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Functional Poisson approximation in

Kantorovich-Rubinstein distance with applications to

U-statistics and stochastic geometry

Laurent Decreusefond∗, Matthias Schulte†and Christoph Thäle‡

Abstract

A Poisson or a binomial process on an abstract state space and a symmetric function f acting
on k-tuples of its points are considered. They induce a point process on the target space of f .
The main result is a functional limit theorem which provides an upper bound for an optimal
transportation distance between the image process and a Poisson process on the target space. The
technical background are a version of Stein’s method for Poisson process approximation, a Glauber
dynamics representation for the Poisson process and the Malliavin formalism. As applications of
the main result, error bounds for approximations of U-statistics by Poisson, compound Poisson and
stable random variables are derived and examples from stochastic geometry are investigated.

Keywords. Binomial process, configuration space, functional limit theorem, Glauber dynamics,
Kantorovich-Rubinstein distance, Malliavin formalism, Poisson process, Stein’s method, stochastic
geometry, U-statistics.
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1 Introduction

The arguably most prominent functional limit theorem is Donsker’s invariance principle. It asserts
that the distribution of a linear interpolation between the points of a suitably re-scaled random walk
converges to the Wiener measure on the space of continuous functions on R+, the non-negative real
half-line (see e.g. [24, Corollary 16.7]). Besides the Wiener process, there is another fundamental
stochastic process, which plays an important rôle in many branches of probability theory and its
applications, namely the Poisson process. However, functional limit theorems involving the Poisson
process have found much less attention in the literature. The aim of this paper is to provide a
quantitative version of a functional limit theorem for Poisson processes and to derive from it error
bounds for the probabilistic approximation of U-statistics by a Poisson, a compound Poisson or a
stable random variable. We demonstrate the versatility of our results by applying these bounds to
functionals of random geometric graphs, distance-power statistics, non-intersecting flat processes and
random polytopes.

Let us informally describe the set-up of this paper, precise definitions and statements follow in
Section 3. Let (X,X ) and (Y,Y) be two measurable spaces (satisfying some mild regularity assump-
tions, see below), let K1 be a probability measure on X and fix an integer k ≥ 1. Moreover, for each
n ∈ N let fn : dom fn → Y be a symmetric mapping whose domain dom fn is a symmetric subset of
Xk. Next, consider a collection βn = {X1, . . . , Xn} of n ≥ k i.i.d. random elements X1, . . . , Xn of X
with distribution K1. We apply for each n ≥ k, fn to every k-tuple of distinct elements of βn. This
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induces a point process ξn on Y of the form

ξn =
1

k!

∑
(x1,...,xk)∈βkn,6=∩dom fn

δfn(x1,...,xk),

where βkn, 6= = {(x1, . . . , xk) ∈ βkn : xj 6= xj , i 6= j, i, j = 1, . . . , k} and δy stands for the unit mass Dirac
measure concentrated at y ∈ Y.

The motivation for studying the point processes ξn as defined above comes from the theory of
U-statistics and from a class of extreme value problems arising in stochastic geometry. At first, if
dom fn = Xk and Y = R, the points of ξn can be regarded as the summands of the U-statistic

Sn =
1

k!

∑
(x1,...,xk)∈βkn,6=

fn(x1, . . . , xk) .

These objects play a prominent rôle in large parts of probability theory and mathematical statistics,
and an analysis of the point process of summands is helpful for the understanding of their (asymptotic)
properties. On the other hand, in several problems arising in stochastic geometry one is interested in
extreme values of the type

min
(x1,...,xk)∈βkn,6=

fn(x1, . . . , xk)

in case that dom fn = Xk and Y = [0,∞). Clearly, this minimum is the distance from the origin to
the first point of the point process ξn. For these reasons, a study of the point proceses ξn unifies both
mentioned problems.

The intensity measure Ln of ξn is given by

Ln(A) = Eξn(A) =
(n)k
k!

∫
dom fn

1(fn(x1, . . . , xk) ∈ A)Kk
1(d(x1, . . . , xk)) , A ∈ Y ,

where (n)k is the descending factorial. Our main result, Theorem 3.1 below, provides an upper bound
for the Kantorovich-Rubinstein distance dKR(ξn, ζ) between ξn and a Poisson process ζ on Y with
finite intensity measure M. Here, the Kantorovich-Rubinstein distance is a variant of an optimal
transportation distance, which measures the closeness between two point processes or, more precisely,
their distributions. In particular, we show that ξn converges in Kantorovich-Rubinstein distance and,
thus, in distribution to ζ if

dTV(Ln,M)→ 0 and Eξn(Y)2 →M(Y)2 + M(Y) , as n→∞ ,

where dTV( · , · ) denotes the total variation distance of measures on Y. More precisely, the upper bound
for the Kantorovich-Rubinstein distance only depends on dTV(Ln,M) and the first two moments of
ξn(Y). This is a functional version of the famous results by Arratia, Chen, Goldstein and Gordon
[1, 14] that “two moments suffice for Poisson approximation”.

Besides the binomial process βn of n independent and identically distributed points, we also allow
the input process to be a Poisson process on X with a σ-finite intensity measure. In some instances,
an underlying Poisson process is more natural and sometimes even unavoidable, especially if the
underlying point process on X is supposed to have infinitely many points. To exploit this flexibility,
we consider both set-ups in parallel.

Poisson process approximation has been studied by several authors by means of Stein’s method,
but to the best of our knowledge this is the first paper, where the Kantorovich-Rubinstein distance is
investigated. The works of Barbour [2], Barbour and Brown [4] and the last chapter of the monograph
[8] of Barbour, Holst and Janson concern Poisson process approximation in the total variation distance.
But since the total variation distance is not suitable for all problems and since the so-called

”
Stein

magic factors“ do not get small if Ln(Y) is large (in contrast to classical Poisson approximation),
one often uses weaker notions of distance. Starting with the work of Barbour and Brown [4] and

2



Barbour, Holst and Janson [8], this has been done by Brown, Chen, Schuhmacher, Weinberg and
Xia [11, 12, 13, 15, 39, 40, 42]. Our work goes in the opposite direction since the Kantorovich-
Rubinstein distance between point processes is stronger than the total variation distance in the sense
that convergence in Kantorovich-Rubinstein distance implies convergence in total variation distance,
but not vice versa. Roughly speaking and in a transferred sense, the Kantorovich-Rubinstein distance
is related to the total variation distance between point processes as the Wasserstein distance is related
to the total variation distance for integer-valued random variables. Since its test functions are allowed
to take values different from zero and one, the Kantorovich-Rubinstein distance is more sensitive to
the behaviour and the geometry of the compared point processes than the total variation distance. Let
us further remark that in the recent paper [41], Schuhmacher and Stucki consider the total variation
distance between two Gibbs processes. This includes Poisson process approximation as a special case.
However, the approximated point processes of the present paper do in general no satisfy the technical
conditions assumed in [41] since they are not necessarily hereditary.

Besides the notion of distance and its connection to the theory of optimal transportation, the
other main ingredient of our approach is a functional version of Stein’s method for Poisson process
approximation. It relies on a Glauber dynamics representation for Poisson processes and the Malliavin
formalism. More precisely, we use an integration-by-parts argument on the target space and then a
commutation relation between the discrete gradient on that space and the semi-group associated with
the Glauber dynamics. This way we avoid the explicit computation and investigation of a solution
of the Stein equation. We would like to highlight that our approach is generic and depends only on
the underlying random structure (here, a binomial or a Poisson process) and not on a very specific
model so that extensions to other probabilistic frameworks (such as Gaussian random measures or
Rademacher sequences) should also be possible. However, they are beyond the scope of this paper
and will be treated elsewhere.

To demonstrate the versatility of our new functional limit theorem, we consider probabilistic
approximations of U-statistics over binomial or Poisson input processes. In a first regime, we consider
the Poisson approximation of U-statistics and provide an error bound for the Wasserstein distance. Our
result improves and extends earlier works of Barbour and Eagleson [7], and Peccati [31]. The second
regime concerns compound Poisson approximation of U-statistics in total variation distance. Here, we
do not impose any conditions on the nature of the compound Poisson distribution, which is allowed to
be discrete or continuous. In contrast, previous results for the compound Poisson approximation via
Stein’s method only deal with the discrete case, see, for example, the work of Barbour, Chen and Loh
[5], the survey [6] of Barbour and Chryssaphinou and especially the paper [21] of Eichelsbacher and
Roos, who consider U-statistics over a binomial input process. In this light, we generalize the results
of [21] to a larger class of limiting distributions and also to the case of an underlying Poisson process.
In a third regime, we use our functional limit theorem to investigate probabilistic approximations
of U-statistics by α-stable random variables with 0 < α < 1 and to derive explicit error bounds
for the Kolmogorov distance. In the previous work [17], Dabrowski, Dehling, Mikosch and Sharipov
also obtained α-stable limits for U-statistics from point process convergence results. However, their
technique does not allow any conclusion about a rate of convergence.

Finally, we apply our general result to problems arising in stochastic geometry. Random geometric
graphs are one of the fundamental models of spatial stochastics, see [34], for example. We derive limit
theorems for several U-statistics of random geometric graphs, where the limiting distributions are
Poisson or compound Poisson, and show a new point process limit theorem for the midpoints of short
edges. As further examples, we consider distance-power statistics with α-stable limit distributions,
midpoints between non-intersecting Poisson m-flats which are close together and the diameter of
random polytopes with vertices on the sphere.

In a natural way our paper continues the line of research on point process convergence and extreme
values initiated by the second and the third author in [43, 44], where the proofs are based on the main
result of [31] and the underlying point process has to be Poisson. In contrast to these previous works
our technique also allows to deal with an underlying binomial process and delivers in both cases bounds
for the Kantorovich-Rubinstein distance. Furthermore, the bounds derived here improve the rates of
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convergence of some of the scalar limit theorems from [43, 44]. Our findings also complement the
works [19] and [20] of the first author with Joulin and Savy concerning the Kantorovich-Rubinstein
distance on configuration spaces and related notions.

This paper is organised as follows. Before we present our main result for Poisson process conver-
gence in Section 3, we recall in Section 2 some necessary notation and results about point processes
and also summarize some facts from convex geometry which are important for our examples from
stochastic geometry. The proof of our main result in Section 6 is prepared by a brief discussion of
the underlying Stein principle in Section 4 and the Glauber dynamics, a key step in our argument,
in Section 5. Section 7 is devoted to applications of our functional limit theorem to probabilistic
approximations of U-statistics and to problems from stochastic geometry.

2 Preliminaries

In the present section we introduce some basic notions and notation, which are used in the text.
Throughout (Ω,F ,P) will be an abstract probability space, which is rich enough to carry all the
random objects we deal with. Expectation with respect to P is denoted by E.

2.1 Configuration spaces. Let (Y,Y) be a lcscH space, that is, Y is a topological space with
countable base such that every point in Y has a compact neighbourhood and such that any two
points of Y can be separated by disjoint neighbourhoods. Such a space is separable and completely
metrizable. Here, Y denotes the Borel σ-field generated by the topology of Y. By NY we denote the
space of σ-finite counting measures (i.e., point configurations) on Y, whereas ÑY and N̂Y stand for the
sets of all locally finite (i.e., bounded on all relatively compact sets) and finite counting measures on
Y, respectively. By a slight abuse of notation we will write y ∈ ω if y ∈ Y is charged by the measure ω
and also use the set-notation ω1 ⊂ ω2 to indicate that ω1 is a sub-configuration of ω2 (with a similar
meaning we also understand ω2 \ ω1). Let NY be the σ-field on NY generated by the mappings

ψA : NY → N0 ∪ {∞} , ω 7→ ω(A) , A ∈ Y ,

where N0 := N ∪ {0} is the set of natural numbers including zero. We equip ÑY and N̂Y with the
corresponding trace σ-fields of NY. The σ-field of ÑY is then the Borel σ-field for the vague topology
on ÑY, which is generated by the mappings

eg : ÑY → [0,∞), ω 7→
∫
Y
g dω ,

where g ≥ 0 is a continuous function on Y with compact support. The space ÑY then becomes a
Polish space, see Theorem A2.3 in [24]. A point process (or random counting measure) µ is a random
element in NY. By a locally finite point process and a finite point process we mean random elements
in ÑY and N̂Y, respectively. It follows from [38, Lemma 3.1.3] that a point process µ can almost surely
be represented as

µ =

µ(Y)∑
i=1

δxi with xi ∈ Y, i ∈ N, and µ(Y) ∈ N0 ∪ {+∞} ,

where δy stands for the unit mass Dirac measure concentrated at y ∈ Y. Thus, we may interpret µ
also as a random collection of points, taking into account potential multiplicities.

2.2 Poisson processes. Let M be a σ-finite measure on Y and let Mk stand for its k-fold product
measure. By a Poisson process on Y with intensity measure M, we understand a point process ζ
with the properties that i) for any B ∈ Y the random variable ζ(B) is Poisson distributed with mean
M(B) and that ii) ζ is independently scattered, i.e., for any n ∈ N and disjoint B1, . . . , Bn ∈ Y
the random variables ζ(B1), . . . , ζ(Bn) are independent. We notice that if M is a finite measure,
ζ charges almost surely only a finite number of points in Y, whose total number follows a Poisson
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distribution with mean M(Y). We will write Pζ for the distribution of ζ on NY. In this paper we
will speak about a homogeneous Poisson process on a set A ∈ B(Rd), where B(Rd) is the Borel σ-field
on Rd, if the intensity measure is a multiple of the restriction of the Lebesgue measure to A. Also,
if d = 1, a homogeneous Poisson process ζ on [0,∞) can be thought of as a piecewise deterministic
(pure jump) stochastic process in continuous time, starting at zero and having jumps of size one and
i.i.d. exponentially distributed waiting times between the jumps. The points of discontinuity of this
random process are the jump times of ζ.

One of our main tools to deal with Poisson functionals (by these we mean real-valued random
variables depending only on a Poisson process) is the multivariate Mecke formula [38, Corollary 3.2.3].
It says that for any integer k ≥ 1 and any measurable and non-negative f : Yk ×NY → R,

E
∑

(y1,...,yk)∈ζk6=

f(y1, . . . , yk, ζ) =

∫
Yk

Ef(y1, . . . , yk, ζ + δy1 + . . .+ δyk)Mk
(
d(y1, . . . , yk)

)
,(2.1)

where ζk6= is the collection of all k-tuples of distinct points charged by ζ. If the point process ζ is

simple (i.e., if ζ({y}) ∈ {0, 1} almost surely for any y ∈ Y), ζk6= can be written as

ζk6= = {(y1, . . . , yk) ∈ Yk : yi 6= yj ∈ ζ for i 6= j, i, j = 1, . . . , k} ,

while in the non-simple case distinct points can have the same location. We remark that (2.1) with
k = 1 is even a characterizing property of the Poisson process ζ, cf. Theorem 3.2.5 of [38].

2.3 Binomial processes. Let M1 be a probability measure on Y. A binomial process with intensity
measure M := nM1, n ∈ N, is a collection of n random points, distributed independently according
to the measure M1. This process also arises by conditioning a Poisson process with intensity measure
M on having exactly n points. In this paper we shall denote the random counting measure induced by
such a binomial process by βn. We also write βkn,6= to indicate the collection of all k-tuples of distinct
points charged by βn. Then, the counterpart to the multivariate Mecke formula (2.1) for a binomial
process reads as follows:

E
∑

(y1,...,yk)∈βkn,6=

f(y1, . . . , yk, βn)

= (n)k

∫
Yk

Ef(y1, . . . , yk, βn−k + δy1 + . . .+ δyk)Mk
1

(
d(y1, . . . , yk)

)
,

(2.2)

where (n)k := n(n − 1) · · · (n − k + 1) is the descending factorial and f is a real-valued non-negative
measurable function on Yk × NY. This can easily be seen directly and is also a special case of the
Georgii-Nguyen-Zessin formula, for which we refer to [18, Proposition 15.5.II].

2.4 Probability distances. In order to compare two real-valued random variables Y1 and Y2 (or
more precisely their distributions) and to measure their closeness, we use several probability distances
in this paper. The Kolmogorov distance of Y1 and Y2 is given by

dK(Y1, Y2) := sup
z∈R
|P(Y1 ≤ z)−P(Y2 ≤ z)| ,

while the total variation distance is

dTV(Y1, Y2) := sup
A∈B(R)

|P(Y1 ∈ A)−P(Y2 ∈ A)| ,

where, recall, B(R) stands for the Borel σ-field on R. If Y1 and Y2 are integer-valued random variables,
we can re-write their total variation distance as

dTV(Y1, Y2) =
1

2

∑
k∈Z
|P(Y1 = k)−P(Y2 = k)| .
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Let us denote by Lip(1) the set of all functions h : R → R whose Lipschitz constant is at most one
and define the Wasserstein distance of two real-valued random variables Y1 and Y2 by

dW(Y1, Y2) := sup
h∈Lip(1)

|Eh(Y1)−Eh(Y2)| .

All these probability distances have the property that they imply convergence in distribution, meaning
that for a sequence (Yn)n∈N of random variables convergence in distribution to another random variable
Y is implied by

(2.3) dI(Yn, Y )→ 0 as n→∞ , for some I ∈ {K,TV,W} .

Moreover, for integer-valued random variables Y1 and Y2 let us mention the general inequality

(2.4) dK(Y1, Y2) ≤ dTV(Y1, Y2) ≤ dW(Y1, Y2) ,

which directly follows from the definitions of the involved probability distances and the fact that Y1

and Y2 are concentrated on the integers. Note that (2.4) does not remain valid for general real-valued
random variables.

2.5 Kantorovich-Rubinstein distance. We define the total variation distance between two measures
ν1 and ν2 on Y by

dTV(ν1, ν2) := sup
A∈Y

ν1(A),ν2(A)<∞

|ν1(A)− ν2(A)| ,

a notion which should not be confused with the total variation distance between random variables
introduced above. Note that dTV(ν1, ν2) can in principle take any value in [0,∞].

We say that a map h : ÑY → R is 1-Lipschitz if

|h(ω1)− h(ω2)| ≤ dTV(ω1, ω2) for all ω1, ω2 ∈ ÑY ,

and denote by L1 the set of all these maps which are measurable.
The Kantorovich-Rubinstein distance between two probability measures Q1 and Q2 on NY is

defined as the optimal transportation cost

(2.5) dKR(Q1,Q2) := inf
C∈Σ(Q1,Q2)

∫
NY×NY

dTV(ω1, ω2)C(d(ω1, ω2))

for the cost function dTV( · , · ), where Σ(Q1,Q2) denotes the set of probability measures on NY×NY
with first marginal Q1 and second marginal Q2 (i.e., couplings of Q1 and Q2). If Q1 and Q2 are
concentrated on ÑY there is at least one coupling C ∈ Σ(Q1,Q2) for which the infimum in (2.5) is
attained according to [46, Theorem 4.1], and the Kantorovich duality theorem [46, Theorem 5.10] says
that this minimum equals

(2.6) dKR(Q1,Q2) = sup
∣∣∣ ∫

ÑY

h(ω)Q1(dω)−
∫

ÑY

h(ω)Q2(dω)
∣∣∣ ,

where the supremum is over all h ∈ L1 that are integrable with respect to Q1 and Q2.
By abuse of notation we will also write dKR(ζn, ζ) instead of dKR(Qn,Q) if the point process ζn

on Y has distribution Qn for any n ≥ 1 and the point process ζ on Y has distribution Q. Note that the
integrability condition in (2.6) is automatically fulfilled for all h ∈ L1 if Eζn(Y) <∞ and Eζ(Y) <∞.
The Kantorovich-Rubinstein distance is also called Wasserstein distance, Monge-Kantorovich distance
or Rubinstein distance. For a detailed discussion of the terminology we refer to the bibliographic notes
of Chapter 6 in [46].

The following result ensures that convergence of locally finite point processes in Kantorovich-
Rubinstein distance implies convergence in distribution.
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Proposition 2.1. Assume that (ζn)n∈N is a sequence of locally finite point processes on Y and that ζ
is another locally finite point process on Y such that dKR(ζn, ζ) → 0, as n → ∞. Then ζn converges
in distribution to ζ, as n→∞.

Proof. The structure of the vague topology on ÑY implies that it is necessary and sufficient to prove
that for any continuous g : Y → R with compact support, the random variables

∫
g dζn converge in

distribution to
∫
g dζ, see [24, Theorem 16.16]. By (2.3), it is sufficient to show that for all Borel sets

B ⊂ R, we have that
Eeg,B(ζn)→ Eeg,B(ζ) , as n→∞ ,

where eg,B : ÑY → R, ω 7→ 1(
∫
g dω ∈ B). To show this, we notice that for each g and B as above

the mapping eg,B belong to L1, whence∣∣Eeg,B(ζn)−Eeg,B(ζ)
∣∣ ≤ dKR(ζn, ζ)

and the result follows.

An alternative distance to measure the closeness of two point processes ζ1 and ζ2 on Y is the total
variation distance

dTV(ζ1, ζ2) := sup
A∈NY

|P(ζ1 ∈ A)−P(ζ2 ∈ A)| .

It is always dominated by the Kantorovich-Rubinstein distance since

dTV(ζ1, ζ2) = sup
A∈NY

∣∣∣∣ inf
C∈Σ(ζ1,ζ2)

∫
NY×NY

1(ω1 ∈ A)− 1(ω2 ∈ A)C(d(ω1, ω2))

∣∣∣∣
≤ inf

C∈Σ(ζ1,ζ2)

∫
NY×NY

dTV(ω1, ω2)C(d(ω1, ω2)) = dKR(ζ1, ζ2) .

The following example shows that convergence in Kantorovich-Rubinstein distance is strictly finer
than convergence in total variation distance.

Example 2.2. Let ζ be a Poisson process on Y with finite intensity measure M. Let (Xi)i∈N be a
sequence of independent random elements in Y with distribution M(Y)−1M(·) and let Z be a Bernoulli
random variable such that P(Z = 1) = p for some p ∈ (0, 1). Moreover, assume that ζ, (Xi)i∈N and
Z are independent. Now, we consider the point process

ζn,p := ζ + 1(Z = 1)
n∑
i=1

δXi .

Since ζ and ζn,p coincide on an event with probability 1−p, we have that dTV(ζ, ζn,p) ≤ p. By taking
h(µ) = µ(Y) as a test function in (2.6), we deduce that dKR(ζ, ζn,p) ≥ np. Taking pn = 1/

√
n for p

shows that
dTV(ζ, ζn,pn)→ 0 and dKR(ζ, ζn,pn)→∞ , as n→∞ ,

so that (ζn,pn)n∈N converges to ζ in total variation distance but not in Kantorovich-Rubinstein distance.

In the previous example the Kantorovich-Rubinstein distance is more strongly affected by the
rare event that ζ 6= ζn,pn than the total variation distance since the class of test functions is larger
and contains functions taking also values different from zero and one. As already mentioned in the
introduction, one can say that the difference between the Kantorovich-Rubinstein distance and the
total variation distance for point processes is similar to the difference between the Wasserstein and
the total variation distance for integer-valued random variables. As particular example we cite the
work [10], where Poisson approximation of random variables with respect to the Wasserstein distance
has been considered, extending previous results for the total variation distance, see also Section 7.1
below.
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2.6 A discrete gradient. For a counting measure ω ∈ ÑY and a measurable function h : ÑY → R
let us introduce the discrete gradient in direction y ∈ Y by

Dyh(ω) := h(ω + δy)− h(ω) ,

where, recall, δy is the unit-mass Dirac measure charging y ∈ Y. In our notation we often suppress
the dependence of Dyh(ω) on the underlying counting measure ω and write Dyh. Clearly, if h ∈ L1,
it holds that |Dyh| ≤ 1 for all y ∈ Y.

2.7 Geometric preparations. For our applications in Section 7, we need some facts from convex
geometry. The Euclidean norm in Rd is denoted by ‖ · ‖. The Euclidean distance between two sets
A1, A2 ⊂ Rd is given by

dist(A1, A2) = inf{‖x1 − x2‖ : x1 ∈ A1, x2 ∈ A2} .

If A1 = {x} with x ∈ Rd, we write dist(x,A2) instead of dist({x}, A2). For a measurable set K ⊂ Rd,
we write vol(K) for the volume (i.e., d-dimensional Lebesgue measure) of K. For the volume of the
unit ball Bd = {x ∈ Rd : ‖x‖ ≤ 1} in Rd, we introduce the abbreviation κd := vol(Bd). More generally,
Bd(x, r) will denote the closed d-dimensional ball of radius r > 0 centred at x ∈ Rd and we write
Bd(r) instead of Bd(0, r) for short. For r ≥ 0, the Minkowski sum Kr = K + rBd of K and rBd is
the so-called r-parallel set of K. In particular, if K is a convex set with non-empty interior, Steiner’s
formula (see e.g. [38, Equation (14.5)]) says that the volume vol(Kr) is a polynomial of degree d in r.
Formally,

(2.7) vol(Kr) =

d∑
i=0

κd−i Vi(K) rd−i .

The coefficients V0(K), . . . , Vd(K) are the so-called intrinsic volumes of K, especially V0(K) = 1
whenever K 6= ∅, V1(K) is a constant multiple of the mean width of K, Vd−1(K) is half of the surface
area of K (if K is the closure of its interior) and Vd(K) = vol(K), cf. [38, Chapter 14.2].

For 1 ≤ m ≤ d−1, we denote in this paper by Gd
m the space of m-dimensional linear subspaces and

by Adm the space of m-dimensional affine subspaces of Rd. For L,M ∈ Gd
m let [L,M ] be the subspace

determinant of L and M , that is the 2m-volume of a parallelepiped spanned by two orthonormal bases
in L and in M . In one of our examples, we will also deal with the integrated subspace determinant
and for this reason we recall that

(2.8)

∫
Gdm

∫
Gdm

[L,M ] dLdM =

(
d−m
m

)(
d
m

) κ2
d−m

κdκd−2m

from [23, Lemma 4.4]. Here, dL and dM indicate integration with respect to the unique Haar prob-
ability measure on Gd

m.

3 Main results

3.1 General estimate

Let (Y,Y) be a lcscH space and let us fix another lcscH space (X,X ). We adopt the notation introduced
in Section 2 and denote by NX the space of σ-finite counting measures on X.

Let µ be a point process on X with a σ-finite intensity measure K( · ) := Eµ( · ). Fix an integer
k ≥ 1 and let f : dom f → Y be a symmetric and measurable function, where dom f is a symmetric
subset of Xk, i.e., if (x1, . . . , xk) ∈ dom f , then (xσ(1), . . . , xσ(k)) ∈ dom f for all permutations σ of
{1, . . . , k}. We now apply f to all k-tuples of distinct points of µ contained in dom f to form a point
process ξ, i.e.,

ξ :=
1

k!

∑
(x1,...,xk)∈µk6=∩dom f

δf(x1,...,xk) .

8



Since f is symmetric, every f(x1, . . . , xk) also appears for the k! permutations of the argument
(x1, . . . , xk). However, for each subset {x1, . . . , xk} ⊂ µ of distinct points of µ we assign to f(x1, . . . , xk)
only multiplicity one as can be seen from the above definition of ξ. But ξ might still have points of
multiplicity greater than one if there are different combinations of k points in X that are mapped
under f to the same point in Y. The intensity measure of ξ is denoted by L and is given by

L(A) = Eξ(A) = E
∑
y∈ξ

1(y ∈ A) =
1

k!
E

∑
(x1,...,xk)∈µk6=∩dom f

1(f(x1, . . . , xk) ∈ A) , A ∈ Y .

In what follows, we consider for µ two different types of point processes, namely Poisson processes
and binomial processes. By η we denote a Poisson process on X with a σ-finite intensity measure
K. By βn we denote a binomial process of n ∈ N points in X, which are independent and identically
distributed in X according to a probability measure K1 on X. Such a binomial process βn has intensity
measure K := nK1. Now, the multivariate Mecke formula (2.1) and its binomial analogue (2.2) imply
that the intensity measure L of ξ is given by

(3.1) L(A) =
1

k!

∫
dom f

1(f(x1, . . . , xk) ∈ A)Kk(d(x1, . . . , xk)) , A ∈ Y ,

in the Poisson case and by

(3.2) L(A) =
(n)k
k!

∫
dom f

1(f(x1, . . . , xk) ∈ A)Kk
1(d(x1, . . . , xk)) , A ∈ Y ,

if we start with a binomial process (to deal with both cases simultanously we use the same notation
for both set-ups). Let us finally introduce r(dom f) for k ≥ 2 by

r(dom f) := max
1≤`≤k−1

∫
X`

(∫
Xk−`

1((x1, . . . , xk) ∈ dom f)Kk−`(d(x`+1, . . . , xk))
)2

K`(d(x1, . . . , x`)) ,

and, for k = 1, put r(dom f) := 0. Moreover, we use the convention that (n− k)k/(n)k := 0 if n < k.
We can now state our main result, a functional limit theorem, which provides a bound on the

Kantorovich-Rubinstein distance between ξ and a suitable Poisson process on Y.

Theorem 3.1. Let ζ be a Poisson process on Y with finite intensity measure M. If ξ is induced by
the Poisson process η, then

dKR(ξ, ζ) ≤ dTV(L,M) + 2
(
Eξ(Y)2 −Eξ(Y)− (Eξ(Y))2

)
≤ dTV(L,M) +

2k+1

k!
r(dom f) .

(3.3)

If otherwise ξ is derived from the binomial process βn, then

dKR(ξ, ζ) ≤ dTV(L,M) + 2
(
Eξ(Y)2 −Eξ(Y)− (n− k)k

(n)k
(Eξ(Y))2

)
+

6kk!

n
(Eξ(Y))2

≤ dTV(L,M) +
2k+1

k!
r(dom f) +

6kk!

n
L(Y)2 .

Remark 3.2. (i) If the underlying point process is a binomial process βn with n points and if
n < k, the point process ξ is empty with probability one and L ≡ 0. In this case, dKR

(
ξ, ζ) ≤

Eζ(Y) = dTV(L,M) and the bound on dKR

(
ξ, ζ) is trivially valid. For this reason, no further

restriction on n is necessary.

(ii) In the Poisson case, it can happen that L(Y) = ∞. In this case, we have dTV(L,M) = ∞
and the bound (3.3) is trivial. Hence, Theorem 3.1 is only of interest if L(Y) < ∞, which is
equivalent to Kk(dom f) <∞, a condition which ensures that ξ is almost surely finite.
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(iii) Taking M = L in the Poisson case in Theorem 3.1 shows that

dKR(ξ, ζ) ≤ 2
(
Eξ(Y)2 −Eξ(Y)− (Eξ(Y))2

)
≤ 2k+1

k!
r(dom f) .

In particular, if k = 1, this gives dKR(ξ, ζ) = 0, which in view of Proposition 2.1 implies that
ξ is a Poisson process. This is consistent with the well known mapping theorem for Poisson
processes, for which we refer to [25, Chapter 2.3].

(iv) If X = Y and f : X → X is the identity, Theorem 3.1 yields that, for Poisson processes ξ and ζ
with finite intensity measures L and M, respectively,

dKR(ξ, ζ) ≤ dTV(L,M) .

In other words, the Kantorovich-Rubinstein distance between two Poisson processes is bounded
by the total variation distance of their intensity measures. For a similar estimate in a more
restricted set-up we refer to [20, Proposition 4.1].

3.2 The Euclidean case

In this subsection we shall apply our general estimate of Theorem 3.1 to the important situation that
the target space Y is Rd endowed with the standard Borel σ-field B(Rd). This is tailored towards some
of our applications in Section 7 and is similar to the set-up in [43, 44]. We let (X,X ) be a lcscH space
and let (ηt)t≥1 be a family of Poisson processes in X with intensity measures Kt = tK, t ≥ 1, where
K is a fixed σ-finite measure. By (βt)t≥1 we denote a family of binomial processes such that βt = βdte
and βdte is a process of dte points chosen independently according to a fixed probability measure K1.
In this situation we use the notation Kt := dteK. We write (µt)t≥1 in the sequel to indicate either
(ηt)t≥1 or (βt)t≥1.

For a fixed integer k ≥ 1 we consider symmetric and measurable functions ft : Xk → Rd, t ≥ 1.
We are interested in the behaviour of the derived point processes

ξt :=
1

k!

∑
(x1,...,xk)∈µkt, 6=

δft(x1,...,xk) , t ≥ 1 .

For this reason, we consider the re-scaled point processes

tγ • ξt :=
1

k!

∑
(x1,...,xk)∈µkt,6=

δtγft(x1,...,xk) , t ≥ 1 ,

where γ ∈ R is a suitable constant. In order to compare tγ • ξt with a Poisson process, we need to
introduce the following notation. The intensity measure Lt of the re-scaled point process tγ • ξt is
given by

Lt(B) :=
1

k!
E

∑
(x1,...,xk)∈µkt, 6=

1
(
ft(x1, . . . , xk) ∈ t−γB

)
, B ∈ B(Rd) .

For B ∈ B(Rd) let rt(B) be given by rt(B) := 0 for k = 1 and

rt(B) := max
1≤`≤k−1

∫
X`

(∫
Xk−`

1(ft(x1, . . . , xk) ∈ t−γB)Kk−`
t (d(x`+1, . . . , xk))

)2
K`
t(d(x1, . . . , x`))

for k ≥ 2. Furthermore, for a measure ν on Rd and B ∈ B(Rd) let ν|B be the restriction of ν to B.

Corollary 3.3. Let ζ be a Poisson process on Rd with intensity measure M and let B ∈ B(Rd) be
such that M(B) <∞. If ξt is induced by a Poisson process ηt with t ≥ 1, then

dKR

(
(tγ • ξt)|B, ζ|B

)
≤ dTV(Lt|B,M|B) + 2

(
Eξt(t

−γB)2 −Eξt(t
−γB)− (Eξt(t

−γB))2
)

≤ dTV(Lt|B,M|B) +
2k+1

k!
rt(B) .
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If ξt is induced by a binomial process βt with t ≥ 1, then

dKR

(
(tγ • ξt)|B, ζ|B

)
≤ dTV(Lt|B,M|B) + 2

(
Eξt(t

−γB)2 −Eξt(t
−γB)− (dte − k)k

(dte)k
(Eξt(t

−γB))2
)

+
6kk!

t
(Eξt(t

−γB))2

≤ dTV(Lt|B,M|B) +
2k+1

k!
rt(B) +

6kk!

t
Lt(B)2 .

Proof. This is a direct consequence of Theorem 3.1 with tγ • ξt|B instead of ξ and ζ|B instead of ζ
there.

In view of limit theorems, the most natural choice for M is to take M as the strong limit of the
measures Lt, as t→∞. That is,

M(B) = lim
t→∞

Lt(B) for all B ∈ B(Rd) .

However, we emphasize that this does not necessarily imply that dTV(Lt,M) → 0, as t → ∞, even
though this is true for our applications presented below.

Remark 3.4. (i) The upper bounds in Corollary 3.3 are not uniform in the sense that they depend
on the set B. This was to be expected since the re-scaled point processes tγ • ξt can be finite
for any t ≥ 1, while a realization of ζ can charge an infinite number of points (compare with our
applications in Section 7). This is the reason for introducing the restriction to the set B, which
allows us to compare tγ • ξt|B with ζ|B using the Kantorovich-Rubinstein distance.

(ii) To allow for an easier comparison with the previous paper [43], we remark that ibidem the
Poisson case for d = 1 is considered. Moreover, the intensity measure M there is concentrated
on the positive real half-axis and has the form

M(B) = a b

∫
B
1(u ≥ 0)ub−1 du , B ∈ B(R) ,

for some constants a, b > 0. In this case, the Poisson process ζ is a so-called Weibull process
since the distance from the origin to the closest point of ζ is Weibull distributed with distribution
function u 7→ (1 − exp(−a ub))1(u > 0). We remark that this form of M was tailored to the
applications in [43], a more general version is stated without proof in [44].

(iii) Note that rt(B) is dominated by Lt(B)r̂t(B), where r̂t(B) is defined as

r̂t(B) := max
1≤`≤k−1,

(x1,...,x`)∈X`

Kk−`
t

(
{(y1, . . . , yk−`) ∈ Xk−` : ft(x1, . . . , x`, y1, . . . , yk−`) ∈ t−γB}

)
for B ∈ B(Rd). A quantity similar to r̂t(B) has also played a prominent rôle in the previous study
[43]. In many applications a bound for r̂t(B) is already sufficient in order to apply Corollary 3.3.
However, there are situations for which r̂t(B) is an increasing function in t, while rt(B) tends to
zero, as t→∞. This way, [43, Theorem 1.1], in which r̂t instead of rt appears, is not applicable
in such cases as erroneously done in Sections 2.5 and 2.6 ibidem. However, in these specific cases
it is readily checked that rt behaves nicely, implying that the results there are correct.

4 A general Stein principle

This section is devoted to a more informal discussion about the method of bounding the Kantorovich-
Rubinstein distance between point processes using a Stein principle. This approach is the key argument
of our proof of Theorem 3.1 in Section 6. Recall that the aim is to provide an upper bound for the
Kantorovich-Rubinstein distance between a Poisson process ζ on a space Y with finite intensity measure
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M and a second point process ξ on Y, which in turn is derived from another point process µ on a
space X by a transformation.

The first part of Stein’s method consists in characterizing the target object, here the Poisson
process ζ. The way is to consider a functional operator L which, at a formal level, satisfies for a finite
point process ν the identity

(4.1) E[LF (ν)] = 0 for a large class of functions F : N̂Y → R

if and only if ν is a Poisson process with intensity measure M. It is usually not difficult to construct
such an operator for a given target object. What may become challenging, especially in infinite
dimensions (compare with [3, 16, 45]), is to prove that the target object is the unique solution of
(4.1). In our case, uniqueness follows from the theory of spatial birth-death processes, see [35].

The second step of Stein’s method is to solve the so-called Stein equation

(4.2) LF (ω) = Eh(ζ)− h(ω) , ω ∈ N̂Y ,

for a certain class of test functions h : N̂Y → R. This means that we have to compute a solution Fh
for a given test function h and to evaluate LFh(ω).

A prominent method to do this is the so-called generator approach (see the survey article [36]
and the references cited therein). The underlying idea is to interpret L as infinitesimal generator of
a Markov process with the distribution of ζ as its invariant distribution, whence L satisfies (4.1). If
(Ps)s≥0 is the semi-group associated with this Markov process, one can show that

(4.3) LFh(ω) =

∫ ∞
0

LPsh(ω) ds , ω ∈ N̂Y .

In order to compare the point process ξ with ζ, we put ω = ξ and take expectations in (4.2) and (4.3).
This leads to

Eh(ζ)−Eh(ξ) = ELFh = E

∫ ∞
0

LPsh(ξ) ds .

To derive this identity rigorously is the content of the subsequent section. In the context of our main
result, the point process ξ is induced by an underlying point process µ on another space X. More,
formally we have that ξ = T (µ), where T is a suitable transformation, i.e., a mapping from NX to N̂Y.
Hence, we will have to compute

E

∫ ∞
0

LPsh(T (µ)) ds .

This expression is bounded in Section 6 by exploiting the special structure of the transformation T
and the fact that µ is a Poisson or binomial process.

5 Glauber dynamics for the Poisson process

We now specialize the general scheme outlined in Section 4 to our particular situation. Although the
approach is similar to [4, Section 2], for example, we prefer to carry out the details here since we
consider a different class of test functions, namely Lipschitz functions instead of bounded functions.
We assume the same set-up as for Theorem 3.1, that is, ζ is a Poisson process on a lcscH space Y
with a finite intensity measure M and distribution Pζ . We now construct a Glauber dynamics for Pζ ,

that is a continuous-time Markov process (G(s))s≥0 with state space N̂Y and Pζ as its stationary (i.e.,
invariant) distribution, see [35]. Its generator L is given by

(5.1) Lh(ω) :=

∫
Y
h(ω + δy)− h(ω)M(dy) +

∫
Y
h(ω − δy)− h(ω)ω(dy) , ω ∈ N̂Y ,

where h : N̂Y → R is a measurable and bounded function. According to our notational convention, L
may be re-written as

Lh(ω) =

∫
Y
h(ω + δy)− h(ω)M(dy) +

∑
y∈ω

(
h(ω − δy)− h(ω)

)
.
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Note that Lh(ω) is well-defined for all h ∈ L1 and ω ∈ N̂Y since the Lipschitz property implies that the
integrands in (5.1) are bounded by one. Moreover, we notice that the operator L uniquely determines
the process (G(s))s≥0, which has Pζ as its unique invariant distribution, see [18, Proposition 10.4.VII]
or [35].

The Markov process (G(s))s≥0 is a spatial birth-death process in continuous time whose dynamics
can be described as follows. If at time s, the system is in state ωs, each particle charged by ωs dies
at rate 1 and a new particle is born at y with rate M(dy). Alternatively, imagine a homogeneous
Poisson process ζb on R+ with intensity M(Y). The jump times of ζb determine the birth times of
the particles in ζ. At each jump of ζb a new particle is born and is placed in Y according to the
distribution M( · )/M(Y), independently of the current configuration. Moreover, each particle has a
lifetime which is exponentially distributed with parameter 1, independent of the past and of the rest
of the configuration, see again [35].

The semi-group (Ps)s≥0 associated with the Markov process (G(s))s≥0 is defined as

(5.2) Psh(ω) = E[h(G(s)) |G(0) = ω ] , ω ∈ N̂Y , h : ÑY → R .

For h ∈ L1 and ω ∈ N̂Y the conditional expectation is always well defined since∣∣Psh(ω)
∣∣ =

∣∣E[h(G(s)) |G(0) = ω ]
∣∣

≤ E[
∣∣h(G(s))− h(ω)

∣∣ | G(0) = ω ] +
∣∣h(ω)

∣∣
≤ E[ dTV(G(s), ω) | G(0) = ω ] +

∣∣h(ω)
∣∣

≤ Eζb([0, s]) + ω(Y) +
∣∣h(ω)

∣∣ <∞ ,

where ζb is the homogeneous Poisson process from the description of the birth-death dynamics above.
Below we will need the following lemmas about the process (G(s))s≥0 and its semi-group (Ps)s≥0. The
first one provides a commutation relation between the discrete gradient and the semi-group.

Lemma 5.1. For any s ≥ 0, ω ∈ N̂Y, y ∈ Y and h ∈ L1,

DyPsh(ω) = e−s Ps(Dyh)(ω) .

Proof. To construct a sample path of (G(s))s≥0, given the initial configuration G(0) = ω+δy, we have
to add the independent particle y to a realization of (G(s))s≥0 starting from the initial configuration
ω. These two realizations will be identical after the particle y has died. Thus, denoting by `(y) the
lifetime of y and using (5.2), we can write

DyPsh(ω) = E[h(G(s)) |G(0) = ω + δy]−E[h(G(s)) |G(0) = ω]

= E[(h(G(s) + δy)− h(G(s)))1(`(y) ≥ s) |G(0) = ω] .

Since `(y) is independent of everything else and is exponentially distributed with mean one, we can
continue with

DyPsh(ω) = E[1(`(y) ≥ s)]E[(h(G(s) + δy)− h(G(s))) |G(0) = ω] = e−s Ps(Dyh)(ω) ,

where we have used (5.2) again. This completes the proof.

Lemma 5.2. Let ω1, ω2 ∈ N̂Y with ω2 ⊂ ω1. If h ∈ L1 and s ≥ 0, then∣∣E[h(G(s)) |G(0) = ω1]−E[h(G(s)) |G(0) = ω2]
∣∣ ≤ (ω1 \ ω2)(Y) e−s .

Proof. Recall that each particle y of the initial configuration G(0) has an exponentially distributed
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lifetime `(y) with mean one. Thus, since h ∈ L1, it holds that∣∣E[h(G(s)) |G(0) = ω1]−E[h(G(s)) |G(0) = ω2]
∣∣

≤ E
[∣∣h(G(s) +

∑
y∈ω1\ω2

1(`(y) ≥ s)δy)− h(G(s))
∣∣ |G(0) = ω2

]
≤ E

[
dTV(G(s) +

∑
y∈ω1\ω2

1(`(y) ≥ s)δy, G(s)) |G(0) = ω2

]
≤ E

∑
y∈ω1\ω2

1(`(y) ≥ s)

= (ω1 \ ω2)(Y) e−s ,

which proves the claim.

Lemma 5.3. For any ω ∈ N̂Y and h ∈ L1,

lim
s→∞

Psh(ω) = Eh(ζ) =

∫
hdPζ .

Proof. We notice first that the expectation on the right-hand side is well defined since h ∈ L1 implies
that

E|h(ζ)| ≤ E|h(ζ)− h(∅)|+ |h(∅)| ≤ EdTV(ζ, ∅) + |h(∅)| ≤ Eζ(Y) + |h(∅)| = M(Y) + |h(∅)| ,

where ∅ stands for the counting measure that corresponds to the empty point configuration.
From Lemma 5.2 with ω1 = ω and ω2 = ∅ we have that

(5.3)
∣∣E[h(G(s)) |G(0) = ω

]
−E

[
h(G(s)) |G(0) = ∅

]∣∣ ≤ ω(Y) e−s .

The number of particles of G(s) starting from the empty configuration follows the evolution of an
M/M/∞ queue with arrival (birth) rate M(Y) and service (death) rate 1, and thus is Poisson dis-
tributed with parameter (1 − e−s)M(Y). Since the position of each of the particles is independent
of everything else, G(s) has the same distribution as a Poisson process on Y with intensity meas-
ure (1 − e−s)M. Since ζ has the same distribution as the superposition of two independent Poisson
processes with intensity measures (1− e−s)M and e−sM, respectively, we obtain that

(5.4) |E[h(G(s)) |G(0) = ∅]−Eh(ζ)| ≤ e−sM(Y) .

Combining (5.3) and (5.4) and letting s→∞ completes the proof.

The next lemma, which can be seen as an integration by parts formula, is the key for the proof of
Theorem 3.1 given in Section 6 below.

Lemma 5.4. If h ∈ L1 and ω ∈ N̂Y, then

(5.5) Eh(ζ)− h(ω) =

∫ ∞
0

LPsh(ω) ds .

Proof. For an arbitrary h ∈ L1 we define hn : N̂Y → R, n ∈ N, by

hn(ω) =


n : h(ω) > n

h(ω) : −n ≤ h(ω) ≤ n
−n : h(ω) < −n .

Clearly, each of the functions hn is bounded and belongs to L1. Since hn is bounded, the forward-
backward equation stated as Theorem 12.22 in [24] implies that

(5.6) Pthn(ω)− hn(ω) =

∫ t

0
LPshn(ω) ds , t ≥ 0 .
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By construction, we have hn(ω) → h(ω), as n → ∞. The dominated convergence theorem implies
that Pshn(ω) → Psh(ω) and LPshn(ω) → LPsh(ω), as n → ∞, for all s ≥ 0. By (5.1) and Lemma
5.1, we have that, for g = h or g = hn and s ≥ 0,

|LPsg(ω)| ≤
∫
Y
e−s|Ps(Dyg)(ω)|M(dy) +

∫
Y
e−s|Ps(Dyg)(ω − δy)|ω(dy)

≤ e−s(M(Y) + ω(Y)) .

(5.7)

In the last step we used the fact that |Ps(Dyg)| ≤ 1. Now, a further application of the dominated
convergence theorem shows that

lim
n→∞

∫ t

0
LPshn(ω) ds =

∫ t

0
LPsh(ω) ds , t ≥ 0 ,

so that, letting n→∞ in (5.6), yields

(5.8) Pth(ω)− h(ω) =

∫ t

0
LPsh(ω) ds , t ≥ 0 .

Because of (5.7) and the dominated convergence theorem, the right-hand side of (5.8) converges to the
right-hand side of (5.5), as t → ∞. Together with Lemma 5.3 for the left-hand side, this completes
the proof.

Remark 5.5. The operator L and the associated semi-group (Ps)s≥0 on the Poisson space can be also
defined via the Wiener-Itô chaos expansion, which we recall now for completeness. We still denote by
ζ a Poisson process with intensity measure M on a lcscH space Y. A crucial property of ζ is that any
square integrable functional F ∈ L2(Pζ) of ζ can be written as

(5.9) F = EF +

∞∑
n=1

In(fn)

with

fn(y1, . . . , yn) =
1

n!
EDn

y1,...,ynF (ζ) , y1, . . . , yn ∈ Y , n ≥ 1 ,

where Dn := D ◦ Dn−1 with D1 := D is the n-th iteration of the discrete gradient D introduced
in Section 2, and where In(fn) stands for the n-fold Wiener-Itô integral of the square integrable and
symmetric function fn with respect to the signed random measure ζ−M. Moreover, the series in (5.9)
converges in L2(Pζ) and is called the Wiener-Itô chaos expansion of F (we refer to [28] for further
details). We can now define the Ornstein-Uhlenbeck generator L on the Poisson space by

LF = −
∞∑
n=1

nIn(fn) ,

whenever F belongs to domL, i.e., F is such that
∑∞

n=1 n
2 n!‖fn‖2L2(Mn) < ∞, where ‖ · ‖L2(Mn)

stands for the usual norm in L2(Mn). We remark that LF can equivalently be written as in (5.1)
as a consequence of identity (3.19) in [28] and of the relation stated in [33, Lemma 2.11] between
the discrete gradient, the Ornstein-Uhlenbeck generator and the so-called Skorohod-integral on the
Poisson space, another operator, which is not needed in the sequel. In [27] the relation between
the inverse of the Ornstein-Uhlenbeck generator and the associated semi-group is investigated. The
semi-group (Ps)s≥0 can be written in terms of the Wiener-Itô chaos expansion as

PsF = EF +

∞∑
n=1

e−nsIn(fn) , s ≥ 0 ,

where F ∈ domL is assumed to have a chaotic expansion as in (5.9) (see, for example, [27, Equation
(3.13)]). Lemma 5.1 is a special case of [27, Lemma 3.1] and Lemma 5.2, Lemma 5.3 and Lemma 5.4
can also be derived via the approach sketched in this remark. However, we preferred to give proofs
not relying on Wiener-Itô chaos expansions rather than on trajectorial properties.
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Remark 5.6. In [41] a spatial birth-death process is constructed whose invariant distribution is a
Gibbs process. This includes the birth-death process in the present paper as a special case and the
generator in [41] is a generalization of the generator in (5.1). However, the results in [41] do not cover
the results of this section since only the test functions for the total variation distance are considered,
while we use Lipschitz functions, which are needed for the Kantorovich-Rubinstein distance.

6 Proof of Theorem 3.1

Before going into the details of the proof of Theorem 3.1, we explain the strategy informally in case
of an underlying Poisson process η. Applying the multivariate Mecke formula (2.1) in Equation (6.4)
below, we are lead to estimate the integral with respect to Kk of

(6.1) E
[
F (ξ(η + δx1 + . . .+ δxk)− δf(x1,...,xk))− F (ξ(η + δx1 + . . .+ δxk))

]
, x1, . . . , xk ∈ X ,

with F : N̂Y → R being a certain point process functional and where we write ξ(µ) instead of ξ to
underpin the dependence of ξ on the underlying point configuration µ. The difficulty comes from the
fact that adding δx1 + . . . + δxk to the Poisson process η, amounts not only in adding δf(x1,...,xk) to
ξ(η) but also all atoms of the form f(xi1 , . . . , xi` , x̃`+1, . . . , x̃k) with ` ∈ {1, . . . , k}, pairwise different
indices i1, . . . , i` ∈ {1, . . . , k} and (x̃`+1, . . . , x̃k) ∈ ηk−`6= . We denote by ξ̂(x1, . . . , xk, η) the collection
of these extra atoms. The difference in (6.1) is now decomposed as

E
[(
F (ξ(η) + ξ̂(x1, . . . , xk, η))− F (ξ(η))

)
+
(
F (ξ(η))− F (ξ(η) + δf(x1,...,xk))

)
+
(
F (ξ(η) + δf(x1,...,xk))− F (ξ(η) + ξ̂(x1, . . . , xk, η) + δf(x1,...,xk))

)]
.

(6.2)

The middle term in (6.2) contributes to the total variation distance of the intensity measures in (3.3)
in Theorem 3.1. Since F is Lipschitz, the expectation and the integral with respect to x1, . . . , xk of
the first and the third term in (6.2) are bounded (up to a constant) by

E

∫
Xk
ξ̂(x1, . . . , xk, η)(Y)Kk(d(x1, . . . , xk)) ,

which in turn is bounded by Eξ(Y)2 − Eξ(Y) − (Eξ(Y))2 and r(dom f). This effect contributes to
the second term of the bounds in Theorem 3.1. For k = 1, only the middle term in (6.2) is present.
This explains, why for k = 1 the Kantorovich-Rubinstein distance between the transformation of a
Poisson process (which is again a Poisson process) and a second Poisson process is bounded by the
total variation distance of the intensity measures and the second term in (3.3) in Theorem 3.1 vanishes.

Throughout this section we use the same notation as in Subsection 3.1. Moreover, let [k] be
shorthand for {1, . . . , k}. For x = (x1, . . . , xk) ∈ Xk, I = {i1, . . . , i|I|} ⊂ [k] and z = (z1, . . . , zk−|I|) ∈
Xk−|I|, let (xI , z) = (xi1 , . . . , xi|I| , z1, . . . , zk−|I|). We prepare the proof of Theorem 3.1 with the
following lemma.

Lemma 6.1. Let the assumptions of Theorem 3.1 prevail. If ξ is induced by a Poisson process, then

Eξ(Y)2 =
1

k!

∑
I⊂[k]

1

(k − |I|)!

∫
Xk

∫
Xk−|I|

1((x1, . . . , xk) ∈ dom f)

× 1((xI , z) ∈ dom f)Kk−|I|(dz)Kk(d(x1, . . . , xk)) .

If ξ is derived from a binomial process of n points, then

Eξ(Y)2 =
1

k!

∑
I⊂[k]

(n)2k−|I|

(k − |I|)!

∫
Xk

∫
Xk−|I|

1((x1, . . . , xk) ∈ dom f)

× 1((xI , z) ∈ dom f)K
k−|I|
1 (dz)Kk

1(d(x1, . . . , xk)) .
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Proof. We have that

ξ(Y)2 =
1

(k!)2

( ∑
(x1,...,xk)∈µk6=

1((x1, . . . , xk) ∈ dom f)

)2

=
1

(k!)2

∑
I⊂[k]

∑
(x1,...,xk,z)∈µ

2k−|I|
6=

k!

(k − |I|)!
1((x1, . . . , xk) ∈ dom f)1((xI , z) ∈ dom f) ,

where we have used that two points occurring in different sums can be either equal or distinct and
that dom f is symmetric. Now the multivariate Mecke (2.1) and its binomial analogue (2.2) conclude
the proof.

Proof of Theorem 3.1. Throughout this proof we write ξ(η) and ξ(βn) to emphasize the dependence
of ξ on the underlying point process. Whenever we do not need special properties of η or βn, we write
ξ(µ) with the dummy variable µ standing for either η or βn. As discussed in Remark 3.2 (ii), we can
assume for the Poisson case that L(Y) <∞ and, hence, that ξ(η) is almost surely finite since (3.3) is
obviously true otherwise. For an underlying binomial process it is sufficient to consider only the case
n ≥ k since, otherwise, the statement is obviously true as explained in Remark 3.2 (i).

Lemma 5.4 says that, for h ∈ L1 and ω ∈ N̂Y,

(6.3) Eh(ζ)− h(ω) =

∫ ∞
0

LPsh(ω) ds .

The Stein-type identity (6.3) is the starting point for our proof. Combining (6.3) with the represent-
ation of the generator L in (5.1), choosing ω = ξ(µ) and taking expectations results into

Eh(ζ)−Eh(ξ(µ)) = E

∫ ∞
0

LPsh(ξ(µ)) ds

= E

∫ ∞
0

∫
Y

(
Psh(ξ(µ) + δy)− Psh(ξ(µ))

)
M(dy) ds

+ E

∫ ∞
0

∑
y∈ξ(µ)

(
Psh(ξ(µ)− δy)− Psh(ξ(µ))

)
ds .

(6.4)

Let us denote the first and the second term on the right-hand side by T1,µ and T2,µ, respectively. By
Fubini’s theorem and the definition of ξ(µ), we obtain that

T2,µ =
1

k!

∫ ∞
0

E
∑

(x1,...,xk)∈µk6=∩dom f

(
Psh(ξ(µ)− δf(x1,...,xk))− Psh(ξ(µ))

)
ds .

By the multivariate Mecke formula (2.1) and its analogue (2.2) for binomial processes, we see that

T2,η =
1

k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(η + δx1 + . . .+ δxk)− δf(x1,...,xk))

− Psh(ξ(η + δx1 + . . .+ δxk))
]
Kk(d(x1, . . . , xk)) ds

and

T2,βn =
(n)k
k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(βn−k + δx1 + . . .+ δxk)− δf(x1,...,xk))

− Psh(ξ(βn−k + δx1 + . . .+ δxk))
]
Kk

1(d(x1, . . . , xk)) ds .

Let us write ξ̂(x1, . . . , xk, µ) for the point process

ξ̂(x1, . . . , xk, µ) :=
∑

∅6=I([k],z∈µk−|I|6=

1

(k − |I|)!
1((xI , z) ∈ dom f) δf(xI ,z)
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on Y, where ( denotes proper set-inclusion and where the notation (xI , z) has been introduced before
Lemma 6.1 above. Then

T2,η =
1

k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(η) + ξ̂(x1, . . . , xk, η))

− Psh(ξ(η) + ξ̂(x1, . . . , xk, η) + δf(x1,...,xk))
]
Kk(d(x1, . . . , xk)) ds

= − 1

k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(η) + δf(x1,...,xk))− Psh(ξ(η))

]
Kk(d(x1, . . . , xk)) ds

+
1

k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(η) + ξ̂(x1, . . . , xk, η))− Psh(ξ(η)) + Psh(ξ(η) + δf(x1,...,xk))

− Psh(ξ(η) + ξ̂(x1, . . . , xk, η) + δf(x1,...,xk))
]
Kk(d(x1, . . . , xk)) ds

=: T̂2,η +Rη

and

T2,βn =
(n)k
k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(βn−k) + ξ̂(x1, . . . , xk, βn−k))

− Psh(ξ(βn−k) + ξ̂(x1, . . . , xk, βn−k) + δf(x1,...,xk))
]
Kk

1(d(x1, . . . , xk)) ds

= −(n)k
k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(βn−k) + δf(x1,...,xk))− Psh(ξ(βn−k))

]
Kk

1(d(x1, . . . , xk)) ds

+
(n)k
k!

∫ ∞
0

∫
dom f

E
[
Psh(ξ(βn−k) + ξ̂(x1, . . . , xk, βn−k))− Psh(ξ(βn−k))

+ Psh(ξ(βn−k) + δf(x1,...,xk))

− Psh(ξ(βn−k) + ξ̂(x1, . . . , xk, βn−k) + δf(x1,...,xk))
]
Kk

1(d(x1, . . . , xk)) ds

=: T̂2,βn +Rβn .

Together with (6.4) and the formulas for L in (3.1) and (3.2), we see that

Eh(ζ)−Eh(ξ(η)) =

∫ ∞
0

∫
Y
E
[
DyPsh(ξ(η))

]
(M− L)(dy) ds+Rη

and

Eh(ζ)−Eh(ξ(βn)) =

∫ ∞
0

∫
Y
E
[
DyPsh(ξ(βn))

]
(M− L)(dy) ds

+

∫ ∞
0

∫
Y
E
[
DyPsh(ξ(βn))

]
−E

[
DyPsh(ξ(βn−k))

]
L(dy) ds+Rβn .

We now determine the remainder terms Rη and Rβn . For (x1, . . . , xk) ∈ dom f let us define h̃x1,...,xk :

N̂Y → R by

h̃x1,...,xk(µ) =
1

2

(
h(µ)− h(µ+ δf(x1,...,xk))

)
.

We can then re-write Rη and Rβn as

Rη =
2

k!

∫ ∞
0

∫
dom f

E
[
Psh̃x1,...,xk(ξ(η) + ξ̂(x1, . . . , xk, η))− Psh̃x1,...,xk(ξ(η))

]
Kk(d(x1, . . . , xk)) ds

and

Rβn =
2(n)k
k!

∫ ∞
0

∫
dom f

E
[
Psh̃x1,...,xk(ξ(βn−k) + ξ̂(x1, . . . , xk, βn−k))

− Psh̃x1,...,xk(ξ(βn−k))
]
Kk

1(d(x1, . . . , xk)) ds .
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Because of h̃x1,...,xk ∈ L1, we obtain by the definition of the semi-group (Ps)s≥0 in (5.2) and Lemma
5.2 that

|Rη| ≤
2

k!

∫ ∞
0

∫
dom f

e−sEξ̂(x1, . . . , xk, η)(Y)Kk(d(x1, . . . , xk)) ds

=
2

k!

∫
dom f

Eξ̂(x1, . . . , xk, η)(Y)Kk(d(x1, . . . , xk))

and

|Rβn | ≤
2(n)k
k!

∫ ∞
0

∫
dom f

e−sEξ̂(x1, . . . , xk, βn−k)(Y)Kk
1(d(x1, . . . , xk)) ds

≤ 2(n)k
k!

∫
dom f

Eξ̂(x1, . . . , xk, βn−k)(Y)Kk
1(d(x1, . . . , xk)) .

Now, from the Mecke formula (2.1) and its analogue (2.2) for binomial processes it follows that

Eξ̂(x1, . . . , xk, η)(Y) = E
∑

∅6=I([k], z∈ηk−|I|6=

1

(k − |I|)!
1(f(xI , z) ∈ dom f)

=
∑
∅6=I([k]

1

(k − |I|)!

∫
Xk−|I|

1((xI , z) ∈ dom f)Kk−|I|(dz)

and

Eξ̂(x1, . . . , xk, βn−k)(Y) = E
∑

∅6=I([k], z∈βk−|I|n−k,6=

1

(k − |I|)!
1(f(xI , z) ∈ dom f)

=
∑
∅6=I([k]

(n− k)k−|I|

(k − |I|)!

∫
Xk−|I|

1((xI , z) ∈ dom f)K
k−|I|
1 (dz) .

(6.5)

Together with Lemma 6.1, we obtain

|Rη| ≤
2

k!

∫
Xk

∑
∅6=I([k]

1

(k − |I|)!

∫
Xk−|I|

1((x1, . . . , xk) ∈ dom f)

× 1((xI , z) ∈ dom f)Kk−|I|(dz)Kk(d(x1, . . . , xk))

= 2
(
Eξ(Y)2 − L(Y)− L(Y)2

)
= 2
(
Eξ(Y)2 −Eξ(Y)− (Eξ(Y))2

)(6.6)

and

|Rβn | ≤
2

k!

∫
Xk

∑
∅6=I([k]

(n)k(n− k)k−|I|

(k − |I|)!

∫
Xk−|I|

1((x1, . . . , xk) ∈ dom f)

× 1((xI , z) ∈ dom f)K
k−|I|
1 (dz)Kk

1(d(x1, . . . , xk))

= 2
(
Eξ(Y)2 − L(Y)− (n− k)k

(n)k
L(Y)2

)
= 2
(
Eξ(Y)2 −Eξ(Y)− (n− k)k

(n)k
(Eξ(Y))2

)
.

(6.7)

The inequalities in (6.6) and (6.7) together with the definition of r(dom f) imply that

(6.8) |Rη| ≤
2k+1

k!
r(dom f) and |Rβn | ≤

2k+1

k!
r(dom f) .

Next, it follows from Lemma 5.2 that, for s ≥ 0,

(6.9) |EDyPsh(ξ(µ)) | ≤ E[ |Psh(ξ(µ) + δy)− Psh(ξ(µ))| ] ≤ e−s .
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For y1, y2 ∈ Y and ξ̃ ∈ ÑY we have dTV(ξ̃ + δy1 , ξ̃ + δy2) ≤ 1 so that h ∈ L1 leads to

|Dy1h(ξ̃)−Dy2h(ξ̃)| = |h(ξ̃ + δy1)− h(ξ̃ + δy2)| ≤ 1 .

Together with Lemma 5.1, we obtain that

(6.10) |EDy1Psh(ξ(µ))−EDy2Psh(ξ(µ))| = e−s|EPs(Dy1h−Dy2h)(ξ(µ))| ≤ e−s

for all y1, y2 ∈ Y and s ≥ 0. The estimates in (6.9) and (6.10) show that

(6.11)

∣∣∣∣ ∫ ∞
0

∫
Y
E [DyPsh(ξ(µ))] (M− L)(dy) ds

∣∣∣∣ ≤ dTV(M,L)

∫ ∞
0

e−s ds ≤ dTV(M,L) .

Combining (6.6) and (6.8) with (6.11) completes the proof of the Poisson case.
When considering a binomial process, we additionally need to take care of the term∫ ∞

0

∫
Y
E
[
DyPsh(ξ(βn))

]
−E

[
DyPsh(ξ(βn−k))

]
L(dy) ds .

For this, we use Lemma 5.1, the fact that 1
2Dyh ∈ L1 whenever h ∈ L1 and Lemma 5.2 to obtain

that ∣∣E[DyPsh(ξ(βn))
]
−E

[
DyPsh(ξ(βn−k))

] ∣∣
≤
∫
Xk

∣∣E[DyPsh(ξ(βn−k + δx1 + . . .+ δxk))
]
−E

[
DyPsh(ξ(βn−k))

] ∣∣Kk
1(d(x1, . . . , xk))

=

∫
Xk
e−s
∣∣E[Ps(Dyh)(ξ(βn−k) + ξ̂(x1, . . . , xk, βn−k) + δf(x1,...,xk))− Ps(Dyh)(ξ(βn−k))

] ∣∣
Kk

1(d(x1, . . . , xk))

≤ 1

nk

∫
Xk

2e−2s
(
Eξ̂(x1, . . . , xk, βn−k)(Y) + 1((x1, . . . , xk) ∈ dom f)

)
Kk(d(x1, . . . , xk))

for any s ≥ 0. It follows from (6.5) and (n− k)k−|I| ≤ nk−|I| that

1

nk

∫
Xk

Eξ̂(x1, . . . , xk, βn−k)(Y)Kk(d(x1, . . . , xk))

≤ 1

nk

∫
Xk

∑
∅6=I([k]

1

(k − |I|)!

∫
Xk−|I|

1((xI , z) ∈ dom f)Kk−|I|(dz)Kk(d(x1, . . . , xk))

=
1

nk

∑
∅6=I([k]

1

(k − |I|)!

∫
Xk

1((x1, . . . , xk) ∈ dom f)Kk(d(x1, . . . , xk))K(X)|k|−|I|

≤ (2k − 2)

n

∫
Xk

1((x1, . . . , xk) ∈ dom f)Kk(d(x1, . . . , xk)) .

Now, (3.2) implies that∫
Xk

1((x1, . . . , xk) ∈ dom f)Kk(d(x1, . . . , xk)) =
k!nk

(n)k
L(Y) ≤ k!ekEξ(Y) ,

where we have used that nk/(n)k ≤ kk/k! ≤ ek for n ≥ k. Hence, using that 2kek ≤ 6k, we find∫ ∞
0

∫
Y

∣∣E[DyPsh(ξ(βn))
]
−E

[
DyPsh(ξ(βn−k))

]∣∣L(dy) ds ≤ 6kk!
L(Y)2

n
= 6kk!

(Eξ(Y))2

n
.

Together with (6.7), (6.8) and (6.11) this completes the proof in the binomial case.
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Remark 6.2. Bounds for the total variation distance between ξ and ζ that are similar to the bounds
for the Kantorovich-Rubinstein distance in Theorem 3.1 can be deduced from Theorem 2.6 in [4]. This
result implies that

dTV(ξ(η), ζ) ≤ 2dTV(L,M)

+
2

k!

∫
dom f

EdTV(ξ(η), ξ(η + δx1 + . . .+ δxk)− δf(x1,...,xk))K
k(d(x1, . . . , xk))

and

dTV(ξ(βn), ζ) ≤ 2dTV(L,M)

+
2(n)k
k!

∫
dom f

EdTV(ξ(βn), ξ(βn−k + δx1 + . . .+ δxk)− δf(x1,...,xk))K
k
1(d(x1, . . . , xk)) .

Since the integrands are bounded by

Eξ̂(x1, . . . , xk, η)(Y) and Eξ̂(x1, . . . , xk, βn−k)(Y) + EdTV(ξ(βn), ξ(βn−k)) ,

respectively, the integrals on the right-hand sides can be controlled as in the proof of Theorem 3.1
above.

7 Applications

7.1 Poisson approximation of U-statistics

In this subsection we present a first application of Theorem 3.1 to U-statistics of Poisson or binomial
processes. Let (X,X ) and (Y,Y) be two lcscH spaces and let for some fixed integer k ≥ 1, ft : Xk → Y,
t ≥ 1, be symmetric measurable functions. Furthermore, for a σ-finite measure K and a probability
measure K1 on X we denote by ηt a Poisson process with intensity measure Kt := tK, t ≥ 1, and by
βt, t ≥ 1, a binomial process of dte points with intensity measure Kt := dteK1, respectively. If µt is
either ηt or βt and if B is a measurable subset of Y, we define the U-statistics

St(B) :=
1

k!

∑
(x1,...,xk)∈µkt,6=

1(ft(x1, . . . , xk) ∈ B) , t ≥ 1 ,

which count the number of k-tuples (x1, . . . , xk) ∈ µkt, 6= for which ft(x1, . . . , xk) ∈ B. To compare
St(B) with a Poisson random variable we define

rt(B) := max
1≤`≤k−1

∫
X`

(∫
Xk−`

1(ft(x1, . . . , xk) ∈ B)Kk−`
t (d(x`+1, . . . , xk))

)2

K`
t(d(x1, . . . , x`))

if k > 1 and rt(B) := 0 if k = 1.

Theorem 7.1. Let B ∈ Y and let Z be a Poisson distributed random variable with mean λ ∈ [0,∞).
Suppose that ESt(B)2 <∞. If St(B) is induced by a Poisson process ηt with t ≥ 1, then

dW(St(B), Z) ≤ |ESt(B)− λ|+ 2
(
ESt(B)2 −ESt(B)− (ESt(B))2

)
≤ |ESt(B)− λ|+ 2k+1

k!
rt(B) .

If St(B) is induced by a binomial process βt with t ≥ 1, then

dW(St(B), Z) ≤ |ESt(B)− λ|+ 2
(
ESt(B)2 −ESt(B)− (dte − k)k

(dte)k
(ESt(B))2

)
+

6kk!

t
(ESt(B))2

≤ |ESt(B)− λ|+ 2k+1

k!
rt(B) +

6kk!

t
(ESt(B))2 .
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Proof. We define the point processes

ξt :=
1

k!

∑
(x1,...,xk)∈µkt,6=

δft(x1,...,xk) , t ≥ 1 ,

and denote their intensity measures by Lt, t ≥ 1. By construction, St(B) and ξt(B) follow the same
distribution. We notice that for any fixed h ∈ Lip(1) (recall that these are all h : R → R whose
Lipschitz constant is at most one) and B ∈ Y the mapping ω 7→ h(ω(B)) from ÑY to R satisfies

|h(ω1(B))− h(ω2(B))| ≤ |ω1(B)− ω2(B)| ≤ dTV(ω1, ω2), ω1, ω2 ∈ ÑY ,

and, thus, belongs to L1. Consequently, if ζt is a Poisson process on Y with intensity measure Lt, the
definition of the Wasserstein distance and (2.6) yield

dW(St(B), ζt(B)) = dW(ξt(B), ζt(B)) = sup
h∈Lip(1)

∣∣Eh(ξt(B))−Eh(ζt(B))
∣∣

≤ sup
g∈L1

∣∣Eg(ξt|B)−Eg(ζt|B)
∣∣ = dKR(ξt|B, ζt|B) .

Now Theorem 3.1 and the observation that Lt(B) = ESt(B) imply the result for the choice λ =
ESt(B). The general case follows from the triangle inequality for the Wasserstein distance and the
fact that the Wasserstein distance between a Poisson random variable with mean ESt(B) and another
Poisson random variable with mean λ is bounded by |ESt(B)− λ|.

We emphasize that Theorem 7.1 deals with Poisson approximation in Wasserstein distance. As
already stated in (2.4), this is stronger than approximation in total variation distance, which is usually
considered in the literature (see [10] for the only exception we are aware of). This is possible thanks to
our functional limit Theorem 3.1, which deals with the Kantorovich-Rubinstein distance rather than
the total variation distance for point processes.

The Poisson approximation in total variation distance of U-statistics over binomial input was
considered in [7]. If we assume that ESt(B) = λ for t ≥ 1 for the binomial case in Theorem 7.1, we
obtain up to a constant, which may depend on λ, the same bound as in [7, Theorem 2] for the total
variation distance.

In [31], an abstract bound for the Poisson approximation of Poisson functionals (i.e., random
variables depending on a Poisson process) is derived, which is also applicable to U-statistics over
Poisson input. Our Theorem 7.1 yields better rates of convergence for this special class of Poisson
functionals. In fact, the bound in [43, Proposition 4.1], which is derived from [31], involves the square
root of r̂t(B) (see Remark 3.4 (iii)), while in the bound for the Poisson case in Theorem 7.1 only r̂t(B)
enters.

To illustrate the use of Theorem 7.1 let us consider a particular example, which will recur also in
the following subsections. Let K ⊂ Rd (d ≥ 1) be a compact convex set with volume one. For t ≥ 1
let ηt be a homogeneous Poisson process in K of intensity t and denote by βt a binomial process in
K with dte points distributed according to the uniform distribution on K. For a family (θt)t≥1 of
positive real numbers let us construct the random geometric graph with vertex set µt, where µt is ηt
or βt, by drawing an edge between two distinct vertices y1 and y2 whenever their Euclidean distance
‖y1 − y2‖ is bounded by θt. These random graphs are the natural geometric counterparts to the
classical Erdös-Rényi models for combinatorial random graphs. For background material we refer the
reader to the monograph [34] and also to the recent paper [37] as well as the references cited therein.

For the random geometric graph introduced above let Et be the number of edges. Note that Et is
a U-statistic of the form

Et =
1

2

∑
(y1,y2)∈µ2t,6=

1(‖y1 − y2‖ ≤ θt) .

The multivariate Mecke formula (2.1) and a computation using spherical coordinates show that Et has
expectation t2

(
κdθ

d
t +O(θd+1

t )
)
/2 in the Poisson case, as θt → 0. For an underlying binomial process
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the expected number of edges is dte(dte − 1)
(
κdθ

d
t + O(θd+1

t )
)
/2, as θt → 0. If the expectation of Et

converges to a constant, as t → ∞, Et can be well approximated by a Poisson random variable. In
contrast to [31, Theorem 5.1], whose proof involves various non-trivial computations, we can deduce
a corresponding approximation result from Theorem 7.1, the proof is postponed to Subsection 7.4.

Corollary 7.2. Assume that lim
t→∞

t2θdt = λ ∈ [0,∞) and let Z be a Poisson distributed random variable

with mean κdλ/2. Then there is a constant c > 0 only depending on the space dimension d, the set K
and supt≥1 t

2θdt such that

dW(Et, Z) ≤ c
(
|t2θdt − λ|+ t−min{2/d,1}), t ≥ 1 .

Remark 7.3. Using the classical Chen-Stein method for Poisson approximation, Theorem 3.4 in [34]
delivers a version of Corollary 7.2 in which the rate of convergence is measured by the total variation
distance in case of an underlying binomial process. Theorem 3.12 (iii) in [32] is a qualitative version of
Corollary 7.2, which has been established by the method of moments. Moreover, Theorem 5.1 in [31]
adds a total variation bound. Corollary 7.2 extends these results to a stronger probability metric and
at the same time improves the rates of convergence in [31]. Namely, for space dimensions d ∈ {1, 2},
Corollary 7.2 yields an upper bound of order |t2θdt − λ| + t−1 (for the Wasserstein distance), while
Theorem 5.1 in [31] delivers an upper bound of order |t2θdt −λ|+t−1/2 (for the total variation distance).

7.2 Compound Poisson approximation of U-statistics

As in the previous subsection, we denote by µt, t ≥ 1, a Poisson process ηt or a binomial process βt
on a lcscH space X. For k ∈ N and measurable functions ht : Xk → R, t ≥ 1, we consider the family
of U-statistics

St :=
1

k!

∑
(x1,...,xk)∈µkt, 6=

ht(x1, . . . , xk) , t ≥ 1 .

Since the sum runs also over all permutations of a fixed (x1, . . . , xk) ∈ µkt,6=, we assume without loss
of generality that ht is symmetric for any t ≥ 1. For a fixed constant γ ∈ R and t ≥ 1, we define

Lt(A) :=
1

k!
E

∑
(x1,...,xk)∈µkt,6=

1(ht(x1, . . . , xk) ∈ t−γA \ {0}) , A ∈ B(R) ,

and

rt := max
1≤`≤k−1

∫
X`

(∫
Xk−`

1(ht(x1, . . . , xk) 6= 0)Kk−`
t (d(x`+1, . . . , xk))

)2

K`
t(d(x1, . . . , x`))

for k ≥ 2, and put rt := 0 if k = 1. The following result compares the U-statistic St with a compound
Poisson random variable. Most of the existing literature is based on a direct use of Stein’s method, but
only for discrete compound Poisson random variables. This approach is technically sophisticated and
also needs in general certain monotonicity assumptions. Moreover, there are even situations in which
the solution of the so-called Stein equation cannot be controlled appropriately, and hence in which
Stein’s method is of little use, see [9]. Being a consequence of the functional limit theorem (Theorem
3.1), our approach circumvents such technicalities and also allows us to deal with compound Poisson
random variables having a discrete or continuous distribution.

Theorem 7.4. Let ζ be a Poisson process on R with a finite intensity measure M, let Z :=
∑

x∈ζ x
and let γ ∈ R. Then

dTV(tγSt, Z) ≤ dTV(Lt,M) +
2k+1

k!
rt , t ≥ 1 ,

if in the definition of St a Poisson process ηt is used, and

dTV(tγSt, Z) ≤ dTV(Lt,M) +
2k+1

k!
rt +

6kk!

t
Lt(R)2 , t ≥ 1 ,

if the underlying point process is a binomial process βt.
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Proof. We consider the point processes

tγ • ξt :=
1

k!

∑
(x1,...,xk)∈µkt,6=

1(ht(x1, . . . , xk) 6= 0) δtγht(x1,...,xk) , t ≥ 1 .

It follows from the definition of the total variation distance and (2.6) that

dTV(tγSt, Z) = sup
A∈B(R)

∣∣∣∣E1

( ∑
x∈tγ•ξt

x ∈ A
)
−E1

(∑
x∈ζ

x ∈ A
)∣∣∣∣ ≤ dKR(tγ • ξt, ζ)

since the maps ω → 1(
∑

x∈ω x ∈ A) belong to L1. Now Theorem 3.1 implies that

dKR(tγ • ξt, ζ) ≤ dTV(Lt,M) +
2k+1

k!
rt , t ≥ 1 ,

and

dKR(tγ • ξt, ζ) ≤ dTV(Lt,M) +
2k+1

k!
rt +

6kk!

t
Lt(R)2 , t ≥ 1 ,

for the Poisson and the binomial case, respectively. This completes the proof.

Remark 7.5. A compound Poisson random variable Z can alternatively be written as Z =
∑N

i=1Xi,
where N is a Poisson distributed random variable and (Xi)i∈N is a sequence of independent and
identically distributed random variables such that N and (Xi)i∈N are independent. However, the
representation of Z in terms of the Poisson process ζ fits better into our general framework.

For the compound-Poisson approximation of U-statistics in the binomial case a similar bound as
in Theorem 7.4 is derived in [21, Section 3.6]. However, in that paper ht is required to take values in
the non-negative integers, whereas we do not need to impose such a condition. In addition, we are
not aware of any analogous result for an underlying Poisson process.

As an application of Theorem 7.4 we consider general edge-length functionals of the random geo-
metric graph introduced in the course of the previous subsection. Fix a parameter b ∈ R and define

L
(b)
t :=

1

2

∑
(x1,x2)∈µ2t, 6=

1(dist(x1, x2) ≤ θt) dist(x1, x2)b , t ≥ 1 ,

where µt stands either for a Poisson process ηt or a binomial process βt. In particular, L
(0)
t is the

number of edges in the random geometric graph and L
(1)
t is its total edge length. As in Subsection

7.1, we consider the situation that the distance parameters (θt)t≥1 are chosen in such a way that
the expected number of edges converges to a constant, as t → ∞. Recall that in Corollary 7.2 the

number of edges L
(0)
t has been approximated by a Poisson random variable. For general exponents b

we approximate L
(b)
t by a suitable compound Poisson random variable. The proof of the next result

is postponed to Subsection 7.4 below.

Corollary 7.6. Fix b ∈ R and assume that lim
t→∞

t2θdt = λ ∈ [0,∞). Define Z :=
∑N

i=1 ‖Xi‖b, where N

is a Poisson distributed random variable with mean κdλ/2 and (Xi)i∈N are independent and uniformly
distributed points in Bd(λ1/d), which are independent of N . Then, there is a constant c > 0 only
depending on the space dimension d, the set K and supt≥1 t

2θdt such that

dTV(t2b/dL
(b)
t , Z) ≤ c

(
|t2θdt − λ|+ t−min{2/d,1}), t ≥ 1 .

Remark 7.7. Corollary 7.6 without a rate of convergence has been derived in [37, Theorem 3.5]
by combining a point process convergence result with the continuous mapping theorem. Thanks to
Theorem 7.4 we were able to add a rate of convergence for the total variation distance.
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7.3 Approximation of U-statistics by α-stable random variables

Let us denote by µt, t ≥ 1, a Poisson process ηt or a binomial process βt as in the previous subsections.
For fixed k ∈ N and measurable functions ht : Xk → R, t ≥ 1, let

St :=
1

k!

∑
(x1,...,xk)∈µkt,6=

ht(x1, . . . , xk) , t ≥ 1 .

Here, we can and will assume without loss of generality that ht is symmetric for any t ≥ 1. We
are interested in the limiting behaviour of these U-statistics in situations, where their summands are
heavy tailed, and approximate St by an α-stable random variable Z. Recall that this means that
for any n ∈ N there are independent copies Z1, . . . , Zn of Z satisfying the distributional equality

n−1/α(Z1 + . . .+Zn)
D
= Z. We fix α ∈ (0, 1) and γ ∈ R and apply our functional limit theorem to the

point processes

tγ • ξt :=
1

k!

∑
(x1,...,xk)∈µkt,6=

1(ht(x1, . . . , xk) 6= 0) δsign(ht(x1,...,xk)) tγ |ht(x1,...,xk)|−α , t ≥ 1 ,

on R, where sign(a) = 1(a ≥ 0) − 1(a < 0). If µt is a binomial process, the convergence of the
U-statistic St to an α-stable random variable has been considered in [17] without giving rates of
convergence. Thanks to our quantitative bound for the Kantorovich-Rubinstein distance in Theorem
3.1 we are in the position to add a rate of convergence for the Kolmogorov distance. The statement
of our result is prepared by introducing some notation. For A ∈ B(R) and t ≥ 1 we define

Lt(A) :=
1

k!
E

∑
(x1,...,xk)∈µkt, 6=

1(ht(x1, . . . , xk) 6= 0) 1(sign(ht(x1, . . . , xk)) |ht(x1, . . . , xk)|−α ∈ t−γA) ,

which is the intensity measure of tγ • ξt, and

rt(A) := max
1≤`≤k−1

∫
X`

(∫
Xk−`

1(ht(x1, . . . , xk) 6= 0) 1(sign(ht(x1, . . . , xk)) |ht(x1, . . . , xk)|−α ∈ t−γA)

Kk−`
t (d(x`+1, . . . , xk))

)2

K`
t(d(x1, . . . , x`))

if k ≥ 2 and rt(A) := 0 if k = 1. The following result contains a quantitative bound for the approx-
imation of U-statistics by an α-stable random variable with α ∈ (0, 1).

Theorem 7.8. Let α ∈ (0, 1) and let M be either the Lebesgue measure on R or its restriction to R+.
Define Z :=

∑
x∈ζ sign(x) |x|−1/α, where ζ is a Poisson process with intensity measure M. Assume

that there are a constant γ ∈ R and functions g1, g2, g3 : R2
+ → R+ such that, for any a > 0 and t ≥ 1,

(7.1) dTV(Lt|[−a,a],M|[−a,a]) ≤ g1(a, t) , rt([−a, a]) ≤ g2(a, t)

and

(7.2)
t−γ/α

k!
E

∑
(x1,...,xk)∈µkt,6=

1(|ht(x1, . . . , xk)| < tγ/αa−1/α) |ht(x1, . . . , xk)| ≤ g3(a, t) .

Then there is a constant C > 0 only depending on α and k such that

dK(t−γ/αSt, Z) ≤ Cg(t) , t ≥ 1 ,

where

g(t) :=

 inf
a>0

max{a1/2−1/(2α), g1(a, t), g2(a, t),
√
g3(a, t)} : µt = ηt

inf
a>0

max{a1/2−1/(2α), g1(a, t), g2(a, t),
√
g3(a, t), a2/t} : µt = βt .
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Proof. For a > 0 we define the random variables

St,a :=
1

k!

∑
(x1,...,xk)∈µkt, 6=

1(|ht(x1, . . . , xk)| ≥ tγ/αa−1/α)ht(x1, . . . , xk) , t ≥ 1 ,

and
Za :=

∑
x∈ζ

1(|x| ≤ a) sign(x) |x|−1/α .

Then, for any a > 0 and ε > 0, we find that

dK(t−γ/αSt, Z) ≤ P(t−γ/α|St − St,a| ≥ ε) + dK(t−γ/αSt,a, Z) + sup
z∈R
|P(Z ≤ z)−P(Z ≤ z + ε)|

≤ P(t−γ/α|St − St,a| ≥ ε) + P(|Z − Za| ≥ ε) + dK(t−γ/αSt,a, Za)

+ 2 sup
z∈R
|P(Z ≤ z)−P(Z ≤ z + ε)| .

Combining Markov’s inequality with the multivariate Mecke formula (2.1) and assumption (7.2), we
obtain that, for all ε > 0,

P(|Z − Za| ≥ ε) ≤
2

ε

∫ ∞
a

x−1/α dx =
2a1−1/α

(1/α− 1)ε
and P(t−γ/α|St − St,a| ≥ ε) ≤

g3(a, t)

ε
.

As α-stable random variable, Z has a bounded density, see [47, page 13]. Hence, there is a constant
Cα > 0 only depending on α such that

sup
z∈R
|P(Z ≤ z)−P(Z ≤ z + ε)| ≤ Cαε , ε ≥ 0 .

It follows from the definition of the Kolmogorov distance and (2.6) that

dK(t−γ/αSt,a, Za) = sup
z∈R

∣∣∣∣P( ∑
x∈tγ•ξt

1(x ∈ [−a, a]) sign(x) |x|−1/α ≤ z
)

−P

(∑
x∈ζ

1(x ∈ [−a, a]) sign(x) |x|−1/α ≤ z
)∣∣∣∣

≤ dKR(tγ • ξt|[−a,a], ζ|[−a,a]) .

Now, we consider the Poisson case and the binomial case separately. For an underlying Poisson process,
Theorem 3.1 and the assumptions in (7.1) show that

dKR(tγ • ξt|[−a,a], ζ|[−a,a]) ≤ g1(a, t) +
2k+1

k!
g2(a, t) , t ≥ 1 .

Combining this with the previous estimates, we see that

dK(t−γ/αSt, Z) ≤ 2a1−1/α

(1/α− 1)ε
+
g3(a, t)

ε
+ 2Cαε+ g1(a, t) +

2k+1

k!
g2(a, t) .

Thus, choosing ε =
√

max{a1−1/α, g3(a, t)} yields the assertion. For the binomial case, Theorem 3.1
and the assumptions in (7.1) imply that

dK(St,a, Za) ≤
2a1−1/α

(1/α− 1)ε
+
g3(a, t)

ε
+ 2Cαε+ g1(a, t) +

2k+1

k!
g2(a, t) +

6kk!

t
(8a2 + 2g1(a, t)2) ,

where we have used that Lt([−a, a])2 ≤ (2a + g1(a, t))2 ≤ 8a2 + 2g1(a, t)2. Now, the same choice for
ε as in the Poisson case and the fact that the Kolmogorov distance is bounded by one conclude the
proof.
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Remark 7.9. For all choices of α ∈ (0, 2] there are α-stable random variables and one can think of
U-statistics converging to such variables. For α ∈ (1, 2] and the binomial case this problem has been
considered in [17, 22, 29]. A similar technique as that used in the proof of Theorem 7.8 should also be
applicable if α ∈ (1, 2]. In this case the limiting random variable is given by Z := lima→∞ Za − EZa,
whence an additional centring is necessary. In order to derive bounds similar to that of Theorem 7.8,
one has to control the distance between Z and Za, which might be difficult to tackle. We would like
to mention that the bounds derived in [22] also involve a quantity similar to dK(Z,Za).

To give an application of Theorem 7.8, let us consider the following distance-power statistics, which
are closely related to the edge functionals of random geometric graphs considered above. Let for some
d ≥ 1, K ⊂ Rd be a compact convex set with volume one and let K be the restriction of the Lebesgue
measure to K. Let ηt be a Poisson process in K with intensity measure Kt = tK, t ≥ 1, and let βt,
t ≥ 1, be a binomial process of dte points, which are independent and uniformly distributed in K.
Our aim is to investigate the limiting behaviour of the U-statistics

St :=
1

2

∑
(x1,x2)∈µkt,6=

dist(x1, x2)−τ , t ≥ 1 ,

where τ > 0 and µt stands for ηt or βt. The following result, whose proof will be given in Subsection
7.4 below, deals with the case τ > d.

Corollary 7.10. Let τ > d, let ζ be a homogeneous Poisson process on R+ with intensity one and let
Z := (κd/2)τ/d

∑
x∈ζ x

−τ/d. Then there is a constant C > 0 only depending on K, τ and d such that

dK(t−2τ/dSt, Z) ≤ C t% , t ≥ 1 ,

with

% := inf
u>0

max

{
1

2
u− τ

2d
u, 2u− 1, u+

1

d
u− 2

d

}
.

Example 7.11. To have a more specific example, take τ = 2d in Corollary 7.6, in which case % has
the form

% = inf
u>0

max
{
− u

2
, 2u− 1, u+

u− 2

d

}
.

For d ∈ {1, 2} the infimum is attained at u = 2
5 , giving that % = −1

5 . For d ≥ 3, the infimum is
attained at u = 4

3d+2 so that % = − 2
3d+2 in this case. Thus,

dK(t−4St, Z) ≤

{
C t−1/5 : d ∈ {1, 2}
C t−2/(3d+2) : d ≥ 3 ,

where the 1/2-stable random variable Z is of the form Z = cd
∑

x∈ζ x
−2 for a unit-intensity homogen-

eous Poisson process ζ on R+ and with cd = κ2
d/4. The distribution of Z can be characterized more

explicitly. Namely, applying [24, Lemma 12.2 (i)] we see that, for all t ∈ R,

E exp(itZ) = E exp
(
it cd

∑
x∈ζ

x−2
)

= exp
(∫ ∞

0
(eitcdx

−2 − 1) dx
)

= exp
(
−
√
−itπcd

)
,

where i is the imaginary unit. This is the characteristic function of a centred Lévy distribution with
scale parameter πcd/2. Thus, Z has density x 7→ 1

2

√
cd/x3 exp(−πcd/(4x))1(x > 0).

Remark 7.12. Note that if τ < d/2, then St satisfies a central limit theorem as shown in Theorem
3.1 of [37]. Moreover, the choice d/2 ≤ τ ≤ d corresponds to the situation α ∈ [1, 2], to which Remark
7.9 applies.
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7.4 Random geometric graphs

Let K ⊂ Rd (d ≥ 1) be a compact convex set with volume one. For t ≥ 1 let µt either be a homogeneous
Poisson process ηt of intensity t ≥ 1 in K or a binomial process βt of dte independent and uniformly
distributed points in K and let (θt)t≥1 be a family of positive real numbers. Based on this data we
construct a random geometric graph as explained in Section 7.1. In contrast to Corollary 7.2 and
Corollary 7.6, where lim

t→∞
t2θdt = λ ∈ [0,∞), we assume at first that lim

t→∞
t2θdt =∞ and are interested

in the point process ξt,a on K defined by

ξt,a :=
1

2

∑
(x,y)∈µ2t, 6=

1(‖x− y‖ ≤ min{θt, t−2/da}) δ(x+y)/2

for some a > 0. In other words, ξt,a charges the collection of all midpoints of edges of the random
geometric graph whose length does not exceed t−2/da.

Theorem 7.13. Let a > 0, let ζ be a Poisson process on K with intensity measure κd
2 ad vol|K and

let ξt,a be constructed from a Poisson process ηt or a binomial process βt with t ≥ 1. Also suppose
that lim

t→∞
t2θdt =∞. Then t0 := sup{t ≥ 1 : t2θdt < ad} ∪ {1} <∞ and there is a constant C > 0 only

depending on a, d and K such that

dKR(ξt,a, ζ) ≤ C t−min{2/d,1} , t > t0 .

The rest of this subsection is devoted to the proofs of Theorem 7.13 as well as Corollary 7.2,
Corollary 7.6 and Corollary 7.10. We prepare this by the following Lemma. In order to deal with
the Poisson and the binomial case in parallel, we define χ(t) = t2 and χ̃(t) = t3 if µt = ηt and
χ(t) = dte(dte − 1) and χ̃(t) = (dte)3 if µt = βt.

Lemma 7.14. There is a constant CK > 0 only depending on d and K such that∣∣∣∣12E ∑
(x,y)∈µ2t, 6=

1((x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã)− κd
2

vol(B)t2d

∫ ∞
0

1(r ∈ Ã) rd−1 dr

∣∣∣∣
≤ 2CKκdt

2(ãd+1 + ã2d) +
κd
2
tãd

(7.3)

for all Borel sets B ⊂ K and Ã ⊂ [0, ã] with ã > 0. Moreover,

(7.4) χ̃(t)

∫
K

(∫
K
1((x+ y)/2 ∈ B, ‖x− y‖ ≤ u) dx

)2

dy ≤ 8t3κ2
du

2d

for all Borel sets B ⊂ K and u ≥ 0.

Proof. By the multivariate Mecke formula (2.1) for the Poisson process and its analogue (2.2) for the
binomial case we obtain that

1

2
E

∑
(x,y)∈µ2t, 6=

1((x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã)

=
χ(t)

2

∫
K

∫
K
1((x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã) dx dy

=
χ(t)

2

∫
Rd

∫
Rd

1((x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã) dx dy

− χ(t)

2

∫
(Rd)2\K2

1((x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã) d(x, y) .
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To the first term in the last expression we apply the change of variables u = x − y, v = (x + y)/2,
which has Jacobian one, and spherical coordinates to see that

χ(t)

2

∫
Rd

∫
Rd

1
(
(x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã

)
dx dy =

χ(t)

2

∫
Rd

∫
Rd

1
(
v ∈ B, ‖u‖ ∈ Ã

)
dudv

=
χ(t)

2
vol(B)dκd

∫ ∞
0

1(r ∈ Ã) rd−1 dr .

A straightforward compuatation shows that∣∣∣∣(t2 − χ(t))vol(B)
κd
2
d

∫ ∞
0

1(r ∈ Ã) rd−1 dr

∣∣∣∣ ≤ κd
2
tãd .

For the second term we have, independently of B, the upper bound

χ(t)

2

∫
(Rd)2\K2

1
(
(x+ y)/2 ∈ B, ‖x− y‖ ∈ Ã

)
d(x, y)

≤ 2t2 vol
(
{x ∈ Rd \K : dist(x,K) ≤ ã}

)
κd ã

d .

From Steiner’s formula (2.7) it follows that there is a constant CK > 0 only depending on d and K
such that

vol
(
{x ∈ Rd \K : dist(x,K) ≤ ã}

)
≤ CK (ã+ ãd) .

Combining these estimates yields the first bound. On the other hand, we have

χ̃(t)

∫
K

(∫
K
1((x+ y)/2 ∈ B, ‖x− y‖ ≤ u) dx

)2

dy ≤ 8t3
∫
K

(κdu
d)2 dy = 8t3κ2

du
2d ,

which is the second bound.

Proof of Theorem 7.13. Due to our assumption that lim
t→∞

t2θdt = ∞, we have that t0 := sup{t ≥ 1 :

t2θdt < ad} ∪ {1} <∞. Note that min{θt, t−2/da} = t−2/da for t > t0. We denote by Lt,a the intensity
measure of ξt,a. For t > t0 the choice Ã = [0,min{θt, t−2/da}] = [0, t−2/da] in (7.3) leads to∣∣Lt,a(B)− κd

2
vol(B)t2(t−2/da)d

∣∣ ≤ 2CKκdt
2(t−2−2/dad+1 + t−4a2d) +

κd
2
t−1ad

so that dTV(Lt,a,
κd
2 a

dvol|K) ≤ C1t
−min{2/d,1} for t > t0 with a constant C1 > 0 only depending on a,

d and K. Moreover, there is a constant C2 > 0 only depending on a, d and K such that Lt,a(K) ≤ C2

for all t > t0. The inequality (7.4) implies that, for t > t0,

χ̃(t)

∫
K

(∫
K
1(‖x− y‖ ≤ min{θt, t−2/da}) dx

)2

dy ≤ 8t3κ2
d(t
−2/da)2d = 8κ2

da
2dt−1.

Now, application of Theorem 3.1 completes the proof.

Proof of Corollary 7.2. The choice B = K and Ã = [0, θt] in (7.3) leads to∣∣EEt − κd
2
λ
∣∣ ≤ ∣∣κd

2
λ− κd

2
t2θdt

∣∣+
∣∣EEt − κd

2
t2θdt

∣∣
≤ κd

2

∣∣λ− t2θdt ∣∣+ 2CKκdt
2(θd+1

t + θ2d
t ) +

κd
2
tθdt

≤ κd
2
|λ− t2θdt |+ 2CKκd

(
(supt≥1 t

2θdt )
1+1/d

t2/d
+

(supt≥1 t
2θdt )

2

t2

)
+
κd
2

supt≥1 t
2θdt

t

for t ≥ 1, which also implies that EEt is bounded by a constant only depending on d, K and supt≥1 t
2θdt

for t ≥ 1. It follows from (7.4) that

χ̃(t)

∫
K

(∫
K
1(‖x− y‖ ≤ θt) dx

)2

dy ≤ 8t3κ2
dθ

2d
t ≤ 8κ2

d

(supt≥1 t
2θdt )

2

t
.

Now, the assertion is a consequence of Theorem 7.1.
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Proof of Corollary 7.6. We assume that b 6= 0 in the following since for b = 0 the assertion follows
from Corollary 7.2. For a Borel set A ⊂ [0,∞) we define A1/b := {a1/b : a ∈ A \ {0}}. Hence, we have
that

Lt(A) :=
1

k!
E

∑
(x,y)∈µ2t, 6=

1(‖x− y‖ ≤ θt, ‖x− y‖b ∈ t−2b/dA \ {0})

=
1

k!
E

∑
(x,y)∈µ2t,6=

1(‖x− y‖ ∈ t−2/dA1/b ∩ [0, θt]) .

Moreover, we define

M(A) :=
κd
2
d

∫ λ1/d

0
1(r ∈ A1/b) rd−1 dr , A ∈ B(R) .

For a Borel set A ⊂ [0,∞) inequality (7.3) with B = K and Ã = t−2/dA1/b ∩ [0, θt] implies that

|Lt(A)−M(A)| ≤
∣∣∣∣κd2 t2d

∫ ∞
0

1(r ∈ t−2/dA1/b ∩ [0, θt]) r
d−1 dr − κd

2
d

∫ λ1/d

0
1(r ∈ A1/b) rd−1 dr

∣∣∣∣
+ 2CKκdt

2(θd+1
t + θ2d

t ) +
κd
2
tθdt

≤ κd
2
|λ− t2θdt |+ 2CKκd

(
(supt≥1 t

2θdt )
1+1/d

t2/d
+

(supt≥1 t
2θdt )

2

t2

)
+
κd
2

supt≥1 t
2θdt

t
.

Hence, there are constants C1, C2 > 0 only depending on d, K and supt≥1 t
2θdt such that dTV(Lt,M) ≤

C1t
−min{2/d,1} for t ≥ 1 and Lt(R) ≤ C2 for t ≥ 1. It follows from (7.4) that

χ̃(t)

∫
K

(∫
K
1(‖x− y‖ ≤ θt) dx

)2

dy ≤ 8t3κ2
dθ

2d
t ≤ 8κ2

d

(supt≥1 t
2θdt )

2

t
.

Now, application of Theorem 7.4 completes the proof.

Proof of Corollary 7.10. In the following, we check that the assumptions of Theorem 7.8 are satisfied
for ht(x, y) = (2/κd)

τ/d‖x − y‖−τ with α = d/τ and γ = 2. For a Borel set A ⊂ [0,∞) and t ≥ 1 we
have that

Lt(A) :=
1

2
E

∑
(x,y)∈µ2t, 6=

1(κd‖x− y‖d/2 ∈ t−2A) =
1

2
E

∑
(x,y)∈µ2t,6=

1(‖x− y‖ ∈ (2/κd)
1/dt−2/dA1/d)

with A1/d := {x1/d : x ∈ A}. In the following let M be the restriction of the Lebesgue measure to R+

and let a > 0. Since

κd
2
t2d

∫ ∞
0

1(r ∈ (2/κd)
1/dt−2/d(A ∩ [0, a])1/d) rd−1 dr

=
κd
2

∫ ∞
0

1(u ∈ (2/κd)t
−2(A ∩ [0, a])) du =

∫ ∞
0

1(u ∈ A ∩ [0, a]) du = M|[0,a](A) ,

application of (7.3) with B = K and Ã = (2/κd)
1/dt−2/d(A ∩ [0, a])1/d yields that∣∣Lt|[0,a](A)−M|[0,a](A)

∣∣ ≤ 2CKκdt
2(cd+1

a t−2−2/d + c2d
a t
−4) +

κd
2
t−1cda

with ca = (2a/κd)
1/d. Consequently, there is a constant C1 > 0 only depending on d and K such that

dTV(Lt|[0,a],M|[0,a]) ≤ C1(a1+1/dt−2/d + a2t−2 + at−1) =: g1(a, t) , t ≥ 1 .
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It follows from (7.4) that

χ̃(t)

∫
K

(∫
K
1(κd‖x− y‖d/2 ≤ t−2a) dx

)2

dy

= χ̃(t)

∫
K

(∫
K
1(‖x− y‖ ≤ (2/κd)

1/dt−2/da1/d) dx

)2

dy ≤ 8t3κ2
d(2/κd)

2t−4a2 = 32t−1a2 =: g2(a, t) .

Moreover, we have that

t−2τ/d

2
E

∑
(x,y)∈µ2t,6=

1((2/κd)
τ/d‖x− y‖−τ ≤ t2τ/da−τ/d) ‖x− y‖−τ

≤ dκdt2−2τ/d

∫ ∞
(κd/2)1/dt−2/da1/d

r−τrd−1 dr =
dκd
τ − d

(κd/2)1−τ/da1−τ/d =: g3(a, t) .

Now, Theorem 7.8 completes the proof.

7.5 Proximity of Poisson flats

For a space dimension d ≥ 2 and a dimension parameter m ≥ 1 satisfying m < d/2, we investigate
the mutual arrangement of the flats of a Poisson m-flat process, that is, a Poisson process on the
space of m-dimensional affine subspaces of Rd, which are called m-flats. In order to define such a
Poisson m-flat process in a rigorous way, recall that Gd

m and Adm stand for the space of m-dimensional
linear and m-dimensional affine subspaces of Rd, respectively. Let Q be a probability measure on
Gd
m with the property that two independent random subspaces L,M ∈ Gd

m with distribution Q are
almost surely in general position, meaning that the dimension of the linear hull of L and M is 2m with
probability one. Note that this is satisfied, for example, if Q is absolutely continuous with respect to
the unique Haar probability measure on Gd

m, cf. [38, Theorem 4.4.5 (c)]. The measure Q induces a
translation-invariant measure Kt on Adm via

(7.5)

∫
Adm

g(E)Kt(dE) = t

∫
Gdm

∫
E⊥0

g(E0 + x) volE⊥0
(dx)Q(dE0) ,

where t ≥ 1 is an intensity parameter, g ≥ 0 is a measurable function on Adm and volE⊥0
denotes the

Lebesgue measure on E⊥0 , the orthogonal complement of E0. We use the convention K := K1 and can
re-write Kt as Kt = tK. We now consider a Poisson process ηt with intensity measure Kt. This is
what is usually called a Poisson m-flat process in stochastic geometry [38, Chapter 4.4]. One particular
problem for such m-flat processes is to describe the mutual arrangement of the flats in space. Since
m < d/2, any two different flats E,F of ηt do not intersect each other with probability one. Thus,
they have a well defined distance dist(E,F ), and we denote by m(E,F ) the midpoint of the almost
surely uniquely determined line segment realizing this distance (the perpendicular of E and F ). We
are interested here in the point process of the midpoints m(E,F ) such that the flats E,F are close
together and m(E,F ) is in a compact convex set K ⊂ Rd of volume 0 < vol(K) <∞. To the best of
our knowledge, Theorem 7.15 is the first result describing its asymptotic behaviour, as t→∞. To do
so, we define for t ≥ 1 and a > 0, ξt,a on K by

ξt,a :=
1

2

∑
(E,F )∈η2t, 6=

δm(E,F ) 1(dist(E,F ) ≤ at−2/(d−2m), m(E,F ) ∈ K) .

The intensity measure Lt,a(B) of ξt,a for a Borel set B ⊂ K is given by

Lt,a(B) =
t2

2

∫
Adm

∫
Adm

1(m(E,F ) ∈ B, dist(E,F ) ≤ at−2/(d−2m))K(dE)K(dF )
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due to the multivariate Mecke formula (2.1). It follows from [44, Theorem 1] (it is readily checked
that the identity there extends from compact convex sets to general Borel sets) that

Lt,a(B) =
t2

2
κd−2m(at−2/(d−2m))d−2mvol(B)

∫
Gdk

∫
Gdk

[M,L]Q(dL)Q(dM) ,

where [M,L] stands for the subspace determinant of M and L introduced in Section 2. This leads to

Lt,a(B) =
κd−2m

2
vol(B) ad−2m

∫
Gdm

∫
Gdm

[L,M ]Q(dL)Q(dM) .

Now, putting

(7.6) C :=
κd−2m

2

∫
Gdm

∫
Gdm

[L,M ]Q(dL)Q(dM) ,

we see that
dTV

(
Lt,a,C ad−2m vol|K

)
= 0 ,

where vol|K stands for the restriction of the Lebesgue measure on Rd to K. Moreover, the proof of
[44, Theorem 3] shows that there is a constant Ĉ > 0 only depending on a, d, m, Q and K such that

r̂t := sup
E∈Adm

t

∫
Adm

1(m(E,F ) ∈ K,dist(E,F ) ≤ at−2/(d−2m))K(dF ) ≤ Ĉ t−1 .

From this we conclude that

rt := t3
∫
Adm

(∫
Adm

1(m(E,F ) ∈ K,dist(E,F ) ≤ at−2/(d−2m))K(dE)

)2

K(dF ) ≤ Ĉ Lt,a(K) t−1

and in view of Theorem 3.1 the following result for the midpoint process ξt,a.

Theorem 7.15. Let a > 0 and let ζ be a Poisson process with intensity measure C ad−2m vol|K , where
C is as at (7.6). Then there is a constant C > 0 depending on a, d, m, Q and K such that

dKR(ξt,a, ζ) ≤ C t−1, t ≥ 1 .

Remark 7.16. (i) Note that because of (2.8), the constant C takes the particularly appealing form

C =
1

2

(
d−m
m

)(
d
m

) κ2
d−m
κd

if Q is the invariant Haar probability measure on Gd
m (or, equivalently, if the m-flat process is

stationary and isotropic, see [38]).

(ii) As opposed to our previous applications, we do not consider a binomial counterpart to Theorem
7.15. The reason for that is that there is no normalization, which would turn the measure K1

defined at (7.5) into a probability measure.

(iii) Theorem 7.15 extends Theorem 7.13 from m = 0 (which has been excluded here for technical
reasons) to arbitrary m satisfying m < d/2. However, due to the slightly different set-ups (an
underlying point process on the compact set K vs. a point process on the non-compact space
Adm), there are boundary effects in the context of Theorem 7.13, implying that the total variation
distance dTV(Lt,a,M) is not identically zero there. These boundary effects are not present for
m ≥ 1, which eventually leads to the rate O(t−1) for the Kantorovich-Rubinstein distance in
this case.
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Figure 1: Illustration of the argument used in the derivation of Theorem 7.17

7.6 Random polytopes with vertices on the sphere

Let Sd−1 be the unit sphere of dimension d − 1 (d ≥ 2). Let µt be a Poisson process ηt on Sd−1

whose intensity measure is a constant multiple t ≥ 1 of the normalized spherical Lebesgue measure
or a binomial process βt of dte independent and uniformly chosen points on Sd−1. The convex hull
conv(µt) of µt is a random polytope with vertices on Sd−1, and we denote by Dt the diameter of
conv(µt), that is,

Dt := max
(x,y)∈µ2t, 6=

‖x− y‖ .

More generally, define the point process of all reversed interpoint distances by

ξt =
1

2

∑
(x,y)∈µ2t,6=

δ2−‖x−y‖ .

Clearly, Dt is then two minus the distance from the origin to the closest point of ξt. We define

Lt(A) :=
1

2
E

∑
(x,y)∈µ2t, 6=

1(t4/(d−1)(2− ‖x− y‖) ∈ A) , A ⊂ R+ Borel.

Let χ(t) := t2 in the Poisson case and χ(t) := dte(dte − 1) in the binomial case. Applying the Mecke
formula (2.1) or its analogue (2.2) for binomial processes, respectively, we see that

Lt([0, a]) =
χ(t)

2(dκd)2

∫
Sd−1

∫
Sd−1

1(‖x− y‖ ≥ 2− at−4/(d−1))Hd−1(dx)Hd−1(dy) ,

where dκd is the surface area of Sd−1 and Hd−1 stands for the (d− 1)-dimensional Hausdorff measure.
For fixed y ∈ Sd−1, the indicator function is one if and only if the point x is contained in a certain
spherical cap Sd−1 ∩ Bd(−y, r) centred at the antipodal point −y of y, whose radius r has to be
determined. For this, we refer to Figure 1 and notice that (2 − s)2 + r2 = 4 so that r =

√
4s− s2.

Hence, the (d− 1)-dimensional volume of Sd−1 ∩Bd(−y, r) is given by

(d− 1)κd−1

∫ 2s−s2/2

0
(2h− h2)(d−3)/2 dh ,

independently of y. Using the substitution h = 2ut−4/(d−1) − u2t−8/(d−1)/2 this means that

Lt([0, a]) =
χ(t)

2dκd
(d− 1)κd−1

∫ 2at−4/(d−1)−a2t−8/(d−1)/2

0
(2h− h2)(d−3)/2 dh

=
χ(t)

2dκd
(d− 1)κd−1

∫ a

0

(
4ut−4/(d−1) − u2t−8/(d−1) − (2ut−4/(d−1) − u2t−8/(d−1)/2)2

)(d−3)/2

× (2t−4/(d−1) − ut−8/(d−1)) du
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=
1

2dκd

χ(t)

t2
(d− 1)κd−1

∫ a

0

(
4u− u2t−4/(d−1) − t−4/(d−1)(2u− u2t−4/(d−1)/2)2

)(d−3)/2

× (2− ut−4/(d−1)) du .

Hence, we have for any Borel set A ⊂ R+ that

Lt(A) =
(d− 1)κd−1

2dκd

χ(t)

t2

∫
A

(
4u− u2t−4/(d−1) − t−4/(d−1)(2u− u2t−4/(d−1)/2)2

)(d−3)/2

× (2− ut−4/(d−1)) du .

The measure Lt converges, as t→∞ and in the strong sense, to a measure M on R+ given by

(7.7) M(A) :=
d− 1

dκd
κd−12d−3

∫
A
u(d−3)/2 du , A ⊂ R+ Borel .

Moreover, for any bounded Borel set B ⊂ R+ there is a constant c1,B > 0 only depending on B and
the space dimension d such that

dTV(Lt|B,M|B) ≤ c1,Bt
−min{4/(d−1),1}, t ≥ 1 .

Here, we have used that |χ(t)/t2− 1| ≤ t−1 for t ≥ 1. Let χ̃(t) := t in the Poisson case and χ̃(t) := dte
in the binomial case. The same arguments as above also show that

r̂t(B) := sup
x∈Sd−1

χ̃(t)

dκd

∫
Sd−1

1(2− ‖x− y‖ ∈ t−4/(d−1)B)Hd−1(dy) ≤ c2,B t
−1

with a constant c2,B > 0 only depending on B and d so that Lt(B) r̂t(B) ≤ c2,B Lt(B) t−1. Combining
Corollary 3.3 and Remark 3.4 (iii) we conclude the following result.

Theorem 7.17. Let ζ be a Poisson process on R+ with intensity measure given by (7.7) and let ξt be
derived from a Poisson process ηt or a binomial process βt on Sd−1. Then, for any bounded Borel set
B ⊂ R+ there is a constant CB,d > 0 only depending on B and d such that

dKR

(
(t4/(d−1) • ξt)|B, ζ|B

)
≤ CB,d t−min{4/(d−1),1}, t ≥ 1 .

In particular, for the diameter Dt of the random polytope, constructed from a Poisson process ηt or a
binomial process βt, we have∣∣P(t4/(d−1)(2−Dt) > a)− e−

1
dκd

κd−12d−2a(d−1)/2∣∣ ≤ Ca,d t−min{4/(d−1),1}, t ≥ 1,

with a constant Ca,d > 0 only depending on a > 0 and d.

Remark 7.18. The limiting distribution for the diameter is also derived in [30, Theorem 5.2] and [26,
Theorem 3.1], where the latter one allows the underlying random points to have distributions different
from the uniform distribution. While the result in [30] does not give any rates of convergence, in
[26, Theorem 3.1] it has erroneously been claimed that the rate of convergence for Dt to its limiting
Weibull random variable is of order t−1. However, in our notation the rate of convergence stated in
(2.5) in [26] concerns only the difference to a Weibull random variable with parameter Lt([0, a]) and
not to a Weibull random variable with parameter M([0, a]) as stated by the authors. For the difference
to a Weibull random variable with parameter Lt([0, a]) our result also yields a rate of order t−1 since
dTV(Lt|[0,a],Lt|[0,a]) = 0 in this case.
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