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On Modeling Ego-Motion Uncertainty for Moving Object

Detection from a Mobile Platform

Dingfu Zhou'?, Vincent Frémont"? , Benjamin Quost? and Bihao Wang'?

Abstract—In this paper, we propose an effective approach
for moving object detection based on modeling the ego-motion
uncertainty and using a graph-cut based motion segmentation.
First, the relative camera pose is estimated by minimizing
the sum of reprojection errors and its covariance matrix is
calculated using a first-order errors propagation method. Next,
a motion likelihood for each pixel is obtained by propagating
the uncertainty of the ego-motion to the Residual Image Motion
Flow (RIMF). Finally, the motion likelihood and the depth
gradient are used in a graph-cut based approach as region
and boundary terms respectively, in order to obtain the moving
objects segmentation. Experimental results on real-world data
show that our approach can detect dynamic objects which move
on the epipolar plane or that are partially occluded in complex
urban traffic scenes.

I. INTRODUCTION AND RELATED WORK

Vision-based driver assistance system (DAS) is a complex
and challenging task in urban traffic scenarios. In particular,
moving object detection from dynamic scene analysis is
essential for obstacle avoidance and path planning, and has
numerous applications in autonomous and semi-autonomous
driving. Indeed, being able to detect dynamic obstacles
(vehicles, cyclists, or pedestrians) and to estimate their
positions and motion tendency can increase the safety in both
autonomous and semi-autonomous driving. Moving objects
information also helps to improve the precision of Vision-
based Simultaneous Localization and Mapping (VSLAM)
and Structure-from-Motion (SfM) approaches which mainly
rely on static environment assumptions [1].

Several vision-based motion detection approaches have
been proposed over the last decade. Using one camera,
approaches like background subtraction [2], adaptive back-
ground model [3] or optical flow measurement [4] can be
used when the camera is static. More details about motion
detection from a static camera can be found in [5]. The
problem becomes much more complex when the camera and
the surrounding objects move simultaneously. Indeed, the
camera motion induces location changes of all the image
pixels. Therefore, geometrical constraints are essential to
distinguish between static and moving parts of the image.
Two-view geometrical constraints (known as epipolar con-
straints) can be used to detect moving pixels. However it
cannot detect objects moving on the epipolar plane (degen-
erate case). Other constraints, such as flow vector bound
constraints [6] and multi-frame epipolar constraints [7], have
been used to detect the objects moving on the epipolar
plane. Using two cameras, a dense or sparse disparity map
can be calculated to reconstruct 3D information of the
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environment [8]. By combining disparity information with
feature tracking or optical flow computation, the 3D scene
flow can be reconstructed and used to detect moving objects
[9], [10].

Following [4], we propose to detect moving using the
Residual Image Motion Flow (RIMF), which quantifies the
difference between the measured optical flow and global im-
age motion flow (pixel changes caused by camera motion).
The global image motion flow between two consecutive
frames can be determined by a function of the current scene
depth and the relative camera pose. Regions with significant
RIMF are detected as potential moving objects. In order to
avoid a large number of false positives or misdetections, the
noise in the RIMF estimation process should be considered.
In [10] and [11], the uncertainties of the real optical flow
and 3D scene flow have been modeled respectively to detect
the moving objects. However, they just roughly modeled
the uncertainty of the ego-motion information obtained from
other sensors (GPS/IMU).

Unlike these methods, our approach is only based on
two consecutive stereo images: no other sensor information
is required. Furthermore we detail how the ego-motion
uncertainty may be taken into account so as to improve
the RIMF computation. Therefore, in this paper we propose
a moving object detection approach based on [12] with
two main contributions. First, a first-order error propagation
framework is used to take into account the ego-motion
imprecision which result from the uncertainty in feature ex-
traction and matching. The uncertainty propagation strategy
is also applied in the RIMF computation to build a motion
likelihood for each possible image pixel (when its disparity
value is available). This information quantifies the likelihood
for a pixel to be moving or not. Then, a segmentation of
the moving objects is performed using graph-cuts based
motion segmentation on the motion likelihood and depth
information, which helps to reduce the noise in the local
optical flow estimation process.

Our paper is organized as follows: first, we present
the overview of our approach in Section II. Section III
introduces the key steps of our moving object detection
algorithm, including ego-motion estimation and uncertainty
computation, motion likelihood calculation and graph-cuts
based motion segmentation. Simulation experiments to test
the uncertainty estimation and real experiments results for
moving object detection are presented in Section IV. Finally,
the paper ends with conclusions and future work.

II. SYSTEM OVERVIEW

Fig.1 outlines the main steps of our moving object de-
tection system based on two consecutive stereo image pairs.
The dense disparity map at frame ¢ — 1 and the optical flow
(dense or sparse) between frame ¢ — 1 and ¢ are estimated
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Figure 1: Moving objects segmentation framework overview.

respectively. At the same time, the feature points tracked
and matched between two consecutive stereo image pairs are
used to estimate the camera relative pose and its uncertainty.
Then, the global motion flow (image changes caused by the
camera ego-motion) is calculated for each image pixel using
the camera motion and the depth information obtained from
the disparity map. The RIMF, which is used to measure
the difference between the measured optical flow and the
global image motion flow, is used to distinguish between
moving and non-moving pixels. In order to handle the noise
involved in the RIMF calculation, the covariance matrix of
RIMF is used to estimate the motion likelihood for each
image pixel. It is computed using a first-order strategy
to propagate the uncertainty from both disparity and ego-
motion estimation procedures to the RIMF estimation. Using
the motion likelihood and disparity values, a graph-cut based
motion segmentation approach is then applied to segment
the image into regions of moving and non-moving pixels.
Finally, the bounding boxes of the moving objects are
obtained by combining region-growing and U-disparity map
information.

III. MOVING OBJECT DETECTION FRAMEWORK

Two successive stereo frames are considered in the mo-
tion detection procedure. We assume that the stereo rig
undergone an unconstrained motion (R, T) between the
two successive frames, where R and T are respectively the
rotational and translational components of the motion. The
left image at time ¢ — 1 is considered as the reference
image. A 3D point P at frames { — 1 and ¢ is noted
as P_1(X;—1,Y;—1,Z;—1) and P(X,Y:, Z;) respectively.
The selected 2D points (2, yk ) (#fy, yf ) (aF . yF)
(', yl') are matched and tracked [13] ( in the left and
right images at time ¢ — 1 and ¢ (a bucketing technique is
used to ensure that features points are well spread in the
whole image regions). Assuming the origin of 3D coordinate
system is coincident with the left camera center, the 3D
world points can be obtained as follow:

b
(Xi-1,Yi1, Zi )T = a<a:f_1 — g,y q —vo, f)T (1)

whered = x| —2F | is the disparity value for the scanline
y = yk ;. The variables f, b and (ug,vo) are the camera
intrinsic parameters known as the focal length, the baseline
and the principal point coordinates.

A. Ego-motion Estimation and Uncertainty Computation

1) Ego-motion Estimation : Given the points matching
in four images for two consecutive frames, the relative
pose of the camera can be estimated by minimizing the
sum of the reprojection errors using non-linear minimization
approaches. First, the feature points from the previous frame
are reconstructed in 3D via triangulation and using the
camera intrinsic parameters. Then these 3D points are re-
projected into current image frames using the camera motion
as below:

B . [ Pri(K [R|T] P ,)
=f(0,x;_,) = Pr(K [R|T] P{_,) @
where X;; = (ﬁtL,iyyAth@fivgt]?i)T and ;-1 =

(xf oyt oty syt )T are the predicted and mea-
sured image points at image ¢ and ¢ — 1 respectively. The
vector ® = (ry, 1y, 7., T:, Ty, T.)" represents the six de-
grees of freedom of the relative pose. Let Pr’ and Pr’ be
the image projections of the 3D world points into the left and
right image (non-homogeneous coordinates). Let P}_; be the
3D point in the previous frame, which is calculated using
Eq. (1). The parameter vector ® can be estimated using the
minimization of the following cost function which is built
using the geometric distance of the predicted and measured
image points in time ¢ as:

F(O,%) =[x — %2, = x — £(©.x1)3, @)

where || . ||% denotes the squared Mahalanobis distance
according to the covariance matrix . A Gaussian-Newton
iterative optimization method is used to solve the optimiza-
tion problem presented in Eq. (3).

2) Error Propagation: For vision systems, robust motion
estimation should not only provide an estimate of the camera
motion, but also an estimate of the uncertainty associ-
ated with this solution. Let the i;; loop matched features
be (xf—l,m yt]il,i)v (xﬁl,i’ yﬁl,i)’ (xfzv yth>v (xgi’ yt}?i)ai =

,-+-+, N in stereo image pairs in ¢ — 1 and ¢ frames. By
stacking these features in vectors, new vectors can be defined
as: x € R8N represents all the features and x, € R*V
, X1 € RN represent the features at time ¢ and ¢ — 1
respectively. To be robust against outliers (mismatched fea-
tures or features on moving objects), a RANSAC strategy
is applied to estimate the relative pose between the two
successive frames. Assuming that all the inliers used for
the final minimization of Eq. (3) are good matched features
with only additive Gaussian noise, the associated probability
density function has the following form:

xon ([t ) ) @

where, 1 and Xy (respectively, p;—1 and ¥;_1) are the mean
and the covariance of the image features at timet (resp.t—1).
Then the parameters accuracy only depends on the precision
of the detected feature locations in the image plane.



In [14] and [15], the covariance matrix of the estimated
parameters which considers the uncertainty of x; and x;_1
respectively, can be obtained with the following model:

99 \-1,99 7y 99,99 _1\r
Se = 5
© (89) (ax) Xax(ae ) )
where, g(x,0) = 2XXO) s the partial derivative of

F(0©,x) w.r.t each component of ©. The matrix Xy, which
has been defined in Eq. (4), is the covariance matrix of the
measured features at timet — 1 and &

In order to get the partial derivatives, g—g and g—i ofg(®, x)
.w.r.t each components of © and x, and since g—g) and g—;’( are
parts of the Hessian of F'(®, x), we have:
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Equation. (6) and (8) are both a sum of two terms, a first
part with only first-order derivatives and a second part which
is the product of second-order derivatives and the residual
partx; —£(©, x;_1). If the final solution of Eq. (3) has a zero
residual or very small residual, one can remove the second-
order derivatives parts from Eq. (6)-(8) to get a first-order

estimate as below: T
of E—lﬁ

Yo =50 "x0e

L[ oET_  of )\ OF o, Of

A= 2 <8® EXC@@) (86) ZXC@X,,
Note that using only the first right-hand term in Eq. (9)
is called as partially method (only the current frame feature
noise has been considered) which has been described in [16].
However, due to the noise of the measured features in
the previous and the current frames, the residuals of the
final solution of Eq. (3) may not be zero. So a second-order
error propagation model which considers residuals will be
more suitable. A second-order error propagation result can

be obtained by substituting Eq. (6,8) into Eq. (5).

)7L+ ATSx, A ©)

where,

B. Residual Image Motion Flow

Given a pixel position x;_1, it is possible to compute
the image position of pixel X; at time ¢ using the following
equation [16]:

Kt
% = KRK 'x,_1 + — (10)

where x;_; and X; are the normalized homogeneous image
pixels at time t — 1 and ¢ respectively. The matrix K en-
capsulates the camera intrinsic parameters, z is the depth of
the image pixel x;_;. Normalizing Eq. (10) and substituting
z= % into Eq. (10), the following equation can be obtained:

roob(xi—1—u0)+7r210(yt—1—v0)+T22 féH‘de
_ mofb(xe—1—uo)+ria fb(ys—1—vo)+riaf b+dftT,

{33 _ roofb(zs—1—uo)+ro1 fb(ye—1—v0)+ro2 f2b+df Tn + U

+ vo

1D
where r;;,4, j = 1,2, 3 are the rotation matrix coefficient in
line-column format. For image pixels from 3D static points,
the global image motion flow caused by the camera motion
only can be expressed as:

Ug \ _ [ Tt — Tt—1
(%) N (yt—yt—1> (12

However, for moving objects, the image motion is caused by
both their motion and the camera displacement. Assuming
that the real optical flow estimated from the image between
time £ and ¢ — 1is (u/,, v, ), it is possible to define the RIMF
as:

roob(xi—1—uo)+r21b(yi—1—vo)+re2 f0+dT,

Pm) = (e =y, 0y = 0 )y (13)

C. Motion Likelihood Estimation

Once the RIMF has been computed using Eq. (13), it
can be used to separate the image pixels into moving or
non-moving parts. Comparing the absolute RIMF difference

|P(m)|to a fixed threshold does not lead to a satisfying result
to differentiate moving pixels from static ones. Points with
different 3D world locations have different image motions.
Also, the estimation uncertainty, e.g. camera motion and
pixel depth, have different influences on the image points.
Ignoring these uncertainties could lead to a large number of
false positives. In our case, the uncertainty in the RIMF
is propagated from the image pixels noise to the final
estimation using a first order Gaussian approximation.

As in Eq. (13), the RIMF is a function of the camera
motion ©, the pixel location (z;—1,y;—1) in the previous
frame, the depth of its corresponding 3D pointd and the mea-
sured optical flow (u;,v; ). The uncertainty of the measured
optical flow will not be considered in this work because it
only affects the detection result locally. However, a linear
approximation of the RIMF covariance can be calculated
as:

Yrivr =JCIT

where J represents the Jacobian matrix with respect to the
camera motion ©, the pixel position (z;—1,y:—1) in the
previous frame and the disparity value d in previous frame,
and C is the covariance matrix of all the input variables:

with Yo the covariance matrix associated to the camera
motion estimated in Sec.Ill-A and X1 = diag (U%, 03, 03 )
The variances o, and o, describe the image noise coming
from features detection. As in [10], the disparity uncertainty
can be considered as an approximate standard Gaussian
Distribution and the variance can be approximated by a

linear function,



oi(x,y) = oo +vUa(z,y) (14)

where 0 and the y are two constants parameters and Uy(z, y)
is the uncertainty on the disparity value at position (z,y).
Here, the matching cost is used as a confidence measure of
the disparity value (further details can be found in [17]).

Assuming a stationary world and Gaussian error propa-
gation, static pixels can be expected to follow a Gaussian
distribution with zero mean and covariance matrix X g F.
The Mahalanobis distance associated to the RIMF can be
calculated as follows:

Since 12 Doy 15 x 2 distributed, the motion likelihood &,,,o¢i0n ()
of the RIMF of each pixel can be computed according to its
Ep,., Value.

D. Graph-based Segmentation

Graph-cut (GC) is an energy minimization framework
widely used in image segmentation. Further details may
be found in [18] [19]. Usually independent moving objects
are layered in the depth direction in real traffic scenes
and may thus easily be distinguished from the neighboring
background. Here, GC is applied to depth images in order
to refine the results obtained from likelihood motion estima-
tion. In particular, we detail how to build our cost function
for segmentation, which is composed of two terms related
to local and contextual segmentation:

E(L) = E,(L) + AEy(L)

where L = {l1,l2,--- ,l,}is a binary vector,; € {0, 1}is the
label of the pixel (1 if moving, and O if static). Here, ;. and
E} are called the regional and boundary terms, respectively.
The former term E,.(L), ensures that pixels with a high
motion likelihood are to be detected as moving; the latter,
that adjacent pixels with similar depths should share the
same label. The parameter A is used as a trade-off between
both terms.

1) Region Term: The motion likelihood of each pixel can
be used directly to build the region term E, of the energy
function.

E = —Z{L fmotwn ) + (1 - L(J?))gstatic(x)}

where () represents all the image field and £g4q44c is a fixed
prior likelihood to describe a point to be static. We set
Estatic = 0.51n our experiments.

2) Boundary Term : Usually, the depth maps can be used
for object segmentation [20] because the depth of objects is
significantly different from the back%round Therefore, we
propose to use the depth de(z) = (D is the disparity
value) to measure the similarity between two pixels x; and
x; as follows:

B(wi,x;) = exp(—v2(|de(x;) — de(x;)])

Then, the boundary term can be expressed as below:

=Y Y Blaww)|L(E) - La)

Q 2€Ny(z)

where Ny(x) is the 4-neighborhood of a pixel 2. In order
to improve the segmentation efficiency, down-sampling is
used in the motion likelihood estimation and moving objects
segmentation steps, retaining one pixel out of four in both
dimensions of the image.

E. Bounding Box Generation and Verification

After the segmentation step detailed above, bounding
boxes should be generated for every moving object before
performing tracking or recognition. Note that errors may
come from partial detection (e.g., legs or arms of pedestri-
ans) or redundancies (such as shadows). Object verification
and region growing may be used to remove redundancies
and to integrate parts detection using the dense disparity
map. The U- and V- disparity maps [21] are two variants of
the disparity map that are widely used for road and obstacle
detection. In the U-disparity map, an upright object will form
a horizontal line because of the same disparity value. This
information may be used to obtain the width of the bounding
box. Then, region growing can be applied to get the height
of the bounding box from the disparity map. According to
[22], the real world height of the objects could be estimated
as below:

(y; — yo)zcosb
f

Here, h; and h, are the height of objects and camera respec-
tively in real world coordinate; 0 is the camera tilt angle and
f is the camera focal length; z is the depth of the object
to the camera; yy and y; are the horizon position and top of
the objects in image coordinate (the origin of coordinates
is assumed at left bottom). Assuming that moving objects
are not higher than 2.5 meters, some obvious false positives
may be filtered. For this purpose, the horizontal position is
first computed using the V-disparity map. Then, the actual
height of the object h; is calculated using Eq. (16). Finally
we retain only the objects which height is between 0.5m and
2.5m.

hi =h.+ (16)

IV. EXPERIMENTS
A. Motion Uncertainty Estimation

1) Monte Carlo Experiments : In our simulation experi-
ments, both intrinsic and extrinsic parameters of the stereo
rig are assumed to be known. The relative pose of the stereo
cameras between two successive frames is fixed before
generating the image features. We generate 3D points from
a uniform distribution. Then they are projected into the four
images using the appropriate projection matrices. We use
bucketing techniques in order to ensure that features points
are well spread in all the image regions.

A Monte-Carlo-like experiment is used to obtain an
estimate of the covariance matrix as ground truth. At each
time, the measured features are generated using Eq. (4) are
used as inputs in Eq. (3) to obtain the optimal parameters in
©® . Covariance matrices of the Monte-Carlo method can
be calculated from N independently estimated ©. We set
N = 500in our experiments.

Simulation experiments have been conducted to compare
the performance of the different approaches. Fig. 2 clearly
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Figure 2: Motion Uncertainty estimates. Covariances between
(a)tyandr; and (b) ¢, and t,, estimated using Monte-Carlo (green),
first- and second-order techniques (black and red) using Eq. (5)
respectively, and partially method (blue) using in [16].

shows that the first and second-order methods proposed in
Sec.IlI-A perform better than the classical partially method
technique, the latter being slightly superior to the former;
both perform almost as well as the Monte-Carlo approxi-
mation. For the sake of computational efficiency, we used
first-order method in all our experiments.

B. Moving Object Detection

(b) Segmentation result using a fixed threshold

(d) Bounding boxes generation and verification

Figure 3: Moving Object Detection Flow . (a) motion likelihood (red:
moving, green: static). (b) Segmentation using a fixed threshold &, 0tion =
0.75 (c) Graph-based segmentation using depth information, We choose
A = 1and &stqtic = 0.5 for all our experiments. (d) Final result after
bounding box generation and verification.

In order to validate our moving object detection approach,
we used the video sequences from the KITTI dataset [23]

with a resolution of 1240x370 pixels and 10 frames per
second. The video sequences are acquired from a SVS
installed on the roof of a vehicle. Details about the setup can
be found in [23]. Five video sequences acquired in different
road situations were used to test our moving object detection
technique. In the inner city sequence, the host vehicle was
driven at a low speed (15 km/h) because of the complex
road conditions. In the suburban road, the speed went up
to 50 km/h. First, the stereo disparity map [24] and optical
flow (dense [25] or sparse [13] ) are computed before the
moving object detection step. At the same time, the relative
pose of the camera between two consecutive frames and
its covariance are estimated as mentioned in III-A, and we
assumed that the covariance of the features in Eq. (4) is 0.5
pixel. To compute the variance of disparity in Eq .(14), we
set 0gp = 0.25 and v = 0.075 empirically.

Figure 4: Detection results on a campus sequence.

Fig.3 shows the key steps of our moving object detec-
tion approach. Fig.3(a) is the motion likelihood image, the
stationary and moving parts are respectively displayed in
green and red. Fig.3(b) and 3(c) show two detections results
based on a fixed threshold and graph-based method. From
the results, we can see that our graph-cut-based approach
performs better to detect moving objects than when using
a fixed threshold. Note that the verification in the bound-
ing box generation step allowed to avoid a false positive
detection. Fig.4 shows the detection results in a campus
sequence. During this sequence, the camera turned from
left to right at a high speed. Our algorithm proved to be
efficient in this context too, allowing to detect the cyclists
behind the trees to the left. We also tested our algorithm on a
suburban road; the detection results are displayed in Fig.5.
In this sequence, both the camera and the object vehicle
move at urban speed (about 50km/h). In this sequence, we
used sparse instead of dense optical flow because of the high
changes in the images between two successive frames. The
opposite driving vehicles were detected at a range of 40m,
which remains sufficient for an appropriate reaction of the
driver. The white car moving in front of the camera was also
properly detected even if it moves in the same direction that



Figure 5: Detection results on a suburban road.

True moving

False moving False static True static (True

(True positive) .
(False positive)

(False negative) negative)

y 221 [ 55 \ 34 \ n/a

Table I: Performance of our moving object detection and
segmentation approach

the ego vehicle. Fig.6 displays the results obtained on three
inner city sequences. In crowded streets, the host vehicle
moved slowly, which makes detecting moving objects easier,
even when they move on the epipolar plane. Note that the
algorithm also detected partially occluded objects because of
the use of a dense approach. Despite the effectiveness of our
algorithm, some false negative and false positive detections
happen in the real image sequences. In Fig. 4, a cyclist
(red elliptical box) has not been detected because the related
3D information cannot be reconstructed in this frame (the
cyclist can not be seen in right camera). False positives also
appeared, such as in Fig. 6 (a) with red bounding box, due
to reflections on windows in the scene.

Table I describes our detection results in one inner city
sequence with 153 frames (Fig. 6 (b)). The ground truth of
the object’s locations have been included in the dataset for
this sequence. Here, only the moving objects whose distance
is less than 30m are considered. The detection result is only
based on two adjacent frames. True moving represents the
number of detected moving object bounding boxes in the
whole sequence. False moving means static objects that have
been detected as moving and false static are the moving
objects that are not detected. The true static objects are
not taken into account because our algorithm focuses on
moving objects only. In this sequence, our algorithm obtains
a precision of 79.5% along with a recall of 86.7%.

All the experiments have been realized on a standard lap-
top (Intel Core i7) with Matlab R2013a processing environ-
ment. When the dense optical flow is used, the total average
computational time is about 30 seconds for each frame. The

optical flow calculation step takes about 15 seconds. Around
4.5 seconds is spent on the motion likelihood computation, 5
seconds on the graph-cut based segmentation and 5 seconds
on the bounding boxes generation. Computing ego-motion
and estimating the uncertainty only takes about 0.2 seconds.
Although our Matlab implementation is not real-time, it
compares favorably with respect to [26] (7 minutes per
frame) and further accelerations could be achieved by C/C++
implementation with parallel/GPU computing.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a novel approach has been proposed to
detect moving objects from two consecutive stereo frames
by modeling the ego-motion uncertainty and using a graph-
cut based motion segmentation. The ego-motion uncertainty
estimated through a first-order error propagation model is
used to obtain the motion likelihood for each image pixel.
Pixels with a high motion likelihood and a similar depth are
detected as a moving object based on a graph-cut motion
segmentation approach. Additionally, a fast recognition of
moving objects becomes possible based on our segmentation
results. Detection results in several different real video
sequences show that our proposed algorithm is highly robust
with respect to global (camera motion) and local (optical
flow) noise. The ego-motion error has been considered
using its covariance matrix and uncertainties in optical flow
can be eliminated by graph-cut segmentation procedure.
Furthermore, our approach works with all image pixels and
arbitrarily moving objects (including partially occluded ) can
be detected.

Future work will be firstly to consider a robust multiple
objects tracking, using for example a PHD Filter, to obtain a
stable detection results by reducing false positive detections.
Further, fusing detection results coming from other sensors
(lidar or radar) will also be tested to improved the detection
results. Furthermore, categories information like pedestrian,
car or others about the moving objects can be used on each
bounding box to focus on moving pedestrians only.
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