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Color-based Road Detection and its Evaluation on the KITTI Road
Benchmark

B. Wang1,2 V. Frémont1,2 and S. A. Rodríguez3,4

Abstract—Road detection is one of the key issues of scene un-
derstanding for Advanced Driving Assistance Systems (ADAS).
Recent approaches has addressed this issue through the use
of different kinds of sensors, features and algorithms. KITTI-
ROAD benchmark has provided an open-access dataset and
standard evaluation mean for road area detection. In this paper,
we propose an improved road detection algorithm that provides
a pixel-level confidence map. The proposed approach is inspired
from our former work based on road feature extraction using
illuminant intrinsic image and plane extraction from v-disparity
map segmentation. In the former research, detection results of
road area are represented by binary map. The novelty of this
improved algorithm is to introduce likelihood theory to build
a confidence map of road detection. Such a strategy copes
better with ambiguous environments, compared to a simple
binary map. Evaluations and comparisons of both, binary map
and confidence map, have been done using the KITTI-ROAD
benchmark.

Index Terms—Road detection, Color images, binary map,
confidence map, KITTI-ROAD benchmark

I. INTRODUCTION

Nowadays, Advanced Driving Assistance Systems have
achieved great developments, and several new algorithms
have been proposed to obtain a better understanding of the
environment, in order to improve traffic safety and efficiency.
Road detection is one of the key issues of environment
understanding for intelligent vehicles. Many approaches that
have been developed, involve many kinds of sensors like
lidar, radar, camera; many different features like texture fea-
tures [1], [2], and spatial feature[3]; and different algorithms
like optical flow[4], or neural networks[5]; even the results
presentations are various: perspective mapping[6], occupancy
grid[7], and bird eye view mapping[3], [8]. Most of these
approaches are evaluated on different datasets with different
measurements. Fortunately, [8] has introduced an open-access
dataset and benchmark which is called KITTI-ROAD for road
area detection. They also provide a web interface to evaluate
road detection approaches in the 2D Bird’s Eye View (BEV)
space.

In recent years, many vision-based road detection ap-
proaches have been proposed such as [1], [2], [9]. The
versatility of vision systems provides rich information like
colors, shapes, and depth at low cost with reduced power
consumption. However, vision-based systems are sensible
to illumination conditions such as shadows, back-lighting
and low rising sun conditions. In [6], a stereo vision based
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fast road detection approach has been proposed to handle
this problem. It uses the illuminant invariance theory on
color images to extract road surface feature, and classify
the pixels using confidence interval, finally a stereo vision
based road profile extraction helps to confirm the detection
result. However, in real traffic scenario, especially with
unstructured road, a simple binary classifier presents some
limits. Ambiguities often happen in the real driving scene. To
handle this issue, we proposed a likelihood-based algorithm
which provides a confidence map of the detection result
inspired by [6]. In [6], there are two main parts in the
algorithm: pre-detection from illumination intrinsic image
and plane extraction from the v-disparity map segmentation.
The idea is to build a likelihood for each pixel after these two
main procedures, and to calculate a confidence map by fusing
the two likelihood results. The objective is to show that the
confidence map should be more flexible than a simple binary
map in complex environments.

Both the results of binary map and confidence map are
evaluated on the KITTI-ROAD benchmark [8]. The eval-
uation results support our hypotheses in the sens that the
confidence map is more adaptive to ambiguous scenery, while
binary map outperforms in regular road scenes configuration.
Comparisons are also made with the other algorithms pub-
lished on the KITTI-ROAD website. Our binary map take the
second place in F-measure, and the confidence map algorithm
still needs to be improved.

The paper is organized as follows: Section II gives a
general description of the fast road binary map generation
algorithm; in Section III, a likelihood-based road confidence
map generation algorithm is introduced in details with a dis-
cussion of its application. Section IV shows the experiment
results and their evaluation on the KITTI-ROAD benchmark.
Finally, a conclusion is given in Section V.

II. FAST ROAD DETECTION WITH BINARY MAP

As described in [6], the method pipeline starts with a
first processing for sky and shadows removal applied to the
dataset. An image conversion into a log-chromaticity space
provides an efficient and stable identification (i.e. illuminant
invariant) of road surface intrinsic features. Then, sample
pixels are randomly selected from an assumed “road” area.
Next, a confidence interval is defined using the samples to
classify pixels of the intrinsic image into the road and non-
road surfaces. Finally, stereo-vision based extension grants
access to the 3D road profile estimation and enhances the
detection precision. The whole system is show in Fig. 1
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Figure 1. System of the fast road detection algorithm from color image

A. Illumination intrinsic image generation

In feature-based detection, shadows usually lead to wrong
detections. Therefore, invariance properties to illumination
conditions must be extracted.

Firstly, a geometric mean based log-chromaticity space is
built from the RGB information of the color images [10]. In
order to avoid favoring one particular channel, the R, G, B
factors are divided by their geometric mean.

ci = Ri/Cref where, Cref =
3
√
R ∗G ∗B (1)

where, ci defined as the chromaticity, is then transformed
into log space as ρi = log(ci). The color space ρ is
orthogonal to u = 1/

√
3(1, 1, 1)T .

Therefore, the transformation from the original coordinates
to the geometric mean divided space is given by:

χ ≡ Uρ, χ is 2× 1 (2)

where U = [v1, v2]T , and v1 = (1/
√

2;−1/
√

2; 0), v2 =

(−1/
√

6;−1/
√

6; 2/
√

6).

Thus, the two dimensions of χ form a log-chromaticity
space. In this space, the pixels on the same surfaces under
different illuminations build a straight line. The lines which
represent different surfaces are almost parallel, Fig.2. Their
directions only correspond to the spectral power distribution.
Their displacements are only related to the surface spectral
reflectance function [6]. Hence, an image Iθ with suppressed
shadows, can be obtained by projecting the lines on their
common orthogonal axis which make an angle θ with the
horizontal axis.

Iθ = χ1 cos θ + χ2 sin θ (3)

Entropy minimization[11] is used to find the correct axis θ
(see Fig.2). After the geometric log-space transformation and
projection onto this axis, as a result, the image Iθ is lighting
independent and is also shadow-free.

In this research, the calibrated angle is defined off-line to
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Figure 2. Axis calibration in log-chromaticity space. Left image: example
of chromaticities for 6 surfaces under 9 lights in log-chromacity space; Right
image: Entropy plot along angle axis.

reduce time consumption. The result can be directly used
for various driving scenes [9]. Thus, as a preparation work,
calibration could be carried out, and would not affect the real-
time detection performance. The algorithm is summarized in
[6].

B. Confidence interval-based pre-detection

Practical fast road detection should be adaptive to dynamic
environment. For this reason, it is necessary to reduce the
dependency on the prior knowledge about road’s ground
truth. From this consideration, confidence interval theory is
introduced and helps to determine an interval [λ1, λ2] to
separate the pixels into road or non-road class.

Since Iθ has eliminated the influence of shadows, the his-
togram composed by pixels on road surface is expected to be
uni-modal with low dispersion and skewness. Therefore, the
normalized histogram follows the empirical form of a normal
distribution for a random variable, i.e. Iθ(road) ∼ N (µ, σ2).
In the KITTI-ROAD dataset, there exist several surfaces
similar to road surface, and in order to correctly separate
them, a lower confidence level 1 − α = 0.75 is applied to
calculate the confidence interval [λ1 = µ− 0.6745 σ√

n
, λ2 =

µ+ 0.6745 σ√
n

] of Iθ(road).
On image Iθ, pixels whose grayscale values fall outside

this interval, are considered as background or obstacles.
Therefore the classifier is redefined as:{

IR = 1 Road, if λ1 ≤ I(p) ≤ λ2
IR = 0 non Road, otherwise

(4)

Eq. 4 is a classifier, and provides binary images of road
detection results. Because the thresholds are based on a
confidence level, some pixels can be mis-classified. Holes
filling and ’majority’ morphological operations can cope with
false negative errors. For the false positives, we need fusion
information to refine them. This is how stereo vision works
in the proposed algorithm, see Section II-C.

Notably, when the vehicle stops right behind the front
vehicle, the assumption of bottom road may not stand. For
videos or continuous image sequences, a tracking processing
is recommended to detect this situation. However, for the
dataset composed of discrete frame from different sequence
like KITTI-ROAD, it is still a tough issue need to be
discussed. A possible way to solve this problem is using



disparity region regroup to decide if the bottom area is on
a quasi vertical plane or quasi-horizontal plane which helps
instructing sample selecting region.

C. Road extraction by stereo vision

In this paper, the former method presented in Section II-B
is employed with stereo vision to assist the plane extraction
and conversely the v-disparity map helps to correct the false-
detected pixels.When driving in a complex environment,
especially in urban scenery, artificial constructions are all
along the road, where the materials are possible to show a
similar intrinsic feature with the road surface. In this case,
only confidence interval based classification is not enough
to exclude these artificial structures, while in disparity map,
these buildings represent obvious difference with road struc-
ture. Thus, stereo vision helps decreasing the false positive
detection.

With two images of the same scene captured from slightly
different viewpoints, a disparity map I∆ can be computed.
Iv∆ is called the v-disparity map and is built by accumulating
the pixels of same disparity in I∆ along the v-axis [12]. A
projected plane in the v-disparity image follows the equation:

∆ = aυ + b (5)

Thus, for the road plane profile, the disparity value is linearly
related to the v-axis.

In the difference of classical methods[13], [14], only the
pixels classified as road area in the binary image IR will
be accumulated to the disparity map in our algorithm. The
limitation of Region-of-Interest (ROI) (where, IR = 1) will
greatly reduce the run-time consumption. Reminding that IR
gives an pre-detection of drivable road area, most of the
obstacles (e.g. buildings and pedestrians) can be avoided in
the v-disparity computation. Thus, a regular sloping line as
a representation of the drivable area is achieved as shown
in Fig.4. According to Eq.5 which is extracted by the
Hough Transform, the ground plane of image IG could be
constructed by:

if ∆p ∈ [∆υ ± ευ], IG = 1, else, IG = 0 (6)

Where, ευ = c·v is a dynamic variance, which depends on
v with a constant scale factor c. The variable c is a positive
parameter which indicates that the closer the layout is, the
greater the variance becomes. It is determined by preserving
the pixels in a 0.95 leveled confidence interval. The variance
of disparity on each line is calculated during the accumulation
which is used to calculate a proper factor c. Once the
parameter is fixed, it is adaptable to most of the driving
scenes. Finally, the intersection of IG and IR represent a
double verified road detection result, i.e. Ifinal = IR ∩ IG.

However, the v-disparity maps are not always as ideal
as expected. Walk sides, or the deformation of the road
edge (usually depression) represent a bunch of lines slightly
different from road profile in v-disparity space. Fortunately,
they only take a small portion of the ROI. A dominate
factor preservation step is added to refine the road profile
in v-disparity image. The three upper images in Fig.4 shows

Figure 3. Binary map detection results on the KITTI-ROAD dataset. Each
line presents two images from UM, UMM and UU dataset separately.

comparison of v-disparity images before and after preserv-
ing pixels with high intensity values. As a result, the line
indicating road profile becomes more clear and precise.

Fig.3 shows the final result of the algorithm integrated
with illumination invariant image, confidence interval and v-
disparity map. This result is represented in form of a binary
map, which means there is no need for further training or
threshold determination on this detection result.

III. LIKELIHOOD METHOD WITH CONFIDENCE MAP

Binary map detection result requires a strict precision of
each parameter in the algorithm. However, in some other
cases, even the same road might be composed of different
materials with different surface textures. Thus, we not only
need to be able to separate the surfaces different from road
but also need to be tolerant to different textures on the
same road. This would be a cruel request for binary map
detection. To solve this problem a confidence map is built
to provide a more flexible and still reliable road detection
result. A confidence map might be much more practical in
unstructured roads and high variability in scene layout and
in strong changes of illumination conditions.

For generating a confidence map of the road surface, we
introduced the concept of likelihood in both the pre-detection
processing (Section II-B) and plane extraction processing
(Section II-C) in Fig.1.

A. Likelihood distribution of pre-detection

As in Section II-B, a pre-detection binary image IR is
obtained from the intrinsic image Iθ. As mentioned above,
there exist surfaces with similar intrinsic features to the road
surface, and also the road surface itself might show different
textures caused by materials, extreme illumination conditions
like over-saturation. The former problem will lead to false
positive detection, and the latter one will cause false negative
detection. To deal with these two conflicting situations in a
robust algorithm, a likelihood value is assigned to each pixel
of IR with a 3-by-3 filter matrix composed of 1. For every
pixel, the likelihood is calculated by the sum of its neighbors
in the 3-by-3 operator, and then normalized:



Figure 4. Examples of v-disparity map in different situations (selected from
UU dataset in KITTI-ROAD). Up left : Image of which stereo baseline is
not parallel to the ground plane. Bottom left : Image taken from common
situation. Middle: v-disparity maps generated from pre-dected ROI. Right:
refined v-disparity with high intensity pixels preserved.

LR(v, u) =

v+1∑
i=v−1

u+1∑
j=u−1

IR(i, j)/9 (7)

Since IR is a binary image, only the valid pixels (where,
LR = 1) after pre-detection will be accumulate to the like-
lihood computation. The more valid pixels around, the more
likely they are on the road surface. As to the false positive
pre-detected pixels, they are commonly spread sparsely. After
filtered by the operator, they are distributed only with a small
likelihood value. On the other hand, for the false negative pre-
detected pixels, they can gain some likelihood values thanks
to their correctly detected neighbors. Thus, Eq.7 successfully
transforms a binary result into likelihood distribution map.

B. Likelihood distribution of plane extraction

During the driving scene, the stereo baseline is not always
parallel to the ground. Hence, the ground plane represented
in the picture might be non-horizontal. For example, the left
side is lower/higher than the right side. In this case, the
disparity plane values along the image u-axis are not centered
around a specific value ∆υ , but differ in a broader range, as
shown in Fig.4. The disparity value of plane pixels stands
on the same row v of the image, is more likely following an
uniform distribution, thus, a dominant disparity value with
high intensity does not exist, Fig.5. Also, it is hard to define
a range of disparity values along the road profile in the v-
disparity map.

When there is an obstacle along the road standing on the
lower side of ground plane, the disparity value of the obstacle
might give ambiguity in the v-disparity accumulation. As in
Fig.4, the upper line shows an image taken by non-horizontal
cameras. Right next to the image, the v-disparity map ex-
tracted from pre-detection result is illustrated. A bunch of
lines spread almost uniformly in a broad range. After the
refinement step for preserving dominant disparity values
along the v-axis, two lines appear causing an ambiguous
situation.

Figure 5. Detection results of non-horizontal image. Up left: Disparity
map of the non-horizontal image presented in Fig.4. Up right: Binary map
generate by original algorithm (Section II), which, directly represents the
road detection result. Bottom left: Confidence map generated by improved
algorithm (Section III). Bottom right: Road detection result by applying a
proper threshold on confidence map (CM).

Hence, a simple binary classifier is not enough to handle
this problem. Firstly, the range of disparity values on the
plane [∆υ ± ευ] is widen, so it is possible to have mis-
detected obstacles as road surface, as long as their disparity
value falls into this wide range. Secondly, the disparity
value corresponding to the v-axis ∆υ might even deviate
by a wrong Hough line extraction. However, building a
complex binary classifier is time consuming, and probably
need to verify multiple cues like road’s topological and
morphological characters. For example, the continuity of the
pixels disparity value on the same v-axis might need to be
considered.

Another way is to build a likelihood distribution for plane
extraction, which measures the deviation of the disparity val-
ues to its expectation ∆υ . Since the dominant value extraction
is not reliable, another criterion need to be proposed. The
median factor is a proper candidate for the new criterion ∆υ .
It is because road is a sloping plane, then disparity on it on
the same v-axis should follow a uniform disparity. Notice that
the v-disparity map is built on pre-detected result of Section
II-B, even if there exist bias and noise, the median value will
fall on the ground plane. For reducing the influence of false
positive pre-detection, and speed up the algorithm, only the
biggest connected component in IR is preserved as a new
Region-of-Interest Inew_ROI .

In binary map detection algorithm, a range of disparity
values along v-axis is calculated as [∆υ±ευ], but here: ∆υ =
median(∆(pv)) , ∆(pv) is the disparity value of the pixels
on the vth row of the image and pv ∈ Inew_ROI . Pixels are
detected as road surface in IR, if their disparity value fall out
of this range. Then, they will be distributed with a likelihood
value depending on their disparity difference to ∆υ .

LG(v, u) = (1− | ∆IR(v, u)−∆v | /∆v) (8)

With Eq.8, every positive pixels in IR has a value up to 1;
then we add a unit step function to eliminate those negative
likelihood. Thus, we get a likelihood map of ground plane
LG within the range of [0,1];

LG =
1

2
LG · (1 + sgn(LG)) (9)



C. Confidence map generation

With the two likelihood maps LR and LG, a confidence
map of road detection could be generated based on the
following fusion function:

LC(v, u) = LR(v, u) · LG(v, u)

Thus, every potential road surface pixel has been dis-
tributed with a confidence value. After an evaluation on the
training set of KITTI-ROAD benchmark, a best threshold
for the confidence value will be found. Fig.5 compares the
detection performance of binary map and confidence map on
the non-horizontal image presented in Fig.4. In Fig.5, the
binary map detection result is deviated due to the ambiguity
of the road profile line in v-disparity map. On contrary,
in confidence map, every pixel that is likely to be on the
road is presented with a confidence value. After applying a
proper threshold on the confidence map, the road area is very
well classified. Therefore, confidence map is more reliable in
complex situation.

Furthermore, the introduction of a confidence map not
only provides a good development based on the original
algorithm, but also provides a compatible result with the
other algorithms have been evaluated on the KITTI-ROAD
benchmark.

IV. EVALUATION RESULTS AND DISCUSSIONS

The two algorithms in this paper are evaluated on the
KITTI-ROAD benchmark[8]. It contains three different cat-
egories of road scenes: UU - urban unmarked road, UM -
urban marked two direction road and UMM - urban multiple
marked lanes’ road. The whole dataset has 600 annotated
training and test images captured from broad spectrum of
urban road scenes. Binary map detection (BM) is evaluated
both on training dataset in perspective space and on testing
dataset in Bird Eye View (BEV) space, see Fig.6. Considering
the confidence map (CM) generation function is an ongoing
research which still needs to be improved, here, we only
evaluate it on training dataset as a reference to binary map
and baseline algorithm. Perspective evaluation is carried out
on a local machine. Bird Eye View results are evaluated on
KITTI web server.

Our local processing platform is a standard PC with
Windows 7 Enterprise OS, Intel CPU of 2.66 GHz. The
computation environment is MATLAB R2013b. The run-time
for binary map method is about 2s per frame. A complete
confidence map generation algorithm takes about 4s per
frame. To speed up the algorithm, we add a processing of
maximum connected area preservation, which is firstly used
in the ROI calculation to reduce the calculation area for plane
extraction. Secondly it is used in the final result definition to
refine the result. We also improved the code in details, that
is how the computing time is reduced by a factor two from
[6].

Table I
RESULTS [%] OF PIXEL-BASED ROAD AREA EVALUATION ON TESTING

DATASET.

URBAN - BEV space
Fmax AP Prec. Rec. FPR FNR

SPRAY 86.33 90.88 86.75 85.91 7.55 14.09
BM 82.32 68.95 76.15 89.56 16.15 10.44

CNN 78.92 79.14 76.25 81.79 14.67 18.21
BL 75.61 79.72 68.93 83.73 21.73 16.27

A. Binary map evaluation

In the KITTI-ROAD benchmark, the images are selected
from different sequences, which demands a more reliable
detection result for single images. However, it leads to a
problem for usual axis-calibration. The intrinsic angles are
different from sequences according to changes in the camera
parameters. In the test with UM dataset, axis-calibration
varies from images to images, while for the UMM dataset it
does not change a lot. This is why our algorithm performs
better on UMM dataset in Tab I. In order to provide a reliable
result on KITTI-ROAD benchmark, the ground truth of the
training dataset is used to calculate the axis angle θ, which is
approximately equal to 33°. Detection results are evaluated
by F-measure, average precision, accuracy, and other standard
measures like: precision, recall and false positive/negative
rate.

Methods listed in Tab I are Spatial ray classification
(SPRAY[3]); Convolutional neutral network (CNN[5]) and
Base line (BL), they all have been introduced in [8]. In the
comparison, binary map detection (BM) performs the best in
the measurement of recall and false negative rate. However,
since the intrinsic features with a high confidence level detect
every possible pixels on the road, in some special situations,
binary map will simply lead to false positive detection, for
example, when sidewalk shows similar intrinsic features with
the road surface, it has a strong probability of being detected
as road area. In general, binary map detection methods pro-
vides a relative high value on F-measure among the compared
algorithms in BEV space. According to the F-measure, fast
road detection from color image in binary map won the
second place comparing with the other algorithms mentioned
in [8]. The strength of binary map is its independency from
prior knowledge of ground truth: it doesn’t need PR curve
analysis for a satisfying threshold of confidence. This makes
it a portable algorithm which can be applied directly into
dynamic environment.

B. Confidence map evaluation

Considering that the KITTI-ROAD dataset is composed
of discrete frames from different sequences, (in different
weather condition, with different camera parameters), a
higher confidence level is assigned during the pre-detection
step for likelihood distribution. Thus, more potential road
surface pixels will be taken into consideration.

It is interesting that the average precision of the binary
map generation algorithm is quite low, which can be hardly



Table II
RESULTS [%] OF PIXEL-BASED ROAD AREA EVALUATION ON TRAINING

SET.

UM perspective space
Fmax AP Acc Prec. Rec. FPR FNR

BL 89.27 92.18 96.53 88.93 90.17 2.26 9.83
BM 85.67 72.21 94.89 77.83 95.26 5.18 4.74
CM 81.69 80.46 94.09 81.06 82.33 6.67 17.67

UMM perspective space
Fmax AP Acc Prec. Rec. FPR FNR

BM 88.76 81.29 94.55 87.04 90.55 4.20 9.45
CM 85.28 82.08 92.99 85.09 85.46 4.67 14.54
BL 82.81 89.21 91.23 77.54 88.86 8.02 11.14

UU Perspective space
Fmax AP Acc Prec. Rec. FPR FNR

BL 80.79 86.13 94.70 79.00 82.67 3.42 17.33
BM 80.50 62.53 94.19 73.44 89.07 5.02 10.93
CM 75.88 71.48 93.18 72.53 79.55 4.69 20.45

compared to the other algorithms. Actually, this measure-
ment, average precision, is a description of Precision-Recall
curve with different thresholds to classify the confidence
maps. While the binary map directly provides a definite
Precision and Recall value, this measurement might not be
suitable for it. Under this consideration, we develop the
confidence map based on original algorithm so to evaluate
our approach on this measure. According to the evaluation
result in perspective view (Tab II), the confidence map greatly
improved the average accuracy of the detection compare to
binary map. Even though, the performance of confidence map
general compared to binary image and baseline, it still shows
great potential developing space to provide reliable results
in complex environment, as been proved in Fig. 5.Besides,
in the subset of UMM, confidence map even overpass the
baseline. If the confidence map algorithm is improved further
more, a good performance is promising , and the evaluation
in BEV space will be proceeded later.

V. CONCLUSION

In this paper, we proposed a novel method which combined
likelihood theory with our former work presented in [6]. The
results of the original algorithm using a binary map and
the improved one based on a confidence map are evaluated
on the KITTI-ROAD benchmark. The experimental results
show that the binary map provides a high value on the F-
measure compare to the other algorithms (second place, only
behind the SPRAY algorithm). Another strong point of this
algorithm is it can provide a straightforward information of
free road area without any training. Nevertheless, when drive
in complex environments, the detection performance using
the binary map falls sharply. As an improved approach, the
likelihood-based confidence map performs better in these
situations, such as non flat road surface and over-saturation
images. However, according to the general evaluation result,
there are still improvements need to be done for confidence

Figure 6. Detection results transformed in Bird Eye View (BEV) space.

map estimation. From this consideration, our future works
will focus on the likelihood model construction.

REFERENCES

[1] Hui K., J.-Y. Audibert, and J. Ponce. General road detection from a
single image. Image Processing, IEEE Transactions on, 19(8):2211–
2220, 2010.

[2] S. Graovac and A. Goma. Detection of Road Image Borders Based
on Texture Classification. International Journal of Advanced Robotic
Systems, 9:1, 2012.

[3] T. Kuehnl, F. Kummert, and J. Fritsch. Spatial ray features for real-time
ego-lane extraction. In Proc. IEEE Intelligent Transportation Systems,
2012.

[4] W. Yoshizaki, Y. Mochizuki, N. Ohnishi, and A. Imiya. Free Space
Detection from Catadioptric Omnidirectional Images for Visual Navi-
gation using Optical Flow. In The 8th Workshop OMNIVIS, 2008.

[5] Jose M. Alvarez, Theo Gevers, Yann LeCun, and Antonio M. Lopez.
Road scene segmentation from a single image. In ECCV 2012, volume
7578 of Lecture Notes in Computer Science, pages 376–389. Springer
Berlin Heidelberg, 2012.

[6] Bihao Wang and Vincent Frémont. Fast road detection from color
images. In Intelligent Vehicles Symposium (IV), 2013 IEEE, pages
1209–1214. IEEE, 2013.

[7] Mathias Perrollaz, J-D Yoder, Anne Spalanzani, and Christian Laugier.
Using the disparity space to compute occupancy grids from stereo-
vision. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 2721–2726. IEEE, 2010.

[8] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new per-
formance measure and evaluation benchmark for road detection al-
gorithms. In International Conference on Intelligent Transportation
Systems (ITSC), 2013.

[9] J.M.A. Alvarez and A.M. Lopez. Road detection based on illuminant
invariance. Intelligent Transportation Systems, IEEE Transactions on,
12(1):184–193, 2011.

[10] G.D. Finlayson, M.S. Drew, and L. Cheng. Intrinsic images by entropy
minimization. In European Conference on Computer Vision, 2004.

[11] Cheng Lu G.D.Finlayson, M.S.Drew. Entropy minimization for
shadow removal. International Journal of Computer Vision, 2009.

[12] David Pritchard. Cloth parameters and motion capture. Technical
report, 2003.

[13] Nicolas Soquet, Didier Aubert, and Nicolas Hautiere. Road segmenta-
tion supervised by an extended v-disparity algorithm for autonomous
navigation. In Intelligent Vehicles Symposium, 2007 IEEE, pages 160–
165. IEEE, 2007.

[14] Basam Musleh, Arturo de la Escalera, and José María Armingol. Uv
disparity analysis in urban environments. In Computer Aided Systems
Theory–EUROCAST 2011, pages 426–432. Springer, 2012.


