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Abstract

This paper considers the optimal design for the estimation of a linear
form of the parameters of a régression model, when the regressor belong to
a finite dimensional Haar linear space . A major interest is paid to the geo-
metric approach, following Elfving’s theorem. The classical Hoel-Levine
design follows as a spécial case of a resuit due to Karlin and Studden.

1 Introduction and notation

This paper of pedagogical nature présents the dérivation of designs in the context
of the Chebyshev régression; specifically the focus is set on the designs leading to
optimal estimation of a linear form of the coefficients in a Chebyshev régression
model. For references on general notions on optimal designs for extrapolation
and interpolation, we refer to [Celant and Broniatowski, 2016] ; for Chebyshev
Systems, we refer to the paper [Broniatowski and Celant, 2015]; the notation is
inherited from those used in this paper, without further définition.

Consider a Chebyshev régression model defined by

Yi(xj) := (X (xj))' 0 + £i,j, i = 1 j = 1 ,...,r (1)
where

9':= («o.-A-i) eR9

E(£id) = 0, for ail (i, j)

X (x)' := (ip0 O),..., ipg-i (x)) , x G [—1,1]
and
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where {(^0, is a Chebyshev System of functions defined on the observ-
able domain [—1,1] .

We make use of the usual notation for the observations. Dénoté the nodes

taking into account their multiplicity, namely for each of them the number of
réplications of the experiment to be performed. On the node Xj let rij be the
number of réplications. The discrète measure characterizing a design is therefore
described as

xq, xq (no times),..., xj, !?.,Xj (rij times), ...,xg-i,.?., xg-îtimes)
with

n0 + ... + rig-i = n.

This design can also be written by

ti,..., tn

where ti,...,tno describe the no equal values of xo, and so on.
Taking into account the ti s in place of the Xj:s, the data set can be written

through
Y = T 9 + e

where

( ^o(ii) - <Pg-1 (^)
( yi \

y:= . ,t:= <Po(U) - <Pg-1 (U)
\ Vn /

\ Vo(tn) ... Vg-l (tn)

9:=

E (Y) = T 9, var (e) — a2In,
and In is the identity matrix of order n. The vector of parameters 9 belongs to
R3 and is unknown; a2 is assumed non null.

A generic design £ is defined through

£ Oj)
n-i

n

g-1

, j = 0,g — 1, Ylnj =n’
3=0

Xi e -1,1].

A design therefore is defined as an element of Aid ([—1,1]), the class of ail
probability measures with finite support on [—1,1]. The generalization with
repect to interpolation or extrapolation optimal designs lies in the estimation of
a generic linear form of 9; in [Broniatowski and Celant, 2015] the estimation
pertained to

X(x)' 9=<X(x),9>
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which amounts to estimate an interpolated value whenever |æ| < 1, and an
extrapolated one when |x| > 1.

Hence we consider a form given by < c, 9 > where the known vector c in M5
defines the linear form. The aim of the présent paper lies in the quest for the
optimal design for the estimation of this form, minimizing its variance among
ail unbiased linear estimators. This yields

<M~> :=< c ,9 >

where 9 is the least square estimator of 9.

Example 1 Let

y (x) = 6>0<p0 0) + - + Og-1 <£>3-1 (x) + £(x),
where V^-i} *s a Chebyshev System, on M, and y (x) is observable for
x G [—1,1] . Let \u\ ^ [—1,1]. With

and

Example 2

the inner product

e=(0a

C := ((p0,..., ipg-1)'

< c', 9 >= 9j <Pj (u)
3=0

is a linear form which évaluâtes the extrapolated value at point u.

Let
Y = (Y(t1),...,Y(tn))'

dénoté the observed sample. An equvalent writing for (2) is

X(ti)

X{tn)
dénotés the model (1) where e is the vector of errors,

e' := (ei,£n)

and the least square estimator of 9 is

9 :=

Y + £

x(h)

X(tn)

X(h)

X(tn)

X(ti)

X(tn)
Y.
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The measurements may be written grouping the réplications of the mea-
surements on the r nodes of the design, and denoting m,..,nr the number of
replicates distinct nodes (xi,..,xr) . The moment matrix is defined by

M(() ■=Y,r^X(xj)X{xj)'.
3=1

Here £ is the design, defined by

for 1 < j < r.
The contents of the paper is as follows. We first study the properties of

the moment matrices associated to designs. Then we introduce the notion of
estimable linear forms; those are forms which admit an unbiased linear estima-
tor. The geometry of the class of moment matrices is the frame in which the
estimable forms are best handled. Then we introduce the Elfving set of vectors
which provides a link between estimable linear forms of the parameters and
the corresponding optimal designs. Finally a Theorem by Studden and Karlin
provides a complété characterization of the optimal designs; at this point some
use is made of the theory of best uniform approximation of functions. It also
leads to an effective way to obtain this design. We will consider optimal designs
following Kiefer, Wolfowitz and Studden, mostly using the approach of Kar-
lin and Studden [Karlin and Studden, 1966a], which makes use of a Theorem
due to Elfving [Elfving, 1952] , [Pukelsheim, 2006] and [Studden, 2005]. The
approach by Kiefer and Wolfowitz [Kiefer and Wolfowitz, 1964] makes use of
some arguments from game theory instead.

This paper is based on [Elfving, 1954], [Hoel, 1966], [Karlin and Studden, 1966
[Pukelsheim, 2006], [Studden, 1971], [Studden, 2005], [Karlin and Studden, 1966a

2 Matrix of moments

To any £ G Aid ([—1,1]) we may associate the moment matrix, defining
r—1

M(0 :='£tiX(xi)X'(xi)
i=0

where £0,.., Cg-i dénoté the values of the measure £ on its support a?o, •••, xr-\.
Since X (x) X ' (x) is symmetric, so is M (£) per £ in Aid ([—1,1]). The class

of ail symmetric matrices of order g is denoted S (g) and it holds

Mc 5(5).

Some spécial subsets in S (g) deserve interest for the sequel.

5>0 {g) := {A G S (g) such that x'Ax > 0 for any x G M5} ,
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»S+ (9) := {A G S (g) such that x'Ax > 0 for any x G R5\ {0}} .

The set 5>o (g) is the class of ail symmetric positive semidefinite matrices
of order g whereas the second class S+ (g) is the class of ail symmetric definite
positive matrices of order g.

We will also make use of S~ (g), <S<o (g) with clear interprétation.
The classes S>o (g) and S+ (g) induce a partial ordering in S (g) , the so-

called Loewner ordering , defining

AtB ^ A - B e S>0 (g),

A y B A — B e S+ (g).
It is customary to write A — B 'y 0 in the first case and A — B y 0 in the

second one. Loewner ordering enjoys a number of properties.
Let a G R+, and A, B, An belong to S>o{g), assuming that limn_>00 An

exists. Then
aA y 0, A + B ^ 0, lim An £ 0;

n—xx)

see [Pukelsheim, 2006].

The mapping

tr : (S (g))2 -> R, (A, B) ^ <A,B >:= tr (A'B) = tr {AB)
defines an inner product on S {g) from which dérivé the norm and the distance

S {g) -> R>o, A i ^ ||A||tr := Vtr {A2),I tr

dist (A, B) := ||A - B|| = ^Jtr ((A - £)2).
The closed bail with radius 1 and center 0 is defined by

Str{0,1) := {AeS{g):\\A\\tr<l} (3)

The géométrie structure of <S>o {g) is described through the following The-
orem.

Theorem 3 (Pukelsheim p 29) S>o {g) is a convex closed cône. It is pointed.
Furthermore S+ {g) is the relative interior of S>o {g) in S {g), which is denoted
int {S>o {g)).

As a subset of S {g), the set M (£) enjoys spécifie géométrie properties, as
seen now.

Associated with the Chebyshev System of regressors X{x) as x belongs to
[—1,1] we define

n := {X{x) G R5 : x G [-1,1]} . (4)
We also define the régression range as the linear space generated by H.
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Theorem 4 M C S (g) is a compact and convex subset of S>o (g)•
Proof. See [Pukelsheim, 2006] p29. ■

3 Estimable forms

We introduce a linear form c in R5 which is identified with the vector (co,cs_i)
through

g-1

9\-^^2/CjOj :=< c,9>, (5)
j=o

assuming that 0.
In order to emphasize the vector c of the coefficients of the parametric func-

tion ]Cf=o cjOji we ca^ a c - form the linear form 9—» cj^j :==< c,9> .

Définition 5 Let c G R5 and identify c with the linear form (5) where c G R3;
we say that the linear form c is estimable if and only ifthere exists some unbiased
linear estimator of < c, 9 > for 9 defined in (1).

Example 6 Consider c := (1,0, ..,0) ; therefore < c,9>=90; the linear form c
is estimable if we can define an unbiased linear estimator of 9q.

From this définition 9—* < c,9> is estimable if and only if there exists
u' := («i,..., un) G Rn, such that < c,9> =< u', Y > and

E (u'y) :=< c,9>, for ail 9 G R5,
which amounts to

u'T 9 = c'0, for ail 9 G R3
which entails

u'T = c'.

Finally we see that a linear form is estimable if and only if

c G ImT'. (6)
In the next paragraph we obtain the explicit expression for the Gauss Markov

estimator of a linear form.

Example 7 A localization problem.

Y = 9 + e, 9 G R, cov (e, e') =

The least square estimator of 9 when a sample of n i.i.d. observations is
at hand is given by

9 := u'T

where

Y-.= (Y1,...,Yny and u':=(- i)
\n n J

f cr2 if e — e'
\ 0 if e^e'
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Example 8 A standard régression model

Y = X6 + e,e i.i.d., 6 G Rk.

Example 9 The least square estimator of 6 under i.i.d. sampling is

6 := u'Y

where
Y := (Y1,...,Yn)' and u' := (X'X) 1 X '

4 Matrix of moments and Gauss-Markov esti-
mators of a linear form

4.1 Matrices of moments and estimable linear forms

We discuss the link which connects the matrix of moments and the estimable
linear forms. The variance of the Gauss-Markov estimators of an estimable linear
form will be derived.

Making use of the notation in Section 1, the matrixhe moment matrix takes
the form

Xj€supp(£)

We first put forward an important property of estimable c— forms (see (6)),
which is of algebraic nature.

Proposition 10 A c— form is estimable if and only if

c G Im T'

if and only if

(7)c G Im M (£).
Proof. We first state that

ImT' = Im(T 'T).

Given a matrix A in M.pXk (the class of ail matrices with p rows and k columns),
and identifying such A with the corresponding linear mapping, it holds

Ker (A ') = (Im4)x. (8)
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Now

Ker (T 'T) = Ker (T). (9)
Letting in (8) A = T 'T we obtain

Ker (T 'T) = (Im (T 'T))X . (10)

Now, letting in (8) A — T we get

Ker {T') = (Im T)1. (11)

Those two latest results , together with (9) yield

(Im (T'T))1- = (ImT)1. (12)

Taking the orthogonals on both sides in (12) it follows that

Im (T 'T) = ImT.

It is common use to say that the c - form is estimable with respect to the
measure £. In the sequel we will assume that the c - form is estimable w.r.t. £.

Solving the System of linear normal équations pertaining to (2)

M(0 9= -T'Y
n

we obtain the least square estimator, say 9, of 9.
Since the matrix M (£) is invertible (due to the fact that the family {<£>0,(pg__x}

is a linearly independent family of functions), it holds

9 := (M(0)_1r'y.
A way to estimate the linear form

< C:9>—Co9o + ... + Cg—l9g—l

consists in the plug in of 9 in place of the 9j,s, j = 0, ...,g — 1, which yields the
least square estimator

< c,9> — co9o + ... + cg-i9g~\- (13)

Lemma 11 The above estimator (13) is optimal within ail linear unbiased
ones, and it is the only estimator enjoying this property.

Proof. Indeed let u'Y dénoté some other linear and unbiased estimator of the
c - form. Then

u'Y = c'Y + d'F
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for some d in Mn. Using unbiasedness

E (u'y) = c'O.
Therefore

E (u'y) = E (c’Y + d'F) = c'O + d'E (Y) = c'O + d'T 0 = c' 0,

i.e.
d'T 0 = 0,

i.e.

d'T = 0.

Let us now evaluate the variance of this estimator. It holds

var (u'T) = var (c'Y + d'y)
= var (c'Y) + var (d'y) + 2cov (c'y, d'y).

Since

it follows that

cov (c'y, d'y) - E {(c'y - c'O)' (d'y - c'6>){
= a2c' (M (£))~1 T 'd = 0,

var (u'y) = var (c'Y) + cr2d'd.
This variance reaches its minimal value if and only if

d = 0,

proving uniqueness. It follows that the Gauss - Markov estimator of the c -

form is
_

< C ,0~> = CÇ)0q + ... + Cg—lOg—l.
Furthermore

var {< c,d>{ = var (c'O
= a2c' (M (0)_1 c.

Once defined the optimal estimator of a c - form, we intend to characterize
the optimal measure pertaining to this estimator.

The variance of the optimal estimator < c,0> dépends on the matrix M (£)
induced by the design. Now M (£) is a symmetric positive definite matrix of
order g. The optimal design defined through the minimization of the variance of
< c,0> will resuit from a study of a partial ordering of the symmetric matrices.

Some other form for the variance of the estimator of a linear form can be
obtained also when the moment matrix is singular. Indeed the following impor-
tant resuit holds. Dénoté var (Y) the covariance matrix of the vector Y which
is a symmetric positive semi definite matrix of order n.
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Définition 12 For a design £ , let F (£) be the set of ail unbiased linear esti-
mators < u, Y > of the linear form < c, 6 >, where the measure £ is fixed.

We will identify any element in F{£) with the vector u in R9 such that this
estimator writes u'y.

It holds

Proposition 13 (Karlin and Studden) Let £ G Md ([— 1,1]). Assume that
supp(£) := {æ0,xg-i] and dénoté

with ni > 0 for ail i. Assuming that F(£) is not voids, and denoting <7,Y >
the Gauss-Markov estimator of < c, 6 >, it holds

var (< 7, Y >) := min (var (< u, Y >)) = — (.5 Vt’c ^
F(0 n fr' ^

1 = 1

where v* and \ are respectively the eigenvectors with norm 1 and eigenvalues
of the matrix M (£).
Proof. We assume without loss of generality that a2 = 1.

Step 1. We first prove that for any element uT in F (£) it holds

var (uW) > sup
0^de(KerM(Ç))±

1 (< C, d >)2
n < d, M (£) d > ’

Consider the inner product < c, d > with 0 / d G (KerM (O)"1- Since
the linear form < c, 9 > is estimable it holds c G Im(M(£)) and therefore
c G ImT see Proposition 10.

Hence there exists some vector u such that c = T 'u. Write henceforth

< c, d >=< T 'u, d >=< u, Td > .

Applying Cauchy - Schwartz Inequality it holds

< u, Td >< y/< u, u >i/< Td,Td >.

Therefore
< c, d >< u,u >V< T, Td >.

Now

var (u'y) = u 'var (Y) u = —u'u = — < u,
n n

Hence

(< c, d >)2 < < u, u > < Td, Td >
= nvar (u'y) < Td, Td >
= n var (u'y) <d,T'Td>
= n var (u'y) < d, M (f)d > .
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It follows that

, 1 (< c,d >)2
var (u Y) > — ■

n < d, M (£) d > ’
Going to the supremum in both sides of this inequality we obtain

var (u'F) > sup
0/dG(iferM(0)x

1 (< c, d >)2
n<d,M(£)d>'

Step 2. We now prove that equality holds for some element in F (£). Namely
we prove that there exists 7 G W1 such that for fixed £ ,

var (< 7, Y >) := min (var (< u, y >)).
u€F(0

Clearly by définition < 7, F > will then be the Gauss - Markov estimator of
< c, 0 > . Note that a basis of the linear space generated by the column vectors
of M (£) is given by {vi,i = 1, ...,s} where s := dimlmM (£). We assume the
vectors V; ’s to hâve norm 1. When M(£) is of full rank then s = g. The condition
for estimableness c G Im M (£) due to (7) may then be written as

C = ^<Vi,C>Vi.
i=1

Therefore

(< c, d >)2 = f < < Vj,c > Vj,d >
V i= 1

= ( X] < v»,c >< v*,d >
,2=1

Apply Cauchy - Schwartz Inequality to each of the components of the vectors

^<vi,c> < vs, c >
and

We get

V V^ï ’ ’ yfc

(< vi,d > VÂT,...,<vi,d> \Æ) •

«c,d»2< fÊ<vi>d>2A,V
,2=1 ,2=1
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From the spectral Theorem (see e.g. [Lang, 1989]) we get that
S

M(£) = ^Xi < >;
2—1

hence

(<c,d>)2< W
s. 2 = 1

= E

< Vi,C >‘

< Vj,C >‘

X] < Vi,d >2 A* (14)
^2 = 1

<d,M(Ç)d> .

s, 2 = 1

In this last display equality holds between the first and the second members
in two cases (see [Karlin and Studden, 1966a] p788). Either when there exists
some constant h such that

< vi} c >2= h\i < Vf, d >,

or when d is proportional to

d* :=£
< Vi5c

-Vv.

2—1

We only consider this latest case. See [Karlin and Studden, 1966a] for a com-
plete treatment. Recall that M (£) = \T'T. Taking 7 := ~T 'd* in

var (u'y) > sup
O/deC-fcTerM^))-1-

1 (< C, d >)2
n<d,M(Od> (15)

we get equality in (14). In order to conclude the proof it is necessary to prove
that the vector

7 := —T 'd*
n

belongs to the set F (£). Now

T'i = -T 'Td* = M (£) d*
n

S

EAi<Vi,C>Vi=C
2=1

which closes the proof. ■
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4.2 An alternative form of the lower bound of the variance
of the estimator of the c form

It can easily be checked that whenever the inverse matrix of M (£) is defined
then the mapping

<c,d>2
^<d,M(Ç)d>

with d 7^ 0 assumes its maximal value for

d = d„:=M-1({)c.
Therefore

sup
< c, d >‘ < c, d0>"

d^o < d, M (£) d > < d0, M (£) d0>
Indeed in the above Proposition 13 we proved that the variance of the Gauss-

Markov estimator < c, 9 > of the form < c, 0 > is

var < c, 9 > — — sup
< c,d >'

n d/o < d,M(f)d >'

Assuming that M (£) is invertible; direct calculation leads

var < c, 6 > — — c'M (£) c. , (16)

Setting a1 — 1 (since the optimal design does not dépend on a2) it follows that
the Gauss-Markov estimator is given by

<cjT> = c' (X ' (x) X (a:))-1 X ' (x) Y.

Hence

var < c,6 > = var le' (X ' (x) X (x)) 1 X ' (x) Y

Now

c'{X'(x) X(x))~1X'{x) X(x)(X'(x) X(x))~lc
n

-c'M 1{^)c.
n

< c, d0>s
<d0,M«)do>

= c'M -1 (0 c.

<c,do>2 <c,M 1(C)c>2
<d0,M(£)d„> = <tf->(C)c,M(f)M-1(f)c>

= c'M _1 (£) c.

Indeed
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In the above Proposition 13 the measure £ is fixed in .Md ([—1,1]). Now
since

M (4) := —T'T = f (X (x))'X (x)d^x),
H ^[—1,1]

let £ vary in Md ([—1,1]); define the optimal design £ which minimizes the
variance as follows

vare* (< 7, Y >) := min var (< 7, Y >)
ÉGA^a-i,!])

min min (var (< u, Y >))
C€Md([-l,l]) F(0

1
mm —

£eA4d([-i,i]) n
<c,(M(or c >

min sup
Ç€Md([-l,l]) o/d€(XerM(0)-L

1 (< c, d >)2
n < d, M (£) d >

(d'c)2
mm sup —75 .

f€Md([-l,l]) 0/deiKerM^Y /[-ip] (d'^ (^))2 d£ (x)
Since d in (KerM (£))± can be chosen up to an arbitrary multiplicative constant
(see formula (15)) we may assume that d'c = 1 . Minimizing upon £ choosing a
measure whose support with g points consists in the points where the mapping
x —> d'X (x) assumes its maximal values it holds

varç* (< 7,Y >) = mm sup
£e.Md([-bl]) o^de(KerM(0)X J[-l,l] (d'^ {x)) d£ (x)

1
= mm

l0^d€(KerM(Ç))± (maxx (x))
2 •

£G.Md([-i,i]) minc

Définition 14 Let £ belong to J\4d ([—1,1]). If < c,6 > is estimable we dénoté

d (£, c) := sup
(< c, d >)"

0/de(KerM^))1- < d, M (£) d >

By the above discussion , denoting varç the variance under a design £,

var£ < c, 6 > = — d (£, c).

We now consider the relation between a linear form and the measure for
which it is estimable.

We start with some preliminary resuit. Let A and B be two square non

négative semi definite matrices with same dimension k. Then

Ker (A + B) — Ker (A) fl Ker (B)

Prom (17), taking orthogonals and using (8) we get

(17)
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Im (A + B) = Im A + Im B.
We now state

Proposition 15 (Pukelsheim p. f2) It holds Im (M (£)) = span {X (x) : x G supp (£)}
Proof. Since

m (O=x; « (* fe)) * fe) fe))'
j<r

We hâve, by (??)

= Im(£î(X(*.,.))X(x.,)(X(x,))'
\J<r

= £lm(Ç(X(x,))X(:r,)(X(x,■))')■
j<r

.Now the image of the matrix £ (X (xj)) X (xj) (X (xj))' is the linear space
spanned by its column vectors, i.e. span{X (xj)).Therefore

Im (M (0) = span (X M)
j<r

kjX (xj) : kj G M per j = 0,r
3<r

= span {X (x) : x G supp (£)} .

By the discussion in Section 4 c'9 is estimable if and only if c belongs to
Im M (£) ; therefore the above Proposition entails the following alternative def-
inition to the corresponding Définition in 3..

Définition 16 4 c— form is estimable with respect to a measure £ G Aid ([—1,1])
if and only if c £ span {X (x) : x G supp (C)}-

In Aid ([—1,1]) consider the following optimal Problem

f MinççMd([-ltl])d(€,c) /lgx
( cG span {X (x) : x G supp (£)} v '

The solution £* G Aid ([—1,1]) to Problem 18 is the discrète measure which
minimizes the variance of the Gauss Markov estimator of < c',0 >.
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5 Géométrie interprétation of estimableness. Elfv-
ing set

5.1 Estimable forms and a convex subset of the régression
range; the Elfving set

We already saw that estimableness is related to a précisé géométrie relation.
This paragraph introduces the géométrie context; we follow the présentation by
[Pukelsheim, 2006].

The condition for estimableness of a linear form < c, 0 > is given by

c G ImM (£).

This property may be extended independently from the measure £, for any
element in <S>o (g). We thus consider a generic matrix A G S>o {g) such that
c G ImA, and also we consider ail matrices A G <S>o (g) for which c G Im A

Définition 17 The set

yl(c) := {A G S>o (g) such that c G Imd}

is called the feasibility cône.

The estimableness condition writes therefore

M(0 G^(c)nM

where

M:={Jf(Ô:{ÊA<d([-l,l])}.
That M (£) belongs to M means that M (£) is a moment matrix.

In Aid ([—1,1]) define the following optimization problem

J Minî€Md{[_1A])c'M (0 c .

\ M (Ç) e A (c) n M 1 j
Problem 19 is analogous to Problem 18 in Aid ([—1,1]) ; see (16).

Proposition 18 The feasibility cône A (c) for < c,0> is a convex subcone of
$>o (g) which contains S+ (g).

Proof. If ô > 0 and A G A (c) then since Im A = Im (ÔA) it holds 5A G A (c),
for any positive <5. Hence A (c) is a cône. By définition A (c) C 5>o (g) and
therefore A(c) is a subcone in 5>o (g).

We prove that A (c) is convex. Let ô G (0,1) and A, B G A (c). Since A and
D both belong to S>o {g) it holds

Im {A + B) — Im A + Im D
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(see [Pukelsheim, 2006] p 37). Hence for any A and B in A (c) it holds (<L4 + (1 — ô) B) G
A(c). ■

Since estimableness pertains to the expectation of an estimator and not to
its variance we now characterize it using a generic unbiased linear estimator of
a linear form.

Given

E(Y(x)) = E ^6jVj (x) + eA=X'(x)0,
an easy way in order to estimate a linear form c'6 consists in a weighted mean.
At this point it will be convenient to use the notation Yi(xj) defined in (1) in
order to define the estimator. For any node Xj define

•? i= 1

the mean of the observations on node x1

Dénoté
_ 3-1

CO :=

j=o

(20)

where the Uj ’s are coefficients which should be determined in such a way that
c'6 is unbiased.

Hence the relation between the form c and the coefficients Wj’s is dictated
by

3-1

= YJujX'(xJ)0
3=0

which holds if and only if

3-1

C' = '52ujX'(xj)-
3=0

Observe that there exists at least one index j such that Uj ^ 0 . Indeed otherwise
no data enters in the définition of the estimator. It follows that

3-1

\ui\ ^ °-
3—0
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Henceforth dividing

by Ej=o K'I we Set

a-1

c' = ^ZujX'(xj)
3=0

£?=o U3X ' {Xj)
EU lm

d^o_zl_

EU h

which, setting

becomes

and therefore

Éj = sign (Uj) = ±1

ESI«i! rj EU l“.j=u ^j=u iwJ

9-1

= V- x (oq)
Z^j=o Iu,jI j=o 2^j=o lu,al

For j = 0,..., g — 1, the nnmbers

E" ,î "j

define a discrète probability measure with support {rro, included in
-i,i] •

The condition for estimableness may thus be stated as follows.

Proposition 19 Let (wo,w5_i) be defined by (20) and (xo, ..,xg-i) be a set
of nodes. The linear form c'6 is estimable if and only if c/Ej=o \uj\ ^ a
convex linear combination of the vectors ejX (xj), j = 0, ...:g — 1.

Since ej is a sign function we conclude that c'6 is estimable if and only if
c/E^o \uj\ belongs to the convex hull generated by the set {ejX (xj) ,j = 0, ...,g — 1} .

Call

Æ+ := ix (xj)J = 0,p — 1},
Ü- := {-X (xj)J = 0,...,g-l},

1Z := convex-hull (jl+ UIZ-'j
Since ±X (xj), j = 0,g — 1 is a finite set of vectors, the set 1Z is a

polytope.
An équivalent context for Proposition 19 is to introduce the sets 7£+,7£_

and 7Z; indeed by Carathéodory Theorem 20 the convex hull of the points
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{ejX (xj), j = 0,...,g — 1} is generated by a finite collection of points. In-
troduce henceforth

K+-.= {X (s),a: 6 [-1,1]},
R- := {-X (x),xe [-1,1]},

TZ := convex-hull (7Z+ U 7Z-).

Following Proposition 19 it holds

g-1

c'6 is estimable if and only if c/ \uj\ G 1Z.
5=o

The set TZ is the Elfving set.

5.2 Geometry of the Elfving set
The Elfving set is symmetric and convex, by its very définition.

The points in TZ may be seen as expected values for probability measures

77’s. Indeed the random variable which assumes values (e (X (Xj))) X (xj), j =

0,..., g — 1 with probability 77j has expectation J2j=o (e (X (xj)) X (xj))\
reciprocal statement clearly holds. Thus to any point z in 1Z we may associate
a design 77.

The Elfving set is contained in the régression range, namely in the linear
space span {X (x) : x G [—1,1]}. Indeed the convex combinations of (X (x) : x G [—1,1]}
belong to this space.

In span{X [x) : x G [—1,1]} define the norm (gauge or Elfving norm)

p : span {X (x) : x G [—1,1]} —» M+, z 1—*• p (z) := inf {5 > 0 : z G ÔTZ} .

This norm is useful in order to locate any point z G span {X (x) : x G [—1,1]}
with respect to 7Z.

For example if p(z) = 0 then z G OTZ =0. Therefore z = 0 (which belongs
to 7Z). If p (z) = 1 + e, with e > 0 then z ^ 1Z. If p (z) = 1/t then z G (1 /t) 7Z
and 2 ^ (1/t + e) 1Z. The larger t , the doser z to the null vector. Reciprocally
small values of t make z close to the boundary Fr (JZ) of 7Z. As t decreases the
point moves away from 1Z.

Clearly z G 7Z if and only if p (z) < 1.
It follows that the Elfving set coincides with the closed sphere with radius 1

and center z = 0 in span {X (x) : x G [—1,1]}.
It holds

1Z = {z G span {X (x) : x G [—1,1]} : p (z) < 1} ,

which yields that 7Z is a compact .
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We now characterize the boundary points of F, namely

Fr (7Z) := {z G span {X (x) : x G [—1,1]} : p (z) = 1} .

We fist recall a basic theorem pertaining to convex sets in R9'-\g> 2.

Theorem 20 (Carathéodory) Let A be a non void subset in R91-1. Then any
convex combination of éléments in A can be written as a convex combination of
at most g points.

Proof. See e.g. [van Tiel, 1984] p 41. ■

Proposition 21 Let z £span{X (x) : x G [—1,1]}. Then there exists a dis-
crete design £ such that

-TGV = f (e (X (x))) X (x) £ (dx).P(z) J[-i,i]
Proof. The proof is in [Pukelsheim, 2006] p 48. ■

We use the fact that in any boundary point of a convex set there exists a tan-
gent hyperplane to the convex set. This hyperplane divides span {X (x) : x G [—1,1]}
into two subsets; the first one "below" contains 7Z and the second one "above"
does not contain any point in F. This fact allows for the détermination of the
boundary of F.

For c in F it holds

meFrm-
Proposition 22 There exists a vector h in R9 such that for any z in F it holds

z'hh'z < 1.

Proof. The tangent hyperplane to F at point c/p(c) is defined as follows.
A vector h in R3 defines a linear form which in turn détermines the tangent
hyperplane to F at point c if for any z G F,

z! h <
P(c)

h.

This relation States that

F is a symmetric set, when
which also belongs to F.

Hence

ail points in F lay "below" the hyperplane. Since
z satisfies z' h < -Mr then the same holds for —z

— p( c)

h C 4-t— p(c)
_

ry/ u <r A_h

It follows that for any z G F, we hâve

c' h
~

P (c) ’



35

The real number
_

c! h

1:=W)
is therefore non négative. Furthermore it does not equal 0. Otherwise 7Z has a
void interior. Hence 7 > 0. Define therefore the vector

7

from which

Also, since

we get

for any z g7£. ■

z'h <1.

c h

P(c)
= 1

z' h h'z < 1,

5.2.1 Some further development on the représentation of the Elfving
set.

So far we considered the inner représentation of set Elfving set 7Z, through
convex combination of éléments of the kind ±X (x) with x in [—1,1]. We now
consider the fact that the Elfving is defined through an inner product; namely
it holds, making use of Proposition 22,

where

7^ = {X (x) eR9 :{X (x))' N {X {x)) < 1}

N= h h'

and h is the vector which defines the tangent hypeplane to 7Z at point c/p (c)

The matrix N clearly is symmetric and positive semi definite.
Define the inner product on R5 by

< z',w >N ■= z 'N w .

Thus, to such vector h we associate a quadratic form < .,. >jv which is
defined by the matrix N.

Geometrically, 7Z is the closed unit bail with center 0 defined by

71 := {z G span {X (x) : x £ [—1,1]}:/? (z) < 1} .

Consider the régression range

H := {X(x) : x G [-1,1]} C R9.
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Assume first that x may assume only a finite number of values in [—1,1] •

Then Tt is finite dimensional, and R is a polytope with finite number of edges
and vertices. When x may assume an infinité number of values in [—1,1] then
R coincides with a géométrie set depending on the range of the matrix N.
When N has full rank, then 71 is an hyperellipsoid (say ellipsoid),. When N is
degenerate, then Tl is an hypercylinder (say a cylinder).

Citing [Pukelsheim, 2006] p 44 "Nevertheless Elfving sets and scalar product
balls are linked to each other in an intrinsic way. A scalar product bail given by
a positive define matrix N is an ellipsoid, because of the full rank of N; if we
drop the full rank assumption, the ellipsoid may degenerate to a cylinder". For
a nonnegative define matrix N G S>o (g), Pulkesheim calls the set of vectors
{z G R9 : z'Nz < 1} the cylinder induced by N. It includes the nullspace of N.

Elfving sets allow many shapes other than cylinders. However, we may ap-
proximate a given Elfving set 71 from the outside, by considering ail cylinders
that include Tl. Since cylinders are symmetric and convex, inclusion of R equiv-
aient to inclusion of the régression range.

Identifying a cylinder with the matrix inducing it, we define the set N of ail
a cylinders that includes Tl or Ti by

J\f : = {N G S>o (g) : z'Nz < 1 for ail z G R} (21)
= {N G S>o (g) • x'Nx < 1 for ail x G Ti] .

Eléments in N cast light on the connection between such approximation of
R and moment matrices, which in turn are in relation with the design.

5.3 The relation between cylinders and the variance of the
estimator of the c— form

The relation between the outer approximation of the Elfving set R through
cylinders and the variance of the estimator of the c form can be captured
noting that the optimal design is obtained solving

f minç c' (M (£))" c (99\
\ M(Ç) e A (c) n M • K >

where the constraint

M (£) G A (c) n M
amounts to the estimableness of the linear form c'Q; see section 5 .

Optimality may now be characterized in terms of the moment matrix.

Définition 23 A matrix moment M (£) is called optimal in M for the form c'Q
when it belongs to A(c) and when c' (M(£))~ c is minimal in M.

We observe that when M belongs to A (c) then c' (M (£))- c does not
dépend on the very inverse (M (£))_ used in order to evaluate c' (M (£))~ c
(see [Pukelsheim, 2006] Chapter 2).



37

In (22) the variance c' (M (£))_ c is written in ternis of cylinders. We may
write this geometrically, and the variance is minimal whenever, for any cylinder
defined by a matrix N G N (see Définition 21) it holds

c' (M(£))“ c < c' N c

or, in terms of the Loewner order

(MwriN.

5.4 Lower bound for the variance

Let
tr f N G S>o(g) such that (X (x))' NX (x) < 1

( for ail X (x) and any x G [—1,1]
and assume that M (£) G 4 (c) H M.
In this Section we quote a basic resuit, which states that for any matrix N

in N it holds
c' (M(£))-c > c'Nc.

This is to say that any cylinder which contains the régression range is induced
by a quadratic form which is a lower bound of the variance of c'6.

The minimization of the variance of c'O amounts to the attainment of this
lower bound, which is to say to the problem of the définition of the cylinder
which realizes the infimum.

Recall that the variance of the Gauss Markov estimator of the c— form with
design £ is c' (M (£))~~ c, where (M (£))~ is the generalized inverse of M (£),
hence an element in S>o(g). The next resuit compares this variance with homo-
logue terms when (M (£))- is substituted by a generic element in N , providing
a lower bound for the variance upon ail designs.

Theorem 24 (Pukelsheim) Assume that M (£) G A (c)nM (A4d [—1,1]). Then
for any N in N

Var c, 6 = c' (M (£)) c > c'Nc,

Proof. We présent a proof of this important resuit, more accessible than as
presented in [Pukelsheim, 2006] pp 20, 21 and 46.

Step 1 We prove that
tr (M (() N) < 1. (23)

Integrate with respect to £ in both sides of the inequality (X (x))' NX (x) < 1.
Then

/ (X(x))'NX(x) di(x)< /
•'[-M] 1,1]

1 d£ (x) = 1.
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Since M (£) = X (a:) (X (x))' and tr (AB) = tr (BA), denoting A := X (x) and
B := (X (x)) ' N, we obtain

(X (x)) ' N X (x) =tr ((X (x))'N X (x)) (24)
= tr (X (x) (X (x))' N) = tr(M (£) N).

Therefore (23) holds.
Step 2 We now prove that

tr (M (£) N) > (e'(M(î))-ç)_1ç'JVç, (25)
This follows from the fact that M (£) G A (c). Indeed if M (£) G ^4 (c) then by
the Gauss Markov Theorem it can be proved that (see [Pukelsheim, 2006] pp
21 and 22)

M(Ot c (c'(M(0)“c)_1c'.
Multiplying both sides by N,

M(Ç)N h c (c'(M(^))~cj 1c'N;
using the fact that when A y B then tr (A) > tr (B)), we obtain

tr(M(Ç)N)>tr\c(c'(M(Ç))-c) c'N
= tr ^c'(M (Ç))~ cj c'N c^j
= (c1 (M (t))~ c)'1 c’Nc.

Step 3 We now prove the claim. From (25)

(c'(M(Ç))~ c) tr (M (£) N) > c'Nc.
Now by (23)

tr (M (£) N) < 1
and therefore, multiplying by c' (M (£))_ c we obtain

tr (M (() N) c' (M (Or c < C' (M ({))” c (26)

and finally
Var :>) = c' (M (£))“ c > c'Nc.

We will see that this lower bound can be achieved, which yields a criterion
for the optimality of the design £.
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5.5 The lower bound can be achieved

We now prove that conditions on N G J\f exist which imply

c' (M (£))_ c = c'Nc.
We push forward three preliminary Lemmas. For fixed c G 7Z dénoté h the

vector of the coefficients of the tangent hyperplane to 7Z at point ç/p (ç) and

Accordingly define the symmetric semidefinite positive matrix

N := hh'.

Lemma 25 Let M (£) G .A(c). Then

c = c (27)

and

^ = M(î)(M«))-JL (28)
Furthermore

IfG={(M(())-y then NA Gc = N=) (M (î))~ c. (29)
Proof. See [Pukelsheim, 2006] p 41. ■

Lemma 26 (Pukelsheim) Assume that

M(î)M(c)nM(A)d|-l,l]).
Then tr (M (£) N) — 1 if and only if (X (x)) ' N X (x) = 1 for ail x Gs«pp(£).
Proof. See [Pukelsheim, 2006] p 45. ■

Lemma 27 (Pukelsheim) Assume that

M (Ç) £ A (c) n M {Md [-1,1]) ■

Let N belong to J\f . Then the two following assertions
(i)

tr (M (£) N) = (c' (M (£))“ c) c'Nc = 1
and

(H)
( {X (x))' NX (x) = 1 for any x G supp (£)

| M(p = c(c'(M(0rc) VtV
are équivalent.
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Proof. See [Pukelsheim, 2006] p 45. ■
The following Theorem indicates conditions for

c7 (M(£))- c = c'Nc

to hold.

Theorem 28 (Pukelsheim) Assume that M (£) G A (c)flM (Md, [—1,1]). Then
the two following assertions

c' (M (0)~ c = c'Nc
and

(ii)
(X (x))' NX (x) = 1 for any x G supp (£)

are équivalent.

Proof. We hâve by Lemma 27

trM (£) N = (c7 (M (£))“ c) 1 c'Nc
and

trM (£) AT = 1.
Hence

c7 c = c'Nc. (30)

We evaluate c7 (M (£)) c. Since c/p (c) =M (£) h using (36)

c7 (M (O)" c = (p (c))2 ((M «))-\p{ c) P(c)J
= (p (c))2 ((M (?) h)' (M {?))- (M (?) h))
= (p(c))2 h7(M(0)'(M(0)”M(0h.

6 Elfving Theorem
Theorem 29 (Elfving) Denoting

H := (X(z) : x G [-1,1]} Ç M9

the régression range (which under the current hypothèses is a compact set), assume
that the vector of coefficients c G M9 lies in span {ht) and has Elfving norm
P (c) > 0.
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Then a design £ G Md ([—1,1]) is optimal for < c',6 > in Md{\— 1,1]) if
and only if there exists a function e on {X (x) : x G [—1,1]} which takes values
±1 on the support of £ and such that such that

P(c) ■i,i]
(e (A»)) (X(æ)) £(<**)■ (31)

Furthermore the optimal variance is (p(c))2 .

Proof. (from Pukelsheim, pag. 51)
Direct part. Assume that there exists a function e on {X (x) : x G [— 1,1]}

which on the support of £ takes values ±1 such that (31) holds ; we prove
that there exists an optimal design for < c',9 > in Md ([— 1,1]), and that the
optimal variance is (p (c))2 . We thus prove that < c', 9 > is estimable and that
its Gauss Markov estimator has minimum variance for the measure £.

• We prove that < c',9 > is estimable. By hypothesis,

P{c)
= ^ i(x)(e(X(x)))(X(x)),e(X(x)) = ±l. (32)

x€supp(£)

Since p(c/p(c)) = 1 it follows that c/p(c) G Fr (71). Hence there exists
a tangent hyperplane which touches 71 in c/p(c). Let h be the vector of the
coefficients of this hyperplane as defined in Proposition 22. Then

e (.X (x)) (X (x))' h <1 for any X (x) G span (X (x) : x G [—1,1]} . (33)

For this vector h , the tangency condition on point c/p(c) provides

h =1.
P(c)

Substituting (25) in this latest expression we obtain

P(c)
h= XI £ (x) (e (X (x))) (X (x))'h-

x€Esupp(£)

From (26), we get

and therefore

£ (x) (e (X (æ))) (X {x))' h <£ (x)

l = Ah= ^ «to(UX(s)))(*0r))'h< E «W = L^
xGsupp(Ç) xësupp(Ç)

We deduce that

E «(*)(* (* (œ)))(X(aO)'h =1. (34)
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Assume that

(e(X(*)))(V(*))'h#l.
for some x. Multiply then on both sides by £(æ) and sum upon ail points in the
support of £. Then we get

xGsupp(£)

a contradiction. Hence £ (x) (e (X (x))) (X (x))' h — 1 for ail x in the support of
f-

From (34) we get

(X(æ))'h= 1 =e(X(x)) (35)

and therefore, substituting e (X (x)) by (X (x))' h in (32) and noting that
(X (x)) (X (a:))7 = M (£), we obtain

E 4W(e(x(x)))(x(æ))
x€supp(£)

= E ««(*(*)) (*(*))'h
xesupp(^)

= E (W»f(f)h=M(()h.
xGsupp(£)

This proves that

wrM{()h (36)
and therefore

which yields

Hence < c',9 > is estimable.
•We now prove that the matrix M (£)~ is minimal in the Loewner order,

which means that £ provides a minimal variance Gauss Markov estimator of
< c',0 >.

In the frontier point c'/p(c)

h'Mfâh
c'

p(c)
h =1.

Hence

h'M (£) h =1.
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By Theorem 28, £ is optimal if and only if

c' (M(£))~c = cNc'.

We evaluate c' (M (£))~ c. Since c/p (c) =M (£) h using (36)

c' (M (£))“ c = (p (c))2 (M (O)"
\P\c) p(c)/

= (p (c))2 ((M (?) h)' (M (?))" (M (?) h))
= (p (c))2 h'(M(£))'(M(£))-M(£)h.

Now M (£) is symmetric and (M (£)) (M (£))~ M (£) = M (£); hence since
h'M (£) h =1,

c' (M (£))" c = (p (c))2 h'M (0 h = (p (c))2 .

This proves that if £ is optimal then the variance of the estimator of < c, 6 >
equals (p(c))2.

In order to prove optimality recall that

c' (M(£))-c = cTVc' iff
(X (x))' NX (x) = 1 for any x £ supp (£)

M(£) N = c (c' (M (?))~ c)”' c'JV,
by Theorem 28. Since c' (M (£)) c = (p (c))2 ,

P(c)
M (£) h, hh'=TV and h'M (£) h =1,

we hâve

c (c' (M (£))“ c) c'N = c ((p (c))2) c'TV
= -_l_(fp(c)c) (4-p(c))n)(p(c))2 VV T(c) A/>(<=) 7 /

=4^ = m (?) h (h'M (?) h) h'p(c) p(c)
= M (£) hh' = M (£) TV.

Therefore

M(()N = c(c' (M (?))_ c) 1 c'JV.
In order to conclude about optimality it is enough to prove that

(X (æ))' TVX (x) = 1 for any x £ supp (£).
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By (35)

(X(x))'NX(x) = ((X(z))'h)(h'X(*))
= e{X(x))e{X(x))
= 1.

We hâve proved optimality and also that

(p(c))2 = min var c',6 >^j .

Reciprocal. Let us prove now that if £ is optimal then

~^r= \ (e(X(x)))(X(x))t(dx).P\c) J[-i,i]
If £ is the optimal measure to estimate < c',6 >, then M (£) G *4(c) and
c' (M (£))~ c = (p(c))2. Furthermore since £ is optimal it holds

f (X (x))' NX (x) = 1 for any x G supp (£)

| M(£)iV = c(c'(M(£))_c) 1c'N
Now since X (x)' NX (x) = 1 for any x G supp (£) it holds, using Theorem 28,

{X (x))' NX (x) = {X (x))' hh'X (x) (37)
= ((X(x))'h)2 =1

for any x G supp (£).
From M(£)iV = c (c' (M (£))_ c'N we get, multiplying on the right

side in (37) by pp,

M = c (c'{M m~c) c,jvïæ-
Simplifying we hâve

M (ç) hh'i^ =c (c< «))"c)_1 c'hh'i^
and

M(£)h = c(c'(M(£))~c) c'h.
By the optimality of £, it holds c' (M (£))_ c = (p (c))2 and using c'h =p (c),

we get
1 ,u c

9C h =—7-T-
(p(c))2 p(0

M (0 h = c
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Dénoté now e (X (x)) := (X (x))'h. From (37), 1 = ((X(æ)/h)2 for any
x G supp(£) it follows that -y/e (X (x)) = 1. Hence e(X (x)) = ±1 for x G
supp (0-

Write now

Y £(x)x (x)e (x (æ)) =(o) Y (x) (x (æ))/ h
xësupp(£) xGsupp(£)

=(6) E
x€supp(£)

The equality (a) in the above display is obtained substituting e (X (x)) by
(X (a;)/h. Equality (b) follows from M(£) = X (x) (X (æ)/ and (c) from the
fact that M (£) h = ^y.

Therefore

/ ■■ = V £ (a;) X (x) e (X (æ)) with e (X (x)) = ±1 for x G supp (£).
p (C) ‘

æGsupp(^)

Elfving Theorem assesses that the vectors in 77 to which an optimal measure
is associated are necessarily frontier points of the Elfving set. Indeed clearly
p{c/p(c)) = 1.

In the next section and in the last one, we discuss the results by Kiefer,
Wolfowitz and Studden; see [Studden, 1971] .

These authors hâve characterized optimal designs whose support consists in
Chebyshev points. Our starting point is the optimal design which has been
described above, through the Elfving Theorem 29.

7 Extension of Hoel - Levine resuit: Optimal
design for a linear c— form

From [Dzyadyk and Shevchuk, 2008] we know by Borel Chebyshev Theorem
that any continuons function / defined on a compact set in R has a uniquely
defined best uniform approximation in the class of polynomials with prescribed
degree. More generally given a finite class {<£>0,..., pg-\} of functions a necessary
and sufhcient condition for / in ([—1,1]) to admit a best uniform approxi-
mation p G span |<p0,..., } is that { {y>0,..., pg-\} } be a Chebyshev System
in C([—1,1]); this is Haar Theorem. Finally the Borel Chebyshev equioscilla-
tion Theorem assesses that the resulting error of approximation by polynomials
with fixed degree less or equal g — 1 takes on its common maximal absolute
values on g + 1 points in [—1,1] with alternating signs.
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This important characterization of approximating schemes may be general-
ized through the following Lemma.

Lemma 30 ( Karlin and Studden) Let {<p0, ...,(pg_1} be a Chebyshev System
in [—1,1] . Then there exists a unique element u (x) := X)9=o ajTj (x) V
span {(£>0,(pg_±}} which enjoys the following properties:

1)
\u (x)| < 1, for ail x G [—1,1], (38)

2) there exist g points in [—1,1],xo, ...,xg-i such that
— 1 < xq < ... < xg-1 < 1 and u (xj) = (—l)ff~1_J ,j = 0, ...,g — 1. (39)

Proof. see [Karlin and Studden, 1966a] p.792. ■
We now assume that c ^ 0.
We State and prove the following Theorem, which extends Hoel - Levine

resuit. The pr
Let

C:= ^
det

is due to Karlin and Studden.

0 II TTO Cg-i)' £ such that
>

/ To Oo) To (Xg-l) co \
Ti M Tl {Xg-l) Cl

7^0

\ Tg-l(®t)) • Tg-1 (X9~ l) cg-l J
(40)

This class C coincides with the estimable c— forms for designs supported by
at least g + 1 points in [—1,1]. See [Kiefer and Wolfowitz, 1965], p 1638.

For any c, consider the projections 7r*, on the axes'ï = 0, ...,g — 1,

TTi : C —> M, c 7Ti (c) := c*

and let

* = TÏ fc (c)) = (pr (^)
and therefore <pi (z) = (pi (<^~~ (c))) = c*.

Finally dénoté
j z t-\ <X{x),d>2
d(c’«):=T<d,M(ç)d>

which is the variance of (c, 6) and

B := {æG M : u2 (rr) = l} .

(41)

Theorem 31 (Optimality) Let {<p0, ...,<pg_1'^ be a Chebyshev System in ([—1,1]).
Assume that the vector c belongs to the set C defined in (33) and let f G Md
([—1,1]). Then with z defined in (41)

1- there exists a unique function
9-1

u(x) := J2a*jVj (x) G span{p0,...,pg_1}
3=0

x
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such that
d (c, f) > u2 (z), for all£ G M ([-1,1]) .

2-Let xç> < .... < Xg-i, j = 0, ...,g — 1, be g points in B such that

u(xj) = (-i)9 1 3 J = -1-

Define 1% : j = 0, ...,g — 1 the Lagrange polynomials with degree g — 1 defined
on the nodes Xj. Then

d (c, O = u2 (z)

z/ and only if
£:=£*

where £* zs the measure with support Xj, j — 0, ...,g — 1, and

C (Xj) :=
(*0|

EU fe (*)|
5- If there exists a := (ao,..., a^-i/ G M5 such that the function x —> U(x) :=

Y^9jZoüj<Pj(x) coincides with the constant function l[-i,i] : [—1,1] —> M, x —■»
(x) = 1, then

cardB = g and xq = — l,xg_i — 1.

Furthermore

d(c,£)=w2(z) if and only if £ = £*.

Remark 32 Statement 1 means that the variance of the estimator of the c-

form < c ,6 > is bounded by below whatever £. Statement 2 means that for
any vector c there exists an optimal measure £ which provides optimality for the
estimate of the c - form < c ,0 >. Statement 3 assesses uniqueness.

Proof. • Statement 2) is proved as follows. There exist g points in B C [-1,1],
xo, •••, xg-1 such that : — 1 < xq < ... < xg_i < 1 and u(xj) = (—l)5 1 J, j =
0,...,g — 1. Since {<^0,..., <pg-\) is a Chebyshev System in [—1,1], the functions
(p0,...,(pg_i are linearly independent. The function n (x) := YZjZo ajFj (x)
is defined in a unique way when known at points xo, ..., xg-\- Further there
exists a unique polynomial Pg~i, with degree g — 1 which assumes the same
values as u on x0, •••, x3_i . Therefore u equals its interpolation polynomial
with degree g — 1. Hence the System u(xj) — Pg-i (xj), j = 0, ...,g — 1, has
a unique solution in the unknown numbers a*’s. Considering the basis which
consists in the elementary Lagrange polynomials : j — 0, ...,g — 1} we may
write Pg-i , and henceforth u as follows: u(x) = ^ (x)u(xj). Consider
x = z\ it holds u (z) — JZjZo ^ (z) u (xj)- Consider now each of the functions
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(fj in {<£0,tpg_i}, for j = 0,g — 1. We write (fj in the basis defined by the
elementary Lagrange polynomials 1%. through

g-1

<Pj O) = l*i ^3 (®i) ’ 3 = 0, g - 1.
i=o

fej(^) = (-l)s 1 J (*)|,
denoting := (—l)9-1-' we get

9-1

<pj O) = ei (z) I Vj (*j) > i = °> •••> g -1-
j=0

Recall that X (x) := (y?0,the g equalities above write as

9-1

3=0

Denoting

we hâve

£:= (*)|
3 = 0,...,^

9-1

i=o

Dénoté

We then hâve

/?:=
ELd fe (*)|

9-1

/3X(z) = ^e|*X(^)
7=0

By Elfving Theorem it follows that if we prove that f3X (z) G Fr (JZ) then
£*is optimal.

We now prove that j3X (z) G Fr (7Z). This follows from the fact that there
exists a tangent hyperplane F in (3X (z), i.e.

< (a*)',(3c >= 1
< y, a* >< 1, for any y G72. .
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where the vector a* defines the hyperplane.
We hâve

3-1

0) = a*jVj (*) =< (a*)' ,x(z)>
3=0

g-1
= {z)u{xj).

j=o

Therefore

/Qu (z) =< (a*)' ,/3c>.

By définition u alternâtes sign at points Xj's. Hence

U2 (Xj) = 1

and
U (jXj ) Ixj (z) — \l>Xj {z) |

Now

3-1 3-1 3-1

t2(*) = = (EM*)I|
î.e.

P2 = 1u2 (z)

Clearly u (z) > 0. Indeed u (z) = |fe3- (^)|- Hence P = and therefore

< (a*)', /3c >= Pu (z) = . .u (2;) = 1.

By the Property (38) it holds

3-1

< (a*/,X (x) >= '^2/a*j^>3 (x) — f°r x e
3=0

We also hâve

3-1

< (a*/ , -X (æ) >= — ^2 °*jVj (#) < 1> for any æ G [—1,1].
3=0

Therefore

< y, a* >< 1, for ail y ÊlZ .

Hence the hyperplane defined by the vector a* is tangent to 1Z in (3ç.
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This proves claim 2).
• We prove 1), i.e. that d(c,£) > u2 (z).
By Elfving’s Theorem , /3~2 is the minimum value of the variance. Hence

/T2 = nünd(c,£).

We hâve just seen that u2 (z) = l/(32. This proves the claim.
• We prove 3).
It holds

|u (æ)| < 1 for x G [—1,1] .

Also
—1 < u (x) <1 for x G [—1,1]

i.e.

0 < u (x) + 1 for x G [—1,1] .

It also holds

—2 < u (x) — 1 < 0 for x G [—1,1]
Hence

1 — u (x) >0 for x G [—1,1] .

Now 1 —u(x) and 1 -j-u(x) are non négative functions for x G [—1,1]. Therefore
11 — u (x) | = 1 — u (x) and 11 + u (x) | = 1 + u (x).

From

u {xg-i-j) = (-1 )J j = 0,..., g - 1,
it follows that

1 — u (x) = 0 for u (x) — 1
and

1 + u (x) — 0 for u (x) = —1.

Therefore, considering the zero’s in (—1,1) with multiplicity 2, we hâve that
1 — u (x) and 1 + u (x) hâve g zero’s in [—1,1] .

Assume now that there exists a vector of coefficients a:= (do, ...,â5_i)/ in
R5, for which the function U (x) := djcpj (x) coincides with the constant
function l[-i,i] : [—1,1] —> R, x —> l[-i,i] (x) = 1. Then the functions

5-1 5-1

XI (æ) - u (x) > X W' (æ) + u (æ)
j—0 5=0

hâve g zero’s in [—1,1]. These are then the points ±l,æ5_i_y, j — 0, ...,p — 3.
Since there exists a unique linear combination of the Chebyshev System

which assumes value 0 on the points ±l,æs_i_j, j = 0, ...:g — 3 it follows that

card (B) = g.
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We now prove that

d (c, £) = u2 (z) if and only if £ = £*,
where £* is the measure defined at point 3) of this Theorem.

Assume d (c, £) = u2 (2?) and consider a generic finitely supported probability
measure £ whose support contains strictly the g points in B. We prove that the
variance associated to £ is not optimal.

Since c* = ip{ (z),

,, ^ <c,d>2d(c’Ç) :=T<d,M(Ç)d>
(E&1<to(*))a

= sup 2
d /[_!,!] (E£o 0e)) ^ (X)

V? (ip)
~

/[_1,1]w2 (æ) d£ 0*0 '
But

and therefore

It follows that

u2 (rr) < 1

u2 (x)

d (c, £) > u2 (æ).
The inequality is strict since the support of £ contains points not in B. Using
Karlin - Studden Theorem 30, and existence of U, d (c, £) = u2 (x) if and only
if £ has support B. Hence d(c, £) > u2 (æ). Therefore £ is not optimal. Hence
the optimal measure has support B.

We now identify the support of the optimal measure, and then its masses at
those points. The measure is optimal if and only if it has ail its mass at points
in B, ±l,xg-i-j, j = 0, ...,g — 3. By Elfving’s Theorem it holds

9-1

X] ejPiX (E)
3=0

P

= PX(z),

1

ESo fewr
This can be seen as a System of g équations with g unknown variables ej pj,
j = 0, ..., g — 1. It has a unique solution whenever

/ VoM • <Pg-i{xo)

\ <Po(Xg-l) ■ <Pg-l(xg-1)
det 7^0
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which holds by independence of the éléments in the Chebyshev System.
The solution writes

_ \kj (*)|
Vi'

S&feMl
> cJ

Hence £ is optimal if and only if £ ^ £*. We hâve proved claim 3). ■

Remark 33 Considering <pj (x) = , j = 0,...,g — 1, z G M\ [— 1,1] , the
optimal measure is given by

1^3 (Z)\
tu h wi

with

Xn := — cos
JTT

for j — 0, ...,g — l. Furthermore d{z,tf) > Tg_x (z) where Tg_\ is the Chebyshev
polynomial of first kind with degree g — 1. Hence

T9_i (x) := cos ((g — 1) arccosæ).

The polynomial Tg_i has the same rôle as the function u (x) = E9j=o ajTj (x)-
Hence the resuit by Hoel - Levine appears as a spécial case of the above Theorem.

Remark 34 Considering <Pj (x) = x^, j = 0, ...,g — 1, z G R \ [—1,1] , the
optimal measure is given by

1^3 (2:)|
Ej=0 \kj (z) |

with

for j = 0,g — 1. Furthermore d(z, £) > (z) where Tg_ i is the Chebyshev
polynomial of first kind with degree g — 1. Hence

Tg-1 (æ) := cos ((g — 1) arccosrr).

The polynomial Tg_ i has the same rôle as the function u (x) = a*jTj (æ)*
Hence the resuit by Hoel - Levine appears as a spécial case of the above Theorem.
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