each ζ ∈ Σ′ choose R = N/|ζ| (then, R > R0) and denote by C ′1 the

constant C ′1 = C/(2πc′). It follows that Σ′, Q±1 satisfies on Σ′ the estimate

Q±1 ≤ C ′1N
N/κ1AN |ζ|N/k2−1 (recall 1/κ1 = 1/k1 − 1/k2).

To estimate Q0 parameterize λ0 by U = Reiθ with R = N/|ζ| to obtain

Q0 ≤ C

2π
NN/k1AN 1

RN/k2−1

∫ ω1

−ω1

eℜ(N eiθ)dθ

≤ C

2π
NN/κ1NAN |ζ|N/k2−1 eN2ω1.

Choosing A′2 > Ae (so that NAN eN < Cst. A′2
N ) and C ′2 = Cst.Cω1/π we

obtain

Q0 ≤ C ′2N
N/κ1A′2

N |ζ|N/k2−1 on Σ′.

By adding these estimates and choosing A′ = A′2 and C ′ = 2C ′1 + C ′2 it

follows that Estimate (41) is satisfied for all N ≥ 1 and all ζ ∈ Σ′.

Suppose now that 1/k1 ≥ 2/k2 (hence, k2π/(2k1) ≥ π).

We observe that when ω1 passes the value π the expression of ω is changed

from ω =−π/2 + ω1 = k2
(
π/(2κ1) + ε

)
to ω = 3π/2− ω1 = π− k2

(
π/(2κ1) + ε

)
.

Hence, as ω1 increases through the value π (also k2/k1 and k2/κ1 increase)

the value of ω first increases up to π/2 (when ω1 = π) and then decreases.

The sector Σ is no more large enough to prove the κ1-summability of g(ξ). We

can pass through that difficulty by breaking 1 into finitely many subsectors

of opening less than 2π. To this end, choose some directions θj and closed

arcs J1,j of length less than 2π whose interiors make a covering of J1. From

Cauchy’s Theorem the Borel transforms of F (Z) at the various directions θj
are analytic continuations of each others and we can apply the previous proof
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to each arc J1,j taking now the Borel transform in direction θj . This ends the

proof of that part.

⊲ Prove that (ii) implies (i).

Again we can restrict the study to the case when 1/k1 < 2/k2 (hence,

k2π/(2k1) < π). We use the same notations as before.

Assume Conditions 1, 2 and 3 are satisfied. Denote by a the type of

exponential growth of G(ζ) on Σ′ and, up to increasing the value of R0 (hence,

up to shrinking the interval ]0, 1/R0[), suppose R0 > a.

Choose a direction θ1 in Σ′ (i.e., |θ1| ≤ ω′) and set

Fθ1(Z) =

∫ +∞eiθ1

0
G(ζ)e−ζZdζ.

Condition 2 says that G(ζ) has exponential growth, say, of type a and it follows

that the above definition of Fθ1(Z) defines a holomorphic function Fθ1(Z) on

the half-plane ℜ(eiθ1Z) > a bisected by −θ1 at the distance a of 0. By

Cauchy’s Theorem the functions Fθ1(Z) for the various values of θ1 ∈ Σ′ are

analytic continuations from each other and we denote by F (Z) the function

they define on the open sector 1 union of the half-planes associated with all

θ1 ∈ Σ′. Observe that, since the opening of Σ′ is larger than k2π/κ1, the

opening of 1 is larger than k2π/k1.

By means of a rotation we can assume that θ1 = 0 and use Estimate (41)

for ζ > 0. Given 0 < β < ε/2, denote by Πβ the sector

Πβ = {Z ; | argZ| ≤ π/2− β and ℜ(Z) ≥ R0 > a}.
Notice that the condition on β implies that the sector ′

1 union of the Πβ ’s

associated with the various directions θ1 ∈ Σ′ has opening more than k2π/k1
(and this is also the case for ′

1 ⋐ 1).

Prove that Estimate (42):

∣∣∣F (Z)−
N−1∑

n=k0

an

Zn/k2

∣∣∣ ≤ C NN/k1 AN

|Z|N/k2

(there exist A,C > 0) holds for all N and all Z in Πβ , for, the constants

involved are valid for any choice of θ1 in Σ′.

Since
∫ +∞
0 ζn/k2−1e−ζZdζ = Γ(n/k2)/Z

n/k2 we can write

F (Z)−
N−1∑

n=k0

an

Zn/k2
=

∫ +∞

0

(
G(ζ)−

N−1∑

n=k0

an
Γ(n/k2)

ζn/k2−1
)
e−ζZdζ
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and then,
∣∣∣F (Z)−

N−1∑

n=k0

an

Zn/k2

∣∣∣ ≤ P1 + P2 + P3

where





P1 =

∫ 1/R0

0

∣∣∣G(ζ)−
N−1∑

n=k0

an
Γ(n/k2)

ζn/k2−1
∣∣∣ |e−ζZ |dζ,

P2 =

∫ +∞

1/R0

∣∣G(ζ)e−ζZ
∣∣dζ,

P3 =

N−1∑

n=k0

|an|
Γ(n/k2)

∫ +∞

1/R0

∣∣ζn/k2−1e−ζZ
∣∣dζ.

From Estimate (41) we obtain, on Πβ ,

P1 ≤ C ′A′NNN/κ1

∫ +∞

0
ζN/k2−1e−ζℜ(Z)dζ

= C ′
A′N

ℜ(Z)N/k2
NN/κ1Γ(N/k2)

≤ C ′
A′N

(|Z| cos(β))N/k2
NN/κ1Γ(N/k2) since ℜ(Z) ≥ |Z| cosβ on Πβ

≤ C1
AN

1

|Z|N/k2
NN/κ1NN/k2 = C1

AN
1

|Z|N/k2
NN/k1 for larger constants A1, C1 > 0.

From Condition 2 we obtain, on Πβ ,

P2 ≤ c

∫ +∞

1/R0

e(a−ℜ(Z))ζdζ

≤ c e−(ℜ(Z)−a)/R0

(ℜ(Z)− a)

≤ cea/R0

R1 − a
· nne−nRn

0(
|Z| cosα

)n for all n > 0 and using ℜ(Z) ≥ |Z| cosβ

≤ C2
AN

2

|Z|N/k2
NN/k1

by taking n = N/k2, A2 =
(
R0/(ek2 cosβ)

)1/k2 and C2 = cea/R0/(R1−a) and
using N1/k2 < N1/k1 .

From estimate (41) we deduce (see Prop.2.3.10) that there exist con-

stants A′′ and C ′′ > 0 such that, for all n,

(44)
∣∣∣ an
Γ(n/k2)

∣∣∣ ≤ C ′′nn/κ1A′′
n
.
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It follows that P3 satisfies

P3 ≤
N−1∑

n=k0

C ′′nn/κ1A′′
n
∫ +∞

1/R0

1

R
n/k2−1
0

(R0ζ)
N/k2−1e−ζℜ(Z)dζ since R0ζ ≥ 1

≤ C ′′N max
(
A′′

N
, A′′

k0
)
R

(N−n)/k2
0 NN/κ1

Γ(N/k2)

(|Z| cosβ)N/k2

≤ C3
AN

3

|Z|N/k2
NN/k1 as before with large enough constants A3 and C3.

Adding these three estimates we obtain

(45)
∣∣∣F (Z)−

N−1∑

n=k0

an

Zn/k2

∣∣∣ ≤ C
AN

|Z|N/k2
NN/k1 on Πα

by setting A = max(A1, A2, A3) and C = C1 +C2 +C3. The constants A and

C are independent of θ1 ∈ Σ′. Henceforth, estimate (45) is valid for all Z ∈ ′
1

and this proves the k1-summability of f(x) in direction θ0 since the opening

of ′
1 is larger than k2π/k1. This achieves the proof of the theorem.

The Tauberian Theorems of J. Martinet and J.-P. Ramis [MR89,

Prop. 4.3](2) are easy corollaries of this theorem.

Corollary 6.3.12 (Martinet-Ramis Tauberian Theorem 1)

Let 0 < k1 < k2 and let I1 ⊇ I2 be, respectively, a k1-wide and a k2-wide

arc of S1. Set s2 = 1/k2.

If a series f̃(x) is both s2-Gevrey and k1-summable on I1 then it is k2-

summable on I2 and the two sums agree on I2.

Observe that the assertion is not trivial since, according to Definition

6.1.6, being k2-summable on I2, compared to being k1-summable on I1, is a

stronger condition to be satisfied on the smaller arc I2.

Proof. — It is sufficient to prove the theorem when I1 and I2 are closed of

length π/k1 and π/k2 respectively. Let θ1 and θ2 be the bisecting directions

of I1 and I2; they satisfy |θ1 − θ2| ≤ π/k1 − π/k2 = π/k. A k1-sum f1(x)

of f̃(x) exists on a larger open arc I1,ε containing I1 and lives in a sector

1,ε based on I1,ε. By Theorem 6.3.11 the k2-Borel transform g(ξ) of f1(x)

in direction θ1 lives on an unbounded sector σ of opening π/k + ε bisected

by θ1 and has there exponential growth of order k2. Moreover, g(ξ) is the

unique function s-Gevrey asymptotic to ĝ(ξ) on σ since the opening of σ is

(2) Caution: the notation s in that article corresponds to our κ1.
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larger than sπ = π/k. On another hand, since f̃(x) is s2-Gevrey, the formal

Borel transform ĝ(ξ) of f̃(x) is convergent. Its sum in the usual sense and the

unique s-Gevrey asymptotic function g(ξ) must necessarily agree. Denote by

σc the union of the sector σ with the disc of convergence of ĝ(ξ) and keep the

notation g(ξ) for the function g(ξ) continued to σc. The domain σc contains

the direction θ2. Using Definition 6.3.6 we can then conclude that f̃(x) is

k2-summable in direction θ2.

In addition, from Theorem 6.3.11 we know that f1(x) is the analytic con-

tinuation of the k2-Laplace transform of g(ξ) in direction θ1. On another

hand, it follows from Cauchy’s Theorem that the Laplace transforms of g(ξ)

in directions θ1 and θ2 are analytic continuations from each other. Hence, the

k2-sum f2(x) of f̃(x) coincides with f1(x) on I2 and the proof is achieved.

Corollary 6.3.13 (Martinet-Ramis Tauberian Theorem 2)

Let 0 < k1 < k2 and s2 = 1/k2.

If a series f̃(x) is both k1-summable and s2-Gevrey then it is convergent.

In particular, if f̃(x) is k1- and k2-summbable for k1 6= k2 then, f̃(x) is con-

vergent.

Proof. — Any closed arc of length π/k2 can be included in an arc of length

π/k1 on which f̃(x) is k1-summable. Henceforth, by the previous corollary,

f̃(x) is k2-summable in all directions and it follows that it is convergent

(cf. Rem. 6.1.8).

Example 6.3.14 (Leroy series). — The Leroy series L̃(x) =∑
n≥0(−1)n n!x2n+2 is the series deduced from the Euler series Ẽ(x) =

∑
n≥0(−1)n n!xn+1

(cf. Exa. 2.2.4) by substituting x2 for x. The Leroy series is thus divergent and 1/2-Gevrey

(k2 = 2, s2 = 1/2). It satisfies the Leroy equation

x3y′ + 2y = 2x2.

Show that L̃(x) is both 1- and 2-summable in the directions |θ| < π/4 mod π with

same sums. We choose the directions |θ| < π/4, the case when |θ − π| < π/4 being

similar. From the 1-summability of the Euler series Ẽ(x) in directions |θ| < π we deduce

that L̃(x) is 2-summable in any direction θ satisfying |θ| < π/2 with a 2-sum E(x2)

defined on | arg(x)| < 3π/4. In particular, E(x2) is 1/2- and then also 1-Gevrey asymptotic

to L̃(x) on |(arg(x)| < 3π/4. Since the sector | arg(x)| < 3π/4 is wider than π this shows

that E(x2) is also the (unique) 1-sum of L̃(x) on |(arg(x)| < 3π/4 (cf. Def. 6.1.6). We

have thus showed that the Leroy series satisfies the Tauberian Theorem 6.3.12 taking

k1 = 1, k2 = 2, I1 = I2 = {θ ; |θ| < 3π/4} and that, moreover, the 1-sum and the 2-sum

when they both exist, agree.
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Show that L̃(x) is not 1-summable in any direction θ satisfying π/4 ≤ θ ≤
3π/4 mod π. Indeed, suppose π/4 < θ < 3π/4 mod π. The 1-Borel transform B1 L̃(ξ)

of L̃(x) satisfies an equation obtained from the Leroy equation by substituting ξ (multi-

plication by ξ) for x2d/dx and d/dξ (derivation w.r.t ξ) for 1/x and so, it satisfies the

equation

ξY + 2
dY

dξ
= 2.

After noticing that B1 L̃(0) = 0 we observe that B1 L̃(ξ) is the Taylor series of the entire

function Φ(ξ) = exp(−ξ2/4)
∫ ξ

0
et

2/4dt solution of the same equation. The function Φ(ξ)

has exponential growth of order exactly 2 in direction θ (since π/4 < θ < 3π/4). Hence, it

cannot be applied a Laplace transform and the series L̃(x) is not 1-summable in direction θ,

and therefore, not 1-summable in all directions π/4 ≤ θ ≤ 3π/4 mod π. This property

is coherent with the Tauberian Theorem 6.3.13 since, as the series L̃(x) is divergent, it

cannot be both 1- and 2- summable in almost all directions.

6.3.4. Borel-Laplace summability and summable-resurgence. — We

saw in Theorem 6.2.5 that solutions of linear differential equations with a

unique level k are k-summable in any non anti-Stokes direction. In this section,

we investigate deeper properties of such solutions called resurgence and sum-

mable-resugence in the case when k = 1. These notions of resurgence and

summable-resugence are precisely defined and developed in [Sau, this volume]

and in [Sau05] in the case of a one-dimensional lattice of singular points for

the Borel transform; see also [CNP93]. They were introduced by J. Écalle

[É81, É85] in a very general setting. They apply to a wide class of series,

among which solutions of non linear differential equations or of difference

equations. For a different approach in the linear differential case, hence in

the case of a finite arbitrary set of singular points for the Borel transform, we

refer to [LRR11].

The aim of this section is to show that the solutions of any linear differ-

ential equations with the unique level one are summable-resurgent.

Let D be a linear differential operator with meromorphic (convergent)

coefficients and let us expand it with respect to the derivation δ = x2 d
dx :

D = bn(x)δ
n + bn−1(x)δ

n−1 + · · ·+ b0(x).

We suppose that its Newton polygon N0(D) at 0 has slopes 0 and 1 and

that f̃(x) is a series solution of the equation Dy = 0. The other formal

solutions are either log-series f̃j(x)x
λj or log-exp-series f̃j(x)x

λj eqj(1/x) where

f̃j(x) ∈ C[[x]][lnx], λj ∈ C and qj(1/x) = −aj/x, aj 6= 0.
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Definition 6.3.15. — The coefficients aj of the (non-zero) determining

polynomials qj(1/x) of the equation Dy = 0 are called Stokes values of Dy = 0

associated with f̃(x).

These Stokes values indicate the anti-Stokes directions associated with

f̃(x) as well as with any other log-series solution f̃j(x)x
λj lnp(x).

From Theorem 6.2.5 we know that f̃(x) is 1-summable in all directions but,

possibly, anti-Stokes directions. From the Borel-Laplace viewpoint this means

that, given a non anti-Stokes direction dθ, its associated Borel series f̂(ξ) is

convergent and can be continued to a sector neighboring dθ with exponential

growth of order 1.

We prove below that such properties can be extended to a much larger

domain.

⊲ Suppose first that the coefficients bj(x) ofD are algebraic (i.e., polynomials

in x and 1/x). If the coefficients bj contain polynomial terms in x of maximal

degree N > 0 we replace D by the operator D′ = x−ND. The operator D′

reads

D′ = Bn(1/x)δ
n +Bn−1(1/x)δ

n−1 + · · ·+B0(1/x)

with coefficients Bj(1/x) = x−Nbj(x) that are polynomials in 1/x. Denote by

v their maximal degree in 1/x and set Bj(1/x) = (1/xv)(γj + o(x)). By Borel

transform, D′ is changed into the linear differential operator (cf. Sect. 4.3.2.2)

∆′ = Bn

( d

dξ

)
ξn +Bn−1

( d

dξ

)
ξn−1 + · · ·+B0

( d

dξ

)

and f̂(ξ) satisfies the equation ∆′ŷ = 0.

Lemma 6.3.16. — The set S of the singular points of the equation ∆′ŷ = 0

is the set of the Stokes values associated with f̂ in the equation Dy = 0.

Proof. — Since the Newton polygon at 0 of D (and D′) has the two slopes 0

and 1 we must have b0 = 0 and bn 6= 0 (cf. proof of Prop. 4.3.22). The operator

∆′ has order v and, since dk

dξk
ξℓ = ξℓ dk

dξk
+ “lower order terms” and b0 = 0, it

reads

∆′ =
( n∑

j=1

γjξ
j
) dv

dξv
+ “lower order terms”.

Hence, the singular points of the equation ∆′ŷ = 0 are the zeroes of the

polynomial
∑n

j=1 γjξ
j = 0 which obviously vanishes for ξ = 0. However, this

polynomial is also, up to a power of ξ, the 1-characteristic polynomial of

D and we saw (cf. Sect. 4.3.2.3) that the non-zero Stokes values associated
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with f̃(x) are the roots of the various characteristic polynomials. In our case,

since the Newton polygon of D has no other slopes than 0 and 1, there is

no other characteristic polynomial than the 1-characteristic polynomial and

we can conclude that the singular points of the equation ∆′ŷ = 0 are all the

Stokes values of the equation Dy = 0 including 0.

It follows from the Cauchy-Lipschitz Theorem that f̂(ξ) can be analyti-

cally continued along any path drawn in C which avoids the (finite) set S of

singular points of the equation ∆′ŷ = 0. The domain to which extend the

convergent series f̂(ξ) is then the Riemann surface, named RS , which is made

of (the terminal end of) all homotopy classes in C \ S of paths issuing from

0 and bypassing all points of S. Only homotopically trivial paths are allowed

to turn back to 0. The surface RS looks very much like the universal cover of

C \ S but the fact that 0 is not a branch point in the first sheet (we always

start with a convergent power series f̂(ξ)).

This property is named resurgence and we can state:

Lemma 6.3.17. — The series f̃(x) is resurgent with singular support the

set S of Stokes values associated with f̃(x) in the equation Dy = 0, i.e., its

Borel transform f̂(ξ) is convergent and can be analytically continued to the

surface RS .

Now, consider a sector RS on RS with image I× ]R,+∞[ in C where the

arc I = {θ1 < θ < θ2} is a bounded arc of directions and suppose it contains

no singular point of the equation
(
(I × ]R,+∞[) ∩ S = ∅

)
. One reaches RS

from 0 following a C1-path γ of finite length in C \ S.
We keep denoting by f̂(ξ) the analytic continuation of f̂(ξ) to RS .

Lemma 6.3.18. — The series f̃(x) is summable-resurgent on RS , i.e., its

Borel transform f̂(ξ) has exponential growth of order 1 at infinity on any

sector RS with bounded opening on RS .

Proof. — This is a direct consequence of Proposition 4.3.22. If the opening of

RS were not bounded we could turn infinitely many times around ∞ adding

exponential terms at each turn. Hence, the necessity to bound the opening of

RS .
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⊲ Now, turn back to the general case when D has meromorphic, not nec-

essarily algebraic, coefficients.

Theorem 6.3.19. — Let D be a linear differential operator with meromor-

phic (convergent) coefficients at 0 and suppose D has the unique level k = 1.

Then, any series f̃(x) solution of Dy = 0 is summable-resurgent with sin-

gular support the Stokes values associated with f̃(x) in the equation Dy = 0

(cf. Def. 6.3.15).

Proof. — The Algebraisation Theorem of Birkhoff (see [Bir09] or [Sib90,

thm. 3.3.1]) says that to any linear differential operator D with meromorphic

coefficients at 0 there exists a meromorphic transformation which changes D

into an operator D′ with polynomial coefficients. The two equations Dy = 0

and D′y = 0 have the same determining polynomials, hence the same set S
of Stokes values associated with a series f̃(x) in Dy = 0 or associated with

its image after meromorphic transformation in D′y = 0. The operator D′ is

relevant of Lemma 6.3.18. The Borel transform of a convergent series is an

entire function with exponential growth of order 1 at infinity.

We thus have to prove that, if a function ϕ(ξ) is defined on all of RS with

exponential growth of order 1 at infinity and g(ξ) is an entire function with

exponential growth of order 1 at infinity then g ∗ϕ is well defined on all of RS
and has exponential growth of order 1 at infinity.

Since g and ϕ are both analytic near the origin 0 their convolution product

is well defined near 0 by the integral g ∗ ϕ(ξ) =
∫ ξ
0 g(ξ − t)ϕ(t)dy. Given any

path γ from 0 to ξ in C \ S (but its starting point 0), the integral
∫
γ g(ξ −

t)ϕ(t)dy is well defined and determines the analytic continuation of g ∗ ϕ
along γ. Changing the path γ into a homotopic one does not affect the result

according to Cauchy’s Theorem. Hence, g ∗ ϕ is well defined on all of RS . The
fact that this function has exponential growth of order 1 at infinity follows from

the fact that the convolution of exponentials eAξ and eBξ of order 1 is itself a

combination of exponentials of order 1.

Remark 6.3.20. — The previous theorem is valid for all series appearing

in a formal fundamental solution of a linear differential equation with mero-

morphic coefficients and unique level k = 1 even those that come with a

complex power of x or in a formal-log sum. This follows from the fact that

they are themselves solution of a (another) linear differential equation of the

same type. This is easily seen on systems: in a formal fundamental solution
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F̃ (x)xL eQ(1/x) the factor F̃ (x) is solution of the homological system, itself

with meromorphic coefficients and unique level 1.

6.4. Fourth approach: wild analytic continuation

The fourth definition of k-summability deals with wild analytic continua-

tion, that is, continuation of the series in the infinitesimal neighborhood of 0

(cf. Sect. 4.5).

6.4.1. k-summability. — A Gevrey series is a germ at 0 of the sheaf F .

We call wild analytic continuation any of its continuations as sections of F .

A series f̃(x) which is k-summable on a k-wide arc I can be wild analytically

continued to a domain containing the disc D(0, k) and the sector {(θ, k′) ; θ ∈
I and 0 < k′ ≤ +∞}. These conditions are not quite sufficient to characterize

k-summable series on I since the set of global sections of F over the open disc

D(0, k) is isomorphic to

C[[x]]s+ := lim
←−

ε→0+

C[[x]]s+ε =
⋂

ε>0

C[[x]]s+ε ⊃ C[[x]]s

and is thus, bigger than C[[x]]s. As for the set of global sections of F over the

closed disc D(0, k), it is isomorphic to

C[[x]]s− := lim
−→

ε→0+

C[[x]]s−ε =
⋃

ε>0

C[[x]]s−ε ⊂ C[[x]]s

and smaller than C[[x]]s (cf. Prop. 4.5.3). The right domain lies in bet-

ween D(0, k) and D(0, k). It can be made explicit in the sheaf space (Xk,Fk)

since, indeed, the set of global sections of Fk over the closure D(0, {k, 0}) in
Xk of the open disc D(0, {k, 0}) is isomorphic to C[[x]]s (cf. Prop. 4.5.5).

We can then state the following new definition of k-summability:

Definition 6.4.1 (k-summability). — Let I be a k-wide arc of S1

(cf. Def. 6.1.2). A series f̃(x) =
∑

n≥0 an x
n is k-summable on I if it

can be wild analytically continued to a domain containing the closed disc

D(0, {k, 0}) and the sector I × ]0,+∞]. We call such a domain a k-sector in

Xk.

The definition above being the exact translation of Ramis-Sibuya def-

inition of k-summability it is equivalent to all previous definitions of k-

summability.
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Figure 13. Domain for a k-sum in Xk (in white)

6.4.2. Applications. — 1. Tauberian Theorems — Let us revisit the

Martinet-Ramis Tauberian Theorem 1 (Cor. 6.3.12) from the viewpoint of

wild analytic continuation.

Consider a k1-summable series f̃(x) on I1. In the viewpoint of wild

analytic continuation this property translates in the space (Xk1 ,Fk1)

(cf. Sect. 4.5.2 p. 93) as the condition that the series f̃(x) admits a

continuation as a section of the sheaf Fk1 to the k1-sector k1,I1 =

D(0, {k1, 0})∪
(
I1×]0,+∞]

)
(see Fig. 13). The fact that it is k2-summable on

I2 has a similar interpretation in the space (Xk2 ,Fk2). To interpret both we

need to work in the space (Xk1,k2 ,Fk1,k2).

The Tauberian Theorem says that, given k1 < k2 and I2 ⊂ I1, the fact

that f̃(x) be k1-summable on I1 (i.e., that it can be continued to the k1-sector

k1,I1) and that it be also s2-Gevrey (i.e., that it can be continued to the disc

Dk2 = D(0, {k2, 0})) implies that it can be continued to the k2-sector k2,I2 .

Clearly, k2,I2 is included in k1,I1 ∪Dk2 .

Figure 14. k1,I1 (in yellow) and k2,I2 (hachured) in Xk1,k2
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The theorem asserts that, on the intersection k1,I1 ∩ Dk2 , the two contin-

uations agree. This is the case on Dk1 since there is a unique continuation

of f̃(x) to Dk1 (cf. R-S Cor. 6.2.2 p. 119). The compatibility of the two

continuations on
(
Dk2 \Dk1

)
∩ k1,I1 means that their difference belongs to

the space H0
(
I1,A≤−k1/A≤−k2

)
. The Relative Watson’s Lemma below (Thm.

8.2.1 p. 175) asserts that such a space reduces to the null section. Hence, the

two continuations agree and define a k2-sum of f̃(x) on I2.

2. Functions of k-summable series

Proposition 6.4.2. — Let be given a k-wide arc I and r series f̃1(x), . . . , f̃r(x)

that are k-summable on I with k-sums f1(x), . . . , fr(x) respectively.

Assume that f̃1(0) = · · · = f̃r(0) = 0.

If g(x, y1, . . . , yr) is an analytic function on a neighborhood of 0 in Cr+1

then, the series g(x, f̃1(x), . . . , f̃r(x)) is k-summable on I with k-sum

g(x, f1(x), . . . , fr(x)).

Proof. — According to Proposition 2.3.6 the expression g(x, f̃1(x), . . . , f̃r(x))

determines a well-defined s-Gevrey series, hence, a germ at 0 of the sheaf Fk

which can be continued to the closed disc D(0, {k, 0}).
The series f̃1(x), . . . , f̃r(x) being k-summable on I and vanishing at x = 0

can be continued to the sector I × ]0,+∞] with values in an arbitrary small

neighborhood of 0. The function g being holomorphic on a neighborhood of 0

the series g
(
x, f̃1(x), . . . , f̃r(x)

)
can also be continued to the sector I× ]0,+∞]

with analytic continuation g
(
x, f1(x), . . . , fr(x)

)
.

3. Summability of solutions of differential equations

Let f̃(x) be a series solution of a linear differential equation (or system).

The fences to the wild analytic continuation of f̃(x) in X or in any space

Xk, Xk1,k2 , . . . are the big points of the exponentials
(
exp(qj(1/x))

)
j∈J

ap-

pearing in a formal fundamental solution. Indeed, when a direction passes a

big point it exits the definition domain of the associated exponential and flat

terms become undefined.

Recall that, in X, the big points associated with an exponential of degree

k are the closed arcs of length π/k bisected by the anti-Stokes directions of

the exponential (directions of maximal decay) and lying on the circle of radius

k in X. In Xk they are arches based on the previous arcs. Below, are drawn

the big points of two exponentials, one of degree 1 and one of degree 2 in X.
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A series solution of a linear differential equation where only these two

exponentials appear is k-summable on any k-sector containing none of these

big points. Also, it is (k1, k2)-summable on any (k1, k2)-sector containing

none of these big points. In particular, one can check easily that it is (1, 2)-

summable in almost all directions (here, all directions but the three anti-Stokes

directions).

When f̃(x) is a series solution of a non linear differential equation then

the same procedure applies to the linearized equation along f̃(x).



CHAPTER 7

TANGENT-TO-IDENTITY DIFFEOMORPHISMS AND

BIRKHOFF NORMALISATION THEOREM

7.1. Introduction

This chapter deals with the conjugacy of tangent-to-identity germs of dif-

feomorphisms at 0. It aims at showing another example (not solution of a

differential equation) where the Gevrey cohomological analysis is also efficient.

We consider the by-now classical case of a germ of “translation”

g : x 7−→ g(x) =
x

1 + x
·

As a homography, g is defined over the whole Riemann sphere C. In the chart

of infinity, setting z = 1/x and G(z) = 1/g(x), the germ g reads

G : z 7−→ G(z) = z + 1

hence, the name of translation.

Convention. — As previously, we denote by x the coordinate about 0

and by z = 1/x the coordinate about infinity. We denote by the same letter

a given germ in the chart of 0 and in the chart at infinity, using a small letter

at 0 and the corresponding capital one at infinity.

In this context, the formal and meromorphic gauge transformations of the

classification of linear differential systems are replaced by formal and conver-

gent tangent-to-identity diffeomorphisms h̃(x) = x +
∑

n≥2 cnx
n acting on g

by conjugacy, that is, by changing g into h̃−1 ◦ g ◦ h̃.
Definition 7.1.1. — A germ f is formally conjugated (or analytically

conjugated) to g if there exists h̃(x) = x+
∑

n≥2 cnx
n formal (or convergent)

satisfying the conjugacy equation

(46) h̃ ◦ f = g ◦ h̃.
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One can check that such an h̃ exists if and only if f has the form

f(x) = x− x2 + x3 +
∑

n≥4

anx
n

and

h̃(x) = x+
∑

p≥2

cpx
p

is unique after c2 is fixed, say, to c2 = 0. In the chart of infinity, setting

z = 1/x and F (z) = 1/f(x), the condition reads

F (z) = z + 1 +
∑

n≥2

An

zn
(observe A1 = 0)

and H̃ is unique in the form

H̃(z) = z +
∑

p≥1

Cp

zp
·

Notice that, in its formal class, g has the particularity of being best behaved

with respect to iteration and, thus, plays the role of a normal form.

From now on, the diffeomorphisms h̃(x) = x +
∑

p≥2 cpx
p by which we

conjugate are supposed to satisfy c2 = 0. We denote the group of the so

normalized germs of formal tangent-to-identity diffeomorphisms of C at 0,

endowed with composition, by

G̃ =
{
x+

∑

n≥3

cnx
n ∈ C[[x]]

}

and the subgroup of convergent germs of G̃ by

G =
{
x+

∑

n≥3

cnx
n ∈ C{x}

}
.

With this normalization, a conjugacy map h̃ when one exists is unique.

It might be divergent although f and g are both convergent. One can prove,

for instance, that a sufficient condition for h̃ to be divergent is that f be an

entire function.

As for linear differential systems the analytic classification of the conjugacy

classes of diffeomorphisms is performed inside each formal class with a given

normal form, here g. Our aim is not to longly develop that classification but

to give a proof of the main point in the given example of the translation g,

that is to say, to prove that the conjugacy maps h̃ of g are 1-summable series.
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A natural approach consists in analyzing the Borel transform of h̃(x) fol-

lowing so J. Écalle [É74] (cf. D. Sauzin, section 14, this volume). We choose

to develop here a sectorial approach due to Kimura [Kim71, Thm. 6.1] (see

also [Bir39, première partie, § 5]); the proof is based on the Ramis-Sibuya

Theorem (Thm. 6.2.1) after constructing an adequate 1-quasi-sum.

We consider the following sheaves:

⊲ G =
{
f ∈ A ; Tf ∈ G̃

}
the subsheaf of A made of (normalized) tangent-

to-identity germs of diffeomorphisms (Recall that A is the sheaf over S1 of

germs of asymptotic functions at 0; cf. Sect. 3.1.5) and

⊲ G<0 =
{
f ∈ G ; Tf = id

}
the subsheaf of G made of its flat germs (“flat”

in a multiplicative context means “asymptotic to identity”).

Equipped with composition law, G is a sheaf of non commutative groups

and G<0 a subsheaf of groups.

Given 0 < α < π we consider in the chart of infinity the sectors

∆+(α,R) =
{
z ; −α < arg(z −R) < α

}
,

∆−(α,R) =
{
z ; π − α < arg(z +R) < π + α

}
.

∆+(α,R) and ∆+(α,R) are symmetric to each other with respect z = 0.

We denote by δ+(α,R) and δ−(α,R) their image in the coordinate x = 1/z.

Figure 1

Given g a germ of diffeomorphism we denote its pth power of compsition

by

gp = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
p times

.
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7.2. Birkhoff-Kimura Sectorial Normalization

Although we state the theorem in a chart of 0 (coordinate x), as we are

use to do it, it is worth, taking into account the very simple expression of

G(z), to perform the proof in the chart of infinity (coordinate z). Let us start

with a technical lemma.

Lemma 7.2.1. — Let 0 < α0 < π and R0 > 1 be given. For all m ∈ N∗,

there exists a constant c > 0 which depends on α0 and m but not on R0 such

that, ∑

p≥0

1

|z + p|m+1 ≤ c

|z|m for all z ∈ ∆+(α0, R0).

Proof. — The proof is elementary. We compare the sum to an integral as

soon as possible, i.e., as soon as the general term of the series decreases and

we estimate the extra terms.

Given z ∈ ∆+(α0, R0) let us denote by p(z) + 1 ≥ 0 the smallest integer

such that ℜ(z+ p(z)+1) > 0. Notice that p(z) ≤ max
(
0, |z| cos(π−α0)

)
and

|z| ≥ R0 sinα0 for all z in ∆+(α0, R0). We split the series into

∑

p≥0

1

|z + p|m+1 =

p(z)+1∑

p=0

1

|z + p|m+1 +
∑

p≥p(z)+2

1

|z + p|m+1 ·

We claim first that |z + p| ≥ |z| sinα0 > 0 for all p ∈ N and z ∈
∆+(α0, R0); for, |z + p| ≥ |z| when ℜ(z) ≥ 0 and |z + p| ≥ ℑ(z) = |z| sin θ ≥
|z| sinα0 when ℜ(z) < 0 since then π/2 < θ < α0. It follows that

p(z)+1∑

p=0

1

|z + p|m+1 ≤ 1

|z|m+1 +
p(z) + 1

(|z| sinα0)m+1
≤ c1

|z|m

for a constant c1 depending on α0 and m but not on R0 > 1. Indeed, we have

1

|z| +
p(z) + 1

|z|(sinα0)m+1
≤ 1

R0 sinα0
+

cos(π − α0)

(sinα0)m+1
+

1

R0(sinα0)m+2

and, since R0 > 1, we can choose c1 = 3/(sinα0)
m+2.

Starting from p = p(z) + 1 the function p 7→ 1
|z+p|m+1 decreases and we

have
∑

p≥p(z)+2

1

|z + p|m+1 ≤
∫ +∞

p(z)+1

dp

|z + p|m+1 =

∫ +∞

0

dq

|z + p(z) + 1 + q|m+1

=
1

|z + p(z) + 1|m
∫ +∞

0

dr

(1 + r)m+1
≤ c2

|z|m
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for a constant c2 = 1/(sinα0)
m; indeed, |z + p(z) + 1| ≥ |z| sinα0 and

since m ≥ 1, we can write
∫ +∞

0

dr

(1 + r)m+1
≤

∫ +∞

0

dr

(1 + r)2
= 1.

Hence, the result if one chooses the constant c = c1 + c2.

Theorem 7.2.2 (Birkhoff-Kimura sectorial normalization)

Let ϕ be a flat diffeomorphism over a proper sub-arc I+α0
= ]−α0,+α0[ of

S1 (i.e., 0 < α0 < π and ϕ ∈ H0(I+α0
;G<0)).

Then, the diffeomorphism g1 = ϕ◦g belongs to H0(I+α0
;G) and is uniquely

conjugated to g via a section of G<0: there exists a unique φ+ ∈ H0(I+α0
;G<0)

such that

φ+ ◦ g1 = g ◦ φ+ on I+α0
.

Symmetrically, denote by I−α0
= [−α0+π, α0+π] the arc opposite to I+α0

on S1

and suppose that ϕ ∈ H0(I−α0
;G<0). Then, there exists a unique φ− ∈ H0(I−α0

;G<0)

such that

φ− ◦ g1 = g ◦ φ− on I−α0
.

Proof. — We make the proof over I+α0
. The proof on I−α0

is similar when

applied to g−1 and g−11 . The fact that g1 = ϕ ◦ g be a diffeomorphism on I+α0

and have a Taylor expansion is clear since so do ϕ and g. Its Taylor expansion

is equal to Tg1 = Tϕ ◦ Tg = id ◦ Tg = Tg. Turn now to the variable z and

denote by the corresponding capital letters the diffeomorphisms in the chart

of infinity.

Given α < α0 choose α1 ∈ ]α, α0[ and R1 > 1 so that G1(z) be well

defined on ∆+(α1, R1). Denoting K(z) = G1(z)−G(z) and φ+(z) = z+ψ+(z)

the condition φ+ ◦ g1 = g ◦ φ+ becomes K(z) + ψ+ ◦ G1(z) − ψ+(z) = 0. A

solution will be given by ψ+(z) =
∑

p≥0K ◦Gp
1(z) if we prove that the series∑

p≥0K◦Gp
1(z) converges to a holomorphic function asymptotic to 0 at infinity.

⊲ Given R > R1 + 2, the function K(z) being asymptotic to 0 on

∆+(α1, R1) it satisfies: for all m ∈ N, there exists a > 0 such that

(47)
∣∣K(z)

∣∣ ≤ a

|z|m+1 on ∆+(α,R1 + 1) ⊃ ∆+(α,R− 1).

The constant a depends on m,α1 and R1 but not on R. Below, R > R1 + 2

will be chosen conveniently large.
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⊲ Prove that, there exists a constant A ≥ a and independent of R such

that,

(48) sup
|z−z′|≤sinα
z∈∆+(α,R)

∣∣K(z′)
∣∣ ≤ A

|z|m+1 ·

Indeed, the conditions z ∈ ∆+(α,R) and |z − z′| ≤ sinα imply z′ ∈

Figure 2

∆+(α,R− 1). We can then apply Condition (47) to yield

∣∣K(z′)
∣∣ ≤ a

|z′|m+1 ≤ a
(
|z| − sinα

)m+1 ≤ A

|z|m+1

with A = a
(

R1
R1−1

)m+1
since

sup
z∈∆+(α,R)

|z|
|z| − sinα

≤ sup
|z|≥R1 sinα

|z|
|z| − sinα

=
R1

R1 − 1
·

⊲ Choose R so large that, for all m ≥ 1,

(49) A
∑

p≥0

1

|z + p|m+1 ≤ sinα for all z ∈ ∆+(α,R).

Such a choice is possible. Indeed, from Lemma 7.2.1 applied to ∆+(α1, R1),

we obtain

A
∑

p≥0

1

|z + p|m+1 ≤ Ac

|z|m

and the constant Ac does not depend on R. Now, maxz∈∆+(α,R)
Ac
|z|m

=
Ac

(R sinα)m . Assuming R large enough so that R sinα > 1 then, Ac
(R sinα)m ≤

Ac
R sinα which is independent of m and can be made arbitrarily small by choos-

ing R large.
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⊲ Prove by induction on p that, for all p ≥ 1 and all z ∈ ∆+(α,R),

(50)
∣∣Gp

1(z)− (z + p)
∣∣ ≤ A

p−1∑

q=0

1

|z + q|m+1

(recall the notation gp = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
p

times).

When p = 1, the inequality reads K(z) ≤ A/|z|m+1 and follows from

Condition (47) with a < A. Suppose Condition (50) valid up to p. Then, from

Condition (49), we get |Gp
1(z)− (z + p)| ≤ sinα. And this implies that:

(i) lim
p→∞

Gp
1(z) = ∞ for all z ∈ ∆+(α,R);

(ii) Gp
1(z) ∈ ∆+(α,R) since z + p ∈ ∆+(α,R+ p) ⊂ ∆+(α,R+ 1);

(iii)
∣∣K ◦Gp

1(z)
∣∣ ≤ A

|z + p|m+1 (Estimate (48) applied to z′ = Gp
1(z) and

z + p for z).

Since Gp
1(z) ∈ ∆+(α,R) it can be applied G1 = G+K. We can then write

Gp+1
1 (z) = G

(
Gp

1(z)
)
+K

(
Gp

1(z)
)
= Gp

1(z) + 1 +K ◦Gp
1(z)

from which we deduce Gp+1
1 (z) − (z + p + 1) = Gp

1(z) − (z + p) +K ◦ Gp
1(z).

Applying the recurrence hypothesis and Condition (iii) at rank p we obtain

∣∣Gp+1
1 (z)− (z + p+ 1)

∣∣ ≤ A

p−1∑

q=0

1

|z + q|m+1 +
A

|z + p|m+1

which is Condition (50) at rank p+ 1.

⊲ Conclude on ψ+. Condition (iii) for all p and m ≥ 1 proves that the

series
∑

p≥0

K ◦Gp
1(z)

converges uniformly on compact sets of ∆+(α,R). The functions K ◦Gp
1 being

holomorphic, the sum Ψ+(z) =
∑

p≥0K ◦Gp
1(z) is holomorphic on ∆+(α,R).

Moreover, for all m ∈ N∗ and all z ∈ ∆+(α,R) (Recall that α and R do not
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depend on m) , there exist constants A and c > 0 such that

∣∣Ψ+(z)
∣∣ ≤

∑

p≥0

A

|z + p|m+1 (Condition (iii))

≤ Ac

|z|m (Lemma 7.2.1 for ∆+(α,R))

which shows that ψ+(z) is asymptotic to 0 at infinity.

⊲ Proving the uniqueness of the solution resumes to proving that the

equation ψ ◦G1 − ψ = 0 has a unique solution asymptotic to 0 on ∆+(α,R).

And indeed, if we iterate the equation we obtain ψ ◦Gp
1(z)−ψ(z) = 0; letting

p tend to infinity, we obtain ψ(z) = limp→+∞ ψ ◦ Gp
1(z) = limz′→∞ ψ(z

′)

according to Condition (i).

Hence, ψ(z) = 0 for all z ∈ ∆+(α,R) and the proof is achieved.

Actually, Birkhoff [Bir39] and Kimura [Kim71] stated the theorem in

the following form (see also [Mal82] and [É74]).

Corollary 7.2.3 (Birkhoff-Kimura). — Consider the conjugacy equation

(46) h̃ ◦ f = g ◦ h̃.
With notations as before, there exist unique diffeomorphisms h+ ∈ H0(I+α0

;G)
and h− ∈ H0(I−α0

;G) such that

h+ ◦ f = g ◦ h+ and T0 h+ = h̃ on I+α0
,

h− ◦ f = g ◦ h− and T0 h− = h̃ on I−α0
.

where T0 h stands for “Taylor expansion of h at 0”.

Proof. — Again, we develop the proof over I+α0
. We denote by δ+(α,R) the

image in the chart of 0 of the domain ∆+(α,R) as built in the proof of Theorem

7.2.2. The Borel-Ritt Theorem (Thm 2.4.1 (i)) provides a function h holomor-

phic on δ+(α,R) and with Taylor expansion Th(x) = f̃(x) at 0. Consider the

function f1 = h ◦ f ◦ h−1. It has an asymptotic expansion on δ+(α,R) given

by h̃ ◦ f ◦ h̃−1 = g according to the conjugacy equation (46). Hence, there

exists ϕ = f1 ◦ g−1 which is flat and satisfies f1 = ϕ ◦ g.
Birkhoff-Kimura Theorem 7.2.2 applied to f1 and g provides a ψ+ asymp-

totic to 0 and satisfying ψ+ ◦ f1 = g ◦ψ+ and h+ = ψ+ ◦ h solves the problem

on δ+(α,R). Uniqueness is proved similarly as for ψ+ and is valid on δ(α,R)
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for all α < α0 (whereas R might depend on α) . Hence the existence and

uniqueness of h+ as a section of the sheaf G over I+α0
.

Symmetrically, we prove the existence and uniqueness of h− over I−α0
by

the same method.

When α0 > π/2 the domains of definition of h+ and h− overlap across the

two imaginary directions.

Figure 3

7.3. Invariance equation of g

The invariance equation

(51) u ◦ g = g ◦ u
of g is a particular case of the conjugacy equation (46). Hence, it admits

the unique solution u = Id in G̃ and, given 0 < α0 < π, it admits a unique

solution u+ section of the sheaf G over I+α0
= ]−α0,+α0[ and a unique solution

u− over I−α0
= ]π − α0, π + α0[ asymptotic to g. But due to their uniqueness,

since Id is a solution everywhere, then u+ and u− are both equal to Id. The

situation is different in a neighborhood of the imaginary axis where there might

exist non trivial germs of solutions. And indeed, the solution h−1− ◦ h+ might

be non trivial depending on f .

In this section we study the behavior of germs of flat solutions near the

two imaginary half axis.

Proposition 7.3.1. — Let 1 =
{
|x| < r1 ; β < arg x < π − β

}
with

0 < β < π/2 be a sector with vertex 0 neighboring the positive imaginary

axis. Any solution u ∈ G( 1) of the invariance equation (51) is exponentially
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flat of order 1 on 1.

The same result holds on a sector 2 =
{
|x| < r2 ; β − π < arg x < −β

}
neigh-

boring the negative imaginary axis.

Proof. — It suffices to consider the case of 2. Again, it is more convenient

to work in the chart of infinity. The sector 2 is changed into

2 =
{
|z| > R2 =

1

r2
; β < arg z < π − β

}
,

the solution u is changed into U and we set U = Id+V . With these notations

the invariance equation reads

(52) V (z + 1) = V (z)

whose solutions are the 1-periodic functions. Hence, to solutions U ∈ G( 2)

there correspond functions V of the form V (z) = ν(e2πiz) that sat-

isfy lim
z→∞

V (z) = 0.

Figure 4

Consider, in 2, a vertical half-stripe [iR, 1+ iR[× ]iR,+i∞[ with width 1

(see Fig. 4, p. 168). It’s easily checked that its image by the map z 7→ t = e2πiz

is a punctured disc Ω2 centered at 0 in C. Moreover, a fundamental sys-

tem of neighborhoods of infinity in 2 is sent on a fundamental system of

neighborhoods of 0. Hence, the condition lim
z→∞
z∈Σ1

ν(e2πiz) = 0 is equivalent to

limt→0 ν(t) = 0. Consequently, by the Inexisting Singularity Theorem, ν can

be continued into a holomorphic function at 0.

Now, suppose ν is not identically 0. Then, it has a finite order, say k

at 0 (denote ν(t) = O(tk)). This implies that V (z) = O(e−2πkℑ(z)) as z tends
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to infinity in 2. However, on 2, one has ℑ(z) > |z| sinβ and consequently,

V (z) = O(e−2πk sin(β)|z|). Thus, V has (uniform) exponential decay of order

one on 2 at infinity and so does the solution u(x) = 1/
(
1/x+V (1/x)

)
at x = 0

on 2.

7.4. 1-summability of the conjugacy series h̃

Recall that the conjugacy equation

h ◦ f = g ◦ h (46)

admits a unique formal solution h̃(x) in G̃. The 1-summability of h̃ is now

straightforward.

Theorem 7.4.1. — The series h̃(x) is 1-summable with singular directions

the two imaginary half-axis.

Proof. — Let π/2 < α0 < π and consider the solutions h+(x) ∈ H0(I−α0
,G)

and h−(x) ∈ H0(I+α0
,G) of Equation (46), asymptotic to h̃(x) (cf. Cor. 7.2.3).

The non Abelian 1-cocycle defined by h1 = h−1− ◦ h+ on ]π − α0, α0[ and

by h2 = h−1+ ◦ h− on ]− α0, α0 − π[ satisfies the invariance equation (51).

Denote h1 = Id+u1 and h2 = Id+u2. It follows from the previous section that

u1 and u2 are exponentially flat of order one on ]π−α0, α0[ and ]−α0, α0−π[
respectively.

To apply the Ramis-Sibuya Theorem to h̃(x) on the covering I = (I+α0
, I−α0

)

of S1 we must prove that the Abelian 1-cocycle equal to h+−h− on ]π−α0, α0[

and h− − h+ on ]− α0, α0 − π[ is exponentially flat. And indeed, from the

form h1 = h−1− ◦ h+ = Id+u1 and h2 = h−1+ ◦ h− = Id+u2 of h1 and h2 we

deduce that {
h+ − h− = h− ◦ u1 on ]π − α0, α0[,

h− − h+ = h+ ◦ u2 on ]− α0, α0 − π[.

Hence, the Abelian 1-cocycle is exponentially flat of order one since so are u1
and u2 while h− and h+ are asymptotic to the identity.

Since α0 can be chosen arbitrarily close to π we can conclude that the

series h̃(x) is 1-summable in all direction but the two imaginary half axis.

One proves that these cocycles are not trivial in general while h̃(x) is

divergent; the non Abelian 1-cocycle (h1, h2) classifies the analytic classes of

diffeomorphisms f(x) formally conjugated to g(x).





CHAPTER 8

SIX EQUIVALENT APPROACHES TO

MULTISUMMABILITY

8.1. Introduction and the Ramis-Sibuya series

We may observe that the examples of series given in the previous chap-

ters that are solution of linear differential equations are all k-summable for

a convenient value of k. In Theorem 6.2.5 sufficient conditions are stated for

the k-summability of solutions of linear differential equations (k-summability

must be understood there in its global meaning, that is, k-summablility in al-

most all directions). Recall that Corollary 6.3.13 asserts that a series both k1-

and k2-summable for two distinct values k1 6= k2 of k is necessarily convergent.

Though, such a result is no longer valid if one considers k1- and k2-summability

in a given direction θ: as shown in Example 6.3.14, the Leroy series L̃(x) is

both 1- and 2-summable in all directions θ ∈]− π/4,+π/4[ mod π.

A first natural question is to determine whether any series solution of a

linear differential equation is k-summable for a convenient value of k. This

question, known under the name of Turrittin problem although Turrittin after

Trjitzinsky, Horn and al. formulated the question in different terms, received a

negative answer by J.-P. Ramis and Y. Sibuya in 1984 (published later [RS89])

through a counter-example (cf. Exa. 8.1.1). A more intricate summation pro-

cess called multisummation had become necessary.

The counter-example given by J.-P. Ramis and Y. Sibuya with a proof of

the fact that the Ramis-Sibuya series is k-summable for no k > 0 is as follows.

Example 8.1.1 (Ramis-Sibuya series). — The Ramis-Sibuya series is the se-

ries

R̃S(x) = Ẽ(x) + L̃(x)
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sum of the Euler series Ẽ(x) =
∑

n≥0(−1)n n!xn+1 and of the Leroy series

L̃(x) =
∑

n≥0(−1)n n!x2n+2 deduced from the Euler series by substituting x2 for x

(cf. Exa. 2.2.4 and 6.3.14). From the Euler equation x2y′ + y = x and the Leroy equa-

tion x3y′ + 2y = 2x2 one deduces that the Ramis-Sibuya series satisfies the Ramis-Sibuya

equation

RS(y) = 4x+ 2x2 + 10x3 − 3x4

where the operator RS reads

RS = x5(2− x)d2/dx2 + x2(4 + 5x2 − 2x3)d/dx+ 2(2− x+ x2).

It is worth to notice that the operator RS admits the following Newton polygon with

the two slopes 1 and 2. We will see that this indicates that the series solution of the

Ramis-Sibuya equation are all, at worst, (1,2)-summable as defined in the next sections.

Figure 1. Newton polygon of the Ramis-Sibuya operator

Check that the series R̃S(x) is k-summable for no k > 0. Indeed, as we saw earlier

(cf. Com. 6.1.9 and Sect. 2.2.2), the Euler series Ẽ(x) is 1-summable in all direction but

the direction θ = π. As a consequence, the Leroy series L̃(x) is 2-summable in all direction

but the directions θ = ±π/2. We saw in Example 6.3.14 that the Leroy series, and then

also the Ramis-Sibuya series, is 1-summable in the directions θ ∈]−π/4,+π/4[ mod π and

in these directions only. In particular, the Ramis-Sibuya series is not 1-summable. On

another hand, the Euler series Ẽ(x), and then also the Ramis-Sibuya series, is 2-summable

in no direction since its 2-Borel transform does not converge. In particular, the Ramis-

Sibuya series is not 2-summable. Consider now a direction θ ∈]π/4 , 3π/4[ mod π and show

that R̃S(x) is k-summable for no other value of k > 0 in direction θ. This is the case for

k > 1 (and in any direction) from the same argument as for k = 2: the k-Borel transform

of R̃S(x) does not converge. Suppose there exists k < 1 such that R̃S(x) be k-summable in

direction θ. Then, since R̃S(x) is a 1-Gevrey series, the Tauberian Theorem (Thm. 6.3.12)

of Martinet-Ramis [MR89] (taking k1 = k < 1 and k2 = 1) would imply that R̃S(x)

be 1-summable in direction θ. Hence, the contradiction and we can conclude that R̃S(x)

is k-summable for no k > 0 since this is the case in all direction θ ∈]π/4 , 3π/4[ mod π.

Let us also sketch another proof of this latter fact which relies on the study of the

Stokes phenomenon for R̃S(x) and makes no use of the Tauberian Theorem. A k-sum

of R̃S(x) would be a solution of the Ramis-Sibuya equation (cf. Prop. 6.1.10). The space

of solutions of the Ramis-Sibuya equation is the sum of the spaces of solutions of the Euler
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equation and of the Leroy equation. The Stokes arcs are the arc [π/2 , 3π/2] inherited

from Ẽ(x) and the two arcs [π/4 , 3π/4] mod π inherited from L̃(x). An arc centered at

the chosen direction θ ∈]π/4 , 3π/4[ mod π with length > π/k > π contains a Stokes arc

of L̃(x) and then all solutions of the Leroy equation asymptotic to L̃(x) must exhibit a

Stokes phenomenon with non trivial Stokes automorphisms on that arc. Moreover, the

discontinuities, i.e., the Stokes automorphisms of the Leroy series being given in terms

of exponentials of order 2 cannot be compensated by the Stokes automorphisms of the

Euler series that are given in terms of an exponential of order 1. Consequently, there

exists no solution of the Ramis-Sibuya equation asymptotic (and especially, k-asymptotic)

to R̃S(x) on such an arc and we can again conclude that R̃S(x) is not k-summable in any

direction θ ∈]π/4 , 3π/4[ mod π.

A natural candidate for the sum of R̃S(x) is the asymptotic function E(x) + L(x)

obtained by adding the 1-sum of Ẽ(x) to the 2-sum of L̃(x). But that choice is not so

trivial as we will see soon. The (1,2)-summability of R̃S(x) following J. Écalle’s approach

is widely developed in [LR90].

This example shows that the set of k-summable series for all k > 0 is

insufficient to embrace all series solutions of linear differential equations. Hav-

ing in mind to sum solutions of linear differential equations another natural

question is the following:

Is it possible to find a (in some way, minimal) set of series endowed with

a summation process compatible with the various k-summation processes,

that contains all solutions of linear differential equations?

From the example of the Ramis-Sibuya series we understand that any

such set should contain the vector space
∑

0<k≤+∞C{x}k of k-summable se-

ries for al k > 0(1). Observe however, with the example of the 1-summable

series f̃(x) = x/ Ẽ(x), that not all k-summable series are solutions of lin-

ear differential equations. Since the derivative and the product of solutions

of linear differential equations satisfy themselves linear differential equations

such a set should also contain the differential algebra Algk>0 generated by the

spaces C{x}k for all k > 0 including k = +∞. And it results from the factor-

ization theorem of solutions of linear differential systems [Ram85], [LR94,

Thm. III.2.5] that the algebra Algk>0 suffices. As a homomorphism of dif-

ferential algebras a summation operator S on Algk>0, if it exists, is uniquely

determined by its values on the spaces C{x}k generating Algk>0. The prob-

lem lies in the existence of the operator. Indeed, the compatibility condition

means that the restriction of S to each space C{x}k has to be the k-summation

(1) One could also limit the choice to rational k > 0 since all levels of linear differential equations

are rational.
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operator. Hence, given an element of Algk>0 in the form of a sum of products

of k-summable series its sum is obtained by replacing each factor by its k-sum.

The point is that an element in Algk>0 may have several decompositions into

sums of products of k-summable series and showing that these decompositions

all provide the same sum is not obvious. There exists no direct proof of that

fact. A solution is found in developing independently a theory of summation

called multisummation which extends the k-summation processes with exis-

tence and uniqueness of sums and showing that the elements of Algk>0 are

summable in that theory (cf. Prop. 8.2.14).

The same question may be addressed in a given direction θ and the results

are more precise. It was proved by W. Balser in [Bal92a] that, under a

weak restrictive condition on levels, any multisummable series in direction θ

lives in the vector space
∑

k>0C{x}k,θ of k-summable series in direction θ

for all k > 0. The decomposition is essentially unique (cf. Prop. 8.5.1) and

again the sum obtained by adding the k-sums of each term coincide with

the multisum in any other usual sense whatever the decomposition. However,

when the series is multisummable (i.e., multisummable in almost all direction)

the decomposition depends on the chosen direction in general (cf. Sect. 8.5).

One could think of this approach as a good numerical tool based only on simple

summation processes. This is not the case since the decomposition into a sum

is purely theoretical with no algorithm coming with.

The aim of this chapter is to describe in a general setting various defini-

tions of multisummability. Of course, we look forward to the same properties

as those of k-summation, i.e., uniqueness, homomorphism of C-differential al-

gebras,. . . . We also compare these various approaches to prove their equiva-

lence. Comparison being not evaluation, our aim is not to grade the different

approaches. None approach can be considered as being the best, none as being

the worst. But any of them might be better than another one depending on

the question to answer.

All along the chapter we use the Ramis-Sibuya series as our reference

example.

8.2. First approach: asymptotic definition

In this section, we generalize the asymptotic approach of k-summability

(cf. Sect. 6.1) to the case of several levels k1 < k2 < · · · < kν . Watson’s Lemma

has to be replaced by the so-called Relative Watson’s Lemma although the
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Relative Watson’s Lemma is not a parametric version of the classical Watson’s

Lemma.

8.2.1. Relative Watson’s Lemma. — The Relative Watson’s Lemma is

due to B. Malgrange and J.-P. Ramis

[MR92].

Theorem 8.2.1 (Relative Watson’s Lemma). — Let 0 < k1 < k2 be

given and let I be a k1-wide arc (cf. Def. 6.1.2). Then,

H0
(
I;A≤−k1/A≤−k2

)
= 0.

When the length |I| of I is smaller than 2π the arc I may be supposed

to belong to S1. Otherwise, it must be considered as an arc of the universal

cover R of S1. This latter case can be reduced to the first one by an adequate

ramification of the variable x.

Compare Corollary 6.1.4 of Watson’s Lemma. Instead of considering a

k1-exponentially flat function on a k1-wide arc I one considers here a k1-

exponentially flat 0-cochain with jumps (its 1-coboundary) small enough to be

k2-exponentially flat. Roughly speaking, the theorem says that the 0-cochain

has too small jumps on a too large arc I to be not k2-exponentially flat itself.

In [MR92] the lemma is stated for closed k1-wide arcs. It is equivalent

to choose either closed or open k1-wide arcs. Indeed, if I is closed then an

element of H0
(
I ; A≤−k1/A≤−k2

)
is represented by a 0-cochain that lives on

a larger open arc I ′. If the lemma is true for open arcs then the cochain

is 0 in H0
(
I ′ ; A≤−k1 /A≤−k2

)
and induces 0 in H0

(
I ; A≤−k1 /A≤−k2

)
.

Conversely, suppose H0
(
I ′ ; A≤−k1 /A≤−k2

)
= 0 for any closed k1-wide

arc I ′. Let I be an open k1-wide arc and f = (fj)j∈J a 0-cochain

in H0
(
I ; A≤−k1 /A≤−k2

)
associated with a covering I = (Ij)j∈J of I.

Up to refining the covering I we can assume that it is indexed by Z and

satisfies Ij ∩ Iℓ 6= ∅ if |j − ℓ| = 1 and Ij ∩ Iℓ = ∅ otherwise (and thus, in

particular, it has no 3-by-3 intersection), since there exists arbitrarily fine such

coverings of I. Write I as an increasing union of closed k1-wide sub-arcs I ′ℓ.

Due to the form of the covering I any open arc Ij is contained in infinitely

many closed arcs I ′ℓ; choose one of them denoted by I ′ℓj . Then, the restriction

of the 0-cochain f to I ′ℓj induces 0 in H0
(
I ′ℓj ; A

≤−k1 /A≤−k2
)
. This means,

in particular, that fj belongs to A≤−k2(Ij). This being true for all j ∈ Z we

can conclude that f induces 0 in H0
(
I ; A≤−k1 /A≤−k2

)
.

The Relative Watson’s Lemma can be reformulated as follows.
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Corollary 8.2.2. — Under the conditions of the Relative Watson’s Lemma

the following natural map is injective:

H0
(
I;A/A≤−k2

)
−→ H0

(
I;A/A≤−k1

)
.

Proof. — Consider the short exact sequence

0 −→ A≤−k1/A≤−k2 −→ A/A≤−k2 −→ A/A≤−k1 −→ 0 ·
The associated long exact sequence of cohomology over I provides the exact

sequence

0 −→ H0(I;A≤−k1/A≤−k2) −→ H0(I;A/A≤−k2) −→ H0(I;A/A≤−k1) ·
Hence, the equivalence of the Relative Watson’s Lemma 8.2.1 and its Corol-

lary 8.2.2.

One can find in [MR92] a direct proof of the Relative Watson’s Lemma

(see also [Mal95]). Instead of reproducing it we prefer to include a proof

of the equivalence between the Tauberian Theorem 6.3.12 and the Relative

Watson’s Lemma 8.2.1 [MR92, Sect. 3 (ii)].

Lemma 8.2.3 (Malgrange-Ramis [MR92, Lemme (2.5)])

Let 1/2 < k1 < k2 and a closed k1-wide arc I of S1 be given.

To any h in H0
(
I;A/A≤−k2

)
there exist sections h′ in H0(I;A) and h′′

in H0
(
S1;A/A≤−k2

)
such that

h =
(
h′ mod A≤−k2

)
+ h′′|I .

The notation h′ mod A≤−k2 stands for the element of H0
(
I;A/A≤−k2

)

canonically induced by h′ ∈ H0(I;A). Notice that, due to the condition

1/2 < k1, the arc I is less than 2π long. Observe that h′′, unlike h, exists all

around S1. Roughly speaking the lemma says: a section of A/A≤−k2 over I

can be continued into a section all over S1 after “translation” by an adequate

asymptotic function defined on I.

Proof. — The section h can be represented as a finite 0-cochain (hj)j∈J as

follows.

Let J = {j1, j2, . . . , jp}. The components hj are functions in A( j) for some

open sectors j = Ij×]0, rj [ with vertex 0; the 2-by-2 intersections of these

sectors satisfy the conditions j ∩ j+1 6= ∅ and j ∩ ℓ = ∅ when |j − ℓ| > 1

and we assume that the global arc I1 ∪ I2 ∪ · · · ∪ Ip is less than 2π wide, the

union I2 ∪ · · · ∪ Ip−1 is included in I while I1 and Ip are not. Moreover, the

differences −hj + hj+1 belong to A≤−k2( j ∩ j+1) for all j ∈ J . Complete the

family ( j)j∈J into a covering = { j}j∈J∪K of S1 (denote also j = Ij×]0, rj [
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for j ∈ K) without 3-by-3 intersections and such that (∪j∈KIj) ∩ I = ∅. Con-
sider the 1-cocycle

•

h= (hj,j+1)j∈J∪K of with values in A≤−k2 defined by

hj,j+1(x) =

{
−hj(x) + hj+1(x) if j and j + 1 ∈ J

0 otherwise.

From the Ramis-Sibuya Theorem 6.2.1 and shrinking the sectors j if neces-

sary, there exist functions gj(x) belonging to A1/k2( j) (cf. Not. 2.3.8) such

that

hj,j+1 = −gj + gj+1 for all j and j + 1 in J.

We obtain thus the equality hj(x)− gj(x) = hj+1(x)− gj+1(x) on j∩ j+1 for

all j and j+1 in J and the functions hj(x)− gj(x) glue together into a section

h′(x) of H0(I;A). On another hand, by construction, the gj ’s for j ∈ J ∪K
determine an element h′′(x) of H0

(
S1;A/A≤−k2

)
and we obtain

h′ mod A≤−k2 + h′′| j
= (hj − gj) + gj = hj on j for all j ∈ J.

Hence, the result.

Proposition 8.2.4. — The Tauberian Theorem (Thm. 6.3.12) and the Rel-

ative Watson’s Lemma (Thm. 8.2.1) are equivalent.

Proof. — Let 0 < k1 < k2 and a closed k1-wide arc I be given. By means of

a convenient ramification we may assume that the arc I is less than 2π long

(which implies k1 > 1/2) and this allows us to work on S1. As usually, we

denote s1 = 1/k1 and s2 = 1/k2.

⊲ Show that the Relative Watson’s Lemma implies the Tauberian Theo-

rem 6.3.12. Let the series f̃(x) be both s2-Gevrey and k1-summable with sum

f(x) on a k1-wide arc I. We must prove that f̃(x) is also k2-summable on I.

As a s2-Gevrey series and according to Corollary6.2.2, the series f̃(x) can

be identified to an element of H0
(
S1;A/A≤−k2

)
, i.e., to a 0-cochain g = (gj)

where gj is asymptotic to f̃(x) for all j and gi−gj takes its values in A≤−k2 for
all i, j. It follows from the Ramis-Sibuya Theorem 6.2.1 that gj(x) is actually

s2-Gevrey (and hence also, s1-Gevrey) asymptotic to f̃(x). The 0-cochain

g induces canonically an element of H0
(
S1;A/A≤−k1

)
, thus characterizing

f̃(x) as a s1-Gevrey series. Since f(x) is a k1-sum of f̃(x) on I we deduce

that f = g mod A≤−k1 on I (indeed, f − gj|I is s1-Gevrey asymptotic to 0;

cf. Prop. 2.3.17). From Corollary 8.2.2 of the Relative Watson’s Lemma, it

follows that f = g mod A≤−k2 on I which proves that f̃(x) is k2-summable

on I with k2-sum f(x). Hence, the result.
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⊲ Conversely, show that the Tauberian Theorem 6.3.12 implies the Rela-

tive Watson’s Lemma. Let h(x) belong to H0
(
I;A/A≤−k2

)
. The section h(x)

admits a canonical image in H0
(
I;A/A≤−k1

)
: we specify h(x) mod A≤−k2

when h(x) is seen as an element of H0
(
I;A/A≤−k2

)
and h(x) mod A≤−k1 to

denote its canonical image in H0
(
I;A/A≤−k1

)
. We must prove (cf. Cor. 8.2.2)

that h(x) = 0 mod A≤−k1 on I implies h(x) = 0 mod A≤−k2 on I.

From Lemma 8.2.3 there exists h′ ∈ H0(I;A) and h′′ ∈ H0
(
S1;A/A≤−k2

)

such that h =
(
h′ mod A≤−k2

)
+ h′′|I . By definition, h′′(x) can be seen as

a 0-cochain h′′ = (h′′j ) where the various components h′′j are asymptotic to a

same Taylor series h̃′′(x) and hi−hj takes its values in A≤−k2 for all i, j. And

we know, from the Ramis-Sibuya Theorem 6.2.1 that the h′′j (x)’s are actually

s2-asymptotic to h̃′′(x).

The assumption h(x) = 0 modA≤−k1 on I implies h′′(x) = −h′(x) modA≤−k1
on I and the series h̃′′(x) is k1-summable on I with k1-sum −h′(x) (h′ is

a true function; see Def.6.2.4). On another hand, by definition, h̃′′(x) is

a s2-Gevrey series. By the Tauberian Theorem 6.3.12 the series h̃′′(x) is

then k2-summable on I with the same sum −h′(x). This implies the equal-

ity h′′(x) = −h′(x) mod A≤−k2 . Hence, h(x) = 0 mod A≤−k2 as followed.

8.2.2. Asymptotic definition of multisummablilty. — Towards the

generalization of the asymptotic definition (cf. Def. 6.1.6, Sect. 6.1) of k-

summability we proceed as follows. Begin with the case of two levels k1 < k2,

that is, the case of (k1, k2)-summability.

Suppose we are given a series f̃(x) and two arcs I1 ⊇ I2 of S1 respectively

k1- and k2-wide. Set as usually, s1 = 1/k1.

Definition 8.2.5 ((k1 k2)-summability). —

The series f̃(x) is said to be (k1, k2)-summable on (I1, I2) with sum (f1, f2) if

(i) f1(x) belongs to H0
(
I1;As1/A≤−k2

)
;

(ii) f2(x) belongs to H0(I2;As1) (thus, is a true asymptotic function

on I2);

(iii) f1 and f2 agree on I2, i.e., f1|I2 = f2 mod A≤−k2;
(iv) f1 and f2 are s1-Gevrey asymptotic to f̃(x) on I1 and I2 respectively:

Ts1,I1f1(x) = Ts1,I2f2(x) = f̃(x).

To be more precise the sum (f1, f2) is also called multisum or (k1, k2)-

sum of f̃(x) on (I1, I2). Sometimes and especially when I1 and I2 have a

same bisecting direction θ, one talks of f2 as a (k1, k2)-sum of f̃(x) on (I1, I2)
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letting f1 understood. In the latter case, one also says that f2 is a (k1, k2)-sum

of f̃(x) in direction θ.

Remark 8.2.6. — Suppose I1 and I2 are closed arcs. Sections over I1 or I2
live then on larger open arcs. From Condition (ii), one can represent f1 by a

0-cochain containing f2 as a component. One can also choose a 0-cochain over

an open covering of I1 by arcs with no 3-by-3 intersection and no intersection

2-by-2 on I2. Thus, Definition 8.2.5 can be reformulated as follows:

The series f̃(x) is (k1, k2)-summable on (I1, I2) if there exists a 0-

cochain f , s1-Gevrey asymptotic to f̃(x) on I1, that has no jump on I2 and

only k2-exponentially flat jumps on I1 \ I2.
The couple (f1, f2) where f1 is the natural image of f in H0(I1;As1/A≤−k2)

and f2 its restriction to I2 is a (k1, k2)-sum of f̃(x) on (I1, I2).

Recall that, in general, a 0-cochain which is s1-Gevrey asymptotic to a

given series may have jumps (its coboundary) as large as k1-exponentially

flat (Prop. 2.3.17). The condition that the jumps are k2-exponentially flat is

strong and guaranties the uniqueness of the (k1, k2)-sum of f̃(x) on (I1, I2) as

we show below.

Watson’s Lemma and the Relative Watson’s Lemma give sense to the

notion of (k1, k2)-summability by implying the uniqueness of (k1, k2)-sums.

Proposition 8.2.7 (Uniqueness of (k1 k2)-sums). —

The multisum (f1, f2) of f̃(x) on (I1, I2), when it exists, is unique.

Proof. — Suppose (f1, f2) and (f ′1, f
′
2) are (k1, k2)-sums of f̃(x) on (I1, I2).

By Prop. 2.3.17 the difference f1 − f ′1 belongs to H0
(
I1;A≤−k1/A≤−k2

)
and

the Relative Watson’s Lemma (Thm. 8.2.1) implies that f1 − f ′1 = 0. This, in

turn, implies that f2 = f ′2 mod A≤−k2 and from the classical Watson’s Lemma

(Thm. 6.1.3) that f2 = f ′2 since I2 is k2-wide.

Example 8.2.8. — The Ramis-Sibuya series R̃S(x) (Exa. refRSseries) is (1, 2)-

summable on (I1, I2) if and only if I1 does not contain the Stokes arc of the Eu-

ler series [π/2, 3π/2] and I2 contains none of the two Stokes arcs of the Leroy series

[π/4, 3π/4] mod π.

Make explicit the (1, 2)-summability of R̃S(x) according to Definition 8.2.5 above in

the case when, for instance, I1 = [0, π] and I2 = [0, π/2] ⊂ I1. Choose 0 < ε < π/4 and

consider the open covering I of I1 by the arcs I ′1 =]π/2, π + ε[ and I ′2 =] − ε, π/2 + ε[.

Notice that I ′1 ∩ I2 = ∅ as mentioned to be a possible choice in Remark 8.2.6. Denote

temporarily by E(x) the determination of the Euler function defined on −ε < arg(x) <

π + ε. Denote by E′1 and E′2 the restrictions of E to I ′1 and I ′2 respectively. Clearly, the
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0-cochain (E′1,E
′
2) of I takes its values in A1 and has a trivial coboundary E′1 −E′2 ≡ 0.

Denote by L′1 and L′2 the 2-sums of L(x) on I ′1 and I ′2 respectively. The 0-cochain (L′1,L
′
2)

of I takes its values in A1/2 hence also in A1 and its coboundary L′1 −L′2 belongs to

H0
(
I ′1∩ I ′2;A≤−2

)
. It follows that the 0-cochain (E′1 +L′1,E

′
2 +L′2) determines an element

f1 of H0
(
I1;A1/A≤−2

)
. Denote by f2 the element of H0(I2;A1) defined by E′2 +L′2. Both

f1 and f2 are 1-asymptotic to the Ramis-Sibuya series R̃S(x). The couple (f1, f2) is the

(1, 2)-sum of R̃S(x) on (I1, I2).

Conversely, if I1 contained the Stokes arc [π/2, 3π/2] of the Euler series Ẽ(x) then

we would have to use two different determinations of E on I1 generating a non trivial

coboundary with values in A≤−1 and not in A≤−2 and, thus, Condition (i) of Defini-

tion 8.2.5 would fail. If I2 contained a Stokes arc [π/4, 3π/4] or [−3π/4,−π/4] of the

Leroy series L̃(x) then we would have to split the 2-sum L′2 of L̃(x) into a 0-cochain with

non trivial coboundary on I2 and Condition (ii) of Definition 8.2.5 would fail.

Let us now state the general case.

Definition 8.2.9 (multi-level k and k-multi-arc). —

⊲ We call multi-level, and we denote by k = (k1, k2, . . . , kν), any finite

sequence of numbers k1, k2, . . . , kν satisfying the conditions

0 < k1 < k2 < · · · < kν .

⊲ We call k-multi-arc, and we denote by I = (I1, I2, . . . , Iν), any sequence

of arcs satisfying the conditions

I1 ⊇ I2 ⊇ · · · ⊇ Iν ;

for j = 1, . . . , ν, the arc Ij is kj-wide (cf. Def. 6.1.2).

Observe that our levels are always ordered in increasing order: k1 < k2 < · · · < kν
while some authors order them in decreasing order.

From now on, suppose we are given a series f̃(x), a multi-level k =

(k1, k2, . . . , kν) and a k-multi-arc I = (I1, I2, . . . , Iν). As usually, we set s1 =

1/k1.

Definition 8.2.10 (multisummability). —

A series f̃(x) is said to be k-summable on I with k-sum f = (f1, f2, . . . , fν) if

⊲ fj belongs to H0
(
Ij ;As1/A≤−kj+1

)
for all j = 1, 2, . . . , ν − 1;

⊲ fν belongs to H0
(
Ij ;As1

)
;

⊲ the fj’s are compatible:

fj|Ij+1
= fj+1 mod A≤−kj+1 for all j = 1, 2, . . . , ν − 1;
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⊲ for all j, the section fj is s1-Gevrey asymptotic to the series f̃(x) on Ij:

Ts1,Ijfj(x) = f̃(x) for all j = 1, 2, . . . , ν.

In the case when the arcs I1, I2, . . . , Iν are all bisected by a same direction

θ then f is called a k-sum of f̃(x) in direction θ. By abuse of language, one

sometimes talks of fν as a k-sum of f̃(x) on I, the components f1, f2, . . . , fν−1
being understood.

Remark 8.2.11. — Remark 8.2.6 can be generalized as follows.

Suppose I is a closed k-multi-arc.

Definition 8.2.10 is equivalent to saying that

f̃(x) is k-summable on I with k-sum f = (f1, f2, . . . , fν) if there exists a

0-cochain f on I1 which is s1-Gevrey asymptotic to f̃(x), which has no

jump on Iν and otherwise, has jumps that are at least kν-exponentially

flat on Iν−1, kν−1-exponentially flat on Iν−2, . . . and k2-exponentially flat

on I1.

If so, the k-sum f is defined by taking as fj, for j = 1, 2, . . . , ν − 1,

the natural image of f in H0
(
Ij ;As1/A≤−kj+1

)
and taking as fν the

restriction of f to Iν .

Proposition 8.2.12 (uniqueness). — The k-sum f(x), when it exists, is

unique.

Proof. — The proof proceeds as in the case of two levels (cf. Prop. 8.2.7).

Suppose (f1, f2, . . . , fν) and (f ′1, f
′
2, . . . , f

′
ν) are k-sums of f̃(x) on I. By

Proposition 2.3.17 the difference f1 − f ′1 belongs to H0
(
I1;A≤−k1/A≤−k2

)

and, I1 being k1-wide, the Relative Watson’s Lemma (cf. Thm. 8.2.1)

implies that f1 − f ′1 = 0. This, in turn, implies that f2 − f ′2 belongs to

H0
(
I2;A≤−k2/A≤−k3

)
. Again, the Relative Watson’s Theorem implies

that f2 − f ′2 = 0 and that f3 − f ′3 belongs to H0
(
I3;A≤−k3/A≤−k4

)
. And

so on, until the νth step where fν − f ′ν belongs to H0
(
Iν ;A≤−kν

)
and we

conclude by the classical Watson’s Lemma (Thm. 6.1.3) that fν = f ′ν since Iν
is kν-wide.

Notation 8.2.13 (multisummable series). —

Given a multi-level k and a k-multi-arc I we denote by

⊲ C{x}{k,I} the set of k-summable series on I;

⊲ C{x}{k,θ} the set of k-summable series in direction θ.
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⊲ Sum{k,I} the subset of
∏ν−1

j=1 H
0
(
Ij ;As1/A≤−kj+1

)
×H0

(
Iν ;As1

)
made

of the elements satisfying the compatibility condition of Definition 8.2.10 (iii).

⊲ S{k,I} : C{x}{k,I} −→ Sum{k,I} the k–summation operator on I which

to any k-summable series on I associates its unique k-sum on I according to

Proposition 8.2.12.

⊲ Sum{k,θ} and S{k,θ} instead of Sum{k,I} and S{k,I} in direction θ.

We leave as an exercise the proof of the following proposition generalizing

Proposition 6.1.10.

Proposition 8.2.14. — Let k = (k1, k2, . . . , kν) and I = (I1, I2, . . . , Iν) be a

multi-level and a k-multi-arc (cf. Def. 8.2.9).

(i) The set C{x}{k,I} is a differential sub-algebra of the differential C-al-

gebra C[[x]]s1 of s1-Gevrey series.

(ii) Let k′ be a multi-level extracted from k and I ′ the corresponding k′-

multi-arc extracted from I.

Then, C{x}{k′,I′} is a differential sub-algebra of C{x}{k,I}.
In particular, the differential algebras C{x}{kj ,Ij} of kj-summable series

on Ij for j = 1, 2, . . . , ν are differential sub-algebras of C{x}{k,I}.
(iii) The Taylor map

Ts1,I : Sum{k,I} −→ C{x}{k,I}
is an isomorphism of differential C-algebras with inverse the k-summation

operator Sk,I on I.

Remark 8.2.15. — The previous proposition asserts that C{x}{k,I} contains
the differential algebra generated by the algebras C{x}{kj ,Ij}, j = 1, 2, . . . , ν of

kj-summable series on Ij . It will be shown in Section 8.5 that the two algebras

are actually equal.

Although we do not provide an extensive proof of Proposition 8.2.14 let

us observe how a kj-summable series may be regarded as a k-summable se-

ries. Consider the example of j = ν, all cases being similar. Suppose f̃(x) is

kν-summable on Iν . This means that there exists a function (its kν-sum)

fν ∈ H0
(
Iν ;Asν

)
satisfying Tsν ,Iνfν(x) = f̃(x). This implies also that the

series f̃(x) is sν-Gevrey and the Borel-Ritt Theorem (Cor. 2.4.4) allows to

complete the sum fν into a 0-cochain f ′ν over I1 whose components are all sν-

Gevrey asymptotic (hence, s1-Gevrey asymptotic) to f̃(x) and its cobound-

ary has values in A≤−kν . Recall that the sheaves A≤−k satisfies the in-

clusions A≤−kν ⊂ A≤−kν−1 ⊂ · · · ⊂ A≤−k1 . Thus, the 0-cochain f ′ν induces
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canonically elements f1 ∈ H0
(
I1;As1/A≤−k1

)
, f2 ∈ H0

(
I2;As1/A≤−k2

)
and

so on. . . and fν ∈ H0
(
Iν ;As1

)
defined on I1, I2, . . . , Iν respectively and satis-

fying Def. 8.2.10. Thus, (f1, f2, . . . , fν) defines the k-sum of f̃(x) on I.

To end this section let us mention the fact that Proposition 6.1.11 and its

Corollary 6.1.12 remain valid if one replaces k-summability by multisumma-

bility.

Recall notations of Sections 2.3.2 and 6.1: given a series g̃(t) we denote by g̃j
its r-rank reduced series defined for j = 0, 1, . . . , r−1, by g̃(t) =

∑r−1
j=0 t

j g̃j(t
r);

given an arc I = (α, β)we denote by Iℓ/r the arc
(
(α+ 2ℓπ)/r, (β + 2ℓπ)/r

)
.

We can state:

Proposition 8.2.16. — Let r > 1 be an integer.

: (i) Extension of the variable. A series f̃(x) is k-summable on I = (I1, I2, . . . , Iν)

if and only if the series g̃(x) = f̃(xr) is rk-summable on I/r =

(I1/r, I2/r, . . . , Iν/r).

: (ii) Rank reduction. The series g̃ is rk-summable on the arcs Iℓ/r for

all ℓ = 0, 1, . . . , r − 1 if and only if the series g̃j for j = 0, 1, . . . , r − 1,

are k-summable on I.

Proof. — (i) Let f(x) = (f1(x), f2(x), . . . , fν(x)) be the k-sum of f̃(x) on I.
Then, g(x) = (g1(x) = f1(x

r), g2(x) = f2(x
r), . . . , gν(x) = fν(x

r)) is the rk-

sum of g̃(x) on I/r.
(ii) Suppose the series g̃j(x) are all k-summable on I. By definition, these

series satisfy g̃(t) =
∑r−1

j=0 t
j g̃j(t

r). From (i) and Proposition 8.2.14 it follows

that g̃(t) is rk-summable on the arcs corresponding to the various determi-

nations of t = x1/r. Conversely, use formula rtj g̃j(t
r) =

∑r−1
ℓ=0 ω

ℓ(r−j) g̃(ωℓt)

where ω = e2πi/r to conclude that the series g̃j(t
r) are rk-summable on I0/r

and then, using (i) again, the series g̃j(x) are k-summable on I.

Proposition 8.2.16 allows us to assume k large or small at convenience. In

what follows, the assumption k > 1/2 is quite often convenient.

8.3. Second approach: Malgrange-Ramis definition

For convenience, we assume any k > 1/2 so that arcs of length π/k are

proper sub-arcs of the circle S1. This is always made possible by a conve-

nient change of variable x = tr according to Proposition 8.2.16. Like in the
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Ramis-Sibuya approach for k-summability, the aim is now to get rid of Gevrey

asymptotics.

8.3.1. Definition. — Suppose we are given an s1-Gevrey series f̃(x), a

multi-level k = (k1, k2, . . . , kν) and a k-multi-arc I = (I1, I2, . . . , Iν). Denote

by ϕ0 ∈ H0
(
S1;A/A≤−k1

)
the k1-quasi sum of f̃(x).

Definition 8.3.1 (Malgrange-Ramis multisummability)

The series f̃(x) is said to be k-summable on I with k-sum f = (f1, f2, . . . , fν)

if

⊲ fj belongs to H0
(
Ij ;A/A≤−kj+1

)
for all j = 1, 2, . . . , ν − 1;

⊲ fν belongs to H0
(
Iν ;A

)
;

⊲ the fj’s are compatible:

fj|Ij+1
= fj+1 mod A≤−kj+1 for all j = 1, 2, . . . , ν − 1;

⊲ the fj’s are compatible with the k1-quasi-sum ϕ0 of f̃(x):

ϕ0|Ij
= fj mod A≤−k1 for all j = 1, 2, . . . , ν.

Proposition 8.3.2. — Definitions 8.2.10 and 8.3.1 of multisummability are

equivalent (with same sums). In particular, Malgrange-Ramis k-sum, when it

exists, is unique.

Proof. — Suppose f = (f1, f2, . . . , fν) is a k = (k1, k2, . . . , kν)-sum of f̃(x) on

I in the sense of Def. 8.3.1. By the Ramis-Sibuya Theorem 6.2.1 the k1-quasi-

sum ϕ0 of f̃(x) belongs to H0
(
S1;As1/A≤−k1

)
and is asymptotic to f̃(x).

The compatibility Condition (iv) implies that the same is true for f ; hence,

Definition 8.2.10 is satisfied.

Conversely, suppose that f is a k-sum of f̃(x) on I following Definition

8.2.10. By the Borel-Ritt Theorem 2.4.1 a 0-cochain representing f1 can be

completed into a 0-cochain over S1 representing ϕ0; hence, satisfying Defini-

tion 8.3.1.

Example 8.3.3. — Let us go back to Example 8.2.8 in view to make explicit

Malgrange-Ramis definition for the Ramis-Sibuya series R̃S(x) and prove its (1,2)-

summability on the (1,2)-multi-arc I = (I1, I2) where I1 = [0, π] and I2 = [0, π/2] ⊂ I1.

We want to represent the 1-quasi-sum of R̃S(x) by a 0-cochain with no jump on I2, flat

jumps of exponential order at most 2 on I1 and flat jumps of order at most 1 out of

I1. To this end, choosing again 0 < ε < π/4, we consider the open covering I′ of S1

by I ′1 =]π/2, 3π/2[, I ′2 =]− ε, π/2 + ε[ and I ′3 =]− π/2− ε, 0[. Denote by E+ the deter-

mination of the Euler function E(x) defined on ]−π/2, 3π/2[ and by E− its determination
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on ]− 3π/2, π/2[. Denote by L+ the 2-sum of the Leroy series L̃(x) on ]− 3π/4, 3π/4[ and

by L− its 2-sum on ]π/4, 7π/4[.

The 1-quasi-sum ϕ0 of R̃S(x) is represented by the 0-cochain of I′ defined as follows:




RS1(x) = E+(x) + L−(x) on I ′1

RS2(x) = E+(x) + L+(x) on I ′2

RS3(x) = E−(x) + L+(x) on I ′3.

Figure 2

We observe that RS1 −RS2 = L−−L+ = c e1/x
2

(c is the corresponding Stokes

multiplier) is exponentially flat of order 2 on I ′1 ∩ I ′2 while RS2 −RS3 and RS3 −RS1 are

exponentially flat of order 1 on I ′2 ∩ I ′3 and I ′3 ∩ I ′1 respectively. The (1,2)-sum (f1, f2) of

R̃S(x) on (I1, I2) is given by the restriction of ϕ0 to I1 and I2 respectively, i.e., , for f1 by

the 0-cochain (RS1,RS2) and for f2 by f2 = RS2.

8.3.2. Application to differential equations. — In this section, we ex-

tend Theorem 6.2.5 to the case of several levels.

We consider a linear differential equation (or system) Dy = 0 with mero-

morphic coefficients at 0 and we suppose that the equation Dy = 0 has a series

solution f̃(x) with multi-level k = (k1, k2, . . . , kν) (cf. Def. 4.3.6 (iv)). Recall

that levels are ordered in increasing order: k1 < k2 < · · · < kν .

Definition 8.3.4. — A k-multi-arc I = (I1, I2, . . . , Iν) is said to be k-generic

(or simply, generic) for f̃(x) if, for all j, the arc Ij contains no Stokes arc of

level ≤ kj associated with f̃(x).

Theorem 8.3.5. — A series f̃(x) as above, i.e., solution of a differential

equation with multi-level k = (k1, k2, . . . , kν), is k-summable on any k-generic

multi-arc I.

Proof. — Recall that with no loss of generality we assume that k1 > 1/2.
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The Stokes phenomenon says that solutions asymptotic to f̃(x) may be

continued around 0 as long as no Stokes arc is passed. When a Stokes arc of

one or several levels kℓ is passed to stay asymptotic to f̃(x) the solution must

be added kℓ-exponentially flat terms. Thus, an asymptotic solution on Iν ,

given, for instance, by the Main Asymptotic Existence Theorem 4.4.2 may be

continued by adding kν-exponentially flat terms over Iν−1, kν−1-exponentially

flat terms on Iν−2, . . . , k2-exponentially flat terms on I1. Outside of I1 it can

be continued into a full 0-cochain over S1 by allowing jumps k1-exponentially

small. Hence, a k-sum of f̃(x) on I.

8.4. Third approach: iterated Laplace integrals

The method is due to W. Balser [Bal92b]. It proceeds by recursion and

is based on the fact that a convenient Borel transform of the series is itself

summable with conditions that we make explicit below. Among the known

ones this approach is probably the best from a numerical view point to nu-

merically evaluate multisums.

As previously, we develop first the case of two levels (k1, k2).

Suppose we are given 0 < k1 < k2 and a (k1, k2)-multi-arc (I1, I2)

(cf. Def. 8.2.9) and set

1

κ1
=

1

k1
− 1

k2
·

Denote by θ1, θ2 the bisecting directions of I1, I2 and by Î1, Î2 arcs centered

at θ1, θ2 with length |Î1| = |I1| − π/k2 ≥ π/κ1 and |Î2| = |I2| − π/k2 respec-

tively. We assume that I1 and Î1, resp. I2 and Î2, are simultaneously open or

closed(2).

Definition 8.4.1 ( (k1 k2)-Li-summability). — A series f̃(x) is said to

be (k1, k2)-summable by Laplace iteration on (I1, I2) (in short, (k1, k2)-Li-

summable on (I1, I2)) if its k2-Borel transform ĝ(ξ) = Bk2(f̃)(ξ) satisfies the

following two conditions:

⊲ ĝ(ξ) is κ1-summable on Î1

(2) In case I2 is closed of size |I2| = π/k2 then Î2 reduces to one point. Recall that, handling

presheaves or sheaves, asymptotic conditions of sections over a closed set are valid on a convenient

larger open set.
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⊲ its κ1-sum g(ξ) can be analytically continued to an unlimited open

sector Σ containing Î2×]0,+∞[ with exponential growth of order k2 at infinity.

The (k1, k2)-Li-sum f(x) of f̃(x) on (I1, I2) is defined as

fLi(x) = Lk2,θ(g)(x)

for all direction θ ∈ Σ and corresponding x.

It follows from the definition, that the (k1, k2)-Li-sum of f̃(x) on (I1, I2),

when it exists, is unique.

Example 8.4.2. — (even part of the Ramis-Sibuya series)

Again, we illustrate the definition on the example of the Ramis-Sibuya series R̃S(x)

(Exa. 8.1.1) for which k = (k1, k2) = (1, 2) and, again, we choose I = (I1, I2) with

I1 = [0, π] and I2 = [0, π/2] ⊂ I1. Then, Î1 = [π/4, 3π/4], Î2 = {π/4} and κ1 = 2 so that

we must apply to R̃S(x) a 2-Borel transform. In order to make the calculations simpler

we choose to use rank reduction of order two, i.e., to perform the calculations separately

on the even and the odd part of the series. Treat now the case of the even part and thus,

consider the series M̃(x) = Ẽ
0
(x) + L̃(x) where Ẽ

0
(x) =

∑
n≥1 −(2n − 1)!x2n is the even

part of the Euler series Ẽ(x).

Look first at what happens to Ẽ
0
(x) after a 2-Borel transform. The series Ẽ

0
(x)

satisfies the equation

(53) Dy ≡ x4y′′ + 2x3y′ − y = x2.

The homogeneous equation Dy = 0 admits the two linearly independent solutions e1/x

and e−1/x. It follows that the anti-Stokes directions for Ẽ
0
(x) are the two real half-axis.

To apply a 2-Borel transform one has to apply a ramification x = t1/2 followed by a 1-Borel

transform and the inverse ramification. So, set x = t1/2. The series Ẽ
0
(t1/2) is a series in

integer powers of t
(
this is why we separated the even and the odd part of R̃S(x)

)
and it

satisfies the equation

4t3Y ′′ + 6t2Y ′ − Y = t.

Its 1-Borel transform Ŷ (τ) satisfies the equation

4τ2Ŷ ′ + (6τ − 1)Ŷ = 1

(Substitute τ for t2d/dt and d/dτ for 1/t. If we had not restricted the study to an

even series, terms in t1/2 would appear and this Borel equation would be a much more

complicated convolution equation). With the inverse ramification τ = ξ2, the formal

2-Borel transform Û(ξ) = Ŷ (τ), of Ẽ
0
(x), satisfies the equation

(54) ∆Û ≡ 2ξ3Û ′ + (6ξ2 − 1)Û = 1.

The Newton polygon of ∆ has a unique slope, equal to 2, at 0 and a null slope at

infinity.
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Figure 3. Newton polygons of D (slope 1) and ∆ (slope 2)

The 1-dimensional space of solutions of the homogeneous equation ∆Û = 0 is gener-

ated by û(ξ) = e−1/(4ξ2)/ξ3. The anti-Stokes directions of equation (54) are then the two

real half-axis and, in all other direction θ, the series Û(ξ) is 2-summable (cf. Thm. 6.2.5).

For the choice θ = π/2 this means that Û(ξ) is 2-summable on Î1. Hence, the first con-

dition of Definition 8.4.1 is satisfied. On another hand, the 2-sum U(ξ) of Û(ξ) satisfies

equation (54) which admits 0 and infinity as unique singular points. It can then be an-

alytically continued up to infinity in the direction θ = π/4 and neighboring ones, i.e., to

an unlimited open sector Σ containing Î2×]0,+∞[. From the Newton polygon of ∆ we

know that all solutions of (54) have moderate growth at infinity and the second condition

of Definition 8.4.1 is satisfied. It follows that the 2-Laplace transforms E0
θ(x) of U(ξ) are

defined in all direction θ ∈ Σ. The functions E0
θ(x) are analytic continuation from each

others since U(ξ) admits no singular point in these directions and therefore, they define

the (1, 2)-Li-sum E0(x) of Ẽ
0
(x) on (I1, I2). To summarize:

E0
θ(x) = L2,θ ◦ L2,θ ◦ B2,θ ◦ B2,θ

(
Ẽ

0
(x)

)

where the Borel series are replaced by their sum and analytic continuation when necessary.

Notice that the function E0
θ(x), although asymptotic to Ẽ

0
(x), is not 1/2-Gevrey asymp-

totic since, otherwise, the series Ẽ
0
(x) would be a 1/2-Gevrey series (cf. 2.3.10), which is

not.

Look what happens to the series L̃(x) in this procedure. The 2-Borel transform

of L̃(x) produces the convergent series V (ξ) =
∑

n≥0(−1)nξ2n = 1/(1 + ξ2). It is then,

2-summable in all direction, and especially on Î1. It can be continued up to infinity with

moderate growth but in the directions θ = ±π/2. It can then be applied a 2-Laplace

transform in any direction of an unlimited open sector Σ containing Î2×]0,+∞[ to define

the (1,2)-Li-sum L(x) of L̃(x) on (I1, I2).

We conclude that the series M̃(x) is (1,2)-Li-summable on (I1, I2).

Compare (1,2)-sum and (1,2)-Li-sum. Denote by MLi(x) the (1, 2)-sum of M̃(x)

on (I1, I2). The (1,2)-Li-sum E0(x) of Ẽ
0
(x) can be continued all over I1 by applying

2-Laplace transforms in directions θ from π/4 − ε to 3π/4 + ε (indeed, the unique anti-

Stokes directions for Û(ξ) are θ = 0 and θ = π; therefore, the 2-sum U(x) of Û(ξ)

exists. It can be continued with moderate growth at infinity on the unlimited sec-

tor −π/4 < arg(ξ) < 5π/4). Taking 2-Laplace transforms in directions θ ∈]− 3π/4,−π/4[

allows to complete E0(x) into an element E0 of H0
(
S1;A/A≤−1

)
. Similarly, the section L

over I2 can be completed into an element L ∈ H0
(
S1;A/A≤−k2

)
and the sum E0 + L
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provides a k1-quasi-sum of M̃(x) in the form of a section over S1 with no jump on I2 and

flat jumps of exponential order 2 on I1 and of order 1 out of I1, so that, Definition 8.3.1 is

satisfied. By restriction to I1 and I2, this k1-quasi-sum determines the (1, 2)-sum (M1,M2)

of M̃(x) on (I1, I2) in the sense of Definition 8.3.1. It follows that M2(x) = MLi(x) on I2.

This fact is general as it is proved below (Balser-Tougeron Theorem).

Let us finally observe that the previous procedure can as well be applied to the odd

part of R̃S(x) after factoring x. This shows that the procedure applies to the Ramis-Sibuya

series R̃S(x) itself giving rise to the same (1, 2)-sum as before.

The main result is as follows.

Theorem 8.4.3 (Balser-Tougeron: case of two levels)

(k1, k2)-Li-summability on (I1, I2) and (k1, k2)-summability on (I1, I2) are

equivalent with “same” sum.

Precisely, if fLi denotes the (k1, k2)-Li-sum of a series f̃(x) and (f1, f2)

its (k1, k2)-sum on (I1, I2) then, f2(x) = fLi(x) on I2 and thus,

f2(x) = Lk2,θ′2
◦ Lκ1,θ′1

◦ Bκ1 ◦ Bk2 ◦ f̃(x)
when the formula makes sense and especially, for directions θ′1 and θ′2 close

enough to the bisecting direction θ2 of I2.

The latter formula explains the denomination “by Laplace iteration”.

Proof. — For simplicity of language assume that I1 and I2 are closed arcs.

⊲ Prove that (k1, k2)-summability implies (k1, k2)-Li-summability.

We use the notations of Definition 8.4.1 and above. In particular, κ1
is given by the formula 1/κ1 = 1/k1 − 1/k2. By hypothesis, there exists

a k1-quasi-sum of f̃(x) which induces the function f2(x) on I2 and the

0-cochain f1(x) on I1 (using the same notation for the 0-cochain and the

element of H0
(
I1;A/A≤−k2

)
it defines); the coboundary of f1 has values in

A≤−k2 (no jump allowed on I2 and exponentially flat jumps of order at most

k2 on I1 \ I2; cf. Def. 8.3.1). Denote again ĝ(ξ) = Bk2(f̃)(ξ).

For simplicity, we assume that f1(x) has only one jump, the case of more

jumps being treated similarly. Thus, assume that, in restriction to I1 (i.e., to

a neighborhood of I1), the k1-quasi-sum reduces to two components: f(x) =

f2(x) over an open arc I containing I2 and f∗(x) over an open arc I∗ which

we can assume to satisfy I∗ ∩ I2 = ∅ jointly with I ∪ I∗ ⊃ I1.

The proof of Theorem 6.3.11 (part (i) =⇒ (ii)) remains valid for f(x)

and I ⊃ I2 although I is shorter than π/k1. Like in Theorem 6.3.11, denote
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by Î the (open since I is open) arc deduced from I by shortening it of π/(2k2)

on both sides. It follows that there exists an unlimited sector Σ containing

Î×]0,+∞[ on which there is an analytic function g(ξ) both κ1-Gevrey asymp-

totic to ĝ(ξ) at 0 and having exponential growth of order at most k2 at infinity.

As I is smaller than I1 the sector Σ has opening smaller than |Î1| = π/κ1 but

contains the direction θ2. The question is to analytically continue g(ξ) into a

κ1-Gevrey asymptotic function on Î1. To this end, let us use again the vari-

ables Z = 1/xk2 , ζ = ξk2 and notations as in the proof of Theorem 6.3.11

choosing θ2 = 0 by means of a rotation. In particular, the series f̃(x) reads

now F̃ (Z) =
∑

n≥k0
an/Z

n/k2 . We are led to the following situation:

: ⊲ a function F (Z) satisfying the asymptotic Condition (42) at infinity on

a sector

= [−ω1,+ω2]× [R0,+∞[

which contains the right half-plane ℜ(Z) > 0 but the disc |Z| < R0,

: ⊲ a function F ∗(Z) satisfying the asymptotic Condition (42) at infinity on

a sector
∗ = [ω∗1, ω

∗
2]× [R0,+∞[ where, say, π/2 < ω∗1 < ω2 < ω∗2,

: ⊲ the difference F (Z) − F ∗(Z) being exponentially flat of order 1 on the

intersection

∩ ∗ = [ω∗1, ω2]× [R0,+∞[.

Recall Condition (42) for F (Z) on : there exist A,C > 0 such that

∣∣∣F (Z)−
N−1∑

n=k0

an

Zn/k2

∣∣∣ ≤ C NN/k1 AN

|Z|N/k2
for all N and all Z ∈ .

We also assume that −π < −ω1 and ω∗1 < ω2 < ω∗2 < π. Otherwise, we

would proceed in several steps like in the proof of Theorem 6.3.11.

Defining G(ζ) by G(ζ) = 1/(2πi)
∫
γ F (U)eζUdU where γ = γ1 ∪ γ2 ∪ γ3

(see Fig 4) is the boundary of provides a function satisfying Condition

(ii) of Theorem 6.3.11 on the sector Σ = {−ω2 + π/2 < arg(ζ) < +ω1 − π/2}
(condition translated in the variable ζ = ξk2). Observe that Σ contains the

direction θ2 = 0. Extend now the domain of definition of G(ζ) by moving γ1
towards γ∗1 in the direction ω∗2. To this end, set

G∗(ζ) =
1

2πi

(∫

γ∗1

F ∗(U)eζUdU +

∫

γ2∪γ3

F (U)eζUdU
)
.
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Figure 4

By Cauchy’s Theorem the difference ∆(ζ) = G(ζ)−G∗(ζ) is given by

∆(ζ) =
1

2πi

∫

γ1

(
F (U)− F ∗(U)

)
eζUdU

=
eiω2

2πi

∫ +∞

R0

(
F (V eiω2)− F ∗(V eiω2)

)
eζV eiω2

dV.

However, by hypothesis, there exists A > 0 such that |F (U)− F ∗(U)| ≤
e−A|U | (the coboundary in the variable x is exponentially flat of order k2) so

that

|
(
F (V eiω2)− F ∗(V eiω2)

)
eζV eiω2 | ≤ e

(
−A+ℜ(ζeiω2 )

)
V

and the function ∆(ζ) is defined and holomorphic on the half-plane ℜ(ζeiω2) <

A. The function G∗(ζ)+∆(ζ) provides the analytic continuation of G(ζ) to a

(limited) sector Σ∗ based on Î∗ = [−ω∗2+π/2, −ω∗1+π/2] near 0. From now on,

denote by G(ζ) this analytic continuation of the initial G(ζ) to Σ∗∪Σ. Observe

that the arguments above are unable to prove that the analytic continuation on

Σ∗ can be pushed up to infinity. This might however be possible, for instance,

by Theorem 6.3.11, when the series f̃(x) is not only (k1, k2)-summable on

(I1, I2) but k1-summable on I1.

Recall Condition (41) for G(ζ) on Σ: there exist A′, C ′ > 0 such that

∣∣∣G(ζ)−
N−1∑

n=k0

an
Γ(n/k2)

ζn/k2−1
∣∣∣ ≤ C ′NN/κ1A′

N |ζ|N/k2−1 for all N and all ζ ∈ Σ.

Like the initial one the new function G(ζ) satisfy an asymptotic condition of

the same type as Condition (41) at 0 on Σ∪Σ∗ since this is the case for G(ζ)

on Σ and for G∗(ζ) and ∆(ζ) on Σ∗. We can thus conclude that g(ξ) = G(ξk2)
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is κ1-asymptotic to g̃(ξ) on Î1. This achieves the proof of the fact that f̃(x)

is (k1, k2)-Li-summable on (I1, I2).

⊲ Prove that (k1, k2)-Li-summability implies (k1, k2)-summability.

Conversely, suppose G(ζ) is defined on Σ∪Σ∗, has exponential growth at

infinity on Σ and satisfies at 0 the asymptotic Condition (41) on Σ ∪ Σ∗.

From the proof of Theorem 6.3.11 we know that Laplace transforms in direc-

tions belonging to Σ provide a function F (Z) which satisfies Condition (42)

on [−ω1, ω2].

Let b = |b|eiβ ∈ Σ ∩ Σ∗ with, say, β = −ω2 + π/2, and dβ be the half-line

issuying from b in direction β. Consider the truncated Laplace transform

F b(Z) =
∫ b
0 G(ζ)e

−Zζdζ. We prove, like for P1 in the proof of Theorem 6.3.11,

that F b(Z) satisfies an estimate of the type of (42) on a half-plane ℜ(Zeiβ) > 0

(with new constants). Since G(ζ) has exponential growth |G(ζ)| ≤ C ′′eB |ζ|

on dβ the difference F (Z)− F b(Z) =
∫
db
G(ζ)e−Zζdζ satisfies

|F (Z)− F b(Z)| ≤ C ′′
∫ +∞

|b|
e(B−ℜ(Zeiβ))τdτ

and has then exponential decay on the half-plane ℜ(Zeiβ) > B based on the

arc ]ω2 − π, ω2[ (i.e., bisected by −β = ω2 − π/2).

Consider now b∗ = |b|eiβ∗ with β∗ = −ω∗2 + π/2 in Σ∗.

The function F b∗(Z) =
∫ b∗

0 G(ζ)e−Zζdζ satisfies an estimate of type (51)

on the half-plane ℜ(Zeiβ∗) > 0 and the difference F b(Z) − F b∗(Z) =∫
⌢
β∗β

G(ζ)e−Zζdζ is exponentially small of order one on the intersection

of the two half-planes ℜ(Zeiβ) > 0 and ℜ(Zeiβ∗) > 0 (since G(ζ) is bounded

on the arc
⌢
β∗β). Turning back to the variable x this provides functions

f(x) = F (xk2) and f b
∗
(x) = F b∗(xk2) that are k1-Gevrey asymptotic to

f̃(x) on I ⊃ I2 and I∗ ⊃ I1 \ I2 respectively, the difference f(x)− f∗(x)

being exponentially flat of order k2 on I ∩ I∗. In other words, the couple

(f b
∗
(x) = F b∗(xk2), f(x) = F (xk2)) defines a (k1, k2)-sum of f̃(x) on (I1, I2).

⊲ Prove the formula. We have proved that the (k1, k2)-Li-sum and the

final (k1, k2)-sum are both equal to f(x). By construction, F (Z) is the Laplace

transform of G(ζ) in directions belonging to Σ, that is, f(x) is the k2-Laplace

transform of g(ξ) in directions θ′2 close to the bisecting line θ2 of I2. The κ1-sum

g(ξ) of ĝ(ξ) reads g(ξ) = Lκ1,θ′1
◦ Bκ1(ĝ)(ξ) for θ′1 ∈ Î1 and ĝ(ξ) = Bk2(f̃)(ξ)
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by definition. Hence, the result

f(x) = Lk2,θ′2
◦ Lκ1,θ′1

◦ Bκ1 ◦ Bk2 ◦ f̃(x)

for all compatible choices of θ′1, θ
′
2 and x. This ends the proof.

Summability by Laplace iteration can be generalized by induction to the

case of any multi-level k = (k1, k2, . . . , kν) as follows.

Let I = (I1, I2, · · · , Iν) be a k-wide multi-arc. Recall (cf. Def. 8.2.9)

that this means that 0 < k1 < k2 < · · · < kν , the arcs I1, I2, . . . , Iν are re-

spectively k1-, k2-, . . . , kν-wide and satisfy I1 ⊇ I2 ⊇, · · · ⊇ Iν . Denote

by Î1, Î2, . . . , Îν the arcs deduced from I1, I2, . . . , Iν by truncating an arc of

length π/(2kν) on both sides of each arc and set Î = (Î1, Î2, . . . , Îν−1). Define

k̂ = (k̂1, k̂2, . . . , k̂ν−1) by setting

1

k̂j
=

1

kj
− 1

kν
for all j = 1, 2, . . . , ν − 1.

Definition 8.4.4 (summability by Laplace iteration: general case)

A series f̃(x) is said to be k-summable by Laplace iteration on I ( in short,

k-Li-summable on I) if its kν-Borel transform ĝ(ξ) = Bkν (f̃)(ξ) satisfies the

following two conditions:

⊲ ĝ(ξ) is k̂-Li-summable on Î,

⊲ its k̂-Li-sum g(ξ) can be analytically continued to an unlimited open

sector Σ containing Îν×]0,+∞[ with exponential growth of order kν at infinity.

The k-Li-sum f(x) of f̃(x) on I is defined as fLi(x) = Lkν ,θ(g)(x) for all

direction θ ∈ Σ and corresponding x.

From the definition, the k-Li-sum fLi when it exists is unique.

Denote by κ1, κ2, . . . , κν the numbers given by

1

κj
=

1

kj
− 1

kj+1
for j = 1, 2, . . . , ν setting

1

kν+1
= 0
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or equivalently, by





1

kν
=

1

κν
1

kν−1
=

1

κν
+

1

κν−1
...
1

k1
=

1

κν
+

1

κν−1
+ · · ·+ 1

κ1

Theorem 8.4.3 can be generalized as follows.

Theorem 8.4.5 (Balser-Tougeron: general case)

k-Li-summability on I and k-summability on I are equivalent with

“same” sum.

Precisely, the k-Li-sum of a series f̃(x) with k-sum (f1, f2, . . . , fν) on I

is equal to fν and consequently, fν reads

fν(x) = Lκν ,θ′ν ◦ · · · ◦ Lκ2,θ′2
◦ Lκ1,θ′1

◦ Bκ1 ◦ · · · ◦ Bκν−1 ◦ Bκν ◦ f̃(x)

when the formula makes sense and, especially, for directions θ′1, . . . , θ
′
ν close

to the bisecting direction θν of Iν and corresponding x.

Proof. — The theorem can be proved by recurrence as follows. It is trivially

true for ν = 1 (and proved for ν = 2 in Theorem 8.4.3). Suppose it is true for

ν − 1 and prove it for ν. The fact that f̃(x) be k-Li-summable on I is now

equivalent to the fact ĝ(ξ) be k̂-summable on Î with k-sum (g1, g2, . . . , gν−1);

and that moreover, gν−1 be defined with exponential growth of order kν at

infinity on Σ. The proof that this is equivalent to saying that f̃(x) is k-

summable on I with sum (f1, f2, . . . , fν) satisfying fν = Lkν (gν−1) is similar

to the proof of Theorem 8.4.3 but the fact that the 1-cochain f1 has to be

replaced by (f1, f2, . . . , fν−1) with jumps of order kν on Iν−1 \ Iν , kν−1 on

Iν−2 \ Iν−1, . . . , k2 on I1 \ I2. We leave the details to the reader.

Suppose by recurrence that the sum gν−1(ξ) of ĝ(ξ) satisfies the for-

mula of the theorem computed with values (k1, k2, . . . , kν) replaced by

(k̂1, k̂2, . . . k̂ν−1). Then, the associated values (κ1, κ2, . . . , κν−1) remain un-

changed. Moreover, fν is given by Lκν ,θ′ν (gν−1) (observe that kν = κν) and

the formula follows. This ends the proof.
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8.5. Fourth approach: Balser’s decomposition into sums

Suppose again that we are given a multi-level k = (k1, k2, . . . , kν)

(cf. Def. 8.2.9) and a k-multi-arc I = (I1, I2, . . . , Iν). We saw in Proposition

8.2.14 (ii) that a sum
∑ν

j=1 f̃j(x) of kj-summable series on Ij is a k-summable

series on I. We address now the converse question:

Do such splittings characterize k-summable series on I?

The answer is yes when k1 > 1/2. Otherwise, one might have to introduce

ramified series. The condition k1 > 1/2 is weakened in Theorem 8.6.7.

8.5.1. Case when k1 > 1/2. — Look first at the relations between the

various splittings of a given series.

Proposition 8.5.1. — Splittings are essentially unique.

Precisely, suppose the series f̃(x) admits two splittings

f̃(x) = f̃1(x) + f̃2(x) + · · ·+ f̃ν(x) = f̃ ′1(x) + f̃ ′2(x) + · · ·+ f̃ ′ν(x)

where, for j = 1, 2, . . . , ν, the series f̃j(x) and f̃
′
j(x) are kj-summable on Ij.

Then, there exist series ũj(x) such that, for j = 1, 2, . . . , ν,

f̃ ′j(x) = ũj(x) + f̃j(x)− ũj+1(x)

where ũ1 = ũν+1 = 0 and, for j = 2, . . . , ν, the series ũj is kj-summable

on Ij−1.

Moreover, the kj-sums fj of the f̃j’s and f ′j of the f̃ ′j’s satisfy

f1(x) + f2(x) + · · ·+ fν(x) = f ′1(x) + f ′2(x) + · · ·+ f ′ν(x) on Iν

Notice that since ũj(x) is kj-summable not only on the kj-wide arc Ij but

on the kj−1-wide arc Ij−1 it is also kj−1-summable on Ij−1.

Proof. — The series ũν(x) = f̃ ′ν(x) − f̃ν(x) is kν-summable on Iν and, in

particular, is an sν-Gevrey series. Being equal to
(
f̃1(x) + · · ·+ f̃ν−1(x)

)
−
(
f̃ ′1(x) + · · ·+ f̃ ′ν−1(x)

)

it is also (k1, . . . , kν−1)-summable on (I1, . . . , Iν−1). From the Tauberian The-

orem 8.7.5 we deduce that ũν(x) is kν-summable on Iν−1 and, a fortiori, is

kν−1-summable on Iν−1. Applying the same argument to the series f̃(x)−f̃ν(x)
and to its two splittings

f̃1(x) + · · ·+ f̃ν−1(x) and f̃ ′1(x) + · · ·+ f̃ ′ν−2(x) +
(
f̃ ′ν−1(x) + ũν(x))

proves the existence of ũν−1(x) and we conclude to the existence of all ũj ’s by

decreasing recurrence. The equality of the sums follows directly.
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We can now give a new definition of multisummability as follows.

Definition 8.5.2. — Assume k1 > 1/2.

⊲ A series f̃(x) is said to be k-split-summable on I if, for j = 1, 2 . . . , ν,

there exist kj-summable series f̃j(x) on Ij such that

f̃(x) = f̃1(x) + f̃2(x) + · · ·+ f̃ν(x).

⊲ The k-split-sum of f̃(x) on I is the function f(x) uniquely defined on

Iν from any splitting of f̃(x) by

f(x) = f1(x) + f2(x) + · · ·+ fν(x),

where, for j = 1, 2, . . . , ν, fj(x) denotes the kj-sum of f̃j(x) on Ij.

Theorem 8.5.3 (Balser [Bal92a]). — Assume k1 > 1/2.

A series f̃(x) is k-split-summable on I if and only if it is k-summable

on I. Moreover, the k-split-sum and the k-sum agree.

Proof. — The “only if” part was considered in Remark 8.2.15 and above.

Prove the converse assertion: if f̃(x) is k-summable on I then it is k-split-

summable on I.

Treat first the case when ν = 2. Set s1 = 1/k1 and s2 = 1/k2 as usually.

The series f̃(x) being s1-Gevrey has a k1-quasi-sum f0(x) ∈ H0
(
S1;A/A≤−k1

)

(cf. Def. 6.2.3) and, by hypothesis (cf. Def. 8.3.1), there exists f1(x)

in H0
(
I1;A/A≤−k2

)
such that f1 mod A≤−k1 = f0 on I1 and there ex-

ists f2(x) in H0
(
I2;A

)
such that f2 mod A≤−k2 = f1 on I2. In other

words, f0 can be represented by a 0-cochain ϕ0 with values in A/A≤−k1
and satisfying the following properties: its restriction ϕ1 = ϕ0|I1

to I1 repre-

sents f1 and has values in A/A≤−k2 ; its restriction to I2 is the asymptotic

function ϕ0|I2
= f2. From Lemma 8.2.3 applied to f1(x) on I1 we are given

f ′1(x) ∈ H0
(
I1;A

)
and f ′′1 (x) ∈ H0

(
S1;A/A≤−k2

)
such that

f1 = f ′1 mod A≤−k2 + f ′′1 on I1.

There exists then a 0-cochain ϕ′′1 with values in A/A≤−k2 representing f ′′1
which satisfies ϕ′′1 = ϕ1 − f ′1 in restriction to I1. From Corollary 6.2.2, f ′′1 (x)

can be identified to an s2-Gevrey series f̃ ′′1 (x) of which f
′′
1 (x) is a k2-quasi-sum.

In restriction to I2 the 0-cochain ϕ′′1 belongs to H0(I2;A) since ϕ′′1|I2
= f2 −

f ′1|I2
. Therefore, according to Definition 6.2.4, the series f̃ ′′1 (x) is k2-summable

on I2 with k2-sum f2(x)− f ′1|I2
(x). Consider now the 0-cochain ϕ′1 = ϕ0 − ϕ′′1
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which belongs to H0
(
S1;A/A≤−k1

)
and denote by f̃1(x) the s1-Gevrey series

it defines (cf. Cor. 6.2.2). The 0-cochain ϕ′1 has no jump on I1 since

ϕ0|I1
− ϕ′′1|I1

= ϕ1 − (ϕ1 − f ′1) = f ′1.

And this, again by Definition 6.2.4, means that f̃1(x) is k1-summable on I1.

We have thus proved that f̃(x) = f̃1(x) + f̃2(x) where f̃1 is k1-summable on

I1 and f̃2 = f̃ ′′1 is k2-summable on I2.

To prove the general case one proceeds by recurrence. It suffices to prove

that when f̃(x) is k-summable on I there exist a kν-summable series f̃ν(x) on

Iν and a k′-summable series g̃(x) on I ′ (where k′ = (k1, k2, . . . , kν−1) and I
′ =

(I1, I2, . . . , Iν−1)) such that f̃(x) = g̃(x) + f̃ν(x). Indeed, let (f1, f2, . . . , fν)

denote the k-sum of f̃(x) on I. The k1-quasi-sum f0(x) is now represented

by a 0-cochain ϕ0 with values in A/A≤−k1 with the following properties:

for j = 1, 2, . . . , ν its restriction ϕj to Ij represents fj on Ij ; for j = 1, 2, . . . , ν−
1 the restriction to Ij has values in A/A−kj+1 and for j = ν the restriction to Iν
is ϕ0|Iν

= fν . Apply Lemma 8.2.3 to fν−1 on Iν−1 to get f ′(x) ∈ H0(Iν−1;A)

and f ′′(x) ∈ H0
(
S1;A/A≤−kν

)
such that

fν−1 = f ′ mod A≤−kν + f ′′ on Iν−1.

Like for f ′′1 above, the section f ′′ determines a series f̃ν(x) which is kν-

summable on Iν . There exists a 0-cochain ϕ′′ with values in A/A≤−kν which

represents f ′′ and satisfies the condition ϕ′′ = ϕν−1 − f ′ on Iν−1. The 0-

cochain ϕ0 − ϕ′′ shows that the series g̃(x) = f̃(x)− f̃ν(x) is k′-summable

on I ′. Hence, the result.

Remark 8.5.4. — One must be aware of the fact that the splitting strongly

depends on the choice of the multi-arc of summation (on the direction of sum-

mation if all arcs are bisected by the same direction). It would be interesting

to know which series admit a global splitting, i.e., the same splitting in almost

all direction.

8.5.2. Case when k1 ≤ 1/2. — Choose r ∈ N such that rk1 > 1/2.

We know from Proposition 8.2.16 (i) that the series f̃(x) is k-summable

on I if and only if the series g̃(x) = f̃(xr) is rk-summable on I/r. We

can then apply Balser’s Theorem 8.5.3 to g̃(x) to write g̃(x) =
∑ν

j=1 g̃j(x)

where the series g̃j(x) are rkj-summable on Ij/r. This way, we obtain a split-

ting f̃(x) =
∑ν

j=1 f̃j(x) of f̃(x) by setting f̃j(x) = g̃j(x
1/r) for all j. How-

ever, the series f̃j(x) thus obtained are, in general, ramified series (in the
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variable x1/r) and the splitting does not fit the statement of Theorem 8.5.3.

Actually, as shown by the example below in the case when k1 = 1/2 there

might exist no splitting in integer powers of x and we are driven to set the

following definition.

Definition 8.5.5. — Suppose k1 ≤ 1/2.

A series f̃(x) is said to be k-split-summable on I if, given r ∈ N such

that rk1 > 1/2, the series g̃(x) = f̃(xr) satisfies Definition 8.5.2.

With this definition and Proposition 8.2.16 (i) we can assert in all cases

the equivalence of k-summability and k-split-summability on I with “same”

sum.

Uniqueness holds as follows:

Let r and r′ be such that rk1 and r′k1 > 1/2. Set g̃(x) = f̃(xr) and g̃′(x) =

f̃(xr
′
) with splittings g̃(x) = g̃1(x) + · · ·+ g̃ν(x) and g̃

′(x) = g̃′1(x) + · · ·+ g̃′ν(x)

respectively. Denote by R = ρr = ρ′r′ the l.c.m. of r and r′. Then,

g̃1(x
ρ) + · · ·+ g̃ν(x

ρ) and g̃′1(x
ρ′) + · · · + g̃′ν(x

ρ′) are two splittings of f̃(xR)

into Rk1-, . . . , Rkν-summable series. Henceforth, they are essentially equal

(cf. Prop. 8.5.1).

Show now that there might exist no splitting into integerl power series.

To this end, consider the case of a multi-level k = (k1, k2) satisfying

1/κ1 := 1/k1 − 1/k2 ≥ 2.

Let (I1, I2) be a k-multi-arc. Assume, for instance, that I1 and I2 are closed

with same middle point θ0 and, by means of a rotation, that θ0 = 0. For

simplicity, assume that 1/κ1 < 4 and that |I2| = π/k2. Thus, with notations

of Sections 6.3.3 and 8.4, the closed arc Î1 centered at 0 with length |Î1| =
|I1| − π/k2 overlaps just once (since 2π ≤ |Î1| < 4π) and Î2 reduces to θ = 0.

Consider a series f̃(x) = f̃1(x)+ f̃2(x) which is the sum of a k1-summable

series f̃1(x) on I1 and of a k2-summable series f2(x) on I2 (series in inte-

ger powers of x). Denote by ĝ = Bk2(f̃), ĝ1 = Bk2(f̃1) and ĝ2 = Bk2(f̃2) the

series deduced from f̃ , f̃1 and f̃2 by a k2-Borel transform. We know from

Theorem 6.3.11 that ĝ1(ξ) is κ1-summable on Î1 with κ1-sum g1(ξ). The

theorem asserts also that g1(ξ) has an analytic continuation to an unlimited

open sector Σ = Ĵ1×]0,+∞[ containing Î1×]0,+∞[ with exponential growth

of order k2 at infinity. Since Σ is wider than 2π it has a self-intersection
•

Σ

that contains the negative real axis. Narrowing it if necessary we can assume

that Σ overlaps just once like Î1 does. Denote by
•
g1(ξ) = g1(ξ)− g1(ξe

2πi)
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the difference of the two determinations of g1 on
•

Σ. On the other hand,

ĝ2(ξ) is convergent with sum g2(ξ). Hence, the difference of two determina-

tions
•
g2(ξ) = g2(ξ)− g2(ξe

2πi) is identically 0 near 0 and can then be continued

all over
•

Σ by 0. Set
•
g(ξ) =

•
g1(ξ) +

•
g2(ξ). We can thus state:

Lemma 8.5.6. — The germ
•
g(ξ) can be analytically continued all over

•

Σ.

Proposition 8.5.7. — With notations and conditions as before (and espe-

cially, the condition 1/κ1 := 1/k1 − 1/k2 ≥ 2) there exists series that are

(k1, k2)-summable on (I1, I2) but cannot be split into the sum of a k1-summable

series on I1 and a k2-summable series on I2 if one restricts the splitting to

series in integer powers of x.

Proof. — To exhibit a counter-example to the splitting of (k1, k2)-summable

series suppose that
•
g(−1) 6= 0 and consider the series Ĝ(ξ) = ĝ(ξ).

∑
n≥0(−1)nξn.

Set then G(ξ) = g(ξ)/(1 + ξ) and
•

G(ξ) =
•
g(ξ)/(1 + ξ) and denote the k2-

Laplace transform of the series Ĝ(ξ) by F̃ (x) = Lk2(Ĝ)(x). The function G(ξ)

is κ1-asymptotic to Ĝ(ξ) on Î1 (cf. Prop.2.3.12) and it can be analytically

continued with exponential growth of order k2 at infinity to an unlimited open

sector σ containing Î2×]0,+∞[. Indeed, the function 1/(1 + ξ) is bounded at

infinity and has a pole at -1. The function g(ξ) is analytic with exponential

growth of order k2 at infinity on an unlimited open sector σ′. In case σ′

does not contain the negative real axis one can take σ = σ′; otherwise, set

σ = σ′ ∩ ℜ(ξ) > 0 for instance. According to Definition 8.4.1 and Balser-

Tougeron Theorem 8.4.3 this shows that the series F̃ (x) is (k1, k2)-summable

on (I1, I2). However,
•

G(ξ) =
•
g(ξ)/(1 + ξ) has a pole at ξ = −1 which

belongs to
•

Σ and, thus,
•

G(ξ) cannot be continued up to infinity over
•

Σ. From

the lemma we conclude that the series F̃ (x), however (k1, k2)-summable on

(I1, I2), is not the sum of a k1-summable series on I1 and of a k2-summable

series on I2 if one requires series in integer powers of x.

8.6. Fifth approach: Écalle’s acceleration

Historically, this approach called accelero-summation was the first able to

solve the problem of summation in a case of several levels. First introduced

by J. Écalle in a very general setting applying to series solutions of non-linear

equations and more general functional equations, it was adapted by J. Mar-

tinet and J.-P. Ramis to the case of solutions of linear differential equations

in [MR91]. The method proceeds by recursion on increasing levels whereas
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the iterated Laplace approach runs with decreasing levels. Each step is per-

formed with the use of special integral operators called accelerators or Écalle’s

accelerators which involve the successive levels taken two-by-two.

In this section, for simplicity, we work in a given direction θ0, i.e., we

consider only multi-arcs I = (I1, I2, . . . , Iν) with common middle point θ0.

Begin by observing what happens on the example of the Ramis-Sibuya

series R̃S(x) (Exa. 8.1.1).

Example 8.6.1 (accelero-summation of R̃S(x)). — We saw in Exam-

ple 8.1.1 that the series R̃S(x) is k-summable for no k > 0 in the directions θ ∈
[π/4 , 3π/4] mod π and therefore, no k-Borel-Laplace process applies in these directions.

In the case of R̃S(x) and more generally of a (1, 2)-summable series the method consists, in

some way, in applying simultaneously a 1- and a 2-Borel-Laplace process as shown below.

Fix a non anti-Stokes direction θ belonging to ]π/4 , 3π/4[ mod π and, when no

confusion is possible, denote simply by B1 and B2 instead of B1,θ and B2,θ the 1- and

the 2-Borel transforms in direction θ and by L1 and L2 instead of L1,θ and L2,θ the

1- and the 2-Laplace integrals in direction θ (cf. Def. 6.3.5). Contrary to the 2-Borel

transform the (formal) 1-Borel transform applied to Ẽ(x) and L̃(x) provides convergent

series. This invites us to begin with the 1-Borel-Laplace process followed by the 2-Borel-

Laplace process. The 1-Borel transform of E(x) can be continued to infinity in direction θ

(and neighboring directions) with exponential growth of order one and can then be applied

a Laplace operator L1. On the contrary, the 1-Borel transform of L(x) can only be

continued with exponential growth of order two (cf. Exa. 6.3.14). Hence, the Laplace

operator L1 does not apply to B1

(
R̃S(x)

)
(ξ).

A solution to this problem consists in merging the next two arrows of the process as

indicated in the diagram:

Formally, we can write

A2,1(ϕ)(ζ) = B2

(
L1(ϕ)

)
(ζ)

=
1

2πi

∫

γ2θ

(
eζ

2/t

∫ eiθ∞

0

ϕ(ξ)e−ξ/t1/2dξ
)dt
t2

=
1

2πi

∫ eiθ∞

0

ϕ(ξ)

∫

γ2θ

exp
(ζ2

t
− ξ

t1/2

)dt
t2

dξ (commuting the integrals)

=
1

2πi

∫ eiθ∞

0

ϕ(ξ)

∫

H

exp
(
u− ξ

ζ
u1/2

)du
ζ2

dξ (setting u = ζ2/t)

where H denotes a Hankel contour around the negative real axis. Setting u1/2 = iv in

the integral kernel C2(τ) = 1
2πi

∫
H
eu−τu1/2

du we recognize the derivative of the Fourier

transform of the Gauss function e−v2

and we obtain C2(τ) = τe−τ2/4/(2
√
π). This kernel
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is (for ℜτ > 0) exponentially small of order two and can then be applied to the 1-Borel

transform ϕ(ξ) of the Ramis-Sibuya series R̃S(x). The operator A2,1 defined by

A2,1

(
ϕ(ξ)

)
(ζ) =

1

ζ2

∫ eiθ∞

0

ϕ(ξ)C2

(
ξ/ζ

)
dξ

is called (2, 1)-accelerator.

Now, the function A2,1

(
ϕ(ξ)

)
(ζ) satisfies the same equation as B2(R̃S(x))(ζ) and

can thus be applied a 2-Laplace transform (see Exa. refRSsum3). Finally, we obtain an

asymptotic function on a quadrant bisected by θ. This function has the Ramis-Sibuya

series R̃S(x) as Taylor series since, formally, the followed process is the identity.

The formal calculation made above to define the accelerator A2,1 can be

made with Ak2,k1 = Bk2

(
Lk1(ϕ)

)
for any pair of levels k1 < k2. We obtain

Ak2,k1

(
ϕ(ξ)

)
(ζ) =

1

ζk2

∫ eiθ∞

ξ=0
ϕ(ξ) Ck2/k1

(
(ξ/ζ)k1

)
d
(
ξk1

)

where the kernel Ck2/k1 is defined by

Cα(τ) =
1

2πi

∫

H
ew−τw

1/α
dw, α > 1.

When it is useful to make explicit the direction θ in which the integral is taken

we denote Aθ
k2,k1

.

Proposition 8.6.2. — Given α > 1 let β denote its conjugate number:

1/α+ 1/β = 1.

The kernel Cα(τ) is flat of exponential order β at infinity on the sec-

tor | arg(τ)| < π/(2β), i.e., for all δ > 0 there exist constants c1, c2 > 0 such

that

|Cα(τ)| ≤ c1 exp(−c2 |τ |β) on | arg(τ)| ≤ π/(2β)− δ.

Proof. — The proof was already given in the part “(i) implies (ii) point 3” of

the proof of the pre-Tauberian Theorem 6.3.11. To use the same notations,

perform the change of variable U = ταw in the integral defining Cα(τ). Set

F (U) = exp(−U1/α), ζ = 1/τα and G(ζ) = Cα(ζ
1/α)/ζ. We obtain G(ζ) =

1/(2πi)
∫
H F (U)eζUdU . Then, set k1 = 1, k2 = α and κ1 = β. Set an = 0 for

all n in (42) (the exponential F (U) is flat on arg(U) < απ/2). We conclude

from Estimate (41) and Proposition 2.3.17.

Corollary 8.6.3. — Denote, as before, 1/κ1 = 1/k1 − 1/k2.

The accelerator Ak2,k1 applies to any function ϕ with exponential growth of

order κ1 at infinity in direction θ.
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With this result the accelerator Ak2,k1 appears like similar to a κ1-Laplace

operator and has similar properties. Let us state the following result general-

izing Theorem 6.3.11 “(ii) =⇒ (i)” (cf. [Bal94, Thm 5.2.1]).

Lemma 8.6.4. — Let k̂, k1, k2 > 0 be given. Assume k1 < k2 and define κ

and k by
1

κ
=

1

k1
− 1

k2
and

1

k
=

1

κ
+

1

k̂
.

Let σ̂ = Î×]0,+∞[ be an unlimited sector and denote by I the arc with

same middle point θ0 as Î and length |Î| + π/κ.

Suppose that g(ξ) is analytic on σ̂, it belongs to A
1/k̂

(Î) at 0 and it has

exponential growth of order κ at infinity on σ̂.

Then, the function f(ξ) = Ak2,k1(g)(ξ) belongs to A1/k(I).

Definition 8.6.5. — Let k = (k1, k2, . . . , kν) be a multi-level and θ0 a direc-

tion. A series f̃(x) is said to be k-accelero-summable (or, accelero-summable)

in direction θ0 if it can be applied the following sequence of operators in direc-

tion θ = θ0 and neighboring ones resulting in the accelero-sum f(x):

f̃(x)
Bk1−−−→ •

Ak2,k1−−−→ •

Ak3,k2−−−→ • · · · •
Akν−1,kν−−−→ •

Lkν−−−→ f(x).

By the expression “can be applied” we mean that the kernels of the integral

operators have, at each step, the right growth rate at infinity for the integral

to exist.

The term accelero-summation is commonly used for a larger class of op-

erators associated with various kernels depending on the type of problem one

wants to solve. Here, we refer always to the definition given above.

Theorem 8.6.6. — k-multisummability and k-accelero-summability in a

given direction θ0 are equivalent with “same” sum.

Precisely, if (f1, f2, . . . , fν) is the k-multisum of a series f̃(x) in direc-

tion θ0 then, f = fν is its k-accelero-sum in direction θ0.

Proof. — We sketch the case of two levels k = (k1, k2) letting the reader

perform the general case by iteration. Since the theorem holds true for poly-

nomials we can assume that the given series have valuation greater than k2 so

that their k2-Borel series contain only positive powers of ξ.

⊲ multisummability implies accelero-summability.

Without loss of generality we can assume that k1 > 1/2. From Theorem 8.5.3

it is then sufficient to prove that k1- and k2-summable series in direction θ0
are accelero-summable in the same direction. Suppose f̃(x) is k1-summable
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in direction θ0 with k1-sum f1(x). Then, Bk1(f̃)(ξ) is convergent at 0 and its

sum ϕ(ξ) can be analytically continued with exponential growth of order k1 at

infinity in direction θ0 and neighboring ones. Since κ1 > k1 one can apply the

accelerator Ak2,k1 to ϕ(ξ) in direction θ0 and neighboring ones and the result-

ing function can be analytically continued to infinity with moderate growth;

it can then be applied a k2-Laplace transform to produce a (k1, k2)-sum f(x).

Actually in that case, Ak2,k1(ϕ) = Bk2 ◦ Lk1(ϕ) (the integrals commute). It

follows that f(x) = Lk2 ◦ Bk2(f1)(x) and f(x) is the restriction of f1 to an

open sector with opening larger than π/k2 (but possibly smaller than π/k1)

centered at θ0.

Suppose f̃(x) is k2-summable in direction θ0 with k2-sum f(x) and let κ1
be defined by 1/κ1 = 1/k1 − 1/k2. The k1-Borel transform ĝ1(ξ) = Bk1(f̃)(ξ)

of f̃(x) defines an entire function g1(ξ) with exponential growth of order κ1 at

infinity. Lemma 8.6.4 applied to g1(ξ) with 1/k̂ = 0 shows that Ak2,k1(g1)(ξ) is

κ1-asymptotic to ĝ2(ξ) = Bk2(f̃)(ξ) on a sector of opening larger than π/κ1 bi-

sected by θ0. Since f̃(x) is k2-summable in direction θ0 its k2-Borel series ĝ2(ξ)

is convergent and Ak2,k1(g1)(ξ) coincide with the sum g2(ξ) of series ĝ2(ξ). A

k2-Laplace transform provides then the k2-sum f(x) of f̃(x) in direction θ0.

⊲ Accelero-summability implies multisummability.

Suppose f̃(x) is (k1, k2)-accelero-summable in direction θ0. Thus, its k1-Borel

transform ĝ(ξ) =
∑

p>k2
cpx

p converges on a disc D̂ρ = {|ξ| < ρ}. Its sum g(ξ)

can be analytically continued to an open sector σ̂ neighboring the direction θ0
with exponential growth of order κ1 at infinity (recall 1/κ1 = 1/k1 − 1/k2).

We choose σ̂ so narrow about θ0 that f̃(x) is (k1, k2)-accelero-summable in

all direction θ belonging to σ̂. Without loss of generality, we assume that

1/κ1 < 2. Show now that under that condition the series f̃ splits into a

sum f̃(x) = f̃1(x) + f̃2(x) where f̃1(x) and f̃2(x) are k1- and k2-summable in

direction θ0 respectively (cf. [Bal92a, Lem. 1 and 2]).

Show first that it suffices to consider the case when f̃(x) is (k1, k2)-

summable (i.e., (k1, k2)-summable in almost all direction). Let 0 < r < ρ.

The circle γ centered at 0 with radius r belongs to D̂ρ. Denote by γ1 the

arc of γ oriented positively outside the sector σ̂ and by γ2 the arc oriented

positively inside σ̂. From Cauchy’s integral formula we know that, on the

interior D̂r of γ, the function g(ξ) satisfies

g(ξ) =
1

2πi

∫

γ

g(η)

η − ξ
dη
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and g(ξ) = g1(ξ) + g2(ξ) there if one sets

g1(ξ) =
1

2πi

∫

γ1

g(η)

η − ξ
dη and g2(ξ) =

1

2πi

∫

γ2

g(η)

η − ξ
dη.

The function g1(ξ) has an analytic continuation to D̂r ∪ σ̂ which is bounded

at infinity. The k1-Laplace transform f̂1(x) of the Taylor series ĝ1(ξ) of g1(ξ)

is therefore a k1-summable series in direction θ0. Denote by cℓ(σ̂) the closure

of σ̂ and set σ̂′ = C\cℓ(σ̂). Thus, C = σ̂ ∪ σ̂′ ∪ d′ ∪ d′′ where d′ and d′′ are the
two half-lines limiting σ̂ and σ̂′. Similarly to g1(ξ), the function g2(ξ) has an

analytic continuation to D̂r ∪ σ̂′ which is bounded at infinity. Its k1-Laplace

transform f̂2(x) is thus k1- hence (k1, k2)-summable in all directions of σ̂′. On

another hand, f̂2(x) = f̂(x)− f̂1(x), is (k1, k2)-summable in all directions of σ̂.

We conclude that f̂2(x) being (k1, k2)-summable in all directions but, maybe,

the singular directions d′ and d′′, is (k1, k2)-summable. To continue the proof

we can then assume that f̃(x) is (k1, k2)-summable (in almost all direction).

Figure 5

Prove now the followed splitting f̃(x) = f̃1(x) + f̃2(x) where f̃1(x) and

f̃2(x) are respectively k1- and k2-summable in direction θ0. From Lem. 8.6.4

the function hθ(ζ) = Aθ
k2,k1

(g)(ζ) is κ1-asymptotic to a same series (precisely,

to the k2-Borel transform of f̃) on a sector of size π/κ1 in all non-singular

direction θ. These functions are analytic continuations from each others as

long as θ does not pass a singular direction. With f̃(x) we can thus asso-

ciate a 0-cochain (ϕj(ζ))j∈J with ϕj ∈ A1/κ1
(Uj) all asymptotic to the same

series f̂(ζ) = Bk2(f̃)(ζ), the sectors Uj having opening |Uj | > π/κ1 and mak-

ing a good covering U = (Uj)j∈Z/pZ of a punctured neighborhood of 0 in C

(cf. Def. 3.2.9). We can choose the covering U such that U0 is bisected by θ0.

Denoting by θj the direction bisecting Uj observe that, under such conditions,

there might be several singular directions between θj and θj+1. Notice that

such a covering is made possible due to the condition 1/κ1 < 2. Denote, as
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previously, by
•

U j= Uj ∩ Uj+1 the nerve of U . For all j ∈ Z/pZ choose aj ∈
•

U j

and apply the Cauchy-Heine Theorem (Thm. 2.5.2) to build a new 0-cochain

with associated 1-cocycle (
•
ϕj= ϕj−ϕj+1). The construction is as follows. De-

compose the 1-cocycle (ϕj) into the sum of the elementary 1-cocycles ϕ′j = ϕj

on
•

U j and 0 on
•

U ℓ when ℓ 6= j. Set r′ = min(|aj |) and
•

U
′

j=
•

U j ∩{|ζ| < r′}.
Denote by U ′j the sector with self intersection

•

U
′

j . The Cauchy-Heine Theorem

(Thm. 2.5.2) says that the function

ψ′j(ζ) =
1

2πi

∫ aj

0

•
ϕj (t)

t− ζ
dt

can be analytically continued to U ′j with 1-cocycle ϕ′j(ζ) and ψ
′
j(ζ) is κ1-Gevrey

asymptotic to the series
∑
cmζ

m where cm = 1/(2πi)
∫ aj
0

•
ϕj (t)/t

m+1dt. It has

also an analytic continuation to C deprived of the half-line dj =]0, αj [, αj =

arg(aj) and it tends to 0 at infinity. Define the analytic function ψj(ζ) on Uj

by setting

ψj(ζ) =
∑

ℓ∈Z/pZ

ψ′ℓ(ζ), ζ ∈ Uj

(choose the determinations of the ψ′ℓ that are analytic on all of Uj). Suppose

now that a0 and ap−1 have been chosen so that the angle |α0 − αp−1| is >

π/κ1 and bisected by θ0. This is possible since the opening of U0 is larger

than π/(2κ1) on both sides of θ0. Denote by V0 the unlimited open sector

]αp−1, α0[×]0,∞[ and by Ψ0(ζ) the analytic continuation of ψ0(ζ) to V0. The

sector V0 is κ1-wide; the function Ψ0(ζ) has a κ1-asymptotic expansion Ψ̂0(ζ)

at 0 and an exponential growth of order less than k2 at infinity on V0. Denote

by f̃1(x) the k2-Laplace transform of the series Ψ̂0(ζ). It follows from Theorem

6.3.11 (ii)=⇒(i) that the series f̃1(x) is k1-summable in direction θ0.

On another hand, denote by φ̂0(ζ) the asymptotic series of ϕ0 (it

is actually the k2-Borel transform of f̃(x)). By hypothesis, one can

apply a Lk2-Laplace transform to ϕ0 in direction θ0 and neighboring

ones. This means that ϕ0 has an analytic continuation to an unlim-

ited sector V ′0 containing the direction θ0 with exponential growth of

order k2. The 0-cochains ϕj(ζ) and ψj(ζ) induce the same 1-cocycle

on (
•

U ′j)j∈Z/pZ. It follows that ϕj(ζ)− ϕj+1(ζ) = ψj(ζ)− ψj+1(ζ) for all

j and the functions ϕj(ζ)− ψj(ζ) glue together into an analytic function on

the disc D′ = {|ζ| < r′} which is the sum of the series φ̂0(ζ)− Ψ̂0(ζ). Denote

by f̃2(x) the k2-Laplace transform of that series. Therefore, the function
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ϕ0(ζ) − ψ0(ζ) can be continued into an analytic function on V ′0 ∪ D′ with

Taylor series Bk2(f̃2)(ζ) and it has exponential growth of order k2 at infinity.

This means that the series f̃2(x) is k2-summable in direction θ0. Moreover,

f̃(x) = f̃1(x) + f̃2(x) and the result follows.

The second part of the proof of Theorem 8.6.6 provides the following

improvement of Theorem 8.5.3:

Theorem 8.6.7 (Balser [Bal93]). — Let be given a multi-level k = (k1, k2)

and a k-multi-arc I = (I1, I2). Denote 1/κ1 = 1/k1 − 1/k2. Under the condi-

tion

κ1 > 1/2

then, k-split-summability and k-summability on I are equivalent with same

sum.

The property extends to multi-arcs I = (I1, . . . , Iν) of length ν ≥ 2 under

the conditions

κj > 1/2 where 1/κj = 1/kj − 1/kj+1 for j = 1, . . . , ν − 1.

Observe that the counter-example in Proposition 8.5.7 corresponds to ν =

2 and κ1 = 1/2.

8.7. Sixth approach: wild analytic continuation

8.7.1. k-wild-summability. — Like Ramis-Sibuya definition of k-summability

was translated in terms of analytic continuation in the infinitesimal neighbor-

hood Xk of 0 endowed with the sheaf Fk (cf. Sect. 6.4.1) Malgrange-Ramis

definition of k-multisummability can be translated in terms of analytic con-

tinuation in the infinitesimal neighborhood Xk of 0 endowed with the sheaf

Fk (cf. Sect. 4.5.3).

Definition 8.7.1 (k-wild-summability). — Let k = (k1, . . . , kν) be a

multi-level and let I = (I1, . . . , Iν) be a k-multi-arc (cf. Def. 8.2.9). Set

{kν+1, 0} = +∞ (cf. Nots. in Sect. 4.5.2).
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⊲ A series f̃(x) =
∑

n≥0 an x
n is said to be k-wild-summable on I if it

can be wild analytically continued in the infinitesimal neighborhood (Xk,Fk)

of 0 to a domain containing the closed disc D(0, {k1, 0}) and the sec-

tors Ij×]0, {kj+1, 0}] for all j = 1, . . . ν .

⊲ Its sum is the germ of analytic function defined on Iν by this wild

analytic continuation. It is said to be k-wild-summable in direction θ if all

arcs Ij are bisected by the direction θ.

⊲ The series is said to be k-wild-summable if it is k-wild-summable in

almost all direction, i.e., all direction but finitely many called singular direc-

tions.

Figure 6. Domain for a (k1, k2)-sum in Xk1,k2 (in white)

It follows from the Relative Watson’s Lemma 8.2.1 and Watson’s Theorem

6.1.3 that the continuation, hence the sum in the sense of wild-summation,

when it exists, is unique.

Since Definition 8.7.1 exactly translates Malgrange-Ramis definition of

multisummability (Def. 8.3.1) we can state:

Proposition 8.7.2. — k-wild-summability is equivalent to k-summability in

any of the previous sense with same sum.

Definition 8.7.3. — Let I be a k-multi-arc.

⊲ A sector built on I like in Definition 8.7.1 (cf. Fig. 6) is called a k-sector

in Xk.
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⊲ A kj-arc Ij such that f̃(x) can be wild analytically continued to the open

sector Ij×]0, {kj , 0}[ but not to the closed sector Ij×]0, {kj ,∞}] in Xk is said

to be a singular arc of level kj (for f̃(x)); otherwise it is said to be non singular.

⊲ A direction θ bisecting one or several singular arcs is said to be a sin-

gular direction for f̃(x); otherwise it is said to be non singular.

From the viewpoint of wild analytic continuation the following results are

straightforward.

Proposition 8.7.4. — Let k = (k1, k2, . . . , kν) be a multi-level.

⊲ A series is k-summable if and only if it admits finitely many singular

arcs in Xk.

⊲ Let k′ be a multi-level containing all levels k1, k2, . . . , kν of k. A series

which is k-summable in a direction is also k′-summable in that direction. In

other words, k-summability is stronger than k′-summability.

Proof. — ⊲ If there is finitely many singular arcs then the series is k-summable

in all directions but the finitely many bisecting directions of the singular arcs.

Conversely, suppose that the series has infinitely many singular arcs. If k

contains several levels then there is at least one level supporting infinitely many

singular arcs and all bisecting directions of these arcs are singular directions

for the series. Hence, the non-summability of the series.

⊲ From the viewpoint of wild analytic continuation the domain one has

to continue the series towards its k-summability in direction θ contains the

domain one has to continue it towards its k′-summability in the same direction.

8.7.2. Application to Tauberian Theorems. — The Tauberian The-

orems 6.3.12 and 6.3.13 are easily generalized to multisummable series

(cf. [MR91, Prop. 8 p. 349]). Without loss of generality we assume that the

smallest level k1 is greater than 1/2.

Theorem 8.7.5. — Let k = (k1 . . . , kν) be a multi-level, I be a k-multi-arc

and kν+1 = ∞. Suppose k′ satisfies kj ≤ k′ < kj+1 for some j ∈ {1, 2, . . . , ν}.
Then, a series f̃(x) which is both k-summable on I and 1/k′-Gevrey is

(k′, kj+1, . . . , kν)-summable on (Ij , Ij+1, . . . , Iν).

Proof. — Denote by k′ the multi-level k augmented by k′ in case k′ 6= kj .

The proof is performed in the space (Xk′ ,Fk′). The series f̃(x) being 1/k′-

Gevrey it can be continued as a section of Fk′ to the closed disc Dk′ with
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radius {k′, 0}. Being k-summable on I it can be continued to the k-sector k,I

built on I. With the same arguments as in Section 6.4.2 one proves that the

two continuations agree on Dk′ ∩ k,I . Hence, f̃(x) can be continued to the

(k′, kj+1, . . . , kν)-sector
′ = Dk′ ∪ k,I and the result follows.

Given two multi-levels k′ = (k′1, k
′
2, . . . , k

′
ν′) and k′′ = (k′′1 , k

′′
2 , . . . , k

′′
ν′′)

we define the multi-level K = (K1, . . . ,Kν) as being the shuffle of k′ and k′′

starting from K1 = max(k′1, k
′′
1).

Proposition 8.7.6. — A series f̃(x) which is both k′- and k′′-summable in

a direction θ is K-summable in direction θ.

The proof is similar to the previous one.

Such a result is of poor interest since, in general, K has more levels than

both k′ and k′′ and being K-summable in direction θ is more complicated

than being k′- or k′′-summable in direction θ. It would be more interesting

to get K-summable series for a K equal to the intersection of k′ and k′′. This

is impossible when one considers summable series in a given direction. More

interesting is the case of series that are both globally (i.e., in almost all direc-

tions) k′- and k′′-summable since, then, one has the following generalization

of the Tauberian Theorem 6.3.13.

Theorem 8.7.7. — With notations as before let κ = k′∩k′′ be the multi-level

defined on the common values of k′ and k′′: κ = (κ1, . . . κν0) satisfies

{κ1, . . . , κν0} = {k′1, k′2, . . . , k′ν′} ∩ {k′′1 , k′′2 , . . . , k′′ν′′}.
A series f̃(x) which is both k′- and k′′-summable satisfies the following

properties:

(i) if κ = ∅ then f̃(x) is convergent;

(ii) if κ 6= ∅ then f̃(x) is κ-summable.

Proof. — (i) Case when κ is empty. Suppose for instance that k′ and k′′ satisfy

k′1 < · · · < k′j′1−1
< k′′1 < · · · < k′′j′′1−1

< k′j′1
< · · · < k′j′2−1

< k′′j′′1
< · · ·

It is sufficient to prove that the series has no singular arc in (Xk′∪k′′ ,Fk′∪k′′).

Prove first that a k-summable series (k = (k1, k2, . . . , kν)) with no singular

arc of level k1 in (Xk,Fk) is (k2, . . . , kν)-summable. Indeed, in that case, one

can choose a covering of Xk by k-sectors ℓ based on k-arcs (Iℓ1, I
ℓ
2, . . . , I

ℓ
ν)

with the following properties: the sectors ℓ are sectors of k-summation of the
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series; the Iℓj ’s form a cyclic covering of S1 and the consecutive intersections

Iℓ1 ∩ Iℓ+1
1 are made of arcs of length larger than π/k1. From the Ramis-Sibuya

Corollary 6.2.2 and the Relative Watson Lemma 8.2.1 we conclude like in

Section 6.4.2 that the corresponding sums glue together into a section of Fk

over the closed disc Dk2 with radius {k2, 0}. The series is then 1/k2-Gevrey

and, by Theorem 8.7.5, it is (k2, . . . , kν)-summable.

The series f̃(x) being both k′-summable and 1/k′′1 -Gevrey we know

from Theorem 8.7.5 that it is at worst (k′′1 , k
′
j′1
, . . . , k′ν′)-summable. As a

k′-summable series it has then no singular arc of level < k′′1 and then of level

< k′j′1
. This proves that f̃(x) is (k′j′1

, k′j′1+1, . . . , k
′
ν′)-summable. Exchanging

the role of the k′’s and of the k′′’s we show the same way that the series

is (k′′j′′1
, k′′j′′1+1, . . . , k

′′
ν′′)-summable; then (k′j′2

, k′j′2+1, . . . , k
′
ν′)-summable and so

on. . . until no singular arc is left.

(ii) Suppose for instance that k′′1 = k′j′1
.

The previous reasoning remains valid on any arc I ′′1 of summability. In-

stead of a continuation to the full infinitesimal neighborhood (Xk′∪k′′ ,Fk′∪k′′)

we obtain the continuation to any κ-multi-sector but the finitely many ones

that are based on arcs of levels in k′ ∩ k′′ that are singular for the k′- and the

k′′-summation of f̃(x). This ends the proof of the theorem.

With this result we see that any multisummable series is k-summable for

a unique k of smallest length. This is no more true for directional summabil-

ity. Recall, for intance, the case of the Leroy series which is both 1- and 2-

summable in infinitely many directions (cf. Exa. 6.3.14).
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résurgentes, vol. 81-05, Publ. Math. Orsay, 1981.
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[Mal82] , “Travaux d’Écalle et de Martinet-Ramis sur les systèmes
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Progress in Mathematics, vol. 96, Birkhäuser, 1991.
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[Mal95] , “Sommation des séries divergentes”, Expo. Math. 13
(1995), p. 163–222.

[Miy11] M. Miyake – “Newton polygon and Gevrey hierarchy in the index
formulas for a singular system of ordinary differential equations”,
Funk. Ekvac. (2011), to appear.

[MR89] J. Martinet & J.-P. Ramis – “Computer algebra and differen-
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INDEX OF NOTATIONS

⋐ proper inclusion of sectors 5
A sheaf over S1 of germs of asymptotic functions 47
As subsheaf of A of s-Gevrey germs 47
A<0 subsheaf of A of flat germs, i.e., asymptotic to 0 47
A≤−k subsheaf of A<0 of germs exponentially flat of order k 47
B formal Borel transform 125
Bθ Borel transform in direction θ 125
Bk,θ k-Borel transform in direction θ 129

Riemann surface of logarithm 5
C[[x]] differential algebra of formal power series

with complex coefficients and derivation d/dx

C{x} differential sub-algebra of C[[x]] restricted to convergent series

C[[x]]s differential sub-algebra of C[[x]] restricted to Gevrey series

of order s, i.e., of level k = 1/s 18
C{x}{k,I} differential sub-algebra of C[[x]] of k-summable series on I 116
C{x}{k,I} differential sub-algebra of k-multisummable series on I 181

Ẽ(x) Euler series 8
E(x) Euler function 8
E0 homogeneous Euler operator 49
Ei(x) exponential integral function 10
F ,F presheaf and associated sheaf 42

3F0 example of a hypergeometric series 11
g̃(z) g̃(z) = z−4

3F0({3, 4, 5}|1/z) 11

h̃(z) example of a solution of a mild difference equation 13

ℓ̃(z) example of a solution of a wild difference equation 14
k, k1, . . . levels (positive numbers)
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k, I multi-level and multi-arc 180
Lθ Laplace transform in direction θ 125
Lk,θ k-Laplace transform in direction θ 129
s, s1, . . . orders, i.e., inverses of levels s = 1/k, s1 = 1/k1, . . .

α,β(R) open sector {x ; α < arg(x) < β and 0 < |x| < R} in C or Č 5
, 1, . . . open sectors in C∗ or Č at 0

open sector in C∗ or Č at infinity

closure of the sector in C∗ or Č

S{k,I} k-summation operator on the arc I 115
S{k,θ} k-summation operator in direction θ 115
S{k,I} k-summation operator on the multi-arc I 181
T Poincaré asymptotic expansion at 0 on (usual Taylor map) 7
Ts, s-Gevrey asymptotic expansion at 0 on (Taylor map) 23
x, z = 1/x coordinates on the Riemann sphere near 0 and ∞

respectively (Laplace plane) 125
ξ, ζ coordinates after Borel transform (Borel plane) 125
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Asymptotics

Poincaré asymptotics, 6

Gevrey asymptotics, 17

Basic transformations

k-Borel and k-Laplace transforms, 28, 129

Borel and Laplace transforms, 125

Truncated k-Laplace transform, 29

Borel-Ritt

application, 31, 88, 114, 166

theorem, 26, 30, 51, 58

Cauchy-Heine

application, 104

integral, 31

theorem, 32, 61

Cyclic vector lemma, 64, 68

Deligne-Malgrange theorem, 103

Determining polynomial, 75

Differential module

D-module, 65, 67, 69

connection, 65

Definition, 65, 68

equivalence of equations, 70

equivalence of systems, 66, 68

Examples

Euler, 8, 18, 21, 30, 35, 48, 59, 60, 83, 89,
103, 113, 115, 116, 123, 141

exponential integral, 10, 21

hypergeometric, 11, 18, 22, 83, 89, 116, 123

lacunar series, 46

Leroy, 150

mild, 13, 18, 22, 116, 142

Ramis-Sibuya, 171, 179, 184, 187, 200

wild, 14, 18, 22, 116, 142

Fine Borel-Laplace summation, k-fine
summability, 132

Formal fundamental solution, 72, 81

Germs of diffeomorphism

Birkhoff-Kimura theorem, 163, 166

conjugacy, 159

invariance, 167

summability, 169

Homological system, 75, 90

Index, irregularity

definition, 99, 100

example with no index, 101

theorem, 103, 105, 110

Infinitesimal neighborhoods

application, 109, 155

big point, 93, 96, 110, 157

definition, 90, 93, 96

Maillet-Ramis theorem, 108, 121

Main asymptotic existence theorem

application, 78, 102, 104, 121, 122

theorem, 88, 89

Malgrange-Sibuya theorem, 78

Newton polygon

characteristic equation, 86

definition, 81, 82

indicial equation, 86

N. polygon & Borel transform, 84

Presheaves

A, 7, 15, 16

As, 21

A<0, flat functions, 7, 15

A≤−k, 25

definition, 37

morphism, 38
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Ramis-Sibuya theorem, 119

Resurgence, summable-resurgence, 153

Sectors, arcs
k-wide sector, k-wide arc, 110, 113, 115
Open or closed sector, 5

Proper sub-sector, 6
Sheaves

definition, 41

direct image, 51
espace étalé, 42

extension by 0, 53

morphism, 44
quotient sheaf, 48
restricted sheaf, 52
sheaf A, 47
sheaf A<0, flat germs, 47
sheaf A≤−k, 47

sheaf As, 47
support of a section, 53

Stokes phenomenon
anti-Stokes directions, 75, 78
application, 78, 102
example, 35
levels, 75
size of sectors of summation, 89
Stokes arcs, 74, 105
Stokes cocycle, 79

Stokes cocycle vs sums, 80

Stokes directions, 76, 102, 104
Stokes matrices, 80, 81
Stokes values, 152, 154

Watson
relative Watson’s lemma, 175
Watson’s lemma, 114


