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Partial Differential Equations The method of differential contractions

In this Note we present a general and fairly simple method to design families of contractions for nonlinear partial differential equations, either of evolution type, or of stationary type. As a particular example, we apply this method to the porous medium equation, for which we get new contractions. This method opens new directions to explore.

Résumé

La méthode des contractions différentielles. Dans cette Note, nous présentons une méthode simple et générale pour fabriquer des familles de contractions pour des equations aux dérivées partielles non linéaires, d'évolution ou bien stationaires. A titre d'exemple, cette méthode est appliquée à l'équation des milieux poreux, pour laquelle nous obtenons de nouvelles contractions. Cette méthode ouvre de nouvelles directions de recherche à explorer.

Introduction

In this Note, we introduce a new tool that we call the method of differential contractions. This method allows us to design families of contractions for general PDEs of evolution type or of stationary type. To explain clearly the method, we will focus on a very well studied case: the porous medium type equation for m > 0, that we normalize (for convenience) as follows

∂ t h = ∆ h m m on Q = (0, +∞) × Ω ( 1 
)
where Ω is an open set in dimension d ≥ 1. We will also consider the stationary analogue

h -∆ h m m = f on Ω. (2) 
The reader will understand the generality of the method that can be applied to a large variety of equations (with possible coefficients depending on space or time coordinates). These equations include the p-Laplacian, the doubly nonlinear equation, quasilinear equations like for instance the minimal surface equation, some parabolic systems, and even certain particular hyperbolic systems. The application to some of these equations is contained in [START_REF] Chmaycem | Study of the porous medium equation and of a blister model[END_REF] and will be presented in a subsequent work [START_REF] Chmaycem | [END_REF]. We give the typical contraction results that we can get, but the most interesting is the method itself which is presented in Section 2, and naturally provides new directions to explore. Given two functions g i (x) for i = 0, 1, we define the distance

d α,p (g 1 , g 0 ) =   Ω |g α 1 -g α 0 | p dx   1/p for (α, p) ∈ K |n| and n = m -1 ∈ (-1, 1)
, with the following definition of the set for n = 0

K |n| = (α, p) ∈ (0, +∞) × [1, 1/n 2 ], α ∈ [α -(p), α + (p)], with α ± (p) = 1 + (p -1) 2p -1 ± 1 -n 2 p .
It is possible to see that this set is convex and that the minimal value of α corresponds to the point (α, p) = (|n|, 2-|n| |n| ), which is related to the classical pressure term h m-1 when m > 1. The maximal value of α corresponds to the point (α, p) = (1, 1). For n = 0, we set

K 0 = {(α, p) ∈ (0, 1] × [1, +∞), α ≥ 1/p}.
For convenience, we present our rigorous results when the open set Ω is a torus, but this particular choice of Ω is absolutely not fundamental.

Theorem 1.1 (Contraction family for porous medium type equations) Assume that we work on the torus Ω = T d with d ≥ 1 and that m -1 = n ∈ (-1, 1). Let 0 ≤ h 0 i ∈ L ∞ (Ω) be two initial data for i = 0, 1. Let us call h i ∈ C([0, +∞); L 1 (Ω)) ∩ L ∞ (Q) the unique solutions of (3) with initial data h 0 i for i = 0, 1. Then we have the following contraction in time with h i (t) = h i (t, •)

the map t → d α,p (h 1 (t), h 0 (t)) is nonincreasing if (α, p) ∈ K |n| .
Up to our knowledge, in any dimensions, only contractions in L 1 , H -1 and the 2-Wasserstein distance are known for solutions of (1) (see [START_REF] Vázquez | The Porous Medium Equation. New contractivity results, In Elliptic and Parabolic Problems[END_REF], [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]). Our result provides a new contraction family that can be seen as a generalization of the L 1 contraction. A direct approach to this result will be presented in [START_REF] Chmaycem | A new contraction family for porous medium and fast diffusion equations[END_REF] in the case Ω = R d . Note that even for the standard heat equation, our result seems new.

Theorem 1.2 (Contraction family for the stationary equation)

Assume that we work on the torus

Ω = T d with d ≥ 1 and that m -1 = n ∈ (-1, 1). Let 0 ≤ f i ∈ L ∞ (Ω) be two data for i = 0, 1. Let 0 ≤ h i ∈ L ∞ (Ω)
be the unique solutions of (2) with right hand side f = f i for i = 0, 1. Then we have

d α,p (h 1 , h 0 ) ≤ d α,p (f 1 , f 0 ) if (α, p) ∈ K |n| .
The proofs of Theorems 1.1 and 1.2 are given in Section 3.

The method

Here we present heuristically the method which is quite elementar.

The evolution case

At least for smooth positive solutions, we prefer to write equation ( 1) as follows with n = m -1

∂ t h = div (h n ∇h). (3) 

Motivation

For two positive functions h ε and h 0 with the same mass Ω h ε dx = Ω h 0 dx, it is well-known (see for instance [START_REF] Desvillettes | Entropic Methods for the Study of the Long Time Behavior of Kinetic Equations[END_REF][START_REF] Carrillo | Entropy Dissipation Methods for Degenerate Parabolic Problems and Generalized Sobolev Inequalities[END_REF] and the references therein) that the relative entropy S(h

ε |h 0 ) = Ω ψ h ε h 0 h 0 dx with ψ(g) =
g ln g plays a key role in the study of the long time behaviour of diffusion equations. Indeed for

h ε = h 0 + εh ′ 0 + o(ε) where h ′ 0 is a function, we have S(h ε |h 0 ) ∼ ε 2 Ω |h ′ 0 | 2 h 0 dx. (4) 
Remark 1 (Relation with the 2-Wasserstein distance) Note that a simple computation allows to see that the 2-Wasserstein distance W 2 satisfies in dimension

d = 1: W 2 2 (h ε , h 0 ) ∼ ε 2 R |H ′ 0 | 2 h0
dx with H ′ 0 (x) =

x -∞ h ′ 0 (y) dy which shares some similarities with (4).

Cheking the differential contraction

Given now two positive smooth solutions h i = h i (t) = h i (t, •) for i = 0, 1, it is interesting to consider a smooth curve h s of positive smooth solutions of (3) connecting h 0 to h 1 that we parametrize by s ∈ [0, 1]. We write for short

h = h s and h ′ = d ds h s
where h ′ solves the linearized equation

∂ t h ′ = div nh n-1 h ′ ∇h + h n ∇h ′ . (5) 
We then consider the general differential action

S(h, h ′ ) = Ω L(h, h ′ ) dx
that generalizes (4) and is devoted to be nonincreasing in time, for a certain lagrangian L to determine.

To check the differential contraction, we simply compute (droping the dx in the integral)

d dt S(h, h ′ ) = Ω L ′ h ∂ t h + L ′ h ′ ∂ t h ′ = - Ω h n   ∇ ln h ∇ ln |h ′ |   T Q   ∇ ln h ∇ ln |h ′ |   (6) 
where we have used (3), ( 5) and integration by parts to get the matrix

Q =   A C C B   with          A = h 2 L ′′ hh + nhh ′ L ′′ hh ′ B = h ′2 L ′′ h ′ h ′ C = hh ′ L ′′ hh ′ + n 2 h ′2 L ′′ h ′ h ′ .
The goal is then to choose carefully the function L such that the symmetric matrix Q is nonnegative. Several choices are possible, which lead to more or less exotic contractions. At least if we think to the homogeneity of our equation, it seems reasonable to try a homogeneous lagrangian L as follows (which again generalizes (4))

L(h, h ′ ) = h β |h ′ | p p .
This gives

Q = h β |h ′ | p Q with Q =       β(β -1) p + nβ β + n 2 (p -1) β + n 2 (p -1) p -1       and -det Q = p -1 β 2 + (p -1)β + n 2 p(p -1) 2 4
. For |n| ≤ 1, we deduce that this matrix is nonnegative

if p ∈ [1, 1/n 2 ] and β ∈ [β -, β + ] with β ± = (p -1) 2 -1 ± 1 -n 2 p . (7) 
This shows the fundamental differential contraction

d dt S ≤ 0. ( 8 
)

Definition of a pseudo-distance

Now, given two positive smooth functions g i (x) for i = 0, 1, we define the set Γ g1 g0 of smooth curves γ = (γ s ) s∈[0,1] such that γ 0 = g 0 , γ 1 = g 1 . We define the pseudo-distance

d(g 1 , g 0 ) = inf γ∈Γ g 1 g 0 A(γ) with A(γ) = c 1 0 S(γ s , γ ′ s ) ds (9) 
where c > 0 is a normalization constant. We recall that () ′ = d ds (), and set α = 1 + β p . Therefore, using the fact that (γ α s ) ′ = αγ α-1 s γ ′ s , we get

A(γ) = Ω dx   1 0 |(γ α s ) ′ | p ds   if c = pα p
with α > 0 with our choices of β. We recall that γ α s = g α s for s = 0, 1. Then a classical optimization of the convex functional s → 1 0 ds |(γ α s ) ′ | p shows that the infimum in ( 9) is reached for the straight line

γ α s = g α 0 + s(g α 1 -g α 0 ) and then d(g 1 , g 0 ) = Ω |g α 1 -g α 0 | p dx = (d α,p (g 1 , g 0 )) 1/p .

Conclusion

From (8), we deduce with

h(t) = (h s (t, •)) s∈[0,1] d dt A(h(t)) = c 1 0 d dt (S(h s (t), h ′ s (t))) ds ≤ 0.
Therefore for any 0 ≤ t 1 < t 2 , we have

d(h 1 (t 2 ), h 0 (t 2 )) ≤ A(h(t 2 )) ≤ A(h(t 1 )).
If finally, we choose at time t = t 1 the data h(t 1 ) such that A(h(t 1 )) = d(h 1 (t 1 ), h 0 (t 0 )), we deduce that the map t → d(h 1 (t), h 0 (t)) is nonincreasing which establishes the expected contraction.

Remark 2 (Evaluation/optimization of the dissipation term)

The dissipation term d dt (d(h 1 , h 0 )) can be either computed directly as in [START_REF] Chmaycem | A new contraction family for porous medium and fast diffusion equations[END_REF][START_REF] Chmaycem | Study of the porous medium equation and of a blister model[END_REF], or estimated using an integration 1 0 ds of the right hand side of ( 6) and doing some (at least partial) optimization. It would be also interesting to find new associated functional inequalities as in the entropy-entropy dissipation method (see [START_REF] Carrillo | Entropy Dissipation Methods for Degenerate Parabolic Problems and Generalized Sobolev Inequalities[END_REF][START_REF] Desvillettes | Entropic Methods for the Study of the Long Time Behavior of Kinetic Equations[END_REF]).

Adaptation to the stationary case

Similarly to the evolution case, at least for smooth positive solutions, we prefer to write equation ( 2) as follows

h -div (h n ∇h) = f on Ω. ( 10 
)
We consider two solutions h i (x) of (10) associated to data f i for i = 0, 1. Then we introduce a curve of functions f s which coincides with the data f i for s = i = 0, 1, and call h s the corresponding solutions of (10) with data f s . We compute

S(h, h ′ ) -S(f, f ′ ) = Ω L(h, h ′ ) -L(f, f ′ ) ≤ Ω (h -f )L ′ h (h, h ′ ) + (h ′ -f ′ )L ′ h ′ (h, h ′ )
where we have used the convexity of L in (h, h ′ ) to get the inequality. Indeed, computing the hessian of L, it is easy to check that the convexity of L holds for our choices of β in [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. We then conclude using the equations satisfied by h and h ′ and by integration by parts as in the method in the evolution case. This shows that S(h, h ′ ) -S(f, f ′ ) ≤ 0, which implies d(h 1 , h 0 ) ≤ d(f 1 , f 0 ).

Proof of the results

Proof of Theorem 1.1

We first apply the method to smooth positive solutions. In this case the heuristic raisoning is rigorous. Then we deduce the result for general initial data, by approximation (see the classical results in [START_REF] Vázquez | Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type[END_REF][START_REF] Vázquez | The Porous Medium Equation. Mathematical Theory[END_REF][START_REF] Sacks | Continuity of solutions of a singular parabolic equation[END_REF]).

Proof of Theorem 1.2 Given a smooth positive function f , and using standard elliptic theory, it is easy to construct a smooth solution h which satisfies (from the maximum principle): min

Ω f ≤ h ≤ max Ω f
. In this framework, the heuristic method is rigorous and gives the result. We then recover the result for general data, by a standard approximation argument (see classical results for instance in [START_REF] Benilan | A semilinear equation in L 1 (R N )[END_REF]).
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