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In [Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité, Annals of Math. 151 (2000), 705-740], André has introduced E-operators, a class of differential operators intimately related to E-functions, and constructed local bases of solutions for these operators. In this paper we investigate the arithmetical nature of connexion constants of E-operators at finite distance, and of Stokes constants at infinity. We prove that they involve values at algebraic points of E-functions in the former case, and in the latter one, values of G-functions and of derivatives of the Gamma function at rational points in a very precise way. As an application, we define and study a class of numbers having certain algebraic approximations defined in terms of E-functions. These types of approximations are motivated by the convergents to the number e, as well as by recent constructions of approximations to Euler's constant and values of the Gamma function. Our results and methods are completely different from those in our paper [On the values of G-functions, Commentarii Math. Helv., to appear], where we have studied similar questions for G-functions.

Introduction

In a seminal paper [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF], André has introduced E-operators, a class of differential operators intimately related to E-functions, and constructed local bases of solutions for these operators. In this paper we investigate the arithmetical nature of connexion constants of E-operators, and prove that they involve values at algebraic points of E-functions or G-functions, and values at rational points of derivatives of the Gamma function. As an application, we will focus on algebraic approximations to such numbers, in connection with Aptekarev's famous construction for Euler's constant γ.

To begin with, let us recall the following definition.

Definition 1. An E-function E is a formal power series E(z) = ∞ n=0 an n! z n such that the coefficients a n are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of a n is ≤ C n+1 for any n.

(ii) there exists a sequence of rational integers d n , with |d n | ≤ C n+1 , such that d n a m is an algebraic integer for all m ≤ n.

(iii) F (z) satisfies a homogeneous linear differential equation with coefficients in Q(z).

A G-function is defined similarly, as ∞ n=0 a n z n with the same assumptions (i), (ii), (iii); throughout the paper we fix a complex embedding of Q.

We refer to [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF] for an overview of the main properties of E and G-functions. For the sake of precision, we mention that the class of E-functions was first defined by Siegel in a more general way, with bounds of the shape n! ε for any ε > 0 and any n ≫ ε 1, instead of C n+1 for all n ∈ N = {0, 1, 2, . . .}. The functions covered by Definition 1 are called E * -functions by Shidlovskii [START_REF] Shidlovskii | Transcendental Numbers[END_REF], and are the ones used in the recent litterature under the denomination E-functions (see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF][START_REF] Beukers | A refined version of the Siegel-Shidlovskii theorem[END_REF][START_REF] Lagarias | Euler's constant: Euler's work and modern developments[END_REF]); it is believed that both classes coincide.

Examples of E-functions include e αz with α ∈ Q, hypergeometric series p F p with rational parameters, and Bessel functions. Very precise transcendence (and even algebraic independence) results are known on values of E-functions, such as the Siegel-Shidlovskii theorem [START_REF] Shidlovskii | Transcendental Numbers[END_REF]. Beukers' refinement of this result enables one to deduce the following statement (see §3.1), whose analogue is false for G-functions (see [START_REF] Beukers | Algebraic values of G-functions[END_REF] for interesting non-trivial examples): Theorem 1. An E-function with coefficients in a number field K takes at an algebraic point α either a transcendental value or a value in K(α).

In this paper we consider the following set E, which is analogous to the ring G of values at algebraic points of analytic continuations of G-functions studied in [START_REF] Fischler | On the values of G-functions[END_REF]; we recall that G might be equal to P[1/π], where P is the ring of periods (in the sense of Kontsevich-Zagier [START_REF] Kontsevich | Periods[END_REF]: see §2.2 of [START_REF] Fischler | On the values of G-functions[END_REF]). Definition 2. The set E is defined as the set of all values taken by any E-function at any algebraic point.

Since E-functions are entire and E(αz) is an E-function for any E-function E(z) and any α ∈ Q, we may restrict to values at z = 1. Moreover E-functions form a ring, so that E is a subring of C. Its group of units contains Q * and exp(Q) because algebraic numbers, exp(z) and exp(-z) are E-functions. Other elements of E include values at algebraic points of Bessel functions, and also of any arithmetic Gevrey series of negative order (see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF], Corollaire 1.3.2), for instance Airy's oscillating integral. It seems unlikely that E is a field and we don't know if we have a full description of its units.

A large part of our results is devoted to the arithmetic description of connexion constants or Stokes constants. Any E-function E(z) satisfies a differential equation Ly = 0, where L is an E-operator (see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF]); it is not necessarily minimal and its only possible singularities are 0 and ∞. André has proved [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF] that a basis of solutions of L at z = 0 is of the form (E 1 (z), . . . , E µ (z)) • z M where M is an upper triangular µ × µ matrix with coefficients in Q and the E j (z) are E-functions. This implies that any local solution F (z) of L at z = 0 is of the form

F (z) = µ j=1
s∈S j k∈K j φ j,s,k z s log(z) k E j (z) (1.1) where S j ⊂ Q, K j ⊂ N are finite sets and φ j,s,k ∈ C. Our purpose is to study the connexion constants of F (z), assuming all coefficients φ j,s,k to be algebraic (with a special focus on the special case where F (z) itself is an E-function).

Any point α ∈ Q\{0} is a regular point of L and there exists a basis of local holomorphic solutions G 1 (z), . . . , G µ (z) ∈ Q[[zα]] such that, around z = α,

F (z) = ω 1 G 1 (z) + • • • + ω µ G µ (z) (1.2)
for some complex numbers ω 1 , . . . , ω µ , called the connexion constants (at finite distance).

Theorem 2. If all coefficients φ j,s,k in (1.1) are algebraic then the connexion constants ω 1 , . . . , ω µ in (1.2) belong to E[log α], and even to E if F (z) is an E-function.

The situation is much more complicated around ∞, which is in general an irregular singularity of L; this part is therefore much more involved than the corresponding one for G-functions [START_REF] Fischler | On the values of G-functions[END_REF] (since ∞ is a regular singularity of G-operators, the connexion constants of G-functions at any ζ ∈ C ∪ {∞} always belong to G). The local solutions at ∞ involve divergent series, which give rise to Stokes phenomenon: the expression of an E-function E(z) on a given basis is valid on certain angular sectors, and the connexion constants may change from one sector to another when crossing certain rays called anti-Stokes directions. For this reason, we speak of Stokes constants rather than connexion constants. More precisely, let θ ∈ R and assume that θ does not belong to some explicit finite set (modulo 2π) which contains the anti-Stokes directions. Then we compute explicitly the asymptotic expansion

E(z) ≈ ρ∈Σ e ρz α∈S i∈T ∞ n=0 c ρ,α,i,n z -n-α log(1/z) i (1.3) as |z| → ∞ in a large sector θ -π 2 -ε ≤ arg(z) ≤ θ + π 2 +
ε for some ε > 0; in precise terms, E(z) can be obtained by 1-summation from this expansion (see §4.1). Here Σ ⊂ C, S ⊂ Q and T ⊂ N are finite subsets, and the coefficients c ρ,α,i,n are complex numbers; all of them are constructed explicitly in terms of the Laplace transform g(z) of E(z), which is annihilated by a G-operator. In applying or studying (1.3) we shall always assume that the sets Σ, S and T have the least possible cardinality (so that αα ′ ∈ Z for any distinct α, α ′ ∈ S) and that for any α there exist ρ and i with c ρ,α,i,0 = 0. Then the asymptotic expansion (1.3) is uniquely determined by E(z) (see §4.1).

One of our main contributions is the value of c ρ,α,i,n , which is given in terms of derivatives of 1/Γ at α ∈ Q and connexion constants of g(z) at its finite singularities ρ. André has constructed ( [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF], Théorème 4.3 (v)) a basis H 1 (z), . . . , H µ (z) of formal solutions at infinity of an E-operator that annihilates E(z); these solutions involve Gevrey divergent series of order 1, and are of the same form as the right hand side of (1.3), with algebraic coefficients c ρ,α,i,n . The asymptotic expansion (1.3) of E(z) in a large sector bisected by θ can be written on this basis as

ω 1,θ H 1 (z) + . . . + ω µ,θ H µ (z) (1.4)
with Stokes constants ω i,θ . To identify these constants, we first introduce another important set.

Definition 3. We define S as the G-module generated by all the values of derivatives of the Gamma function at rational points. It is also the G[γ]-module generated by all the values of Γ at rational points, and it is a ring.

We show in §2 why the two modules coincide. The Rohrlich-Lang conjecture (see [START_REF] André | Une introduction aux motifs (motifs purs, motifs mixtes, périodes)[END_REF] or [START_REF] Waldschmidt | Transcendance de périodes : état des connaissances[END_REF]) implies that the values Γ(s), for s ∈ Q with 0 < s ≤ 1, are Q-linearly independent. We conjecture that these numbers are in fact also G[γ]-linearly independent, so that S is the free G[γ]-module they generate.

We then have the following result. Theorem 3. Let E(z) be an E-function, and θ ∈ R be a direction which does not belong to some explicit finite set (modulo 2π). Then:

(i) The Stokes constants ω i,θ belong to S. (ii) All coefficients c ρ,α,i,n in (1.3) belong to S. (iii) Let ρ ∈ Σ, α ∈ S, and n ≥ 0; denote by k the largest i ∈ T such that c ρ,α,i,n = 0. If k exists then for any i ∈ T the coefficient c ρ,α,i,n is a G-linear combination of Γ(α), Γ ′ (α), . . . , Γ (k-i) (α). In particular, c ρ,α,k,n ∈ Γ(α) • G. Here Γ (ℓ) (α) is understood as Γ (ℓ) (1) if α ∈ Z ≤0 .
(iv) Let F (z) be a local solution at z = 0 of an E-operator, with algebraic coefficients φ j,s,k in (1.1). Then assertions (i) and (ii) hold with F (z) instead of E(z).

Assertions (i) and (iv) of Theorem 3 precise André's remark in [1, p. 722]: "Nous privilégierons une approche formelle, qui permettrait de travailler sur Q(Γ (k) (a)) k∈N,a∈Q plutôt que sur C si l'on voulait".

An important feature of Theorem 3 (assertion (iii)) is that Γ (k) (α), for k ≥ 1 and α ∈ Q \ Z ≤0 , never appears in the coefficient of a leading term of (1.3), but only combined with higher powers of log(1/z). This motivates the logarithmic factor in (1.8) below, and explains an observation we had made on Euler's constant: it always appears through γlog(1/z) (see Eq. (4.6) in §4.2). Moreover, in (iii), it follows from the remarks made in §2 that, alternatively, c ρ,α,i,n = Γ(α) • P ρ,α,i,n (γ) for some polynomial

P ρ,α,i,n (X) ∈ G[X] of degree ≤ k -i.
The proof of Theorem 3 is based on Laplace transform, André-Chudnovski-Katz's theorem on solutions of G-operators, and a specific complex integral (see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF], p. 735).

As an application of Theorems 2 and 3, we study sequences of algebraic (or rational) approximations of special interest related to E-functions. In [START_REF] Fischler | On the values of G-functions[END_REF] we have proved that a complex number α belongs to the fraction field Frac G of G if, and only if, there exist sequences (P n ) and (Q n ) of algebraic numbers such that lim n P n /Q n = α and n≥0 P n z n , n≥0 Q n z n are G-functions. We have introduced this notion in order to give a general framework for irrationality proofs of values of G-functions such as zeta values. Such sequences are called G-approximations of α, when P n and Q n are rational numbers. We drop this last assumption in the context of E-functions (see §3.1), and consider the following definition. Definition 4. Sequences (P n ) and (Q n ) of algebraic numbers are said to be E-approxima-

tions of α ∈ C if lim n→+∞ P n Q n = α and ∞ n=0 P n z n = A(z) • E B(z) , ∞ n=0 Q n z n = C(z) • F D(z)
where E and F are E-functions, A, B, C, D are algebraic functions in

Q[[z]] with B(0) = D(0) = 0.
This definition is motivated by the fact that many sequences of approximations to classical numbers are E-approximations, for instance diagonal Padé approximants to e z and in particular the convergents of the continued fraction expansion of e (see §6.1). Elements in Frac G also have E-approximations, since G-approximations (P n ) and (Q n ) of a complex number always provide E-approximations P n /n! and Q n /n! of the same number. In §6.1, we construct E-approximations to Γ(α) for any α ∈ Q \ Z ≤0 , α < 1, by letting E α (z) = ∞ n=0 z n n!(n+α) , Q n (α) = 1, and defining P n (α) by the series expansion (for |z| < 1)

1 (1 -z) α+1 E α - z 1 -z = ∞ n=0 P n (α)z n ∈ Q[[z]];
then lim n P n (α) = Γ(α). The number Γ(α) appears in this setting as a Stokes constant. The condition α < 1 is harmless because we readily deduce E-approximations to Γ(α) for any α ∈ Q, α > 1, by means of the functional equation Γ(s + 1) = sΓ(s). Moreover, since

1 (1-z) α+1 E α -z 1 
-z is holonomic, the sequence (P n (α)) satisfies a linear recurrence, of order 3 with polynomial coefficients in Z[n, α] of total degree 2 in n and α; see §6.1. This construction is simpler than that in [START_REF]Approximations rationnelles des valeurs de la fonction Gamma aux rationnels[END_REF] but the convergence to Γ(α) is slower. Definition 4 enables us to consider an interesting class of numbers: those having Eapproximations. Of course this is a countable subset of C. We have seen that it contains all values of the Gamma function at rational points s, which are conjectured to be irrational if s ∈ Z; very few results are known in this direction (see [START_REF] Waldschmidt | Transcendance de périodes : état des connaissances[END_REF]), and using suitable Eapproximations may lead to prove new ones.

However we conjecture that Euler's constant γ does not have E-approximations: all approximations we have thought of seem to have generating functions not as in Definition 4. This is a reasonable conjecture in view of Theorem 4 we are going to state now.

Given two subsets X and Y of C, we set

X • Y = xy x ∈ X, y ∈ Y , X Y = x y x ∈ X, y ∈ Y \ {0} .
We also set Γ

(Q) = {Γ(x)|x ∈ Q \ Z ≤0 }.
If X is a ring then we denote by Frac X = X X its field of fractions. We recall [START_REF] Fischler | On the values of G-functions[END_REF] that B(x, y) belongs to the group of units G * of G for any x, y ∈ Q, so that Γ induces a group homomorphism

Q → C * /G * (by letting Γ(-x) = 1 for x ∈ N). Therefore Γ(Q) • G * is a subgroup of C * , and so is Γ(Q) • exp(Q) • Frac G; for future reference we write Γ(Q) • Γ(Q) ⊂ Γ(Q) • G and Γ(Q) Γ(Q) ⊂ Γ(Q) • G. (1.5)
Theorem 4. The set of numbers having E-approximations contains

E ∪ Γ(Q) E ∪ Γ(Q) ∪ Frac G (1.6)
and it is contained in

E ∪ (Γ(Q) • G) E ∪ (Γ(Q) • G) ∪ Γ(Q) • exp(Q) • Frac G . (1.7) 
The proof of (1.6) is constructive; the one of (1.7) is based on an explicit determination of the asymptotically dominating term of a sequence (P n ) as in Definition 4. This determination is based on analysis of singularities, the saddle point method, asymptotic expansions (1.3) of E(z), and Theorems 2 and 3; it is of independent interest (see Theorem 7 in §5). The dominating term comes from the local behaviour of E(z) at some z 0 ∈ C (providing elements of E, in connection with Theorem 2) or at infinity (providing elements of Γ(Q) • G; Theorem 3 is used in this case). This dichotomy leads to the unions in (1.6) and (1.7); it makes it unlikely for the set of numbers having E-approximations to be a field, or even a ring. We could have obtained a field by restricting Definition 4 to the case where B(z) = D(z) = z and A(z), C(z) are not polynomials, since in this case the behavior of E(z) at ∞ would not come into the play; this field would be simply Frac E.

It seems likely that there exist numbers having E-approximations but no G-approximations, because conjecturally Frac E ∩ Frac G = Q and Γ(Q) ∩ Frac G = Q. It is also an open question to prove that the number Γ (n) (s) does not have E-approximations, for n ≥ 1 and s ∈ Q \ Z ≤0 . To obtain approximations to these numbers, one can consider the following generalization of Definition 4: we replace A(z)•E(B(z)) (and also C(z)•F (D(z))) with a finite sum i,j,k,ℓ

α i,j,k,ℓ log(1 -A i (z)) j • B k (z) • E ℓ C(z) (1.8)
where

α i,j,k,ℓ ∈ Q, A i (z), B k (z), C(z) are algebraic functions in Q[[z]], A i (0) = C(0) = 0, and E ℓ (z) are E-functions. For instance, let us consider the E-function E(z) = ∞ n=1 z n n!n
and define P n by the series expansion (for |z| < 1)

log(1 -z) 1 -z - 1 1 -z E - z 1 -z = ∞ n=0 P n z n ∈ Q[[z]]. (1.9) 
Then we prove in §6.3 that lim n P n = γ, so that letting Q n = 1 we obtain E-approximations of Euler's constant in this extended sense. Since log(1-z)

1-z -1 1-z E -z 1 
-z is holonomic, the sequence (P n ) satisfies a linear recurrence, of order 3 with polynomial coefficients in Z[n] of degree 2; see §6.3. Again, this construction is much simpler than those in [START_REF]Rational approximants for Euler constant and recurrence relations, Sovremennye Problemy Matematiki[END_REF][START_REF] Kh | On a continued fraction expansion for Euler's constant[END_REF][START_REF]Rational approximations for values of derivatives of the Gamma function[END_REF] but the convergence to γ is slower. A construction similar to (1.9), based on an immediate generalization of the final equation for Γ (n) (1) in [START_REF]On the arithmetic nature of the values of the Gamma function, Euler's constant et Gompertz's constant[END_REF], shows that the numbers Γ (n) (s) have E-approximations in the extended sense of (1.8) for any integer n ≥ 0 and any rational number

s ∈ Q \ Z ≤0 .
The set of numbers having such approximations is still countable, and we prove in §6.3 that it is contained in

(E • log(Q * )) ∪ S (E • log(Q * )) ∪ S ∪ exp(Q) • Frac S (1.10) 
where log(Q

* ) = exp -1 (Q * ).
The generalization (1.8) does not cover all interesting constructions of approximations to derivatives of Gamma values in the literature. For instance, it does not seem that Aptekarev's or the second author's approximations to γ (in [START_REF]Rational approximants for Euler constant and recurrence relations, Sovremennye Problemy Matematiki[END_REF] and [START_REF]Rational approximations for values of derivatives of the Gamma function[END_REF] respectively) can be described by (1.8). This is also not the case of Hessami-Pilehrood's approximations to Γ (n) (1) in [START_REF] Kh | Rational approximations to values of Bell polynomials at points involving Euler's constant and zeta values[END_REF][START_REF] Kh | On a continued fraction expansion for Euler's constant[END_REF] but in certain cases their generating functions involve sums of products of E-functions at various algebraic functions, rather linear forms in E-functions at one algebraic function as in (1.8). Another possible generalization of (1.8) is to let α i,j,k,ℓ ∈ E; we describe such an example in §6.3, related to the continued fraction [0; 1, 2, 3, 4, . . .] whose partial quotients are the consecutive positive integers.

The structure of this paper is as follows. In §2, we discuss the properties of S. In §3 we prove our results at finite distance, namely Theorems 1 and 2. Then we discuss in §4.1 the definition and basic properties of asymptotic expansions. This allows us to prove Theorem 3 in §4, and to determine in §5 the asymptotic behavior of sequences (P n ) as in Definition 4. Finally, we gather in §6 all results related to E-approximations.

Structure of S

In this short section, we discuss the structural properties of the G-module S generated by the numbers Γ (n) (s), for n ≥ 0, s ∈ Q \ Z ≤0 . It is not used in the proof of our theorems.

The Digamma function Ψ is defined as the logarithmic derivative of the Gamma function. We have

Ψ(x) = -γ + ∞ k=0 1 k + 1 - 1 k + x and Ψ (n) (x) = ∞ k=0 (-1) n+1 n! (k + x) n+1 (n ≥ 1).
From the relation Γ ′ (x) = Ψ(x)Γ(x), we can prove by induction on the integer n ≥ 0 that

Γ (n) (x) = Γ(x) • P n Ψ(x), Ψ (1) (x), . . . , Ψ (n-1) (x)
where P n (X 1 , X 2 , . . . , X n ) is a polynomial with integer coefficients. Moreover, the term of maximal degree in

X 1 is X n 1 . It is well-known that Ψ(s) ∈ -γ + G (Gauss' formula, [3, p. 13, Theorem 1.2.7]) and that Ψ (n) (s) ∈ G for any n ≥ 1 and any s ∈ Q \ Z ≤0 . It follows that Γ (n) (s) = Γ(s) • P n Ψ(s), Ψ (1) (s), . . . , Ψ (n-1) (s) = Γ(s) • Q n,s (γ) (2.1)
where Q n,s (X) is a polynomial with coefficients in G, of degree n and leading coefficient equal to (-1) n .

We are now ready to prove that S coincides with the G[γ]-module S generated by the numbers Γ(s), for s ∈ Q \ Z ≤0 . Indeed, Eq. (2.1) shows immediately that S ⊂ S. For the converse inclusion S ⊂ S, it is enough to show that Γ(s)γ n ∈ S for any n ≥ 0, s ∈ Q \ Z ≤0 . This can be proved by induction on n from (2.1) because we can rewrite it as

Γ(s)γ n = (-1) n Γ (n) (s) + Γ(s) • Q n,s (γ)
for some polynomial Q n,s (X) with coefficients in G and degree ≤ n -1.

The module S is easily proved to be a ring. Indeed, defining Euler's Beta function B(x, y) = Γ(x)Γ(y) Γ(x+y) , then for any x, y ∈ Q \ Z ≤0 we have Γ(x)Γ(y) = Γ(x + y)B(x, y) ∈ S because B(x, y) ∈ G (see [START_REF] Fischler | On the values of G-functions[END_REF]). This can also be proved directly from the definition of S: for any x, y ∈ Q \ Z ≤0 , we have

Γ (m) (x)Γ (n) (y) = ∂ m+n ∂x m ∂y n Γ(x + y)B(x, y) = m i=0 n j=0 m i n j Γ (i+j) (x + y) ∂ m+n-i-j ∂x m-i ∂y n-j B(x, y) ∈ S because ∂ m+n-i-j
∂x m-i ∂y n-j B(x, y) ∈ G, arguing as in [START_REF] Fischler | On the values of G-functions[END_REF] for the special case mi = nj = 0.

3 First results on values of E-functions

Around Siegel-Shidlovskii and Beukers' theorems

To begin with, let us mention the following result. It is proved in [START_REF] Fischler | On the values of G-functions[END_REF] (and due to the referee of that paper) in the case K = Q(i); actually the same proof, which relies on Beukers' version [START_REF] Beukers | A refined version of the Siegel-Shidlovskii theorem[END_REF] of the Siegel-Shidlvoskii theorem, works for any K.

Theorem 5. Let E(z) be an E-function with coefficients in some number field K, and

α, β ∈ Q be such that E(α) = β or E(α) = e β . Then β ∈ K(α).
This result implies Theorem 1 stated in the introduction; without further hypotheses E(α) may really belong to K(α), since if E(z) is an E-function then so is (zα)E(z).

Theorem 5 shows that if we restrict the coefficients of E-functions to a given number field then the set of values we obtain is a proper subset of E. In this respect the situation is completely different from the one with G-functions, since any element of G can be written [START_REF] Fischler | On the values of G-functions[END_REF] as f (1) for some G-function f with Taylor coefficients in Q(i). This is also the reason why we did not restrict to rational numbers P n , Q n in Definition 4.

Connexion constants at finite distance

Let us prove Theorem 2 stated in the introduction; the strategy is analogous to the corresponding one with G-functions [START_REF] Fischler | On the values of G-functions[END_REF], and even easier because E-functions are entire.

Proof. We write

L = d µ dz µ + a µ-1 (z) d µ-1 dz µ-1 + • • • + a 1 (z) d dz + a 0 (z),
where a j ∈ Q(z). Then z = 0 is the only singularity at finite distance of L, and it is a regular singularity with rational exponents (see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF]). Hence, any wronskian W (z) of L, i.e. any solution of the differential equation y ′ (z) + a µ-1 (z)y(z) = 0, is of the form W (z) = cz ρ with c ∈ C and ρ ∈ Q. We denote by W G (z) the wronskian of L built on the functions G 1 (z), . . . , G µ (z):

W G (z) = G 1 (z) • • • G µ (z) G (1) 1 (z) • • • G (1) µ (z) . . . • • • . . . G (µ-1) 1 (z) • • • G (µ-1) µ (z) 
.

All functions G

(k) j (z) are holomorphic at z = α with Taylor coefficients in Q. Hence, W G (α) ∈ Q and is non zero because we also have W G (α) = cα ρ for some c, with c = 0 because the G j form a basis of solutions of L.

We now differentiate (1.2) to obtain the relations

F (k) (z) = µ j=1 ω j G (k) j (z), k = 0, . . . , µ -1
for any z in some open disk D centered at z = α. We interpret these equations as a linear system with unknowns ω j , and solve it using Cramer's rule. We obtain this way that

ω j = 1 W G (z) G 1 (z) • • • G j-1 (z) F (z) G j+1 (z) • • • G µ (z) G (1) 1 (z) • • • G (1) j-1 (z) F (1) (z) G (1) j+1 (z) • • • G (1) µ (z) . . . • • • . . . . . . . . . • • • . . . G (µ-1) 1 (z) • • • G (µ-1) j-1 (z) F (µ-1) (z) G (µ-1) j+1 (z) • • • G (µ-1) µ (z) (3.1) for any z ∈ D \ {0}, since W G (z) = 0. We now choose z = α. As already said, 1/W G (α), G (k) j (α) ∈ Q ⊂ E.
If we assume that F (z) is an E-function, this is also the case of its derivatives, so that F (k) (α) ∈ E for all k ≥ 0 and (3.1) implies that ω j ∈ E. To prove the general case, we simply observe that if F (z) is given by (1.1) with algebraic coefficients φ j,s,k then all derivatives of F (z) at z = α belong to E[log(α)].

Stokes constants of E-functions

In this section we construct explicitly the asymptotic expansion of an E-function: our main result is Theorem 6, stated in §4.2 and proved in §4.3. Before that we discuss in §4.1 the asymptotic expansions used in this paper. Finally we show in §4.4 that Theorem 6 implies Theorem 3.

Throughout this section, we let Γ := 1/Γ for simplicity.

Asymptotic expansions

The asymptotic expansions used throughout this paper are defined as follows.

Definition 5. Let θ ∈ R, and Σ ⊂ C, S ⊂ Q, T ⊂ N be finite subsets. Given complex numbers c ρ,α,i,n , we write

f (x) ≈ ρ∈Σ e ρx α∈S i∈T ∞ n=0 c ρ,α,i,n x -n-α (log(1/x)) i (4.1)
and say that the right hand side is the asymptotic expansion of f (x) in a large sector bisected by the direction θ, if there exist ε, R, B, C > 0 and, for any ρ ∈ Σ, a function

f ρ (x) holomorphic on U = x ∈ C, |x| ≥ R, θ - π 2 -ε ≤ arg(x) ≤ θ + π 2 + ε , such that f (x) = ρ∈Σ e ρx f ρ (x)
and

f ρ (x) - α∈S i∈T N -1 n=0 c ρ,α,i,n x -n-α (log(1/x)) i ≤ C N N !|x| B-N
for any x ∈ U and any N ≥ 1.

This means exactly (see [16, § §2.1 and 2.3]) that for any ρ ∈ Σ,

α∈S i∈T N -1 n=0 c ρ,α,i,n x -n-α (log(1/x)) i (4.2)
is 1-summable in the direction θ and its sum is f ρ (x). In particular, using a result of Watson (see [16, §2.3]), the sum f ρ (x) is determined by its expansion (4.2). Therefore the asymptotic expansion on the right hand side of (4.1) determines the function f (x) (up to analytic continuation). The converse is also true, as the following lemma shows.

Lemma 1. A given function f (x) can have at most one asymptotic expansion in the sense of Definition 5.

Of course we assume implicitly in Lemma 1 (and very often in this paper) that Σ, S and T in (4.1) cannot trivially be made smaller, and that for any α there exist ρ and i with c ρ,α,i,0 = 0.

Proof. We proceed by induction on the cardinality of Σ. If the result holds for proper subsets of Σ, we choose θ ′ very close to θ such that the complex numbers ρe iθ ′ , ρ ∈ Σ, have pairwise distinct real parts and we denote by ρ 0 the element of Σ for which Re (ρ 0 e iθ ′ ) is maximal. Then the asymptotic expansion (4.2) of f ρ 0 (x) is also an asymptotic expansion of e -ρ 0 x f (x) as |x| → ∞ with arg(x) = θ ′ , in the usual sense (see for instance [8, p. 182]); accordingly it is uniquely determined by f , so that its 1-sum f ρ 0 (x) is also uniquely determined by f . Applying the induction procedure to f (x)e ρ 0 x f ρ 0 (x) with Σ \ {ρ 0 } concludes the proof of Lemma 1.

Notation and statement of Theorem 6

We consider a non-polynomial E-function E(x) such that E(0) = 0, and write

E(x) = ∞ n=1 a n n! x n .
Its associated G-function is

G(z) = ∞ n=1 a n z n .
We denote by D a G-operator such that FDE = 0, where

F : C[z, d dz ] → C[x, d dx ]
is the Fourier transform of differential operators, i.e. the morphism of C-algebras defined by

F(z) = d dx and F( d dz ) = -x.
Recall that such a D exists because E is annihilated by an E-operator, and any E-operator can be written as FD for some G-operator D.

We let g(z) = 1 z G( 1 z ), so that ( d dz ) δ Dg = 0 where δ is the degree of D (i.e. the order of FD; see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF], p. 716). This function is the Laplace transform of E(x): for Re (z) > C, where C > 0 is such that |a n | ≪ C n , we have

g(z) = ∞ 0 E(x)e -xz dx.
From the definition of g(z) and the assumption E(0) = 0 we deduce that g(z

) = O(1/|z| 2 ) as z → ∞.
We denote by Σ the set of all finite singularities ρ of D; observe that ( d dz ) δ D has the same singularities as D. We also let

S = R \ {arg(ρ -ρ ′ ), ρ, ρ ′ ∈ Σ, ρ = ρ ′ }
where all the values modulo 2π of the argument of ρρ ′ are considered, so that S + π = S.

The directions θ ∈ R \ (-S) (i.e., such that (ρρ ′ )e iθ is real for some ρ = ρ ′ in Σ) may be anti-Stokes (or singular, see for instance [15, p. 79]): when crossing such a direction, the renormalized sum of a formal solution at infinity of D may change. In this paper we restrict to directions θ ∈ -S.

For any ρ ∈ Σ we denote by ∆ ρ = ρe -iθ R + the half-line of angle -θ + π mod 2π starting at ρ. Since -θ ∈ S, no singularity ρ ′ = ρ of D lies on ∆ ρ : these half-lines are pairwise disjoint. We shall work in the simply connected cut plane obtained from C by removing the union of these closed half-lines. We agree that for ρ ∈ Σ and z in the cut plane, arg(zρ) will be chosen in the open interval (-θπ, -θ + π). This enables one to define log(zρ) and (zρ) α for any α ∈ Q. Now let us fix ρ ∈ Σ. Combining theorems of André, Chudnovski and Katz (see [1, p. 719]), there exist (non necessarily distinct) rational numbers t ρ 1 , . . . , t ρ J(ρ) , with J(ρ) ≥ 1, and G-functions g ρ j,k , for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j), such that a basis of local solutions of ( d dz ) δ D around ρ (in the above-mentioned cut plane) is given by the functions

f ρ j,k (z -ρ) = (z -ρ) t ρ j k k ′ =0 g ρ j,k-k ′ (z -ρ) (log(z -ρ)) k ′ k ′ ! (4.3)
for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j). Since ( d dz ) δ Dg = 0 we can expand g in this basis:

g(z) = J(ρ) j=1 K(ρ,j) k=0 ̟ ρ j,k f ρ j,k (z -ρ) (4.4) 
with connexion constants ̟ ρ j,k ; Theorem 2 of [START_REF] Fischler | On the values of G-functions[END_REF] yields ̟ ρ j,k ∈ G. We denote by {u} ∈ [0, 1) the fractional part of a real number u, and agree that all derivatives of this or related functions taken at integers will be right-derivatives. We also denote by ⋆ the Hadamard (coefficientwise) product of formal power series in z, and we let

y α,i (z) = ∞ n=0 1 i! d i dy i Γ(1 -{y}) Γ(-y -n) |y=α z n ∈ Q[[z]]
for α ∈ Q and i ∈ N. To compute the coefficients of y α,i (z), we may restrict to values of y with the same integer part as α, denoted by ⌊α⌋. Then

Γ(1 -{y}) Γ(-y -n) = Γ(-y + ⌊α⌋ + 1) Γ(-y -n) =    (-y -n) n+⌊α⌋+1 if n ≥ -⌊α⌋ 1 (-y+⌊α⌋+1) -n-⌊α⌋-1 if n ≤ -1 -⌊α⌋ (4.5)
is a rational function of y with rational coefficients, so that y α,i (z

) ∈ Q[[z]].
Even though this won't be used in the present paper, we mention that y α,i (z) is an arithmetic Gevrey series of order 1 (see [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF]); in particular it is divergent for any z = 0 (unless it is a polynomial, namely if i = 0 and α ∈ Z).

Finally, we define

η ρ j,k (1/x) = k m=0 (y t ρ j ,m ⋆ g ρ j,k-m )(1/x) ∈ Q[[1/x]]
for any 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(j, ρ); this is also an arithmetic Gevrey series of order 1. It is not difficult to see that

η ρ j,k (1/x) = 0 if f ρ j,k (z -ρ
) is holomorphic at ρ. Indeed in this case k = 0 and t ρ j ∈ Z; if t ρ j ≥ 0 then y t ρ j ,0 is identically zero, and if t ρ j ≤ -1 then y t ρ j ,0 is a polynomial in z of degree -1t ρ j whereas g ρ j,0 has valuation at least -t ρ j . The main result of this section is the following asymptotic expansion, valid in the setting of Definition 5 for θ ∈ -S. It is at the heart of Theorem 3; recall that we assume here E(0) = 0, and that we let Γ = 1/Γ. Theorem 6. We have

E(x) ≈ ρ∈Σ e ρx J(ρ) j=1 K(j,ρ) k=0 ̟ ρ j,k x -t ρ j -1 k i=0 k-i ℓ=0 (-1) ℓ ℓ! Γ (ℓ) (1 -{t ρ j })η ρ j,k-ℓ-i (1/x) (log(1/x)) i i! .
We observe that the coefficients are naturally expressed in terms of Γ (ℓ) . Let us write Theorem 6 in a slightly different way. For t ∈ Q and s ∈ N, let

λ t,s (1/x) = s ν=0 (-1) s-ν (s -ν)! Γ (s-ν) (1 -{t}) (log(1/x)) ν ν! .
In particular, λ t,0 (1/x) = Γ(1 -{t}) and λ t,1

(1/x) = Γ(1 -{t}) log(1/x) -Γ (1) (1 -{t}); for t ∈ Z we have λ t,1 (1/x) = log(1/x) -γ.
Then Theorem 6 reads (by letting s = i + ℓ):

E(x) ≈ ρ∈Σ e ρx J(ρ) j=1 K(j,ρ) k=0 ̟ ρ j,k x -t ρ j -1 k s=0 λ t ρ j ,s (1/x)η ρ j,k-s (1/x). (4.6)
Here we see that the derivatives of 1/Γ do not appear in an arbitrary way, but always through these sums λ t,s (1/x). In particular γ appears through λ t,1 (1/x) = log(1/x)γ, as mentioned in the introduction.

In the asymptotic expansion of Theorem 6, and in (4.6), the singularities ρ ∈ Σ at which g(z) is holomorphic have a zero contribution because for any (j, k), either ̟ ρ j,k = 0 or f ρ j,k (zρ) is holomorphic at ρ (and in the latter case, k = 0 and η ρ j,0 (1/x) = 0, as mentioned before the statement of Theorem 6). Moreover, as the proof shows (see §4.3), it is not really necessary to assume that the functions f ρ j,k (zρ) form a basis of local solutions of ( d dz ) δ D around ρ. Instead, it is enough to consider rational numbers t ρ j and G-functions g ρ j,k such that all singularities of g ρ j,k (zρ) belong to Σ and, upon defining f ρ j,k by Eq. (4.3), Eq. (4.4) holds with some complex numbers ̟ ρ j,k . In this way, to compute the asymptotic expansion of E(x) it is not necessary to determine D explicitly. The finite set Σ is used simply to control the singularities of the functions which appear, and prevent θ from being a possibly singular direction. This remark makes it easier to apply Theorem 6 to specific E-functions, for instance to obtain the expansions (6.1) and (6.4) used in §6.

Proof of Theorem 6

We fix an oriented line d such that the angle between R + and d is equal to -θ + π 2 mod 2π, and all singularities of D lie on the left of d. Let R > 0 be sufficiently large (in terms of d and Σ). Then the circle C(0, R) centered at 0 of radius R intersects d at two distinct points a and b, with arg(ba) = -θ + π 2 mod 2π, and

E(x) = lim R→∞ 1 2iπ b a g(z)e zx dz (4.7)
where the integral is taken along the line segment ab contained in d.

For any ρ ∈ Σ the circle C(0, R) intersects ∆ ρ at one point z ρ = ρ-A ρ e -iθ , with A ρ > 0, which corresponds to two points at the border of the cut plane, namely ρ + A ρ e i(-θ±π) with values -θ ± π of the argument. We consider the following path Γ ρ,R : a straight line from ρ + A ρ e i(-θ-π) to ρ (on one bank of the cut plane), then a circle around ρ with essentially zero radius and arg(zρ) going up from -θπ to -θ + π, and finally a straight line from ρ to ρ + A ρ e i(-θ+π) on the other bank of the cut plane. We denote by Γ R the closed loop obtained by concatenation of the line segment ba, the arc az ρ 1 of the circle C(0, R), the path Γ ρ 1 ,R , the arc z ρ 1 z ρ 2 , the path Γ ρ 2 ,R , . . . , and the arc z ρp b (where ρ 1 , . . . , ρ p are the distinct elements of Σ, ordered so that z ρ 1 , z ρ 2 , . . . , z ρp are met successively when going along C(0, R) from a to b in the negative direction); see Figure 1. We refer to [8, pp. 183-192] for a similar computation.

We observe that 1 2iπ Γ R g(z)e zx dz = 0 for any x ∈ C, because Γ R is a closed simple curve inside which the integrand has no singularity.

From now on, we assume that θ -π 2 < arg(x) < θ + π 2 . As R → ∞, the integral of g(z)e zx over the line segment ba tends to -E(x), using Eq. (4.7). Moreover, as z describes Γ ρ,R (except maybe in a bounded neighborhood of ρ) we have Re (zx) < 0 and g(z) = O(1/|z 2 |), so that letting R → ∞ one obtains (as in [START_REF] Ditkine | Calcul Opérationnel[END_REF]) 

E(x) = ρ∈Σ 1 2iπ Γρ g(z)e zx dz, (4.8) 
E(x) = ρ∈Σ J(ρ) j=1 K(j,ρ) k=0 ̟ ρ j,k 1 2iπ Γρ f ρ j,k (z -ρ)e zx dz. (4.9) 
To study the integrals on the right hand side we shall prove the following general claim. Let ρ ∈ Σ, and ϕ be a G-function such that ϕ(zρ) is holomorphic on the cut plane. For any α ∈ Q and any k ∈ N, let

ϕ α,k (z -ρ) = ϕ(z -ρ)(z -ρ) α (log(z -ρ)) k k! . Then 1 2iπ Γρ ϕ α,k (z -ρ)e zx dz
admits the following asymptotic expansion in a large sector bisected by θ (with Γ := 1/Γ):

e ρx x -α-1 k ℓ=0 (-1) ℓ ℓ! Γ (ℓ) (1 -{α}) k-ℓ i=0 y α,k-ℓ-i ⋆ ϕ (1/x) (log(1/x)) i i! .
To prove this claim, we first observe that

Γρ ϕ α,k (z -ρ)e zx dz = 1 k! ∂ k ∂α k Γρ ϕ α,0 (z -ρ)e zx dz
where the k-th derivative is taken at α; this relation enables us to deduce the general case from the special case k = 0 considered in [START_REF] Ditkine | Calcul Opérationnel[END_REF]. We write also

ϕ(z -ρ) = ∞ n=0 c n (z -ρ) n .
Following [8, pp. 185-191], given ε > 0 we obtain R, C, κ > 0 such that, for any n ≥ 1 and any x with |x| ≥ R and θ -π

2 + ε < arg(x) < θ + π 2 -ε, we have x -α-n-1 Γ(-α -n) - 1 2iπ e -ρx

Γρ

(zρ) α+n e zx dz ≤ C n n!|x| -α-n-1 e -κ|x| sin(ε) .

Then following the proof of [8, pp. 191-192] and using the fact that lim sup |c n | 1/n < ∞ because ϕ is a G-function, for any ε > 0 we obtain R, B, C > 0 such that, for any N ≥ 1 and any x with |x| ≥ R and θ

-π 2 + ε < arg(x) < θ + π 2 -ε, we have e -ρx 1 2iπ Γρ ϕ α,k (z -ρ)e zx dz - N -1 n=0 c n k! ∂ k ∂α k x -α-n-1 Γ(-α -n) ≤ C N N !|x| B-N . (4.10)
Now observe that S is a union of open intervals, so that θ can be made slightly larger or slightly smaller while remaining in the same open interval. In this process, the cut plane changes but the left handside of (4.10) remains the same (by the residue theorem, since ϕ(zρ) is holomorphic on the cut plane). The asymptotic expansion (4.10) remains valid as |x| → ∞ in the new sector θ

-π 2 + ε < arg(x) < θ + π 2 -ε, so that finally it is valid in a large sector θ -π 2 -ε ≤ arg(x) ≤ θ + π 2 +
ε for some ε > 0. Now Leibniz' formula yields the following equality between functions of α:

x -α-n-1 Γ(-α -n) (k) = k ℓ=0 k-ℓ i=0 k! ℓ!i!(k -ℓ -i)! Γ(1 -{α}) (ℓ) Γ(1 -{α}) Γ(-α -n) (k-ℓ-i) × (log(1/x)) i x -α-n-1 = k ℓ=0 k! ℓ! Γ(1 -{α} (ℓ) k-ℓ i=0 y α,k-ℓ-i ⋆ z n (1/x)x -α-1 (log(1/x)) i i! so that ∞ n=0 c n k! x -α-n-1 Γ(-α -n) (k) = k ℓ=0 1 ℓ! Γ(1 -{α}) (ℓ) k-ℓ i=0 y α,k-ℓ-i ⋆ ϕ (1/x)x -α-1 (log(1/x)) i i! .
Using (4.10) this concludes the proof of the claim.

Now we apply the claim to the G-functions g ρ j,k , since all singularities of g ρ j,k (zρ) are singularities of ( d dz ) δ D and therefore belong to Σ. Combining this result with Eqns. (4.3) and (4.9) yields:

E(x) = ρ,j,k,k ′ ̟ ρ j,k 1 2iπ Γρ g ρ j,k-k ′ (z -ρ)(z -ρ) t ρ j (log(z -ρ)) k ′ k ′ ! e zx dz ≈ ρ,j,k,k ′ ̟ ρ j,k e ρx x -t ρ j -1 k ′ ℓ=0 (-1) ℓ ℓ! Γ (ℓ) (1 -{t ρ j }) k ′ -ℓ i=0 y t ρ j ,k ′ -ℓ-i ⋆ g ρ j,k-k ′ (1/x) (log(1/x)) i i! = ρ,j,k ̟ ρ j,k e ρx x -t ρ j -1 k ℓ=0 (-1) ℓ ℓ! Γ (ℓ) (1 -{t ρ j }) k-ℓ i=0 η j,k-ℓ-i (1/x) (log(1/x)) i i! .
This concludes the proof of Theorem 6.

Proof of Theorem 3

To begin with, let us prove assertions (ii) and (iii). Adding the constant term

E(0) ∈ Q ⊂ G to (1.
3) if necessary, we may assume that E(0) = 0. Then Theorem 6 applies; moreover, in the setting of §4.2 we may assume that the rational numbers t ρ j have different integer parts as soon as they are distinct. Then letting S denote the set of all t ρ j + 1, for ρ ∈ Σ and 1 ≤ j ≤ J(ρ), and denoting by T the set of non-negative integers less than or equal to max j,ρ K(j, ρ), the asymptotic expansion of Theorem 6 is exactly (1.3) with coefficients

c ρ,α,i,n = 1≤j≤J(ρ) with α=t ρ j +1 K(j,ρ) k=i ̟ ρ j,k k-i ℓ=0 (-1) ℓ ℓ! Γ (ℓ) (1 -{α}) k-ℓ-i m=0 1 m! d m dy m Γ(1 -{y}) Γ(-y -n) |y=α-1 g ρ j,k-ℓ-i-m,n where g ρ j,k-ℓ-i-m (z -ρ) = ∞ n=0 g ρ j,k-ℓ-i-m,n (z -ρ) n . Now the coefficients g ρ j,k-ℓ-i-m,n are algebraic because g ρ j,k-ℓ-i-m is a G-function, and d m dy m Γ(1-{y}) Γ(-y-n) |y=α-1
is a rational number. Since ̟ ρ j,k ∈ G and Q ⊂ G, the coefficient c ρ,α,i,n is a G-linear combination of derivatives of Γ = 1/Γ taken at the rational point 1 -{α}. By the complements formula, Γ(z) = sin(πz) π Γ(1z): applying Leibniz' formula we see that Γ (k) (z) is a G-linear combination of derivatives of Γ at 1z up to order k, provided z ∈ Q \ Z (using the fact [START_REF] Fischler | On the values of G-functions[END_REF] that G contains π, 1/π, and the algebraic numbers sin(πz) and cos(πz)). When z = 1, we use the identity (at x = 0)

Γ(x + 1) = exp -γx + ∞ k=2 (-1) k ζ(k) k x k (see [3, p. 3, Theorem 1.1.2]
) and the properties of Bell polynomials (see for instance [7, Chap. III, §3]). Since ζ(k) ∈ G for any k ≥ 2 (because polylogarithms are G-functions), it follows that both Γ (k) (1) and Γ (k) (1) are polynomials of degree k in Euler's constant γ, with coefficients in G; moreover the leading coefficients of these polynomials are rational numbers. This implies that Γ (k) (1) is a G-linear combination of derivatives of Γ at 1 up to order k, and concludes the proof that all coefficients c ρ,α,i,n in the expansion (1.3) provided by Theorem 6 belong to S.

To prove (iii), we fix ρ and α and denote by K the maximal value of K(j, ρ) among integers j such that α = t ρ j + 1. Then

c ρ,α,i,n = K-i ℓ=0 (-1) ℓ ℓ! Γ (ℓ) (1 -{α})g ′ ℓ+i,n
where

g ′ λ,n = j K(j,ρ) k=λ ̟ ρ j,k k-λ m=0 1 m! d m dy m Γ(1 -{y}) Γ(-y -n) |y=α-1 g ρ j,k-λ-m,n ∈ G;
here 0 ≤ λ ≤ K and the first sum is on j ∈ {1, . . . , J(ρ)} such that α = t ρ j + 1 and K(j, ρ) ≥ λ. If n is fixed and g ′ λ,n = 0 for some λ, then denoting by λ 0 the largest such integer λ we have

c ρ,α,λ 0 ,n ∈ Γ(1 -{α}) • G \ {0} = Γ(α) • G \ {0} and assertion (iii) follows.
To prove (i) and (iv), we first observe that if F (z) is given by (1.1) with algebraic coefficients φ j,s,k , the asymptotic expansions of F j (z) we have just obtained can be multiplied by φ j,s,k z s log(z) k and summed up, thereby proving (ii) for F (z). To deduce (i) from (ii) for any solution F (z) of an E-operator L, we recall that any formal solution f of L at ∞ can be written as (1.3) with complex coefficients c ρ,α,i,n (f ), and denote by Φ(f ) the family of all these coefficients. The linear map Φ is injective, so that there exists a finite subset X of the set of indices (ρ, α, i, n) such that Ψ : f → (c ρ,α,i,n (f )) (ρ,α,i,n)∈X is a bijective linear map. Denoting by F θ the asymptotic expansion of F (x) in a large sector bisected by θ, we have

Ψ(F θ ) = ω 1,θ Ψ(H 1 ) + . . . + ω µ,θ Ψ(H µ )
with the notation of (1.4). Now Ψ(H 1 ), . . . , Ψ(H µ ) are linearly independent elements of Q X and ω 1,θ , . . . , ω µ,θ can be obtained by Cramer's rule, so that they are linear combinations of the components of Ψ(F θ ) with coefficients in Q ⊂ G: using (ii) this concludes the proof of (i).

Asymptotics of the coefficients of A(z) • E B(z)

In this section we deduce from Theorem 3 the following result, of independent interest, which is the main step in the proof of Theorem 4 (see §6.2).

Theorem 7. Let E(z) be an E-function, and

A(z), B(z) ∈ Q[[z]] be algebraic functions; assume that P (z) = A(z) • E B(z) = ∞ n=0 P n z n is not a polynomial.
Then either

P n = (2π) (1-d)/(2d) n! 1/d q n n -u-1 (log n) v θ Γ(-u θ )g θ e inθ + o(1) (5.1) 
or

P n = q n e d-1 ℓ=1 κ ℓ n ℓ/d n -u-1 (log n) v θ 1 ,...,θ d ω θ 1 ,...,θ d e d ℓ=1 iθ ℓ n ℓ/d + o(1) (5.2) 
where q ∈ Q, u ∈ Q, u θ ∈ Q \ N, d, v ∈ N, d ≥ 1, q > 0, g θ ∈ G \ {0}, κ 1 , . . . , κ d-1 ∈ R, θ, θ 1 , . . . , θ d ∈ [-π, π
), the sums on θ and θ 1 , . . . , θ d are finite and non-empty, and

   ω θ 1 ,...,θ d = ξ Γ(-u) with ξ ∈ (E ∪ (Γ(Q) • G)) \ {0} if v = κ 1 = . . . = κ d-1 = θ 1 = . . . = θ d-1 = 0, ω θ 1 ,...,θ d ∈ Γ(Q) • exp(Q) • G \ {0} otherwise. (5.3)
As in the introduction, in (5.3) we let Γ(-u) = 1 if u ∈ N. In the special case where

P (z) = (1 -z) α exp k i=1 b i (1 -z) α i with α, α 1 , . . . , α k ∈ Q, b 1 , . . . , b k ∈ Q, α 1 >
0 and b 1 = 0, Theorem 7 is consistent with Wright's asymptotic formulas [START_REF] Wright | On the coefficients of power series having exponential singularities (second paper)[END_REF] for P n .

We shall now prove Theorem 7; we distinguish between two cases (see §5.1 and 5.2), which lead to Eqns. (5.1) and (5.2) respectively. This distinction, based on the growth of P n , is different from the one mentioned in the introduction (namely whether E(z) plays a role as z → z 0 ∈ C or as z → ∞, providing elements of E or Γ(Q) • G respectively). We start with the following consequence of Theorem 3, which is useful to study E(z) as z → ∞, in both §5.1 and §5.2.3.

Lemma 2. For any E-function E(z) there exist K ≥ 1, u 1 , . . . , u K ∈ Q, v 1 , . . . , v K ∈ N, and pairwise distinct α 1 , . . . , α K ∈ Q such that E(z) = K k=1 ω k e α k z z u k log(z) v k (1 + o(1)) (5.4) 
as |z| → ∞, uniformly with respect to arg(z), where

ω k ∈ Γ(-u k ) • G \ {0} with Γ(-u k ) = 1 if u k ∈ N.
In Eq. (5.4) we assume that a determination of log z is chosen in terms of k, with a cut in a direction where the term corresponding to k is very small with respect to another one (except if K = 1, but in this case the proof yields v 1 = 0 and u 1 ∈ Z).

Proof. For any α ∈ C, let I α denote the set of all directions θ ∈ R/2πZ such that E(z) has an asymptotic expansion (1.3) in a large sector bisected by θ, with Σ having the least possible cardinality, α ∈ Σ, and Re (α ′ e iθ ) ≤ Re (αe iθ ) for any α ′ ∈ Σ. This implies that in the direction θ, the growth of E(z) is comparable to that of e αz . Then I α is either empty or of the form [R α , S α ] mod 2π with R α ≤ S α . We denote by Σ 0 the set of all α ∈ C such that I α = ∅; then Σ 0 is a subset of the finite set Σ ⊂ Q constructed in §4.2, so that Σ 0 is finite: we denote by α 1 , . . . , α K its elements, with K ≥ 1.

If K = 1 then I α 1 = R/2πZ and the asymptotic expansion (1.3) is the same in any direction: e -α 1 z E(z) has (at most) a pole at ∞, and Lemma 2 holds with u 1 ∈ Z, v 1 = 0, and ω 1 ∈ G (using Theorem 3).

Let us assume now that K ≥ 2. Then S α k -R α k ≤ π for any k, so that E(z) admits an asymptotic expansion (1.3) in a large sector that contains all directions θ ∈ I α k . Among all terms corresponding to e α k z in this expansion, we denote the leading one by

ω k e α k z z u k (log z) v k (5.5) with u k ∈ Q, v k ∈ N, and ω k ∈ Γ(-u k ) • G \ {0} (using assertion (iii) of Theorem 3),
where Γ(-u k ) is understood as 1 if u k is a non-negative integer. These parameters are the one in (5.4). To conclude the proof of Lemma 2, we may assume that arg(z) remains in a small segment I, and consider the asymptotic expansion (1.3) in a large sector containing I. Keeping only the dominant term corresponding to each α ∈ Σ in this expansion, we obtain

E(z) = α∈Σ ω ′ α e αz z u ′ α (log z) v ′ α (1 + o(1)). (5.6) 
To prove that (5.6) is equivalent to (5.4) as |z| → ∞ with arg(z) ∈ I, we may remove from both equations all terms corresponding to values α k (resp. α ∈ Σ) such that I α k ∩ I = ∅ (resp. I α ∩ I = ∅), since they fall into error terms. Now for any α = α k such that I α ∩ I = ∅, E(z) admits an asymptotic expansion in a large sector containing I α ∪ I (since I α has length at most π, and the length of I can be assumed to be sufficiently small in terms of E). Comparing the dominating exponential term of this expansion in a direction θ ∈ I α ∩ I with the ones of (5.5) and (5.6), we obtain ω ′ α = ω k , u ′ α = u k , and v ′ α = v k . This concludes the proof of Lemma 2.

P (z) is an entire function

If P (z) is an entire function then A(z) and B(z) are polynomials; we denote by δ ≥ 0 and d ≥ 1 their degrees, and by A δ and B d their leading coefficients. We shall estimate the growth of the Taylor coefficients of P (z) by the saddle point method. For any circle C R of center 0 and radius R, Lemma 2 yields

P n = 1 2iπ C R A(z) • E(B(z)) z n+1 dz = 1 2iπ K k=1 ω k A δ B u k d d v k C R e α k B(z) • z δ+du k -n-1 (log z) v k • (1 + o(1))dz
where the o( 1) is with respect to R → +∞ and is uniform in n; here log(z) is a fixed determination which depends on k (see the remark after Lemma 2). We have to distinguish between the cases α k = 0 and α k = 0. In the former case, the integral

ω k 2iπ C R z δ+du k -n-1 (log z) v k • (1 + o(1))dz
tends to 0 as R → +∞ (provided n is sufficiently large) and there is no contribution coming from this case. Now E(z) is not a polynomial (otherwise P (z) would be a polynomial too), so that if α k = 0 for some k then K ≥ 2: there is always at least one integer k such that α k = 0. For any such k, the function e α k B(z) z δ+du k -n-1 (log z) v k is smooth on C R (except on the cut of log z) and the integral can be estimated as n → ∞ by finding the critical points of α k B(z)n log(z), i.e. the solutions z

1,k (n), . . . , z d,k (n) of zB ′ (z) = n/α k . As n → ∞, we have z j,k (n) ∼ (dB d α k ) -1/d e 2iπj/d n 1/d → ∞, so that α k B(z j,k (n)) ∼ n/d.
Moreover, denoting by ∆ j,k (n) the second derivative of α k B(z)n log(z) at z = z j,k (n), we see that asymptotically

∆ j,k (n) = α k B ′′ (z j,k (n)) + n z j,k (n) 2 ∼ d(dB d α k ) 2/d e -4iπj/d n 1-2/d .
Then the saddle point method yields:

P n = α k =0 ω ′ k d-1 j=0 1 2π∆ j,k (n) e α k B(z j,k (n)) z j,k (n) δ+du k -n-1 (log z j,k (n)) v k (1 + o(1)
)

with ω ′ k = ω k A δ B u k d d v k ∈ Q * ω k .
This relation yields 

P n = α k =0 ω ′′ k √ 2π n -n/d (edB d α k ) n/d n δ d +u k -1 2 (log n) v k
P n = (2π) (1-d)/(2d) n! -1/d (dB d α) n/d k∈K ω ′′ k n δ d +u k -1 2 + 1 2d (log n) v k d-1 j=0 e i(θ k + 2πj d )n (1 + o(1)).
Keeping only the dominant terms provides Eq. (5.1).

P (z) is not an entire function

Let us move now to the case where P (z) is not entire. It has only a finite number of singularities of minimal modulus (equal to q -1 , say), and as usual the contributions of these singularities add up to determine the asymptotic behavior of P n . Therefore, for simplicity we shall restrict in the proof to the case of a unique singularity ρ of minimal modulus q -1 . We consider first two special cases, and then the most difficult one.

B(z) has a finite limit at ρ

Let us assume that B(z) admits a finite limit as z → ρ, denoted by B(ρ); ρ can be a singularity of B or not. In both cases, as z → ρ we have

B(z) = B(ρ) + B(z -ρ) t (1 + o(1))
where o( 1) is with respect to R → |ρ| and is uniform in n.

If α k = 0 for some k, then the corresponding term in (5.8) has to be treated in a specific way, since the main contribution may come from the error term o [START_REF] André | Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité[END_REF]. For this reason we observe that in Lemma 2, the term corresponding to α k = 0 can be replaced with any truncation of the asymptotic expansion of E(z), namely with

U 1 u=-U 0 V v=0 ω u,v z u/d (log z) v + o(z -U 0 /d )
where d ≥ 1 and U 0 can be chosen arbitrarily large. Now the corresponding term in (5.8) becomes

1 2iπ C R 1 z n+1 U 1 u=-U 0 V v=0 ω u,v A(z)B(z) u/d (log B(z)) v + o(A(z)B(z) -U 0 /d ) dz.
(5.9)

The point is that the function ω u,v A(z)B(z) u/d (log B(z)) v may be holomorphic at z = ρ, because u,v = 0 or because the singularities at ρ of A(z) and B(z) u/d (log B(z)) v cancel out; in this case the corresponding integral over C R is o(q ′n ) for some q ′ < q = |ρ| -1 so that it falls into error terms. If this happens for any U 0 , for any u and any v, then the term corresponding to α k = 0 in (5.8) is o(q n n -U ) for any U > 0, so that it falls into the error term of the expression (5.2) we are going to obtain for P n . Otherwise we may consider the maximal pair (u, v) (with respect to lexicographic order) for which this function is not holomorphic; then (5.9) is equal to

ω ′ u,v 2iπ C R (ρ -z) T log(ρ -z) v z n+1 • (1 + o(1))dz for some T ∈ Q and ω ′ u,v ∈ Q * ω u,v ⊂ Γ(Q)
• G (using assertion (iii) of Theorem 3). We obtain finally (see [START_REF] Flajolet | Analytic combinatorics[END_REF], p. 387):

         ω ′ u,v Γ(-T ) ρ T -n n -T -1 log(n) v (1 + o(1)) if T ∈ N, ω ′ u,v ρ T -n n -T -1 log(n) v-1 (1 + o(1)) if T ∈ N (so that v ≥ 1).
This contribution can either fall into the error term of (5.2), or give a term with κ

1 = . . . = κ d-1 = θ 1 = . . . = θ d-1 = 0.
Let us now study the terms in (5.8) for which α k = 0; since E(z) is not a polynomial there is at least one such term. The function

e α k B(z) z n+1 • A(z)B(z) u k log(B(z)) v k
is smooth on C R (except on the cuts of log(B(z))) and the integral can be estimated as n → ∞ by finding the critical points of α k B(z)n log(z), i.e. the solutions of zB ′ (z) = n/α k . For large n, any critical point z must be close to ρ (since zB ′ (z) is bounded away from ρ for |z| ≤ |ρ|). Now in a neighborhood of z = ρ we have

zB ′ (z) ∼ - ρτ B σ • 1 (z -ρ) 1+τ /σ
so that we have τ σ critical points z j,k (n), for j = 0, . . . , σ + τ -1, with

z j,k (n) -ρ ∼ e 2iπjσ/(σ+τ ) • - σn ρBτ α k -σ/(σ+τ )
. Using (5.7) and letting κ = t/s ∈ Q we deduce that

A(z j,k (n)) ∼ Ae 2iπjσκ/(σ+τ ) • - σn ρBτ α k -σκ/(σ+τ ) = 0. Moreover we have α k B(z j,k (n)) ∼ -σ τ (z j,k (n) -ρ)α k B ′ (z j,k (n)) ∼ -σn ρτ (z j,k (n) -ρ) ∼ D j,k n τ /(σ+τ ) with D j,k = α k Be 2iπj σ/(σ+τ ) -σ ρτ τ /(σ+τ ) = 0.
(5.10)

To apply the saddle point method, we need to estimate the second derivative ∆

j,k (n) of α k B(z) -n log(z) at z = z j,k (n). We obtain ∆ j,k (n) = α k B ′′ (z j,k (n)) + n z j,k (n) 2 ∼ τ (σ + τ ) σ 2 (α k B) -σ/(σ+τ ) e -2iπj 2σ+τ σ+τ - σ ρτ 2σ+τ σ+τ n 2σ+τ σ+τ . Finally, B(z j,k (n)) u k ∼ (D j,k /α k ) u k n τ u k /(σ+τ ) .
This enables us to apply the saddle point method. This yields a non-empty subset J k of {0, . . . , σ + τ -1} such that the term corresponding to α k in (5.8) is equal to

j∈J k ω k 2π∆ j,k (n) e α k B(z j,k (n)) z j,k (n) n+1 A(z j,k (n))B(z j,k (n)) u k log(B(z j,k (n))) v k (1 + o(1)).
Now for any pair (j, k), α k B(z j,k (n)) is an algebraic function of n so that it can be expanded as follows as n → ∞:

α k B(z j,k (n)) = d ′ ℓ=0 κ j,k,ℓ n ℓ/d + o(1) (5.11) with κ j,k,ℓ ∈ Q, 0 < d ′ < d and d ′ /d = τ σ+τ , κ j,k,d ′ = D j,k = 0.
Increasing d and d ′ if necessary, we may assume that they are independent from (j, k). We denote by (κ d ′ , . . . , κ 1 ) the family (Re κ j,k,d ′ , . . . , Re κ j,k,1 ) which is maximal with respect to lexicographic order (as j and k vary with α k = 0 and j ∈ J k ), i.e. for which the real part of (5.11) has maximal growth as n → ∞. Among the set of pairs (j, k) for which Re κ j,k,1 = κ 1 , . . . , Re κ j,k,d ′ = κ d ′ , we define K to be the subset of those for which (u k , v k ) is maximal (with respect to lexicographic order), and let (u, v) denote this maximal value. Then the total contribution to (5.8) of all terms with α k = 0 is equal to

n -τ +2(1+κ)σ 2τ +2σ √ 2π ρ -n n τ u/(σ+τ ) log(n) v e d ′ ℓ=1 κ ℓ n ℓ/d (j,k)∈K ω j,k e κ j,k,0 e d ′ ℓ=1 iIm κ j,k,ℓ n ℓ/d + o(1) with ω j,k ∈ Q * ω k . Since κ d ′ + iIm κ j,k,d ′ = D j,k = 0,
this concludes the proof of Theorem 7.

Application to E-approximations

In this section we prove the results on E-approximations stated in the introduction, and discuss in §6.3 the generalization involving (1.8).

Examples of E-approximations

We start with an emblematic example. The diagonal Padé approximants to exp(z) are given by Q n (z)e z -P n (z) = O(z 2n+1 ) with

Q n (z) = n k=0 (-1) n-k 2n -k n z k k! and P n (z) = -Q n (-z).
It is easy to prove that, for any z ∈ C and any x such that |x| < 1/4,

∞ n=0 Q n (z)x k = e -z/2 √ 1 + 4x e z 2 √ 1+4x .
This generating function can be written as e -z/2 √ 1+4x f (z, x) + g(z, x), where f (z, x) and g(z, x) are entire functions of x, and f (z, -1 4 ) = -f (-z, -1 4 ) = 0. Hence, the asymptotic behavior of Q n (z) and P n (z) are given by

Q n (z) ∼ e -z/2 f z, - 1 4 4 n -1/2 n and P n (z) ∼ e z/2 f z, - 1 4 4 n -1/2 n .
It follows in particular that

lim n→+∞ P n (z) Q n (z) = e z .
This proves that for any z ∈ Q, e z has E-approximations. Moreover, it is well-known that n!P n (1) and n!Q n (1) are respectively the numerator and denominator of the n-th convergent of the continued fraction of the number e. In other words, the convergents of e are E-approximations of e.

As mentioned in the introduction, any element of Frac G has E-approximations. To complete the proof of (1.6), let us prove this for any element of E∪Γ(Q) E∪Γ(Q) by constructing for any ξ ∈ E ∪ Γ(Q) a sequence (P n ) as in Definition 4 with lim n→∞ P n = ξ.

If ξ = F (α) where α ∈ Q and F (z) = n≥0 an n! z n is an E-function, we define P n ∈ Q by ∞ n=0 P n z n = 1 1 -z F (αz).
Then, trivially, This immediately translates into a linear recurrence satisfied by the sequence (P n (α)):

P n = n k=0 a k k! α k -→ F (α) = ξ. If ξ = Γ(α) with α ∈ Q \ Z ≤0 , we consider the E-function E α (z) = ∞ n=0 z n n!(n + α)
(n + 3)(n + 3 + α)P n+3 (α) -(3n 2 + 4nα + 14n + α 2 + 9α + 17)P n+2 (α) + (3n + 5 + 2α)(n + 2 + α)P n+1 (α) -(n + 2 + α)(n + 1 + α)P n (α) = 0 (6.3) with P 0 (α) = 1 α , P 1 (α) = 1+α+α 2 α(α+1) and P 2 (α) = 4+5α+6α 2 +4α 3 +α 4 2α(α+1)(α+2) .

6.2 Proof of (1.7)

The proof is very similar to that of [START_REF] Fischler | On the values of G-functions[END_REF] so we skip the details. Let (P n , Q n ) be Eapproximations of ξ ∈ C * . If (P n ) has the first asymptotic behavior (5.1) of Theorem 7, then so does (Q n ) with the same parameters d, q, u, v, and the sum is over the same non-empty finite set of θ. Therefore ξ = g θ Γ(-u θ )

g ′ θ Γ(-u ′ θ ) ∈ Γ(Q) • Frac G, using Eq. (1.5). Now if (P n ) satisfies (5.2) then so does (Q n ) with the same parameters q, u, v, κ 1 , . . . , κ d-1 (since we may assume that d is the same), and the same set of (θ 1 , . . . , θ d ) in the sum. If v = κ 1 = . . . = κ d-1 = 0 and a term in the sum corresponds to θ 1 = . . . = θ d-1 = 0, then ξ = ω 0,...,0,θ d ω ′ 0,...,0,θ d

∈ E∪(Γ(Q)•G) E∪(Γ(Q)•G) , else ξ ∈ Γ(Q) • exp(Q)
• Frac G (using Eq. (1.5)).

Extended E-approximations

Let us consider the E-function

E(z) = ∞ n=1 z n n!n .
We shall prove that the sequence (P n ) defined in the introduction by log(1z)

1 -z - 1 1 -z E - z 1 -z = ∞ n=0 P n z n ∈ Q[[z]]
provides, together with Q n = 1, a sequence of E-approximations of Euler's constant in the extended sense of (1.8). It is easy to see that

P n = n k=1 (-1) k-1 n k 1 k!k - n k=1 1 k = n k=1 (-1) k n k 1 k 1 - 1 k! ,
where the second equality is a consequence of the identity n k=1 1 k = n k=1 (-1) k-1 n k 1 k . We now observe that E(z) has the asymptotic expansion E(-z) ≈ -γlog(z)e -z ∞ n=0 (-1) n n! z n+1 (6.4) in a large sector bisected by any θ ∈ (-π, π) (see [START_REF]On the arithmetic nature of the values of the Gamma function, Euler's constant et Gompertz's constant[END_REF]Prop. 1]; this is also a special case of Theorem 6). Therefore, for z → 1, |z| < 1,

- 1 1 -z E - z 1 -z + log(1 -z) 1 -z = γ 1 -z + O(1).
As in §6.1 in the case of Γ(α), a transfer principle readily shows that lim n→+∞ P n = γ.

Since E(z) is holonomic, this is also the case of log(1-z) 1-z -1 1-z E -z 1-z . The latter function satisfies the differential equation 3z 3z 4 -3z 2 + z y ′′ (z) + 1 -5z + 8z 2 -4z 3 y ′ (z) + -2z 2 + 2z -1 y(z) = 0. (6.5) This immediately translates into a linear recurrence satisfied by the sequence (P n ):

(n + 3) 2 P n+3 -(3n 2 + 14n + 17)P n+2 + (n + 2)(3n + 5)P n+1 -(n + 1)(n + 2)P n = 0 (6.6) with P 0 = 0, P 1 = 0, P 2 = 1 4 . The differential equation (6.5) and the recurrence relation (6.6) are the case α = 0 of (6.2) and (6.3) respectively.

Let us now prove that any number with extended E-approximations is of the form (1.10) stated in the introduction. Let P (z) be given by (1.8). If there is only one term in the sum, Theorems 4 and 7 hold and the proof extends immediately, except that E has to be replaced with E • log(Q * ) in §5.2.1 and 5.2.2, and therefore in (1.7) and (5.3).

Otherwise, we apply a variant of Lemma 2 to each E-function E ℓ (z), obtaining exponential terms e α k,ℓ z : for each k we write sufficiently many terms in the asymptotic expansion before the error term o(1) (and not only the dominant one as in §5). Theorem 3 asserts that all these terms are of the same form, but now the constants ω belong to S. Combining these expressions yields

P (z) = K k=1 ω k e α k C(z) U k (z)(log V k (z)) v k (1 + o(1))
as z tends to some point (possibly ∞) at which C is infinite; here U k , V k are algebraic functions, v k ∈ N, and ω k ∈ S. However there is no reason why ω k would belong to Γ(Q)•G in general, since it may come from non-dominant terms in the expansions of E ℓ (z), due to
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with t ∈ Q, t ≥ 0, and B ∈ Q * (unless B is a constant; in this case the proof is even easier). Now all Taylor coefficients of E(z) at B(ρ) belong to E, so that

as z → ρ, with t ′ ∈ Q, t ′ ≥ 0, and η ∈ E \ {0}. On the other hand, if ρ is a singularity of the algebraic function A(z) then its Puiseux expansion yields s ∈ Q \ N, A ∈ Q * and a polynomial A such that

as z → ρ; if ρ is not a singularity of A we have the same expression with s ∈ N and A = 0.

In both cases we obtain finally p ∈ Q \ N, P ∈ E \ {0} and a polynomial P such that

Using standard transfer results (see [START_REF] Flajolet | Analytic combinatorics[END_REF], p. 393) this implies

Therefore the singularity contributes to (5.2) through a term in which

E is a polynomial

In this case, P (z) is an algebraic function (and not a polynomial) so that

around ρ (using the same transfer result as above). Therefore each singularity ρ = q -1 e -iθ d contributes to a term in (5.2)

The main part of the proof

Let us come now to the most difficult part of the proof, namely the contribution of a singularity ρ at which B(z) does not have a finite limit (in the case where E(z) is not a polynomial). As above we assume (for simplicity) that ρ is the unique singularity of P (z) of minimal modulus q -1 . As z → ρ, we have

with A, B ∈ Q * , s, t, σ, τ ∈ Z, s, σ, τ > 0, and gcd(s, t) = gcd(σ, τ ) = 1. For any circle C R of center 0 and radius R < |ρ|, we have (using Lemma 2 as in §5.1)

compensations. Upon replacing Γ(Q) • G with S (and E with E • log(Q * ) as above), the proof of Theorems 4 and 7 extends immediately.

To conclude this section, we discuss another interesting example, which was also mentioned in the introduction. It corresponds to the more general notion of extended Eapproximations where the coefficients of the linear form (1.8) are in E and not just in Q. Let us consider the E-function F (z 2 ) = ∞ n=0 z 2n /n! 2 . It is solution of an Eoperator L of order 2 with another solution of the form G(z 2 ) + log(z 2 )F (z 2 ) where

z 2n is an E-function (in accordance with André's theory). Then,

It is a remarkable (and known) fact that the sequence A k satisfies the recurrence relation

. This can be readily checked. It follows that

where the sequences of integers U k , V k are solutions of the same recurrence. Hence, the sequence U k /V k is the sequence of convergents to F (1)/F ′ (1) whose continued fraction is [0; 1, 2, 3, 4, . . .]. Moreover, we have

for some constants a, b, c, d, because both generating functions are solutions of an operator of order 2 obtained from L by changing

because it is twice the value at z = 1 of the wronskian built on the linearly independent solutions F (z 2 ) and G(z 2 )+log(z 2 )F (z 2 ). It follows that U k /V k are extended E-approximations to the number F (1)/F ′ (1) with "coefficients" in E, but not in Q (because the number f was proved to be transcendental by Siegel).