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Abstract

In this Note we present a general and fairly simple method to design families of contractions for nonlinear partial

differential equations, either of evolution type, or of stationary type. As a particular example, we apply this

method to the porous medium equation, for which we get new contractions. This method opens new directions to

explore.

Résumé

La méthode des contractions différentielles. Dans cette Note, nous présentons une méthode simple et

générale pour fabriquer des familles de contractions pour des equations aux dérivées partielles non linéaires,

d’évolution ou bien stationaires. A titre d’exemple, cette méthode est appliquée à l’équation des milieux poreux,

pour laquelle nous obtenons de nouvelles contractions. Cette méthode ouvre de nouvelles directions de recherche

à explorer.

1. Introduction

In this Note, we introduce a new tool that we call the method of differential contractions. This method
allows us to design families of contractions for general PDEs of evolution type or of stationary type. To
explain clearly the method, we will focus on a very well studied case: the porous medium type equation
for m > 0, that we normalize (for convenience) as follows

∂th = ∆

(

hm

m

)

on Q = (0,+∞)× Ω (1)

where Ω is an open set in dimension d ≥ 1. We will also consider the stationary analogue

Email address: monneau@cermics.enpc.fr (Régis Monneau).



h−∆

(

hm

m

)

= f on Ω. (2)

The reader will understand the generality of the method that can be applied to a large variety of equa-
tions (with possible coefficients depending on space or time coordinates). These equations include the
p-Laplacian, the doubly nonlinear equation, quasilinear equations like for instance the minimal surface
equation, some parabolic systems, and even certain particular hyperbolic systems. The application to
some of these equations is contained in [5] and will be presented in a subsequent work [4].

We give the typical contraction results that we can get, but the most interesting is the method itself
which is presented in Section 2, and naturally provides new directions to explore. Given two functions
gi(x) for i = 0, 1, we define the distance

dα,p(g1, g0) =





∫

Ω

|gα1 − gα0 |
p dx





1/p

for (α, p) ∈ K|n| and n = m− 1 ∈ (−1, 1), with the following definition of the set for n 6= 0

K|n| =

{

(α, p) ∈ (0,+∞)× [1, 1/n2], α ∈ [α−(p), α+(p)], with α±(p) = 1 +
(p− 1)

2p

(

−1±
√

1− n2p
)

}

.

It is possible to see that this set is convex and that the minimal value of α corresponds to the point

(α, p) = (|n|, 2−|n|
|n| ), which is related to the classical pressure term hm−1 when m > 1. The maximal value

of α corresponds to the point (α, p) = (1, 1). For n = 0, we setK0 = {(α, p) ∈ (0, 1]× [1,+∞), α ≥ 1/p}.
For convenience, we present our rigorous results when the open set Ω is a torus, but this particular choice
of Ω is absolutely not fundamental.

Theorem 1.1 (Contraction family for porous medium type equations)
Assume that we work on the torus Ω = T

d with d ≥ 1 and that m− 1 = n ∈ (−1, 1). Let 0 ≤ h0i ∈ L∞(Ω)
be two initial data for i = 0, 1. Let us call hi ∈ C([0,+∞);L1(Ω)) ∩ L∞(Q) the unique solutions of (3)
with initial data h0i for i = 0, 1. Then we have the following contraction in time with hi(t) = hi(t, ·)

the map t 7→ dα,p(h1(t), h0(t)) is nonincreasing

if (α, p) ∈ K|n|.

Up to our knowledge, in any dimensions, only contractions in L1, H−1 and the 2-Wasserstein distance
are known for solutions of (1) (see [9], [7]). Our result provides a new contraction family that can be seen
as a generalization of the L1 contraction. A direct approach to this result will be presented in [3] in the
case Ω = R

d. Note that even for the standard heat equation, our result seems new.

Theorem 1.2 (Contraction family for the stationary equation)
Assume that we work on the torus Ω = T

d with d ≥ 1 and that m− 1 = n ∈ (−1, 1). Let 0 ≤ fi ∈ L∞(Ω)
be two data for i = 0, 1. Let 0 ≤ hi ∈ L∞(Ω) be the unique solutions of (2) with right hand side f = fi
for i = 0, 1. Then we have

dα,p(h1, h0) ≤ dα,p(f1, f0)

if (α, p) ∈ K|n|.

The proofs of Theorems 1.1 and 1.2 are given in Section 3.

2



2. The method

Here we present heuristically the method which is quite elementar.

2.1. The evolution case

At least for smooth positive solutions, we prefer to write equation (1) as follows with n = m− 1

∂th = div (hn∇h). (3)

1. Motivation
For two positive functions hε and h0 with the same mass

∫

Ω
hε dx =

∫

Ω
h0 dx, it is well-known (see for in-

stance [6,2] and the references therein) that the relative entropy S(hε|h0) =

∫

Ω

ψ

(

hε
h0

)

h0 dx with ψ(g) =

g ln g plays a key role in the study of the long time behaviour of diffusion equations. Indeed for hε =
h0 + εh′0 + o(ε) where h′0 is a function, we have

S(hε|h0) ∼ ε2
∫

Ω

|h′0|
2

h0
dx. (4)

Remark 1 (Relation with the 2-Wasserstein distance)
Note that a simple computation allows to see that the 2-Wasserstein distance W2 satisfies in dimension

d = 1: W 2
2 (hε, h0) ∼ ε2

∫

R

|H′

0
|2

h0

dx with H ′
0(x) =

∫ x

−∞
h′0(y) dy which shares some similarities with

(4).

2. Cheking the differential contraction
Given now two positive smooth solutions hi = hi(t) = hi(t, ·) for i = 0, 1, it is interesting to consider a
smooth curve hs of positive smooth solutions of (3) connecting h0 to h1 that we parametrize by s ∈ [0, 1].
We write for short

h = hs and h′ =
d

ds
hs

where h′ solves the linearized equation

∂th
′ = div

(

nhn−1h′∇h+ hn∇h′
)

. (5)

We then consider the general differential action

S(h, h′) =

∫

Ω

L(h, h′) dx

that generalizes (4) and is devoted to be nonincreasing in time, for a certain lagrangian L to determine.
To check the differential contraction, we simply compute (droping the dx in the integral)

d

dt
S(h, h′) =

∫

Ω

L′
h∂th+ L′

h′∂th
′

= −

∫

Ω

hn





∇ lnh

∇ ln |h′|





T

Q





∇ lnh

∇ ln |h′|





(6)
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where we have used (3), (5) and integration by parts to get the matrix

Q =





A C

C B



 with



















A = h2L′′
hh + nhh′L′′

hh′

B = h′2L′′
h′h′

C = hh′L′′
hh′ +

n

2
h′2L′′

h′h′ .

The goal is then to choose carefully the function L such that the symmetric matrix Q is nonnegative.
Several choices are possible, which lead to more or less exotic contractions. At least if we think to the
homogeneity of our equation, it seems reasonable to try a homogeneous lagrangian L as follows (which
again generalizes (4))

L(h, h′) = hβ
|h′|p

p
.

This gives

Q = hβ |h′|pQ̄ with Q̄ =













β(β − 1)

p
+ nβ β +

n

2
(p− 1)

β +
n

2
(p− 1) p− 1













and −det Q̄ = p−1

{

β2 + (p− 1)β +
n2p(p− 1)2

4

}

. For |n| ≤ 1, we deduce that this matrix is nonnegative

if

p ∈ [1, 1/n2] and β ∈ [β−, β+] with β± =
(p− 1)

2

(

−1±
√

1− n2p
)

. (7)

This shows the fundamental differential contraction

d

dt
S ≤ 0. (8)

3. Definition of a pseudo-distance
Now, given two positive smooth functions gi(x) for i = 0, 1, we define the set Γg1

g0 of smooth curves
γ = (γs)s∈[0,1] such that γ0 = g0, γ1 = g1. We define the pseudo-distance

d(g1, g0) = inf
γ∈Γ

g1
g0

A(γ) with A(γ) = c

1
∫

0

S(γs, γ
′
s) ds (9)

where c > 0 is a normalization constant. We recall that ()′ = d
ds (), and set α = 1 +

β

p
. Therefore, using

the fact that (γαs )
′ = αγα−1

s γ′s, we get

A(γ) =

∫

Ω

dx





1
∫

0

|(γαs )
′|p ds



 if c = pαp

with α > 0 with our choices of β. We recall that γαs = gαs for s = 0, 1. Then a classical optimization of

the convex functional s 7→
∫ 1

0
ds |(γαs )

′|p shows that the infimum in (9) is reached for the straight line
γαs = gα0 + s(gα1 − gα0 ) and then

d(g1, g0) =

∫

Ω

|gα1 − gα0 |
p dx = (dα,p(g1, g0))

1/p
.
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4. Conclusion
From (8), we deduce with h(t) = (hs(t, ·))s∈[0,1]

d

dt
A(h(t)) = c

1
∫

0

d

dt
(S(hs(t), h

′
s(t))) ds ≤ 0.

Therefore for any 0 ≤ t1 < t2, we have

d(h1(t2), h0(t2)) ≤ A(h(t2)) ≤ A(h(t1)).

If finally, we choose at time t = t1 the data h(t1) such that A(h(t1)) = d(h1(t1), h0(t0)), we deduce that

the map t 7→ d(h1(t), h0(t)) is nonincreasing

which establishes the expected contraction.

Remark 2 (Evaluation/optimization of the dissipation term)
The dissipation term d

dt (d(h1, h0)) can be either computed directly as in [3,5], or estimated using an

integration
∫ 1

0
ds of the right hand side of (6) and doing some (at least partial) optimization. It would be

also interesting to find new associated functional inequalities as in the entropy-entropy dissipation method
(see [2,6]).

2.2. Adaptation to the stationary case

Similarly to the evolution case, at least for smooth positive solutions, we prefer to write equation (2)
as follows

h− div (hn∇h) = f on Ω. (10)

We consider two solutions hi(x) of (10) associated to data fi for i = 0, 1. Then we introduce a curve of
functions fs which coincides with the data fi for s = i = 0, 1, and call hs the corresponding solutions of
(10) with data fs. We compute

S(h, h′)− S(f, f ′) =

∫

Ω

L(h, h′)− L(f, f ′) ≤

∫

Ω

(h− f)L′
h(h, h

′) + (h′ − f ′)L′
h′(h, h′)

where we have used the convexity of L in (h, h′) to get the inequality. Indeed, computing the hessian of
L, it is easy to check that the convexity of L holds for our choices of β in (7). We then conclude using
the equations satisfied by h and h′ and by integration by parts as in the method in the evolution case.
This shows that S(h, h′)− S(f, f ′) ≤ 0, which implies d(h1, h0) ≤ d(f1, f0).

3. Proof of the results

Proof of Theorem 1.1
We first apply the method to smooth positive solutions. In this case the heuristic raisoning is rigorous.
Then we deduce the result for general initial data, by approximation (see the classical results in [10,11,8]).

Proof of Theorem 1.2
Given a smooth positive function f , and using standard elliptic theory, it is easy to construct a smooth
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solution h which satisfies (from the maximum principle): min
Ω
f ≤ h ≤ max

Ω
f . In this framework, the

heuristic method is rigorous and gives the result. We then recover the result for general data, by a
standard approximation argument (see classical results for instance in [1]).
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